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Abstract

This thesis is concerned with automatic continuous speech recognition using trainable
systems. The aim of this work is to build acoustic models for spoken Swedish. This is
done employing hidden Markov models and using the SpeechDat database to train their
parameters. Acoustic modeling has been worked out at a phonetic level, allowing general
speech recognition applications, even though a simplified task (digits and natural number
recognition) has been considered for model evaluation. Different kinds of phone models have
been tested, including context independent models and two variations of context dependent
models. Furthermore many experiments have been done with bigram language models to
tune some of the system parameters. System performance over various speaker subsets
with different sex, age and dialect is also examined. Results are compared to previous work
showing a remarkable improvement.
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Chapter 1

Introduction

1.1 Introduction

The field of speech signal analysis has been in the center of attention for many
years because of the interest it is able to generate in the scientists and because
of the many possible applications. These applications, related mostly to telecom-
munication problems, have as a goal the possibility for human beings to exchange
information using the most natural and efficient means they know: speech. In
this context the speech recognition enterprise is probably the most ambitious. Its
goal is to build “intelligent” machines that can “hear” and “understand” spoken
information, in spite of the natural ambiguity and complexity of natural languages.
In thirty years, improvements that could not even be thought of before have been
worked out, but still the objective of a robust machine, able to recognize different
speakers in different situations, is far to be reached. The difficulty of the problem
increases if we try to build systems for a large set of speakers and for a generic task
(large vocabulary).

This thesis describes an attempt to build robust speaker-independent acoustic
models for spoken Swedish. A collection of utterance spoken by 1000 speakers (the
SpeechDat database) has been used as a statistical base from which the models
have been developed. The recognition task considered includes a small vocabulary
(86 words), but continuous speech is accepted. Furthermore the model structure
is chosen with regard to the possibility to apply these models in different contexts
and tasks. For this reason models have been tested on another database (from the
Waxholm project) to evaluate their flexibility. Different applications are possible
for this kind of models: they can be employed in the recognition part of complex
dialogue systems, or in speaker verification systems for example.

This report contains a documentation of the steps that lead to the creation and
development of the acoustic models, but also a thorough description of the system
employed in the recognition phase.

1



2 CHAPTER 1. INTRODUCTION

1.2 Automatic Speech Recognizer

An Automatic Speech Recognizer (ASR) is a system whose task is to convert an
acoustic speech signal into a symbolic description of the message coded in that signal
during speech production. Two main aspects make this process particularly difficult:
the “modulation” process (speech production) involves a long list of physical and
psychological phenomena regarding the speaker articulatory apparatus, the phon-
emic system, the prosodic system, the lexicon, the syntax, the rules of discourse,
the semantics, the psychology of the speaker and so on, which makes the speech
signal extremely changeable with different situations and deeply coded. Second the
“demodulation” process (speech recognition) involves a large reduction of informa-
tion from the sampled acoustic signal (for example 8bit, 8kHz), to the text (around
5bytes/sec).

Speech recognition has, hence, an interdisciplinary nature involving many dis-
ciplines such as: signal processing, physics (acoustic), pattern recognition, com-
munication and information theory, linguistics, physiology, computer science and
psychology. Successful speech recognition systems may require knowledge on all
these topics. A way to give an organisation to this knowledge is to refer to an
abstract model of natural languages called Peirce’s model (Hartshorne and Weiss,
1935). This model explains well the structure of our system, even though it is
considered to be too simplified if the attempt is to describe natural languages.

1.2.1 Peirce’s Model

Peirce’s model provides a general definition of the linguistic constraints. Four com-
ponents of the natural language code are included: symbolic, grammatical, semantic
and pragmatic.

Symbols are the most fundamental units in a language: they might be words,
phonemes, or, in written form, the alphabetic symbols.

The grammar of a language is concerned with how symbols are related to one
another to form words or sentences. In the case that fundamental symbols are sub
word units, we call lexical constraints the way these units are connected to form
words, while syntactic constraints rule the way words form sentences. Both are part
of the grammar.

Semantics is concerned with the way in which symbols are combined to form
meaningful communication: a sentence can be grammatically correct, but be without
meaning.

Finally the pragmatic component of the language model is concerned with the
relationship of the symbols to their users and the environment of the discourse.

Knowledge at all linguistic levels is required if our aim is to build a system
that can be used in different environments and for different tasks. Nevertheless the
highest levels (semantics and pragmatic) are very difficult to formalize (at least in
conventional engineering ways) and they are usually considered as belonging to the
field of artificial intelligence. The usual way to overcome this problem is to restrict
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the field of application of the system to be built and to use in its construction only
knowledge that can be formalized in a mathematical way.

In Figure 1.1 a schematic representation of Peirce’s model is depicted.
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Figure 1.1. A schematic representation of the Peirce’s model for natural languages.

This work is focused on the acoustic part of a speech recognizer and hence will
deal essentially with the first two levels of language constraints.

There are two different approaches in the way knowledge is obtained and used:
the first is the deterministic approach: all the phenomena involved in speech pro-
duction are analyzed and formalised from a physical and physiological point of view
(when possible). The utterance to be recognised is then compared to a synthetic
signal generated according to some acoustic models developed on this physical and
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physiological base. The computational requirements needed in this case are low,
but a big effort is required in formalizing the basic aspects of speech production.

The second approach (stochastic) is based on statistical methods: some oppor-
tune models are “trained” on a large amount of data in order to estimate their
parameters and to make them fit to the problem of interest. This second approach
requires a big computing power and large data bases.

The rapid development of computers in the last years has made the statist-
ical approach more and more attractive, but knowledge on speech production at a
physical level is still required. First of all because a long signal processing chain is
indispensable in order to extract the features that best represent the speech signal
characteristics and to reduce the amount of data to deal with per unit of time.
Second of all because the choice of model structures must always be motivated by
an analogy with the physical phenomena those models try to imitate.

1.3 Structure of the work

This thesis is structured as follows. The acoustic models are created on a phon-
etic base hence a description of the Swedish phonology is reported in Chapter 2.
Chapter 3 describes the SpeechDat database used in model building and testing.
Chapter 4 describes the ASR structure. Chapter 5 describe the mathematical theory
upon which model building is based. In Chapter 6 all the steps in model building
and developing are documented, and finally results are presented in Chapter 7 and
conclusions in Chapter 8.



Chapter 2

Swedish Phonology

As a first topic of this thesis, the Swedish phonology is described. The aim of this
work is to build acoustic models for different speech features, and hence the Swedish
language characteristics are an important background to understand the following.
Section 2.1 describes the Swedish phonemes, while Section 2.2 describes the main
characteristics of pronunciation in different dialect areas.

2.1 Swedish Phonemes

In the Swedish language, sounds can be classified into 46 phones. 23 of these are
vowels, while the other 23 are consonantal sounds. Among the consonants there
are 4 nasals, 7 fricatives, 3 liquids, 8 plosives, 1 h-sound (5 retroflex allophones are
included in their respective groups).

2.1.1 Swedish Vowels

The Swedish written language has 9 vowels [5] (a, e, i, o, u, y, ä, ö, å) which, when
spoken, can occur in a short or long version according to some pronunciation rules
(“A long vowel in a stressed position can only occur before a short consonant and
vice versa. In unstressed position there is no distinction between long and short
vowels...” [5]). An example is in table 2.1. Most of them are front vowels (e, i, y,
ä, u) which makes their distinction difficult for an untrained ear.

In figure 2.1 each vowel occupy a point in the F1/F2 plain, where F1 and F2 are
respectively the first and second formants. Formant data has been taken from Fant
(1973) [5], regarding seven female speakers. The X and Y axes showed in the figure
provide a way to relate formant variations to mouth configurations. Moving along
the X axis, the tongue position is approximately constant, while moving along the
Y axis mouth opening is constant.

2.1.2 Consonants

Swedish consonants are listed in Table 2.2 in the STA symbols. In the table, ac-

5



6 CHAPTER 2. SWEDISH PHONOLOGY

vowel long short
STA SAMPA example STA SAMPA example

a A: A: hal () A a hall ()
e E: e: vet (know) E e sett (seen)
i I: i: bil (car) I I till (to)
o O: u: rot (root) O U bott (lived)
u U: }: mun (mouth) U u0 buss (bus)
y Y: y: lys (shine) Y Y ryss (russian)
ä Ä: E: lät (sounded) Ä E lätt (easy)
ö Ö: 2: nöt (beaf) Ö 2 kött (meat)
å Å: o: kål (cabbage) Å O vått (wet)

pre-r long short
allophone STA SAMPA example STA SAMPA example

är Ä3 {: här
ör Ö3 9: för
err Ä4 { herr
örr Ö4 9 förr

schwa vowel long short
allophone STA SAMPA example STA SAMPA example

e E0 @ pojken

Table 2.1. “Long” and “short” vowels in Swedish phonetics

cording to Fant [5], phones articulated with a palatal or velar tongue position are
placed at the bottom, except for the liquids and the H phone. The labial member
of each group is placed to the left, and the dental to the right

Nasals

Nasal sounds (M, N, 2N, NG) are produced with the vocal tract totally constricted
at some point in the mouth. The sound is hence radiated by the nasal tract,
while the oral tract behaves as a resonant cavity which traps acoustic energy and
introduces zeros in the transfer function of sound transmission at some natural
frequencies. Nasals can be distinguished by the place at which the constriction of
the oral tract is made. For M the constriction is at the lips, for N it is behind the
teeth, for NG it is forward of the velum. When uttering 2N the position of the
tongue is similar to that for N, but it is curled.

Fricatives

Fricative sounds can be divided into voiced and unvoiced sounds. There are four
unvoiced fricatives in Swedish: F, S, TJ, SJ of which TJ occurs only in word initial
position. Unvoiced fricative sounds are produced by exciting the vocal tract by a
steady air flow which becomes turbulent in the region of a constriction in the vocal
tract.

Voiced fricatives are V and J. V is produced as F, but with excitation of the
vocal cords. J may also be pronounced as half-vowel.
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Figure 2.1. Vowel distribution in the F1-F2 plane

Liquids

The R sound can vary depending on the speaker. It can sound as a trill or an
uvular fricative in the south of Sweden, or as a retroflex voiced fricative in the area
around Stockholm. L is also classified as lateral because it is produced rising the
tongue. 2L is a variant of L “produced with retracted tongue position and uvular
constriction” [5].

Plosives (Stops)

These sounds are produced by changing the vocal tract configuration. They are
normally classified as non-continuant sounds. All stops have a first period in which
pressure is built up behind a total constriction in the oral tract. Then the pressure is
suddenly released (second period). To each stop corresponds a different constriction
position.

A distinction can be made between unvoiced stops K, P, T, 2T (no sound is
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h Liquids Voiced fricative Unvoiced fricative Nasals
H L V F S M N

2L SJ 2N
R J TJ NG

Voiced stops Unvoiced stops
B D P T

2D 2T
G K

Table 2.2. Swedish consonants

produced during the first period) and voiced stops B, D, 2D, G (a small amount
of low frequency energy is radiated through the walls of the throat).

H-sound

The h-sound (H) is produced by exciting the vocal tract by a steady air flow,
without the vocal cords vibrating, but with turbulent flow being produced at the
glottis.

Retroflex Allophones

Retroflex allophones (2S, 2T, 2D, 2N, 2L) have already been mentioned in their
groups. They are now grouped together because they will be object of discussion in
the following of this work. These symbols apply to alveolar articulation of sounds
spelled r plus s, t, d, n, or l and occur only in positions after a vowel. The distinction
between the retroflex version of a phoneme and the normal one (for example 2L
and L) is not important in the southern dialects of Sweden.

2.2 Dialectal Variations

Swedish pronunciation depends strongly on the origin of the speaker, while STA
symbols are independent of the specific dialect sound qualities. For this reason in
this section some variations from the standard pronunciation rules are listed for the
seven major Swedish dialect regions [4]. Most of differences regard the pronunciation
of vowels.

1. South Swedish
South Swedish diphthongization (raising of the tongue, late beset rounding
of the long vowels), retracted pronunciation of R, no supra-dentals, retracted
pronunciation of the fricative SJ-sound. A tense, creaky voice quality can be
found in large parts of Småland.
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2. Gothenburg, west, and middle Swedish
Open long and short Ä and (sometimes) Ö vowels (no extra opening before
R), retracted pronunciation of the fricative SJ-sound, open Å-sound and L-
sound.

3. East, middle Swedish
Diphthongization into E/Ä in long vowels (possibly with a laryngeal gesture),
short E and Ä collapses into a single vowel, open variants of Ä and Ö before
R (Ä3, Ä4 and Ö3, Ö4 in STA).

4. Swedish as spoken in Gotland
Secondary Gotland diphthongization, long O-vowel pronounced as Å.

5. Swedish as spoken in Bergslagen
U pronounced as central vowel, acute accent in many connected words.

6. Swedish as spoken in Norrland
No diphthongization of long vowels, some parts have a short U pronounced
with a retracted pronunciation, thick L-sound, sometimes the main emphasis
of connected words is moved to the right.

7. Swedish as spoken in Finland
Special pronunciation of U-vowels and long A, special SJ and TJ-sounds, R
is pronounced before dentals, no grave accent.





Chapter 3

SpeechDat Database

SpeechDat [15] is a project involving 15 European countries (listed in tab. 3.1)
and essentially based on the country partner’s fixed telephone networks. Speakers

Country Language Partner Recorded
(variant) Speakers

United Kingdom English GEC +4000
United Kingdom Welsh BT 2000
Denmark Danish AUC +4000
Belgium Flemish L&H 1000
Belgium Belgian French L&H 1000
France French MATRA 5000
Switzerland Swiss French IDIAP +2000
Switzerland Swiss German IDIAP 1000
Luxembourg Luxemb. French L&H 500
Luxembourg Luxemb. German L&H 500
Germany German SIEMENS +4000
Greece Greek KNOW & 5000

UPATRAS
Italy Italian CSELT +3000
Portugal Portuguese PT +4000
Slovenia Slovenian SIEMENS 1000
Spain Spanish UPC +4000
Sweden Swedish KTH 5000
Finland Finnish Swedish DMI 1000
Finland Finnish DMI 4000
Norway Norwegian TELENOR 1000

Table 3.1. European countries involved in the SpeechDat project

are selected randomly within a population of interest including all possible types
of speaker. Speaker characteristics considered in the corpus collection project are
essentially: sex, age and accent.

3.1 Swedish Database

KTH is collecting a 5000 speaker database in Swedish as spoken in Sweden (popu-
lation: 8.8 million at the end of 1995) and DMI in Finland collects a 1000 speaker

11



12 CHAPTER 3. SPEECHDAT DATABASE

Finnish Swedish database [15]. Sweden has been divided into the dialectal areas
shown in Figure 3.1 by Professor Emeritus Claes-Christian Elert, a Swedish expert
in this field. This division does not regard genuine dialects, but rather the spoken

Figure 3.1. Dialectal areas in Sweden

language used by most people in the areas defined. A definition of these areas is at
page 8 of the previous chapter.

3.1.1 Database Features

During this work a 1000-speaker subset of the 5000 speaker database (FDB1000
[4]) has been available. For each speaker (session) a variety of different items are
provided for different tasks. Only a part of them (described below) has been used
in training and testing the models.

Each utterance has been stored in a 8bit, 8kHz, A-low format, and an ASCII
label file is provided for each speech file, including information about sex, age,
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accent, region, environment, telephone type, and a transcription of the uttered
sentence or word. Items used in model training contain for each speaker:

• 9 phonetically rich sentences (S1-S9)

• 4 phonetically rich words (W1-W4)

while items for development and evaluation tests are:

• 1 sequence of 10 isolated digits1 (B1)

• 1 sheet number (5+ digits) (C1)

• 1 telephone number (9-11 digits) (C2)

• 1 credit card number (16 digits) (C3)

• 1 PIN code (6 digits) (C4)

• 1 isolated digit (I1)

• 1 currency money amount (M1)

• 1 natural number (N1)

3.1.2 Noise Transcriptions

A lexicon file provides a pronunciation for every word in the transcriptions with
exception for the following cases which have been introduced to take into account
special noises or speaker mistakes in the database.

• filled pause [fil]: is the sound produced in case of hesitation.

• speaker noise [spk]: every time a speaker produces a sound not directly
related to a phoneme generation, such as lip smack.

• stationary noise [sta]: is an environmental noise which extends during the
whole utterance (white noise).

• intermittent noise [int]: is a transient environmental noise extending in a
few milliseconds and possibly repeating more than once.

• mispronounced word (*word)

• unintelligible speech (**)

• truncation (~): ~utterance, utterance~, ~utterance~.

For all these symbols a particular model must be introduced. In section 6.2 noise
models are described.

1Swedish digits and their variants are described in appendix C
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3.1.3 Speaker Subsets

In the SpeechDat documentation [2] a way to design evaluation tests is proposed.
For 1000 speaker databases a set of 200 speakers should be reserved for these tests,
and the other 800 speakers should be used for training. In our case training includes
many experiments, and in order to compare them, development tests are needed
before the final evaluation test. For this reason a subset of 50 speakers was extracted
from the training set.

In order to maintain the same balance as the full FDB database, speakers for
each subset are selected using a controlled random selection algorithm: speakers are
divided into different cells with regard on region and gender. Then an opportune
number of speakers is randomly selected from each cell to form the wanted subset.

3.1.4 Statistics

Results from model tests are presented as mean error rate figures over speakers in
the development (50 speakers) and evaluation (200 speakers) subsets respectively.
To give an idea of the consistency of these results, some statistics on the database
are given in this section. In Table 3.2 speakers are divided according to gender and
age, while in Table 3.3 the distinction is about dialect regions. These distinctions
will be particularly useful in Chapter 7, where per speaker results are discussed.

Tables show how the balance in the full database is preserved in each subset.
They also show how some groups of speakers are not well represented in the evalu-
ation subset. For example no Finnish speaker nor speakers from Gotland are present
in this subset. Furthermore speakers from Bergslagen do not represent a good stat-
istical base, a fact to consider when discussing results. The same can be said about
young and old speakers in the age distinction.

To give an idea of the consistency of results, in Chapter 7 the standard deviation
is reported in addition to the mean values in the case of results for speaker subsets.

Sex Age Train Development Evaluation tot
F young(≤ 16) 21 1 5 27

middle 396 26 106 528
old(> 65) 16 1 5 22

tot 433 28 116 577
M young(≤ 16) 14 1 1 16

middle 284 20 80 384
old(> 65) 19 1 3 23

tot 317 22 84 423

Table 3.2. Number of speakers in three age ranges for female (F) speakers and male
(M) speakers respectively in the Training, Development and Evaluation subsets.
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Region Train Development Evaluation tot
Bergslagen 24 3 4 31
EastMiddle 281 9 85 375
Gothenburg 131 12 29 172

Norrland 164 11 46 221
South 112 9 28 149

Finnish 3 2 - 5
Gotland 6 2 - 8
Other 29 2 8 39
Tot 750 50 200 1000

Table 3.3. Number of speakers belonging to different dialectal areas in the Training,
Development and Evaluation subsets.





Chapter 4

ASR Structure

Referring to the Peirce’s model of natural languages introduced in Chapter 1, the
structure of the automatic speech recogniser is described in this chapter. The aim
of this chapter is to define which is the knowledge involved in the system at all
different levels and to describe how this knowledge is applied. Since the phoneme
modelling is the target of this work, its description is developed in the next chapter.
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Figure 4.1. A reduced version of the Peirce’s model
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4.1 ASR structure

Figure 4.1 is a reproduction of Figure 1.1 in Chapter 1, with the highest levels of
linguistic constrains removed, since they don’t take part of the following discussion.
The system is structured in four main blocks as depicted in Figure 4.2. The signal
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Figure 4.2. ASR structure.

is processed by each block in a linear chain, and its content changes gradually from
an acoustic to a symbolic description of the message.

The first two blocks, corresponding to the “Acoustic analysis” block in Fig-
ure 4.1, provide the acoustic observations. These observations are vectors of coeffi-
cients that are considered to represent the speech signal characteristics. The aim of
this process is not only to reduce the data flow, but also to extract information from
the signal in an efficient form for the following processing. The process is described
in section 4.2.

The last two blocks provide the acoustic classification and the linguistic analysis,
corresponding to the “Phone models” and “grammatic”levels in the Peirce’s model.
Those two blocks are described separately in section 4.3 because they are based on
completely different sources of knowledge. Yet, when focusing our attention on the
implementation of the system, we will see that knowledge from the phonetic and
linguistic levels is used in a homogeneous way in the acoustic/linguistic decoder, and
that different sources of information are indistinguishable in the final model. Last
part of section 4.3 describes the model that implements this part.

4.2 Acoustic Analysis

Acoustic analysis is based on the speech signal characteristics. The speech signal
is a non stationary process, and thus the standard signal processing tools, such as
Fourier transform, can not be employed to analyze it. Nevertheless, an approxim-
ated model for speech production (see Appendix A) consists essentially of a slowly
time varying linear system excited either by a quasi periodic impulse train (voiced
speech) or by random noise (unvoiced speech) [14]. A short segment of speech
can hence be considered as a stationary process and can be analyzed by standard
methods. The first processing block (Section 4.2.1) consists of the computation of
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the short time DFT, which is usually called in the literature “stDFT”. Further-
more, the short time spectrum of the speech signal contains slow variations (vocal
tract filtering) combined with fast variations (glottal wave) [9]. The cepstral coeffi-
cients (Section 4.2.2) allow us to separate these two components in the short time
spectrum. These coefficients are employed also because they are approximately
uncorrelated (compared to the linear predictive analysis) holding the maximum of
information, and approximately satisfying the HMM assumptions, as we will see
later.

4.2.1 Signal Processing

Signal
PreProc.

DFT

Figure 4.3. Signal processing block.

The signal pre-processing block is expanded in fig. 4.3. The pre emphasis block
has a first order response function:

H(z) = 1 − αz−1

where in our case α = 0.97. Its aim is to spectrally flatten the signal and to make
it less susceptible to finite precision effects later in the processing chain.

The next three blocks provide a short time discrete Fourier transform. All steps
are described in figure 4.4. In the first step, blocks of Nw = 256 samples are
used together as a simple frame. Consecutive frames are overlapping and spaced
of M = 80 samples (10ms). Than samples in the same frame are weighted by a
Hamming window of width L = 256 whose definition is

w[n] =

{

0.54 − 0.46 cos ( 2πn
L−1) if 0 ≤ n ≤ L − 1

0 otherwise

This is to reduce the effects of side lobes in the next short time spectrum analysis
provided by the DFT block.

4.2.2 Feature Extraction

DFT block outputs a N = 256 frequency samples vector per frame, then a mel
frequency filter-bank is used to further reduce the data flow. This non linear filter-
bank was chosen to imitate the ear perceiving characteristic (see Appendix A). Then
a homomorphic transformation is performed to evaluate the “cepstrum coefficients”.
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Figure 4.5. Feature extraction block.

Cepstrum analysis, based on the theory of homomorphic systems ([14]), has been
proved to be a robust method in speech signal analysis. The energy coefficient is
added.Then delta and acceleration coefficients are computed to keep trace of the
strong time correlation in the speech signal 1.

1The application of Hidden Markov Model theory is based on the hypothesis that different
frames are statistically independent
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4.3 Acoustic/Linguistic Decoder

This part is the core of every ASR. Its task is to classify strings of observation
frames into classes of language units. Many algorithms have been designed to solve
this problem, but there are two basic classes of methods upon which almost all
contemporary speech recognition systems are based. The first class contains de-
terministic approaches also called dynamic time warping algorithms. The second
class contains stochastic approaches based on statistical methods. They are es-
sentially hidden Markov models (HMMs), which are employed in our system, and
artificial neural networks.

4.3.1 Phone Models

HMMs and their applications to the speech recognition problem are described in
Chapter 5. At this stage we just point out that the main problem involved at this
level is a template-matching problem. The features of the test utterance have to
be aligned to those of the reference utterance, or in our case to the corresponding
model states, on the base of acoustic similarities. These problems can be solved with
a best path search algorithm, such as Viterbi or Forward-Backward (see chapter 5).

4.3.2 Linguistic Decoder

The linguistic decoder is responsible for the phone model concatenation in order to
formulate higher level hypotheses on the spoken utterance. Since terminals in our
linguistic model are sub-word units, LD is composed of two layers. The first level
consists of a lexicon file in which a pronunciation (sequence of phonemes) is provided
for each word involved in the recognition task. Eventually multiple pronunciations
are allowed. In Swedish, for example, as described in Appendix C, many digits or
numbers have more then one possible pronunciation.

!ENTER

wordN

word2

word1

!EXIT

Figure 4.6. Word network

The second level generates sentence hypotheses. In the system used in this work,
this level consists of a network (Figure 4.6) in which every node corresponds to a
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word and every arc correspond to an allowed transition from a word to another. To
each arc a probability measure is attached, representing a measure of the likelihood
that the next word in that arc follows the previous word.

Researchers have investigated many methods to evaluate this likelihood. De-
pending on the task these methods are based on linguistic considerations that lead
to rule based grammars, or on statistics on ad hoc corpora of sentences. Among
the latter methods N-grams are often employed: for each sequence of N words in
the dictionary, the training files in the database are scanned and the number of
times that sequence appear is evaluated. Then these numbers are scaled to obtain
expectation values.

In this work a bigram grammar has been employed: only couples of words are
considered when computing these statistics.

Two parameters can be changed in the grammar model to tune the entire pro-
cess: the first one is a grammar weight by which the arc probabilities are multiplied.
This is a measure of the confidence given to the acoustic model performance. Good
acoustic models need a low grammar weight. The second parameter, called insertion
penalty, is introduced to find a trade off between two kinds of mistakes the system
can run into: “insertions” and “deletions”. To reduce the effect of those errors, a
penalty can be introduced between two words: an high value for this penalty re-
duces the number of insertions, while a low value reduces the number of deletions.
Results in development tests have been obtained after an optimization over these
two parameters for every experiment, showing that the grammar weight value is es-
sentially experiment independent, while insertion penalty value is weakly dependent
on the experiment (phone model intrinsic accuracy)

4.3.3 Implementation

In the real implementation phone models and the different levels of the linguistic
decoder are merged together to form a uniform system. This system is a network
that is responsible for generating recognition hypotheses at all the different levels.

This merging procedure is best explained with a simple example. We consider
an application in which two short words (noll and ett, “zero” and “one”) are to be
recognized when uttered continuously. The word noll is twice as probable as the
other, according to some statistical measurements (grammatical model). We first
describe each part of the acoustic/linguistic decoder separately for this example and
then we put the pieces together.

phone models

As will be clear in the next chapter, a statistical model is associated to each phoneme
in the task; in figure 4.7 we show the model for the phoneme N.

In our example the phonemes involved are N, Å, L, A, E, T and #, where the
last takes into account short optional pauses between words in connected speech.
There is a model also for silence segments that we call sil.
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N

Figure 4.7. Phone model for the phoneme N

lexicon

The lexicon file specifies the pronunciations for each word:

noll N Å L #
noll N Å L A #
ett E N #
ett E T #
ett E T A #
!ENTER sil
!EXIT sil

The last two entries serve as initial and final nodes in the model we are building.
Each word pronunciation consists of a sequance of phonemes followed by a short
pause model.

0.66

0.33

!ENTER !EXIT

ett

noll

Figure 4.8. Grammar definition for the example

grammar

The grammar, defined in the example, is depicted in figure 4.8 and allows a concat-
enation of the two words according to transition probabilities indicated as numbers
in the figure.
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merging

Entries from the lexicon are first expanded into a concatenation of phone models.
An example of this procedure is depicted in figure 4.9 for the first pronunciation of
the word noll.

N Å L #

noll

Figure 4.9. Pronunciation expantion for the word “noll”

In the second step the network specified by the grammar is considered: first each
word node is cloned into a number of nodes taking into account different pronunci-
ations. Then each of these pronunciation nodes is substituted by the concatenation
of models obtained according to the lexicon. Figure 4.10 shows the final network
that would be used in this simple application. We note that in this network there
is no distinction between grammar, lexicon, and phonetic models: everything is
modeled by arcs (possibly including transition probabilities) and nodes.

N Å L #A

NE #

#E T

E T A #

N Å L #

sil sil

0.33

0.66

Figure 4.10. Final network that is used in recognition



Chapter 5

Hidden Markov Models

Hidden Markov models (HMM) have been successfully employed in speech recogni-
tion for many years, and several large-scale laboratory and commercial ASR systems
are based on this theory. This chapter describes the HMM definition in Section 5.2
and the applications in speech recognition in Section 5.3. An HMM toolkit, de-
scribed in Section 5.1 has been used to build and test the models.

5.1 The HTK Toolkit

HTK is an HMM oriented toolkit developed at the Cambridge University. It consists
of a set of tools enabling the definition, initialization, re-estimation, and editing
of sets of continuous mixture Gaussian HMMs. Tools to perform speech coding,
alignments, model clustering and speech recognition are also included. Version
2.1.1 was used in this research [18].

5.2 Hidden Markov Models

Hidden Markov Model theory is based on doubly embedded stochastic processes.
Each model can visit different states xt and generate an output ot in subsequent
time steps. In these systems, a first stochastic process is responsible for the state
transitions, while the second process generate the output depending on the actual
state. This structure makes HMMs able to model phenomena in which a non ob-
servable part exists. If we define:

• a set of N reachable states S = {s1, s2, ..., sN}

• a set of M possible output symbols V = {v1, v2, ..., vM}1

a set of three probability measures, A, B, and π is required, to specify an HMM,
where:

1In our application continuous output HMM are employed. In this case V can be thought of as
the discrete representation of the continuous output on computing machines, and M is very large.

25
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• A = {aij} , aij = Prob{xt+1 = sj|xt = si} is the state transition probability
distribution

• B = {bj(k)} , bj(k) = Prob{Ot = vk|xt = sj},∀k ∈ [1,M ],∀j ∈ [1, N ] is the
observation symbol probability distribution in state sj

• π = {πi} , πi = Prob{x1 = si},∀i ∈ [1, N ] is the initial state distribution

In the following we will refer to an HMM with the symbol λ = (A,B, π).
HMMs employed in this work have a particular structure showed in Figure 5.1.

In this left-to-right model, the states si are visited in a sequence so that the state
index i is a monotone sequence of time. This means that if xt = si is the state
visited at time t and xt′ = sj is the state visited at time t′ for all t′ > t, j ≥ i. In
the figure an HTK style model is shown in which no state-to-output probability is
specified for the first state (s1) and for the last state (s5). This states are called
non emitting states and they are used only as entry and exit states of the model.

S4S3S2S1 S5

a12 a34

a22 a33

a23 a45

a44

Figure 5.1. Left-to-right HMM

5.3 HMMs and ASRs

When applying HMMs to the speech recognition task three main problems have to
be dealt with:

1. Given a sequence of training observations for a given word, how do we train
an HMM to represent the word? (Training problem).

2. Given a trained HMM, how do we find the likelihood that it produced an
incoming speech observation sequence? (Single word recognition problem).

3. Given a trained HMM, how do we find the path in the HMM state space that
most likely generates an incoming speech observation sequence? (Continuous
speech recognition problem)2.

In the next sections these problems are described and applied to the speech recog-
nition task.

2in this case the HMM is a network connecting many word level HMMs. Finding the most
likely path means being able to transcribe the word sequence.
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5.3.1 The Recognition Problem

The most natural measure of the likelihood of a model λ given the observation
sequence O would be Prob(λ|O). However the available data do not allow us to
characterize this statistic during the training process.

A way to overcome this problem is to choose as likelihood measure Prob(O|λ),
the probability that the observation sequence O is produced by the model λ. A
straightforward way to evaluate Prob(O|λ) would be to enumerate all possible state
sequences in the time interval [1, T ]. Then Prob(O|λ) would simply be the sum3 of
all probabilities that model λ generates the observation sequence O passing through
each state sequence.

This method, even if theoretically simple, is computationally impracticable, de-
pending on the huge number of state sequences to deal with in normal applications.
Fortunately a more efficient procedure, called the Forward-Backward algorithm,
exists.

The possibility for such a method lies on the fact that in the previous method
many computations are repeated more than once because each state sequence is con-
sidered separately. In the Forward-Backward procedure (FB) the idea is to compute
at each time step t and for each state si a global parameter which holds information
of all possible paths leading to state si at time t. This parameter can be either a
forward partial observation probability or a backward partial observation probab-
ility, allowing two different versions of the algorithm. Thanks to the definition of
these global parameters Prob(O|λ) can be computed recursively saving many orders
of magnitude in computational time.

In continuous speech recognition the problem of model scoring is more complex
[11]. Each observation sequence represents a concatenation of words. If we consider
the discussion about the ASR in Chapter 4 and in particular Figure 4.6 (page 21),
we see how the network depicted in that figure can be viewed as a big HMM. In
the figure each word is substituted with a concatenation of models (representing its
pronunciation in the case of phone models), and an additional state is appended in
the end of each word representing the word end and holding the name of the word.
Hence recognition results in scoring the entire network on the observation sequence
with a fundamental difference with respect to the single word recognition problem.
In this case the path through the network must be recorded to allow transcribing
the spoken utterance.

The FB algorithm, computing the partial observation probabilities, discards this
information (P (O|λ) is computed on any path), and can not be used for this task.

For this reason another algorithm called the Viterbi algorithm is used instead.
When used to compute P (O|λ) this method is based on the assumption that given
an observation sequence, the best path in the recognition network is far more likely
than all the other paths, and hence P (O|λ) ≈ P (O, δ|λ), where δ is the best path.
With this assumption, in each time step, only one path per state survives, while the
others are discarded. This algorithm reduces the computational time and provides

3Mutually exclusive events.
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a method for reconstructing the best path in the network in a Backtracking phase.
Forward-Backward and Viterbi algorithms are described analytically in Appendix B.

5.3.2 The Training Problem

The aim is to adjust the model parameters (A,B, π) to maximise the probability
of the observation sequence, given the model. This is an NP-complete problem,
and hence has no analytical solution. In fact, given any finite observation sequence
as training data, we can only choose λ = (A,B, π) such that Prob(O|λ) is locally
maximised. There are many methods for doing it, among which gradient search
techniques, expectation-modification technique and genetic algorithms. Baum in-
troduced in 1966 an estimation method based on the Forward-Backward algorithm.
This method, known as Baum-Welch Re-estimation algorithm, makes use of an old
set of model parameters λ to evaluate quantities that are then used to estimate a
new set of model parameter, say λ̂. Baum proved that two cases are possible after
the re-estimation process:

1. the initial model λ defines a critical point in likelihood function (null gradient),
and in this case λ̂ = λ

2. Prob(O|λ̂) > Prob(O|λ) and hence we have found a new model for which the
observation sequence is more likely.

The re-estimation theory does not guarantee that in the first case the critical point is
also an absolute maximum of the likelihood function. Furthermore, the likelihood
function is often a very complex function of many parameters that make up the
model λ, and hence finding a local maximum in the re-estimation process is easier
than finding an absolute maximum.

5.3.3 HMM Assumptions

The HMM theory is based on some a priori assumptions about the structure of the
speech signal [3].

• The speech signal is supposed to be approximately represented by a sequence
of observation vectors in time.

In our case, as described in section 4.2, these vectors are the cepstral coefficients
evaluated on consecutive overlapping frames of speech of the order of 10ms long.
As already pointed out, the speech signal can approximately be considered to be
stationary on this time scale, hence this is a good assumption.

• The speech signal can be represented by a finite number of mixture Gaussian
probability distributions

This is a rough approximation, in fact the speech signal varies considerably, espe-
cially in a speaker independent context.
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• The observation vectors are independent.

This is probably the most serious approximation in the theory. The observation
vectors do are correlated for many reasons: consecutive vectors refer to the same
phoneme, to the same prosodic feature, to the same speaker, etc. Results can be im-
proved by including dynamic features in the speech parameterization, as described
in Section 4.2, because they hold information about the local signal context.

• The probability of the transition from the current distribution to the next
distribution does not depend on any previous or subsequent distributions (first
order HMM).

The last assumption is also untrue.
In spite of these rough approximations, HMM performance is often very high in

speech applications.

5.3.4 HMM Applications

HMM-based recognition systems normally make use of multiple HMMs. Models are
usually small (up to four or five states), and their structure is usually left-to-right
(non ergodic). These models are used to model short units of speech, usually phones
or words. Word based HMMs are used in small vocabulary applications, such as digit
recognition, while sub-word HMMs must be employed when the number of words
to be considered is too high. Sub-word systems are also more flexible, because it’s
always possible to add words in the dictionary on condition that a pronunciation
(list of phones) for those words is provided.

5.3.5 State Output Probability Distribution

The state output probability function (B in Section 5.2) used in most systems is
based on Gaussian distributions. Often many weighted Gaussian distributions are
employed in the attempt to represent the high speech signal variability. Considering
only one element in the output frame vector (in our case this is one of the mel-
cepstral coefficients), we have

bj(k) =
H

∑

h=1

cjhG(mjh, σ2
jh)

where G(mjh, σ2
jh) is the Normal (Gaussian) distribution of mean mjh and variance

σ2
jh and H is the number of terms in the mixture distribution. In Figure 5.2 an

example of this kind of probability distributions is depicted. The speech signal
variability depends on many factors. The first source of variability is the dependence
of the phoneme pronunciation on the context. Many other sources of variability can
be mentioned regarding, for example, speaker characteristics (sex, age, region). The
introduction of many Gaussian terms allows for higher resolution, but slows down
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the recognition process, making real time applications difficult to be run even on
fast machines. The second limit to this method is the need of a large database to
obtain a robust estimation of model parameters.

mj1 mj2 mj3

jb (k)

Figure 5.2. Multi mixture Gaussian distribution

5.3.6 Context Dependent HMMs

In simple phoneme-based systems, only one model per linguistic phoneme is used.
However, phonemes differ considerably depending on their context, and such a
simple modeling is too poor to hold this variability. A possible solution is to add
Gaussian distributions, as already discussed. Each distribution can model a differ-
ent phoneme realization. The problem of this method is that in each model it is
impossible to know which Gaussian distributions correspond to a particular context
and hence in computing the data likelihood given the model, all parameters must
be considered and the recognition process is slowed down.

Another solution is to create a different model for each phoneme affected by
a particular context. A different label is associated with each context dependent
model. During recognition only one of these models would be used depending
on the actual context, and, since each context dependent model require a lower
number of parameters4, the process is sped up. Two kinds of context expansion
have been used in this work depending on whether cross word contexts are taken
into account or not. To make this distinction clearer in Table 5.1 samples of label
files, built according two different methods, are showed. The source sentence is:
...omedelbart att granska fallet. The two methods are compared in the table
to the context independent expansion. Note how in the third case the last phone
in the previous word, or the first phone of the next word are used to complete the
triphone context of models at word boundaries. Noise models are never included

4Because it doesn’t have to hold information about the context variability
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Context Within Cross
independent word CE Word CE

... ... ...

A A+T T-A+T

T A-T A-T+G

# # #

G G+R T-G+R

R G-R+A G-R+A

A R-A+N R-A+N

N A-N+S A-N+S

S N-S+K N-S+K

K S-K+A S-K+A

A K-A K-A+F

# # #

F F+A A-F+A

A F-A+L F-A+L

L A-L+E0 A-L+E0

E0 L-E0+T L-E0+T

T E0-T E0-T

# # #

sil sil sil

. . .

Table 5.1. Different phone-level expansion methods (CE=Context Expansion)

in the context of any phone model. This is because, in our opinion, phoneme
pronunciation depends more strongly on the last or next phoneme uttered then on
involuntary speaker noise, such as lip smack. In the case of environmental noise
there is no reason to believe that this noise can influence the pronunciation. In the
following we refer to these models as “context free” models.

5.3.7 The Data Scarcity Problem

Context information can be taken in account in different ways when building con-
text dependent models, including phonetic context, word boundary information, or
prosodic information. The number of models rises very rapidly with the amount
of context information included. If both right and left context are included, for
example, and if we consider 46 phonemes in Swedish, the number of models to be
included in the model set may be up to 973365. Many of these contexts may not
occur even in large databases, or there may be not sufficient occurrences to allow a
robust estimation of the corresponding model parameters. They may also never be
needed.

There are three common methods to solve these problems:

Backing off Context dependent models are estimated only where sufficient train-
ing data exists. When unavailable context dependent models are required,
reduced context or monophone models, for which sufficient training data was
available, are used instead. The problem with this method is that the resulting
accuracy is lower when using monophone models.

5If we consider 42 phonemes the maximum number of models is 74088.
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Top-Down Clustering A priori information about phonetics is used to tie para-
meters of models considered to be acoustically similar. The method is based
on a decision tree which can be used also to generate unseen models. Clus-
tering stopping criteria can be used to ensure that each tied model can be
robustly estimated.

Bottom-Up Clustering The clustering process is based on the parameter simil-
arity in each model. Similar models are tied to form a single model. Even
though this method makes a better use of the training data, it does not provide
models for contexts not seen in the training material.

The top down clustering method, also called tree clustering method, has been em-
ployed in this work and it is described in the following section.

5.3.8 Tree Clustering

A phonetic decision tree [18, 3, 17, 1, 13, 6] is a binary tree containing a yes/no
question for each node. For each base phone ph the pool of states belonging to
models in the form lc-ph+rc is successively split according to the answer to each
question, and this continues until the states have reached the leaf-nodes. States
which are in the same leaf in the end of this process, are tied together. Questions
are in the form: “is the left/right context (lc/rc) in a set P?”6.

The question tree is built on the run: first a list of all possible questions is
loaded. Then for each set of triphones derived from the same base phone, corres-
ponding states are placed in the root. A question (in the question list) is chosen
and two leaves are created from the root for each answer to this question. The
criterion for choosing the question is intended to (locally) maximise the increase of
likelihood L(D|S) of the training data D, given the set of tied distributions S in
the just created leaves. In practise, since the algorithm is restricted to the case of
single Gaussian distributions, L(D|S) can be evaluated from the means, variances
and state occupation counts, without reference to the training data. This in the
assumption that the assignment of observation vectors to states is not altered dur-
ing clustering, and thus the transition probabilities can be ignored. The process
repeats for each new node until the increase in log likelihood falls below a specified
threshold, say tbth. High values of tbth correspond to a short tree, and hence to a
small number of states in the model set. In Figure 5.3 a graphical representation of
the question tree for the phone J is shown. The threshold in this case had an high
value (1100) so that the tree has only two levels. Only a few states are generated
and many states in different models share their parameters. More realistic values
for the threshold bring to a deeper ramification, and to more accurate models.

6In appendix D the definition of the sets P for phonetic classification used in this work is showed
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Figure 5.3. An illustration of a decision tree.





Chapter 6

Model Set Building

In the attempt to increase model resolution several experiments have been per-
formed investigating different possibilities of improvement. When building stat-
istical models, the possibility of high performance is always based on a trade off
between model complexity and the amount of avaliable data for parameter estima-
tion. A good choice for model structure, based on the comprehension of the sources
of variability in the physical phenomena, can help increasing the ability of the model
to fit the problem of interest with the minimum number of parameters.

During this work two main directions of improvement have been followed. Start-
ing from simple context independent models the first method is to add Gaussian
terms in the state output probability distribution. In this case the re-estimation pro-
cedure is completely responsible for adapting model parameters to different sources
of variability in the speech signal. As a second method context dependent models
have been tested. This method is based on the assumption that one of the most
important sources of variability in each phoneme realization is its context. If this
assumption is true the re-estimation procedure deals only with speaker related vari-
ability, which can be modeled in an easier way. The two methods are also employed
in combination.

Furthermore each experiment has been worked out using two phonetic classifica-
tion methods called “old” and “new” lexicons for reasons related to the evolution of
the SpeechDat project [4]. The old lexicon avoids the use of “retroflex allophones”
(except for 2S) described in Section 2 because of their low occurrence frequency
in the database, while the new lexicon introduce them again making for to two
different model sets for each experiment.

To make the distinction between models obtained with different methods clearer,
each experiment is marked with a label in the form [c][n]exp[a], where n stands
for “new SpeechDat lexicon”, c means that models are clustered to reduce the
number of parameters and a means that all possible triphones are added to allow
network expansion.

The first model set including context independent models is marked as mb (mono-
phones). Context dependent models are obtained from monophones by duplicating

35
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each phone model as many time as the number of different contexts occurring in
the training material. These model sets are marked with a tb label (triphones word
boundaries) if only within word contexts are considered. ntb is the mark for the
same experiment with the new lexicon.

If cross word context information is included in the model set, a tnb mark
(triphones no word boundaries) is used (ntnb for new lexicon models).

After monophones are duplicated for all possible contexts, the next step is to
apply the clustering procedure to reduce the number of parameters. This procedure
results in the creation of a new models set in which many states are clustered, i.e.
many models share the same parameters for corresponding states. Marks for model
sets obtained with this method can be derived from the triphons marks adding a c
(ctb, cntb, ctnb, cntnb).

Finally all possible context dependent models are synthesized according to the
tree clustering procedure and added to each context dependent model set to allow
context expansion during recognition. Marks in this case are ctba, cntba, ctnba,
cntnba.

In this chapter the steps needed to perform these experiments are described.

6.1 Data Preparation

6.1.1 Speech Files

SpeechDat audio files (8kHz, 8bit/sample, A-law) are coded according to the pro-
cedure dicussed in Section 4.2 obtaining vectors of 39 components (12 mel-cepstral
coefficients + 1 energy + 13 delta coefficients + 13 acceleration coefficients) for each
speech frame.

6.1.2 Label Files

SpeechDat transcriptions are used to generate a word level label file including tran-
scriptions for each audio file. This label file is then used to create phone level
transcriptions. Word labels are first expanded into phone labels according to the
pronunciation specified in the lexicon file. Two separate phonetic transcriptions are
obtained with the old and new lexicon and stored in separate files. Then context de-
pendent phonetic transcriptions are created expanding each phone label depending
on the context. Four label files are created for old/new lexicon and for within/cross-
word context expansion. Samples of these files are shown in Table 5.1, page 31.

6.2 HMM Setup

Two kinds of segments must be considered when building acoustic models: target
speech regards segments of the audio signal which contain useful information about
the message we want to transcribe, and non-target speech regards segments of the
audio signal containing noise generated by various sources and which do not add
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information to the message. In our system target speech is modeled at the acoustic
level as a sequence of phones. Non-target speech is modeled by six dedicated HMMs.
Four HMMs model SpeechDat kind noise (Chapter 3), while the other two are for
silence segments and word boundaries.

The standard structure is left-to-right hidden Markov models with a maximum
of four emitting states. Since each frame in the data stream consists of a 39 elements
vector (Section 6.1), each state has 39 associated probability distributions, i.e. every
parameter1

bj(k) = Prob(Ot = vk|Xt = sj)

is a 39 dimensional probability distribution in which every component, in our case,
is supposed to be statistically independent from the others.

Every component in this multi dimensional distribution can be either a simple
Gaussian or a weighted sum of N Gaussian distributions (multiple mixture).

1 2 3

41 2 3 1

1

(b)

(a)

(d)

(c)

Figure 6.1. Model structure

6.2.1 Target Speech

All phones, except plosives, are modeled by a three emitting state HMM as depicted
in Figure 6.1(a). The choice of topology in HMM applications is often made in the
attempt to obtain a good balance between forward transitions and transitions back
to the same state. This balance seems to be more important than the correspond-
ence between different states and different parts of the same phoneme realisation.
This is true for all the steady sounds, such as vowels, fricatives, nasals and so on.
The sound produced in the case of plosives (B, D, 2D, G, K, P, T, 2T), on the
other hand, has an important temporal structure, and states in the corresponding
HMM should match each different acoustic segment. For this reason each plosive is
modeled by an HMM with four emitting state (Figure 6.1(b)).

1See section 5.2
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6.2.2 Non-Target Speech

Garbage

As already described in section 3.1.2, SpeechDat adopts the convention to mark
with a “*” mispronounced words, with “**” unintelligible words and with a “~”
truncated words. For all these occurrences there is no entry in the lexicon, i.e. no
pronunciation is provided. To allow the use of files containing these symbols during
training, a garbage model has been created. It has only one state with a mixture
of many Gaussian distributions, because it is supposed to match a wide range of
sounds. As we discuss later this model is trained on generic speech, and it should
win the competition with models of specific sounds. The garbage model is not
used in recognition because only “clean” speech files are used for this task.

Extral, Noise, Öh

Noise models are: extral (SpeechDat mark: [spk]) for speaker noise such as lips
smack, Öh ([fil]) for hesitation between a word and another, noise ([int])
for non speaker intermittent noise typical of the telephone lines. There is not a
particular model for stationary noise ([sta]) because this disturbance is extended
to the whole utterance. However, when using noisy files in the training process, the
stationary noise characteristics take part in the model parameter estimation, and
are hence held by those parameters.

Sil

The sil model is a three state HMM (Figure 6.1 (a)) trained on silence frames of
the utterance. In the recognition task it is used at the beginning or at the end of a
sentence in the attempt to model the extra time in the recording session over the
spoken utterance.

#

This model is employed for word boundaries: it has a symbolic use, representing
the boundaries between words at the phone level and allowing different context
expansion methods as already described. A second reason for its use is to model the
silence between one word and another. In continuous speech these silence segments
can be very short. For this reason # has only one emitting state as depicted in
Figure 6.1(d). This state is tied (shared parameters) with the central state of the
sil model. Furthermore a direct transition from the first (non emitting) state to the
last (non emitting) state is allowed in the case that words are connected without
any pause.
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6.3 Training The Models

Training consists of applying an embedded version of the Baum-Welch algorithm
discussed in Section 5.3.2. For every speech file (output sequence) a label file with a
phoneme transcription is loaded and used to create an HMM for the whole utterance
concatenating all models corresponding to the sequence of labels. This is possible
thanks to a property of HMMs: researchers have discovered that if an observation
sequence is presented to a strings of HMMs they will tend to “soak up” the part of
the observation sequence corresponding to their word or phone [9]. This is true when
the model set parameters are not too far from the optimal values. When initializing
the model set, a different method must be employed. This was not necessary in this
work because the first model set has been obtained modifying by hand an already
trained set of models [12], and hence it is still able to perform a crude alignment.
The only completely new model is garbage. In this case the model has been trained
separately on generic speech files, and then included in the model set.

t

f /ET/

~110ms

t

f

~40ms

/TVÅ:/

Figure 6.2. Spectrogram of the words “ett” (one) and “två” (two)
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The model set we modified [12] contains the concatenation of two HMMs with
three emitting state for each stop consonant. The first model for each stop (named
with an uppercase letter: B, D, G, K, P, T) models the occlusion segment in the
stop phone, while the second (lowercase letter: b, d, g, k, p, t) models the release
segment. In our opinion this method can be inaccurate because of the fast time
evolution of plosives. Figure 6.2 shows the spectrogram of the words “ett” (one)
and “två” (two). A rough measure of the /t/ stop duration is given in the figure.
If we consider 10ms frame interval and six states in the T t model, the minimum
duration for model evolution is 60ms, if no transition back to the same state occurs.
As we see in the figure this model can be good for the realization of the T sound
in the “ett” word, but it is to “slow” for the realization of the same phone in the
“två” word. This is one reason why each couple of stop models (B b for example)
has been substituted with a four emitting state model. A second (practical) reason
is that it is easier to represent stop consonants with one symbol in the dictionary
than with two. In the attempt to preserve the ability of the model set to align the
training data, allowing the standard re-estimation procedure, stop models are not
created ex-novo. They are derived from the old model set in the following way.
For each four state model the first emitting state is obtained copying the last state
in the corresponding occlusive model. The other three states are copied from the
corresponding release model. The reason for this choice is that, even though the
occlusive segment is often longer in time than the release segment, the first one
consists of an approximately stationary sound, while the latter include most of the
time varying evolution (explosion).

Different model sets obtained by successive re-estimation procedures are stored
in different directories to allow a comparative evaluation of their performance and
to figure out when to stop the iterative procedure.

Before proceeding the description of model set creation, the evaluation method
must be introduced.

6.3.1 Development Tests

During training development tests are an important tool in the attempt to compare
different experiments and to suggest new possible ways of improvement. These
experiments consist of a word level recognition on a small subset of speakers reserved
for this task. The number of speakers (50) involved in these tests is too low to
guarantee a statistical consistency of the results, nevertheless these tests can be used
for a comparative evaluation of different model sets2. When scoring the system, two
alternative parameters are taken into account: correct words and accuracy. Their
definition depends on the the algorithm used to align the output of the system
to the reference transcription. This algorithm is an optimal string match based
on dynamic programming [18]. Once the optimal alignment has been found, the
number of substitution errors (S), deletion errors (D) and insertion errors (I) can

2See Section 3.1.4 for data on speaker subsets.
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be calculated. Correct words (PC) are then defined as:

PC =
N − D − S

N
× 100%

While the definition for accuracy (A) is:

A =
N − D − S − I

N
× 100%

Files chosen for evaluation contains (see chapter 3) isolated digits, connected
digits and natural numbers. A list of all words in the development test files is
included in appendix C.

6.3.2 Monophones

Nine iterations of the Baum-Welch re-estimation have been performed. As showed
in Figure 6.3 recognition performance in terms of word accuracy is improved until
the fifth iteration in the case of old lexicon models (mb). Further iterations can
be avoided since they don’t bring better results. In some cases, as we will see,
the performance is even reduced. This is because, with too many iterations, HMM
parameters tend to fit too well the training data (and hence the training speaker
characteristics) and have no more freedom to generalize to new speakers (evaluation
data). In terms of Gaussian parameters it means that the variances tend to be too
low (narrow Gaussian shape) to include new speaker variations. The reason why
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Figure 6.3. Development tests, monophones: correct words (left) and word accuracy
(right) after each of nine iterations

the accuracy curve is flat for the new lexicon experiment (dashed line) is that this
set of models has been obtained from the third iteration on the old lexicon model
set copying each model (T, D, N, L) twice and naming the resulting models T,
2T, D, 2D, and so on. For this reason the new model set in the first iteration has
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been already subjected to four iterations (three with the old models and one with
the new) of the Baum-Welsh reestimation.

The first attempt to increasing accuracy was to add Gaussian mixture terms.
Results obtained with this method are shown in Figure 6.4 where models with 1,
2, 4 and 8 Gaussian terms are compared. Adding Gaussian distributions consists of
splitting state output distribution of the previous model set (ninth iteration). The
splitting procedure consists of selecting distributions with the higher associated
weight and copying them twice in the new model set. The weight is divided by 2
for each new distribution, while the mean is perturbed. Analytically:

cG(m,σ2) →
c

2
G(m + 0.2σ, σ2),

c

2
G(m − 0.2σ, σ2)

The process is repeated until the wanted number of mixture terms is reached. In
these figures it is possible to see how models including the four allophones 2T,
2D, 2N, 2L (dashed line) have a worse performance if compared to the old lex-
icon models. This difference tends to decrease if the number of mixtures terms is
increased.
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Figure 6.4. Development tests, monophones: correct words (left) and accuracy
(right) for 1,2,4,8 mixture terms

6.3.3 Triphones

The construction of context dependent models has been shown to be a good altern-
ative method in the attempt to improving accuracy: Two expansion methods have
been tested:

• within-word context expansion

in which phonemes at word boundaries are expanded as diphones (see Table 5.1
page 31). This method is easier to apply in the recognition phase because models
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created during network expansion depend only on the words in the dictionary and
not on their sequence in the sentence hypothesis. This means that avoiding unseen
context dependent models is easy, especially if the words included in the recognition
task are also present in the training data.

• cross word context expansion

This method results in the generation of a lower number of diphones (only phonemes
at sentence boundaries are expanded as diphones). On the other hand, the number
of triphone occurrences is increased, rising the context information, and sometimes
the number of occurrence for a single model. In Table 6.1 the number of triphones
and diphones for each experiment is presented. From the context expanded master

Experiment triphones diphones tot theoretical
tb 8795 1029 9835 74088
tnb 15618 1150 16775
ntb 9176 1063 10250 97336
ntnb 16559 1187 17753

Table 6.1. Number of triphones and diphones in different model sets

label file (see Table 5.1) a list of all triphones and diphones included in the training
files is created. Then for each label in the list a copy of the corresponding monophone
model from the old model set is included in the new model set. For example in case
of a label in the form lc-ph+rc (triphone) the model ph (monophone) is copied
and named “lc-ph+rc” for each occurrence of different lc and rc. In the end we
obtain a new model set in which all triphone models corresponding to the same
phoneme are identical. Context free models are simply copied as they are in the
old model set. The model set obtained has been subjected to a first iteration of the
Baum-Welsh algorithm. For most models the training data was not sufficient, thus
a tree clustering procedure had to be applied. Several threshold values have been
used in order to find a good trade-off between the number of states in the model set
(model variability) and size of available data (estimation robustness). In Figure 6.5
the number of states generated in the clustering process is related to the threshold
values used. Model sets obtained with different threshold values have been trained
separately. Then these models have been tested to find the optimal value for the
threshold. Results are showed in Figure 6.6. The optimal model set contains 2020
states in the case of within-word context expansion and the old lexicon (tb) and 2440
states for the new lexicon (ntb); and 1758 and 2862 respectively for old and new
lexicon (tnb and ntnb) and cross-word context expansion. Figure 6.6 also shows
that models not including retroflex allophones perform better also in the case of
context dependent modelling.

The best models have been developed by adding Gaussian mixture terms to
output probability distributions. Results obtained with this method are showed in
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Figure 6.6. Clustering threshold optimization

Figures 6.7 and 6.8 respectively for within-word and cross-word context expansion.
Figures show nine iterations and models with 2, 4 and 8 Gaussian distributions
per mixture. As in the case of monophones, the difference in performance between
models including or excluding retroflex allophones is reduced as the mixture size is
increased. Within-word models perform better than cross-word models, probably
because the number of contexts is lower (6770 models instead of 9681), allowing
a more robust parameter estimation. Anyway these results are affected by the
specificity of the task. The advantage of using cross word context expansion would
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probably be higher in a generic speech recognition task in which an higher number
of words is involved and sentences are uttered in a more continuous way.
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Figure 6.7. Development tests, triphones within-word context expansion: correct
words (left) and accuracy (right)
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Chapter 7

Results, Analysis and Discussion

This chapter begins with a definition of the “difficulty” of the problem of speech
recognition (Section 7.1). Then results are described and analyzed first for the full
evaluation subset of speakers in Section 7.2 and then with regard on the individual
speaker characteristics in Section 7.3. Since this work has been the first attempt to
train acoustic models on the Swedish SpeechDat database, the only way to compare
results with previous works is to refer to different experiments. In Section 7.4.1
results are compared to those obtained with a database built for a different purpose
(the Waxholm database) but for the same language (Swedish). In Section 7.4.2,
instead, the comparison is made for a similar database (the Norwegian SpeechDat
database), but for a different language (Norwegian).

7.1 Language Model Perplexity

When evaluating the performance of a speech recognizer, quantifying the difficulty
of the recognition task is an important aspect to consider. One measure can be
obtained from the so called perplexity of the language model[9]. Perplexity is an
indirect measure of the entropy of the language: the higher the entropy, the more
information must be extracted from the recognition process and the more difficult
the task is. In other words, when employing language constraints such as a grammar,
the uncertainty of the content of sentences is reduced, and the recognition task is
made easier. Perplexity as defined in [9] involves the estimation of the probability
that a particular sequence of words is generated by the language source. If x is a
symbol put out by a source with probability P (x), then the entropy of the source
is defined as

H = −[
L

∑

x=1

P (x) log P (x)]

where L is the number of possible symbols. If we consider sequences of symbols the
entropy is defined as

H = − lim
n→∞

1

n
[
∑

P (x1, ..., xn) log P (x1, ..., xn)]

47



48 CHAPTER 7. RESULTS, ANALYSIS AND DISCUSSION

where the sum is over all sequences x1, ..., xn. If the source is ergodic, one sufficiently
long sequence of symbols can be used to deduce its statistical structure, hence

H = − lim
n→∞

1

n
[log P (x1, ..., xn)]

Finally perplexity is defined as:

PP = 2H = P (x1, ..., xn)
−1

n

where the limit has been removed for real applications. In our case the sequence
x1, ..., xn correspond to the evaluation corpus (concatenation of sentences in the
evaluation files) while P (x1, ..., xn) can be evaluated from the word bigram prob-
ability, estimated on the training material. Perplexity for our case is around 40,
classifying the task as a medium perplexity recognition problem [19, 7]. Normally
digit recognition problems have in English PP = 11. In our case other words are
included allowing for example natural number recognition, and the same grammar
constraints are used for all tasks.

7.2 Overall Results

From the development tests (Chapter 6) the best models were selected and tested on
the evaluation material. Results obtained with these tests are showed in Table 7.1.
In the table correct words and accuracy are reported for each experiment. The best

1 mix 2 mix 4 mix 8 mix
experiment Corr Acc Corr Acc Corr Acc Corr Acc
mb 69.4 66.4 72.6 69.5 75.6 72.3 78.9 76.0
nmb 68.1 63.1 71.5 67.9 75.1 71.3 79.1 75.5
ctba 89.5 87.4 90.7 88.5 90.8 88.6
cntba 89.1 86.4 90.3 88.1 90.5 88.3
ctnba 86.1 81.8 87.8 84.0 88.4 84.8
cntnba 86.8 84.2 88.4 86.1 88.9 86.5

Table 7.1. Overall results: evaluation data correct words (Corr) and accuracy (Acc)
for monophones, old lexicon (mb), monophones, new lexicon (nmb), triphones, old
lexicon, within word CE (ctba), triphones, new lexicon, within word CE (cntba),
triphones, old lexicon, cross word CE (ctnba), triphones, new lexicon, cross word CE
(cntnba).

result (88.6% of accuracy) is obtained with within-word context expanded models
and eight mixture terms. As can be seen in the table, monophone accuracy rises
when the number of mixture terms is increased from four to eight. This means that
probably better results can be obtained if the number of mixture terms is further
increased. In the case of context dependent models the increase of accuracy from
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four terms models to eight terms models is quite low. Old lexicon models perform
better in general than new lexicon models. Models excluding cross-word context
information perform better than models including it.

Since the number of development speakers is low, plots of accuracy and correct
words as functions of the number of iterations are also reported to check if perform-
ance follows the same trend on a larger and independent data set. Figure 7.1 shows
results for monophone models. In each plot models based on the old lexicon seem
to perform better than models including the retroflex allophones, if the number
of Gaussian distributions is the same. Only in a few cases more than five or six
iterations are useful to improve performance. Figure 7.2 shows results for within
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Figure 7.1. Evaluation test, monophones: correct words (left) and Accuracy (right).

word context expanded triphones. In this case curves are not as regular as in the
monophone case. This may be because the amount of training data for each model
is not as consistence as in the monophone case. Many times, the best result is
obtained for a different number of iterations if compared to the development tests
results (Figure 6.7 page 45). For example, in the case of old lexicon, eight-term
mixtures (solid thick line) the best result is obtained after five iterations. Then
accuracy falls down, while in the development test it continues rising till the ninth
iteration. This shows how these models, depending on the lower amount of data
they are trained on, could be (lightly) dependent on the speaker characteristics and
also shows that we should be careful when considering results on the fifty speakers
development subset. Once again the old lexicon models perform better, but this
difference is slightly reduced when adding Gaussian distributions. Figure 7.3 shows
results for cross word context expanded models. In this case a comparison between
old and new lexicon models is more difficult because the number of states contained
in each model set is ... different (1758 states for the old lexicon: ctnba and 2862
states for the new lexicon: cntnba). This difference has been caused by the non
regular shape of the accuracy curve in the tree clustering optimization procedure
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Figure 7.2. Evaluation test, triphones, within word expansion: correct words (left)
and Accuracy (right) for 2, 4, 8 mixture terms.

(Figure 6.6, page 44). In the case of models including the retroflex allophones (new
lexicon: cntnba), the accuracy curve in Figure 6.6 has two maxima for 1784 and
2862 states in the model set. The latter model set has been chosen for further
improvements because the accuracy is higher. Referring to Figure 7.3 unexpected
results are obtained: the cntnba model set (2862 states, dashed line) performs bet-
ter than the ctnba model set (solid line, 1758 states). This difference in results
seems to be more related to the difference in number of states than on the different
lexicon.
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Figure 7.3. Evaluation test, triphones, cross word expansion: correct words (left)
and Accuracy (right) for 2, 4, 8 mixture terms.
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7.3 Results per Individual Speaker

SpeechDat database is built on a wide range of speaker characteristics (Chapter 3).
For this reason it is interesting to show per speaker results. Often in speaker inde-
pendent recognition tasks, speakers are divided into “goats” and “sheeps” depending
on results obtained. “Goats” are those speakers for which bad results are obtained,
while “sheep” speakers are well recognized by the system. The definition of the
threshold separating these groups is arbitrary and depends on the application. In
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Figure 7.4. Number of Speakers per accuracy.

Figure 7.4 (right plot) the number of speakers for which results are in ranges of
ten percent of accuracy are shown. No speaker in the evaluation subset has res-
ults below 40% of accuracy. If we set the boundary between “goats” and “sheeps”
at 80% of accuracy, 36 speakers of the 200 in the evaluation subset belong to the
“goats” group while the other 153 are “sheeps”. In the left plot of the figure the
same data is plotted in a logarithmic scale showing a linear behavior (y ≈ m + ax).
Knowing m and a can be useful to predict results when new speakers are added
to the evaluation set, or to evaluate new developments in the systems. Figure 7.5
reports results according to sex and age of the speaker, the left plot include res-
ults on female speakers and the right plot on male speakers. In the figure the left
bar for each age group indicates the accuracy, while the right bar indicates the
percentage number of correct words. An error bar is also depicted showing the
standard deviation in each group (the number of speakers in each group is reported
in Table 3.2 page 14). Results seem to be sex independent, even though female
speakers are better recognized (probably because they are more numerous in the
database). Figure 7.6 shows results depending on the region speakers call from. In
this case the left plot shows results obtained with the new lexicon and the right
plot is for old lexicon models results. Speech uttered by speakers from the south of
Sweden seems to be more hard to recognize, while speakers from Bergslagen give
the best results. An unexpected result regards speakers from east-middle Sweden,
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region containing the Stockholm district, and hence the grate part of the Swedish
population. In spite of the large amount of training data, for these speakers results
are not as high as we would expect. The last comment on Figure 7.6 regards the
lexicon. The same trend in per dialect results is obtained including or excluding
retroflex allophones. In the case of southern speakers we would expect lower results
for models including the retroflex allophones because speakers living in this region
do not make the distinction between normal and retroflex tongue position. In spite
of this results are quite similar for southern speakers, new or old lexicon.
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7.4 Evaluating on Other Databases

To judge system performance it would be important to compare results with those
obtained with other systems in similar conditions. In our case it is not possible
to refer to a previous work on the Swedish SpeechDat database. Comparison is
made referring to two experiments which contain substantial differences from the
SpeechDat context. For these differences an evaluation of the model flexibility is
possible. The two experiments taken into account refer to the Waxholm project and
to the Norwegian SpeechDat project and will be described in the next sections.

7.4.1 The Waxholm Database

The Waxholm database presents many differences if compared to the SpeechDat
database. First of all it was developed in the Waxholm project in the attempt
to create a dialogue system for information about boat traffic, restaurants and
accommodations in the Stockholm archipelago. The corpus of sentences included is
hence affected by this task. The number of speakers (mostly men) is low if compared
to the SpeechDat collection. 50% Speakers have an accent typical of the Stockholm
area. Speech sampling and labeling are also different (16kHz and phone level by-
hand transcriptions). Down-sampling audio files has been necessary because models
developed in this work are built for telephone speech. Doing this part of the spectral
information in the speech files has been lost.

Models are then tested on the same subset of ten speakers used in [16] on a
generic word recognition task, even if model parameters have been tuned in this
work with reference to a digit and natural number recognition task. Within-word
context expansion models with eight Gaussian distributions per mixture scored
89.9% of accuracy, while in [16] 86.6% of accuracy was reached with sixteen Gaussian
distributions triphones.

This prove how these models, in spite of the task adopted in this work, can be
employed in a more wide range of applications.

7.4.2 The Norwegian SpeecDat database

In Norway similar experiments to those made in this work have been done for
Norwegian in the SpeechDat project [8]. Results are not directly comparable for
example because in our case the same network (loop of words, bigram) has been
used for a wide range of different items including for example isolated digits for
which a grammar definition allowing only one word (digit) for utterance would be
more efficient. However, these results are always similar, even though Norwegian
models have been trained on 816 speakers instead of the 750 in our experiments, and
the complete database corpus has been used, while only phonetically rich sentences
and words have been used in our experiments.





Chapter 8

Discussion and Conclusions

Overall results on the evaluation material have shown that models excluding ret-
roflex allophones in general perform better than models including them. This con-
clusion is surely affected by the task, in fact only a few words included in the
recognition task (fyrtio, fjorton, arton, kontokort) contain the allophone 2T, and
there is no occurrence of the other allophones. This means that splitting these mod-
els in normal and retroflex versions (as in the new lexicon) results only in a lower
amount of data for the normal (non retroflex) models mostly used in this task.

Furthermore models including only within-word contexts seem to perform better
than models including cross word context information. This result is also affected by
the task, first because one of the items included in the evaluating material consists
of isolated digits (no cross-word context is available), and second because when
uttering digits and natural numbers speakers tend to separate each word to make
the sequence clear. In a generic speech recognition task in which a higher number
of words is involved and sentences are uttered in a more continuous way, probably
the advantage of using cross-word context expansion would be higher.

Per speaker results have shown how models fit quite well to different classes of
speakers, with some exceptions. Finally testing models on the Waxholm database
has shown the flexibility of these models in spite of the simple task they have been
built for.

8.1 Further Improvements

Results for monophone models showed a considerable improvement when passing
from four to eight Gaussian terms. For this reason it is likely that further im-
provements are still possible adding more Gaussian terms. In the case of context
dependent models this possibility seems to be more problematic, depending on the
fact that the amount of data is not sufficient to train the large number of para-
meters included in these models. An attempt to reduce this problem could be the
use of a model set with a lower number of states respect to the optimal value (tree
clustering threshold optimization) as a base to add Gaussian distributions. The
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Tree clustering threshold optimization in fact is worked out on single distribution
models, and there is no reason to think that the number of states in the model set is
optimal also when increasing the number of Gaussian parameters. One experiment
in this direction has been tested without good results.

However, when the full 5000 speakers database will be avaliable, the data scarcity
problem will be reduced allowing the use of more complex models (more Gaussian
distributions, lower number of states to be clustered to reduce the number of para-
meters). Using this database, different strategies will be possible, as for example the
creation of two different model sets for female and male speakers, or the creation of
dialect dependent models (for example particular models could be built for speakers
from the south, which seem to have different characteristics from all the others in
Sweden).
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Appendix A

Speech Signal Models

This appendix describes speech models and gives a motivation for the use of mel-
cepstral analysis. In Section A.1 models for speech production are discussed, while
Sections A.2 and A.3 describe cepstral analysis and the mel-frequency filter bank.

A.1 Speech Signal Models

A model for speech production consists essentially of a slowly time-varying linear
system excited by either a quasi-periodic impulse train or by random noise [14]. A
short segment of speech signal can hence be considered to be a stationary process
and can be written as

s(n) = p(n) ∗ g(n) ∗ v(n) ∗ r(n) = p(n) ∗ hv(n) =

=
+∞
∑

r=−∞

hv(n − rNp)

for voiced speech, and

s(n) = u(n) ∗ v(n) ∗ r(n) = p(n) ∗ hu(n)

for unvoiced speech, where p(n) is a periodic impulse train of Np samples, hv(n) is
the impulse response of the linear system that combines the effects of the glottal
wave shape g(n), the vocal tract impulse response v(n) and the radiation impulse
response r(n), u(n) is a random noise excitation and finally hu(n) is the impulse
response of the system combining the effects of the vocal tract and the radiation.
In the z-transform domain

Hv(z) = G(z)V (z)R(z)

Hu(z) = V (z)R(z)

are the speech system transfer functions for voiced and unvoiced segments.
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A physiological study of the glottal system and the vocal tract based on pressure
tube theory leads to an approximated model for these transfer functions: the vocal
tract filter can be modeled by

V (z) =

Az−M
Mi
∏

k=1

(1 − akz
−1)

Mo
∏

k=1

(1 − bkz)

Ni
∏

k=1

(1 − ckz
−1)

For voiced speech, except nasals, an adequate model includes only poles (ak = 0;
bk = 0 ∀k). As described in Chapter 2, nasal sounds are produced with a total
constriction in the oral tract. The oral tract works as a resonant cavity trapping
energy at natural frequencies and hence introducing zeros in the transfer function.
The radiation effects result in a high frequency emphasis which can be roughly
modeled by

R(z) ≈ 1 − z−1

Finally, for voiced speech, the glottal pulse shape is of finite duration and, thus,
G(z) has the form

G(z) = B
Li
∏

k=1

(1 − αkz
−1)

Lo
∏

k=1

(1 − βkz)

In general the global speech signal in the z-transform domain1, contains slow
variations (vocal tract filtering) combined with fast variations (glottal wave) [9] as
depicted in figure A.1(a) (left plot).

A.2 Cepstral Analysis

An intuitive way of understanding how cepstral analysis can be useful in this context
is to consider linear filtering techniques.

Problems in which linear filtering is employed usually regard a number of sig-
nals mixed together in a linear combination. The aim is usually to separate these
components. For example if we consider a signal affected by addictive noise in the
form

s = m + e

and we want to remove the undesired component e, we would probably need to
design a system whose transfer function obeys:

y1 = L[m] ≈ m (A.1)
y2 = L[e] ≈ 0 (A.2)

1For what we said a standard frequency domain analysis is not possible for the speech signal.
In the following discussion the z-transform must be intended as a short term transform.
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Figure A.1. Illustration of cepstral analysis of a voiced speech sound

Properties of linear systems ensure that y = L[s] ≈ m as wanted. The use of
Fourier analysis and the introduction of a frequency domain help understanding
and designing the filter L. Referring to the frequency domain we understand how
the difficulty of the task depends on how well m and e are separated in frequency
i.e. they occupy different frequency intervals.

The speech problem presents many differences. We still want to separate differ-
ent components of the signal, but they are mixed in a convolutive way, preventing
the use of standard linear filtering.

The idea is to find a new domain in which these components, or at least their
representatives, are simply added. As known the spectrum of the convolution of two
signals is the product of the spectra of each signal (see Figure A.1 (a)). Furthermore,
if we think of the properties of logarithm, we can write

log Hv(z) = log G(z) + log V (z)R(z) (A.3)

as depicted in Figure A.1(b). The domain we were looking for has been called
“cepstrum domain” by its first discoverers, and the transformation is intuitively
defined by A.3. In this domain we can employ standard linear filtering if the aim
is to remove undesired components of the signal, as in the case of Equations A.22.
The need to find an inverse transform to return into the time domain, as in case

2Of course the possibility of separating the two components in the new domain lies in the
eventuality that they are still high and low quefrency even though we have subjected them to this
non-linear transformation.
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of Equations A.2, implies the use of a complex cepstrum (CC) which is defined as
the complex logarithm of the complex spectrum. In speech applications, however,
information of interest is usually contained in the cepstrum and there is no need to
return into the time domain. For this reason a real cepstrum defined as the inverse
fourier transform of the spectrum absolute part

c(n) = F−1log |Fs(n)| =
1

2π

∫ π

−π
log |S(ω)|ejωndω

is usually employed (Figure A.1(c)). Indeed the only difference between RC and
CC is that RC discards phase information about the signal while CC retains it.
Although the preservation of phase bestows certain properties that are lost with
the RC, the CC is often difficult to use in practise.

A.3 Mel Frequency

To understand the meaning of the mel-frequency filter-bank we first have to under-
stand the term “mel”. A mel is a unit of measure of perceived pitch or frequency of
a tone. Its introduction is due to studies in the field of psychoacoustic. The exper-
iment which determined the introduction of the mel scale consisted of an auditory
perception test: the frequency of 1000 Hz has been chosen arbitrarily and designed
as “1000 mels”. Then listeners were asked to change the physical frequency until
the pitch they perceived was twice the reference, 10 times, half, 1

10 the reference,
and so on. These pitches were labeled as 2000 mels, 10000 mels, 500 mels, 100
mels, and so on. In the end the investigators were able to say that the mapping
between the real frequency scale (Hz) and the perceived frequency scale (mels) is
approximately linear below 1 kHz and logarithmic above. The definition we used
for the mel scale is

Mel(f) = 2595 log10 [1 +
f

700
]

An approach to evaluating mel-cepstrum coefficients could be oversampling the
frequency axis when computing the stDFT (stFFT) and then selecting those fre-
quency samples that represent (approximately) the mel-scale distribution, discard-
ing all the other samples. But other considerations on human perception come
in help to choose a different method: the ability of perceiving a frequency f0 is
influenced by energy in a critical band of frequencies around f0, and the critical
bandwidth varies with the frequency, being constant for f0 < 1 kHz and increasing
logarithmically for f0 > 1 kHz. This means that we resolve better low frequen-
cies that high ones. Therefore, rather than simply using the mel-distributed log
magnitude frequency components to compute the mel-cepstrum coefficients, the log
total energy in critical bands is employed. For this aim the stDFT components are
weighted by filter transfer functions depicted in figure A.2 and summed to generate
the log total energy for each mel frequency sample. Indeed the concatenation of
DFT and sums results in a filter-bank whose transfer function is analogous to the
one depicted in figure A.2.
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Figure A.2. Mel frequency filter bank

For a formal description of this process, the number of points in the stDFT is
considered to be N and each critical band is supposed to be centered on one of the
frequencies resolved by the stDFT. If we call Fc(k) the center critical band frequency
for the kth filter, and Fs the sample frequency in the stDFT, we can write:

Fc(k) = k
Fs

N

Since the relation between linear frequencies and mel frequencies is not linear, only
a few values of k ∈ [1, N ] are considered as shown in the upper and lower plots in
Figure A.2. Let us focus attention on one of this critical filters corresponding to
k = ki. If we denote with Y (i) the log energy output of the ith filter, and if we
define

Ỹ (k) =

{

Y (i) k = ki

0 k ∈ [1, N ], k 6= ki
(A.4)

As one the corresponding sample in the lower plot in Figure A.2, the IDFT (Inverse
Discrete Fourier Transform) needed to obtain the mel-cepstrum coefficients can be
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written as

c(n;m) =
1

N

N−1
∑

k=0

Ỹ (k) exp jk(
2π

N
)n

Since Ỹ (k) is symmetrical about N
2 (“even”) we can replace the exponential by a

cosine.

c(n;m) =
1

N

N−1
∑

k=0

Ỹ (k)cos(k
2π

N
n)

For the symmetry of Ỹ (k), c(n;m) can be written as

c(n;m) =
2

N

(N/2)−1
∑

k=1

Ỹ (k)cos(k(
2π

N
)n)

in the assumption that N is even and that Ỹ (0) = Ỹ (N/2) = 0. The sum is
extended to N terms, but referring to Equations A.4 and to Figure A.2 we see how
there are only Nf nonzero terms in this sum, where Nf is the number of filters in
the filter-bank.



Appendix B

HMM Theory

In this appendix problems related to HMM applications are analyzed in a more
exhaustive way. Particular attention is put on computing algorithms employed
in the ASR. The reason why HMM methods are still preferred to other younger
theories lies in the fact that well tested computation saving algorithms such as the
Forward-Backward algorithm (Section B.3), the Viterbi algorithm (Section B.4) and
the Baum-Welsh re-estimation algorithm (Section B.5 exist. First of all the HMM
definition is reported for clearness.

B.1 HMM Definition

An hidden Markov model (HMM) is a finite state machine which may be described
at any time as being in one of a set of a finite or countable number N of possible
states, s1, s2, ..., sN . At regularly spaced discrete times, the system changes state
(possibly back to the same state), and generates an output. State transitions and
output generation are ruled by two stochastic processes. If we denote any time
instants in which a state change is performed as t = 0, 1, 2, ... and the actual state
at time t as xt, a description of such a model is given by definition of transition
probability as:

Prob{xn+1 = sj|xn = si, xn−1 = sin−1
, ..., x1 = si1 , x0 = si0}

For our purpose we consider only first order discrete Markov chains for which the
conditional distribution of any future state xn+1 given the past x0, x1, ..., xn−1 states
and the present state xn is independent of the past states and depends only on the
present state, i.e.:

Prob{xn+1 = sj|xn = si, xn−1 = sin−1
, ..., x1 = si1 , x0 = si0} =

= Prob{xn+1 = sj|xn = si}

Furthermore we suppose that whenever the process is in state si, there is a fixed
probability that it will next be in state sj, i.e.:

Prob{xn+1 = sj|xn = si} = aij(n) = aij
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where the state transition coefficients obey standard stochastic constrains:

aij ≥ 0

N
∑

j=1

aij = 1

An HMM is hence defined by:

1. a set of N reachable states S = {s1, s2, ..., sN}

2. a set of M possible output symbols V = {v1, v2, ..., vM}

3. a state transition probability distribution A = {aij} where

aij = Prob{xt+1 = sj|xt = si}

4. the observation symbol probability distribution in state sj, B = {bj(k)} where

bj(k) = Prob{Ot = vk|xt = sj},∀k ∈ [1,M ],∀j ∈ [1, N ]

5. the initial state distribution π = {πi} where

πi = Prob{x1 = si},∀i ∈ [1, N ]

Methods described in this appendix apply to generic HMMs as depicted in Fig-
ure B.1, though in this work only left-to-right topology has been used.

5

1
2

3

4

Figure B.1. A five state Markov model
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B.2 Model Likelihood

As discussed in Section 5.3.1 one of the main problems in HMM applications is the
computation of Prob(O|λ). In Section 5.3.1 we said that this quantity is used in
the place of Prob(λ|O) as a measure of the likelihood that a model λ generates the
(known) observation O. This assumption is valid because in the speech recognition
task Prob(λ|O) is always involved in a maximisation procedure over different models
λ. For well known conditional probability properties

Prob(λ|O) =
Prob(O|λ)Prob(λ)

Prob(O)

The choice of λ that maximise the right side is also the choice of λ that maximise
the left size. If we assume Prob(λ) = 1

K (equal probability for each model) and
if we consider that Prob(O) is constant with λ, then maximising Prob(O|λ) is the
same that maximising Prob(λ|O).

B.3 Forward-Backward Algorithm

The Forward-Backward (FB) algorithm has been already introduced in Section 5.3.1.
In this section the forward and backward partial observation probability are form-
ally defined:

αt(i) = Prob(o1, o2, ..., ot, xt = si|λ)

is the probability of the partial observation sequence (until time t) and state si at
time t, given the model λ.

βt(i) = Prob(ot+1, ot+2, ..., oT |xt = si;λ)

is the probability of the partial observation sequence (from time t + 1 to the end),
given the state si at time t and the model λ. It is easy to see that

Prob(O|λ) =
N

∑

i=1

αT (i)

.
The FB procedure is based on the possibility of solving for αt(i) and βt(i)

recursively:

1. α1(i) = πibi(o1), 1 ≤ i ≤ N

2. αt+1(j) =
∑N

i=1 [αt(i)aij ]bj(ot+1)

3. Prob(O|λ) =
∑N

i=1 αT (i)

Step 1 is obvious. Step 2: state sj at time t + 1 can be reached from any state
si at time t. Since αt(i) is the probability of the joint event that o1, o2, ..., ot are
observed and state si is reached at time t, the product αt(i)aij is the probability
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that o1, o2, ..., ot are observed and state sj is reached at time t + 1 via state si at
time t. If we sum over i we obtain the probability that o1, o2, ..., ot are observed
and state sj is reached at time t + 1 ???. To evaluate αt+1(j) is hence sufficient to
multiply this last quantity by bj(ot+1).

Step 3 gives the desired value of Prob(O|λ) as the sum of the terminal forward
variables αT (j) being αT (j) = Prob(o1, o2, ..., oT , xT = si|λ).

B.4 Viterbi algorithm

To describe the Viterby algorithm some quantities must be defined:

δt(i) = max
q1,q2,...,qt−1

Prob(q1, q2, ..., qt−1, xt = si, o1, o2, ..., ot|λ)

that is the highest probability along a single path at time t, considering the first t
observations and ending in state si. By induction:

δt+1(j) = [max
i

δt(i)pij]bj(ot+1)

Since in the end we want a state sequence, we need an array φt(j) where to store
such a sequence step by step. The complete procedure is:

1. Initialization

δ1(i) = πibi(o1), 1 ≤ i ≤ N

φ1(i) = 0

2. Recursion

δt(j) = max
1≤i≤N

[δt−1(i)pij ]bj(ot), 2 ≤ t ≤ T

1 ≤ j ≤ N

φt(j) = arg max
1≤i≤N

[δt−1(i)pij ]

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

4. Path (state sequence) backtracking:

q∗t = φt+1(q
∗
t+1), t = T − 1, T − 2, ..., 1
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B.5 Baum-Welsh Reestimation Algorithm

The aim is to adjust the model parameters (A,B, π) to maximise the probability
of the observation sequence, given the model. This is an NP-complete problem,
and hence has no analytical solution. In fact, given any finite observation sequence
as training data, we can only try to choose λ = (A,B, π) such that Prob(O|λ) is
locally maximised. There are many methods for doing it, among which gradient
techniques, expectation-modification technique, genetic algorithms. In this section
we describe an iterative procedure called Baum-Welch method. First of all we define
ξt(i, j), the probability of being in state si at time t and in state sj in time t + 1,
given the observation sequence and the model:

ξt(i, j) = Prob(xt = si, xt+1 = sj|O, λ)

We can write this quantity in function of the forward and backward variables;
according to their definitions:

ξt(i, j) =
αt(i)pijbj(ot+1)βt+1(j)

Prob(O|λ)

=
αt(i)pijbj(ot+1)βt+1(j)

N
∑

i=1

N
∑

j=1

αt(i)pijbj(ot+1)βt+1(j)

Defining γt(i) as the probability of being in state si at time t, given the observation
sequence and the model we can obtain this probability by summing ξt(i, j) over j:

γt(i) =
N

∑

j=1

ξt(i, j)

Furthermore if we sum γt(i) over time (1 ≤ t ≤ T ) we get the expected (over
time) number of times state sj is visited. Similarly if we sum ξt(i, j) over 1 ≤
t ≤ T − 1 we get the expected number of times transition from state si to state
sj is performed, and summing γt(i) over 1 ≤ t ≤ T − 1 the expected number of
times transition from state si to any other state is performed. We are now ready
to give the estimation procedure: suppose that we have a randomly chosen, or
badly trained, model λ = (P,B, π), we evaluate γt(i) and ξt(i, j) using this model
and the training data (observation sequences). Than we estimate new parameters
λ̂ = (P̂ , B̂, π̂) as following:

π̂ = number of times in state si at time t = 1

p̂ij =
number of transitions from state si to state sj

number of transitions from state si

b̂j(k) =
number of times in state sj and observing symbol vk

number of times in state sj
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according to the definitions of γt(i) and ξt(i, j) we have:

π̂ = γ1(i)

p̂ij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(j)

b̂j(k) =

T
∑

t=1,ot=vk

γt(j)

T
∑

t=1

γt(j)

Sums in the ?? equation are extended from t = 1 to t = T − 1 for obvious reasons.
Baum proved that two cases are possible:

1. the initial model λ defines a critical point in likelihood function (null gradient),
and in this case λ̂ = λ

2. Prob(O|λ̂) > Prob(O|λ) and hence we have found a new model for which the
observation sequence is more likely.

If we repeat this procedure using iteratively λ̂ in place of λ, we should be able to
reach the nearer critical point in the likelihood function.



Appendix C

Lists Of Words

In this appendix lists of words used in recognition (developing and testing) are
included. In table C.1 digits (0-9) are listed, while table C.2 shows natural numbers.
Some of them have one or more variants in pronunciation. The other words are listed
in table C.3, including noise symbols and sentence boundary symbols.

English Swedish Variants
zero noll nolla
one ett en etta
two två tvåa
three tre trea
four fyra
five fem femma
six sex sexa
seven sju sjua
eight åtta
nine nio nia nie

Table C.1. Digits
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10..19 Variants 20..90 Variants 100, 1000, 106 Variants
tio tie tjugo tju, tjugi, tjugu hundra
elva tretti trettio tusen
tolv fyrti fyrtio miljon miljoner
tretton femti femtio
fjorton sexti sextio
femton sjutti sjuttio
sexton åtti åttio
sjutton nitti nittio
arton
nitton

Table C.2. Natural Numbers

bindestreck det eller en har här
inget inte jag jämt komma kontokort
krona kronor men nej nummer och
parantes som spänn streck står va
vad vet är öre [fil] [int]
!ENTER !EXIT

Table C.3. Other words



Appendix D

Phonetic Classes

The decision tree, on which the clustering procedure is based, is a collection of
questions regarding the classification of the left and right context of each phone. In
this appendix the phonetic classification used in this work is reported. Each class
in the list below corresponds to a possible question in the clustering procedure.
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CENTRAL U, E0
APPROXIMANT V, J, R
LATERAL L
LABIODENTAL V, F
BACK-MIDHIGH Å:, Å
PALATAL J, TJ
LOW A:, A
BACK-HIGH O:, O
BILABIAL_PLOSIVE B, P
VELAR_PLOSIVE G, K
NASAL M, N, NG
BILABIAL B, P, M
BACK-ROUNDED O:, O, Å:, Å
RETROFLEX _2S
VELAR G, K, NG
FRICATIVE F, S, _2S, TJ, SJ, H
FRONT-HIGH I:, I, Y:, Y, U:
VOICED_PLOSIVE B, D, G
UNVOICED_PLOSIVE P, T, K
SPDAT_PLOSIVE B, D, G, K
BACK A:, O:, O, Å:, Å
FRONT_ROUNDED U:, Y:, Y, Ö3, Ö4, Ö:, Ö
CORONAL D, L, N, R, S, _2S, T
ALVEOLAR D, T, S, N, L, R
HIGH I:, I, O:, O, U:, Y:, Y
CONTINUANT_CONSONANT V, F, S, L, R, J, TJ, SJ, H
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FRONT_UNROUNDED A, E:, E, I:, I, Ä3, Ä4, Ä:, Ä
ROUNDED O:, O, U:, U, Y:, Y, Å:, Å, Ö3, Ö4, Ö:, Ö
UNVOICED_CONSONANT P, T, S, _2S, TJ, K, SJ, H
FRONT_MIDHIGH E:, E, Ä3, Ä4, Ö3, Ö4, Ä:, Ä, Ö:, Ö, E, E0
PLOSIVE B, P, D, T, G, K
ANTERIOR B, P, V, F, M, D, T, S, N, L
MIDHIGH E:, E, U, Å:, Å, Ä3, Ä4, Ö3, Ö4, Ä:, Ä, Ö:, Ö
VOICED_CONSONANT B, V, M, D, N, L, R, J, G, NG, H
OBSTRUENT B, P, F, D, T, S, _2S, J, TJ, G, K, SJ, H, V
FRONT A, E:, E, I:, I, U:, Y:, Y, Ä3, Ä4, Ö3, Ö4, Ä:,

Ä, Ö:, Ö
VOWEL A:, A, E:, E, I:, I, O:, O, U:, U, Y:, Y, Å:, Å,

Ä3, Ä4, Ö3, Ö4, Ä:, Ä, Ö:, Ö, E0
VOICED A:, A, E:, E, I:, I, O:, O, U:, U, Y:, Y, Å:, Å,

Ä3, Ä4, Ö3, Ö4, Ä:, Ä, Ö:, Ö, E0, B, V, M, D,
N, L, R, J, G, NG, H

E_VOCALS E:, E
I_VOCALS I:, I
Y_VOCALS Y:, Y
Ö_VOCALS Ö3, Ö4
Ä_VOCALS Ä3, Ä4
HIGH_ROUNDED Y:, Y, U:
MIDHIGH_ROUNDED Ö:, Ö, Å:, Å, Ö3, Ö4
MIDHIGH_PRE_R Ö3, Ö4, Ä3, Ä4
MIDHIGH_UNROUNDED E:, E, E0, Ä3, Ä4
TENSE A:, E:, I:, O:, U:, Y:, Å:, Ä3, Ö3, Ä:, Ö:





Appendix E

Confusion Matrices

In this appendix (next pages) confusion matrices are included for each experi-
ment: monophones/triphones, within/cross-word context expansion, old/new lex-
icon. Models in each model set include eight Gaussian mixture terms as state to
output probability distribution.

77



78
A

P
P

E
N

D
IX

E
.

C
O

N
F

U
SIO

N
M

A
T

R
IC

E
S

----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   d   e   h   h   i   j   k   k   m   n   o   s   s   s   s   v   v   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   e   l   a   ä   n   a   o   r   e   e   c   o   p   t   t   a   e   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   t   l   r   r   t   g   m   o   n   j   h   m   ä   r   å   d   t       e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j       e           e       m   n                   n   e   r

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o       r                   a   o                   n   c                      Del [ %c / %e]

noll  874  6  50   2   0   0   0   1   4   7   0   0   1   1   0   2   2   3   3   4   1   2   1   8   7   0   2   0   0   0   0   1   0   3   1   5   5   2   4   1   0   5   0   0   0   0   1   0   2   0   83 [86.4/1.2]

 ett   0  650 36  79   0   1  15   1   6   3   3   0   0  10   0   1   5   1   0   5   0   0   1   0   1   1   0   0   3   1   0   1   0   0   0   2   0   0   0   0   1   0   0   0   1   0   0   1   2   0  100 [78.2/1.6]

 två   1   3  770  4   0   3   0   0   5   2   1   0   1   0   0   0   2   1   2   0   1   3   2   2   1   0   1   0   0   1   0   0   0   1   0   0   0   0   4   0   0   3   1   0   0   1   0   0   0   0   73 [94.4/0.4]

 tre   1   4   2  667 15   3   2   8   1   8  25   0   2   5   0   4  10   0   5   3   3   1   1   0   0   1   0   0   1   2   0   5   0   0   0   0   0   0   1   0   1   1   0   0   0   0   0   0   2   0   89 [85.1/1.1]

fyra   0   1   3   5  742  2   1   2   1   7   6   1   0   0   1   2   0   0   0   0   4   0   0   0   0   0   0   0   2   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   57 [95.0/0.4]

 fem   0  56   4   4   7  613  2   0   7   1   1   2   0   0   0   7   0   1   1   1   0   0   0   5   2   2   0   0   0  17   1   0   0   1   1   0   0   0   1   1   0   2   0   2   0   0   0   0   1   0   89 [82.5/1.2]

 sex   2  11   0   1   0   2  661  0   1   1   1   0   0   0   0   0  22   0   0   1   2   1   0   0   7   0   1   0   2   0   0   0   0   0   0   0   0   0   4   0   0   1   0   0   0   0   0   0   0   0   81 [91.7/0.5]

 sju   4   3   3   4   6   3   0  625  2   0   0   0   1   0   0   1   0   3   0   1   4   0   0   1   1   1   0   1   2   3   0   0   0   0   2   0   0   0   1   0   0   0   1   0   0   0   0   0   1   0   73 [92.7/0.4]

åtta   0   2   7   5   1   0   0   0  639  0   0   0   0   1   0   0   0   0   3   0   2   1   1   1   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   67 [95.9/0.2]

 nio   5  12   3  21  17   0   0   1   0  527 12   0   0   0   0   3   2   0   1   5   4   0   4   0   0   0   1   0   0   3   2   1   0   0   0   2   4   0   6   0  10   1   0   0   0   0   0   0   0   0   82 [81.5/1.1]

 tio   1   1   0   4   2   0   0   0   0   5  43   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0    5 [75.4/0.1]

elva   0   3   0   0   0   0   0   0   1   0   0  59   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0    3 [90.8/0.1]

tolv   4   2   9   0   0   0   0   0   0   0   0   0  20   0   0   0   0   0   0   0   0   3   0   1   2   2   2   0   0   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0    4 [42.6/0.2]

tret   0   5   1   7   0   0   2   2   1   2   0   0   0  116  0   0   0   1   0   1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   14 [83.5/0.2]

fyrt   0   1   0   4   0   1   1   1   0   0   0   0   0   0  88   0   1   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    8 [89.8/0.1]

femt   1   5   0   1   0   8   4   0   3   2   0   0   1   9   1  85   0   1   1   0   0   0   0   0   0   0   0   0   0   2   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   17 [68.0/0.4]

sext   0   1   1   1   0   0  18   1   0   0   0   0   0   1   1   1  101  0   0   0   0   0   0   0   2   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   10 [78.3/0.3]

sjut   0   2   1   2   0   0   0   8   0   0   0   0   0   3   3   0   1  124  2   0   4   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   13 [82.1/0.2]

åtti   3   1  10  15   0   0   0   0   9   2   2   0   0   0   0   0   0   3  113  0   0   1   0   0   0   0   1   0   1   0   0   0   0   1   0   0   0   0   0   0   0   4   0   0   1   0   0   0   0   0   20 [67.7/0.5]

nitt   0   5   0   2   0   0   0   0   0   3   1   0   0   3   0   1   3   0   1  160  0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   12 [88.4/0.2]

tjug   2   2   2   1   0   0   0   3   0   0   1   0   0   0   0   0   1   3   0   0  157  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   12 [91.3/0.1]

tret   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0  33   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [91.7/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   2   0   0   0   0   0   0   0   1   0   0   1   0   1   0   0   0   0   0   0   0   0   0  37   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [88.1/0.0]

sext   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [95.2/0.0]

sjut   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  29   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [93.5/0.0]

arto   0   0   0   1   0   0   0   0   2   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0  16   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0    1 [76.2/0.0]

nitt   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   1   0  29   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [85.3/0.0]

hund  13   5   3   1   6   6   1   1  14   6   2   2   3   1   0   0   2   0   1   1   0   3   2   1   3   0   3   1  265  6   0   0   0   0   0   0   1   2   0   1   0   5   0   0   0   0   0   1   2   0   75 [72.8/0.9]

tuse   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  144  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    5 [99.3/0.0]

milj   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  23   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0    1 [95.8/0.0]

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0   0   0    0

kron   0   0   1   0   1   0   1   1   2   0   0   0   0   0   0   0   0   0   0   0   1   0   0   1   1   1   0   0   1   0   0   0   0   0   0   0   0   0  167  0   0   0   0   0   0   0   0   0   0   0    8 [93.8/0.1]

 och   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  14   0   0   0   0   0   0   0   0    5 [93.3/0.0]

stre   0   0   0   0   0   0   1   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   3   0   0   0   0   0    2 [50.0/0.0]

 öre   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8    2

Ins   13  88  39  63   6   8   6   4  19  15   3   0   0   3   0   0   3   1   2   3   4   1   1   0   1   0   0   0   3   6   0   7   1   1   0   2   6   2   1   1   0   6   0   0   0   0   1   0   2   0

==============================================================================

F
ig

u
r
e

E
.1

.
C

o
n

fu
sio

n
m

a
trix

:
m

o
n

o
p

h
o
n

es,
o
ld

lex
ico

n
,

eig
h
t

G
a
u

ssia
n

m
ix

tu
re

term
s



79

----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   d   h   h   i   j   k   k   k   m   n   o   s   s   s   s   v   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   e   a   ä   n   a   o   r   r   e   e   c   o   p   t   t   a   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   t   r   r   t   g   m   o   o   n   j   h   m   ä   r   å   d       e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j               e       m   n   n                   n   e   r

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o                       a   a   o                   n   c                  Del [ %c / %e]

noll  891  5  52   2   3   0   0   1   6   8   0   0   1   2   0   1   2   0   1   2   2   1   1   7  10   2   2   0   0   0   2   1   5   0   3   5   2   0   3   1   0   4   1   0   0   0   0   3   0   62 [86.3/1.3]

 ett   1  660 45  79   1   2  16   2  11   1   0   0   0   8   0   1   3   2   0   2   0   2   1   0   0   0   0   0   2   1   0   2   0   0   4   0   0   0   0   0   0   1   0   0   0   0   0   2   0   82 [77.7/1.7]

 två   0   2  800  0   2   5   0   0   4   0   1   0   2   1   0   0   2   0   1   0   1   0   0   1   0   0   0   0   0   1   0   0   0   0   0   0   0   0   7   0   0   0   0   0   0   0   0   0   0   59 [96.4/0.3]

 tre   1   6   1  692 21   2   2  10   0   6  17   1   0   7   0   8  12   1   0   6   0   1   0   0   1   0   0   0   2   2   1   2   0   1   0   0   0   0   0   0   2   1   0   1   0   0   0   1   0   65 [85.6/1.1]

fyra   1   2   2   4  756  1   1   5   3   3   2   0   1   0   1   2   1   0   0   0   1   0   0   1   0   0   0   0   5   1   0   3   0   1   1   0   0   0   0   0   0   1   0   0   0   0   0   1   0   38 [94.5/0.4]

 fem   0  11   3   7   7  645  6   0   4   0   2   1   1   0   0   6   1   0   1   0   0   0   0   6   2   1   0   0   2  38   0   0   2   2   0   1   0   0   2   2   0   1   0   4   0   1   0   2   0   71 [84.8/1.1]

 sex   1   9   0   2   0   3  703  0   0   1   1   0   0   0   0   0   9   0   0   0   2   0   0   1   4   0   0   0   2   1   0   0   0   0   0   0   0   0   1   0   1   1   0   0   0   0   0   1   0   59 [94.6/0.4]

 sju   4   1   2   5   8   3   0  644  0   0   1   0   0   1   0   0   0   1   0   1   4   0   0   1   1   3   0   1   2   5   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   57 [93.3/0.4]

åtta   1   1  10   2   2   0   0   0  655  0   0   0   0   0   0   0   0   0   6   0   0   0   2   0   1   0   3   0   0   1   0   0   0   0   0   0   0   0   0   0   0   3   0   0   0   0   0   0   0   46 [95.3/0.3]

 nio   5  12   5  37  48   2   0   7   4  463 10   2   0   0   0   2   1   0   0   8   2   0   3   1   1   1   2   0   2   5  11   1   0   1   1   4   0   0   3   1  19   0   0   0   0   0   0   1   0   64 [69.6/1.8]

 tio   0   3   0   6   3   0   0   2   0   6  33   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    7 [60.0/0.2]

elva   0   0   0   0   0   1   0   0   0   0   0  63   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [95.5/0.0]

tolv   4   0   8   0   0   0   0   0   0   1   0   0  20   0   0   0   0   0   2   0   0   3   0   2   1   1   0   0   2   0   0   0   1   0   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0    4 [42.6/0.2]

tret   0  14   2  13   0   0   0   1   1   0   0   0   0  104  0   0   1   2   0   1   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   12 [73.8/0.3]

fyrt   1   1   1   3   0   1   2   0   0   0   0   0   0   1  86   1   0   2   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    6 [86.0/0.1]

femt   1   3   1   5   0  10   3   0   2   1   0   0   1   1   0  97   0   0   3   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   12 [74.6/0.3]

sext   0   2   1   1   0   0  26   0   0   0   0   0   0   1   0   0  96   0   0   0   0   0   0   1   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    9 [73.8/0.3]

sjut   0   4   2   2   0   0   0  12   0   0   0   0   0   1   2   0   1  123  0   0   3   0   0   0   0   3   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    9 [79.4/0.3]

åtti   3   3  14  26   0   0   1   0  19   3   7   0   0   1   2   0   0   2  67   3   1   0   0   0   0   0   2   0   1   1   0   1   1   0   0   0   0   0   0   0   0   7   0   0   0   0   0   0   0   22 [40.6/0.9]

nitt   0   7   1   8   0   0   0   0   0   6   0   0   0   1   0   3   1   1   0  149  0   0   0   0   0   0   0   0   0   0   0   0   2   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   13 [82.8/0.3]

tjug   2   2   1   2   1   0   4  18   0   0   1   0   0   0   0   1   1   0   0   0  123  0   0   0   0   0   0   0   0   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   25 [77.4/0.3]

tret   0   0   1   0   0   0   0   0   0   0   0   0   0   2   0   0   1   0   0   0   0  31   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [86.1/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   1   0   0   0   0   0   0   0   1   0   0   1   0   1   0   1   0   0   0   0   0   0   0  37   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [88.1/0.0]

sext   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0  39   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [95.1/0.0]

sjut   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  29   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [96.7/0.0]

arto   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  19   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0    1 [90.5/0.0]

nitt   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0  32   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [91.4/0.0]

hund  16   3   5   4   7   8   1   1  13   2   2   2   1   0   0   0   1   2   0   0   0   1   1   1   2   3   1   1  250  3   0   1   0   0   0   1   4   0   0   0   0  12   0   0   0   0   0   3   0   87 [71.0/0.9]

tuse   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0  147  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [99.3/0.0]

milj   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  23   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [95.8/0.0]

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0   0   0    0

kron   0   1   1   0   1   0   0   0   2   1   0   0   0   0   0   0   0   0   0   0   1   0   1   2   0   1   0   0   1   0   3   0   0   0   0   0   1   1  162  0   0   1   0   0   0   0   0   0   0    6 [90.0/0.2]

 och   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0  12   0   0   0   0   0   0   0    5 [80.0/0.0]

stre   0   0   0   1   0   0   1   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   4   0   0   0   0    1 [57.1/0.0]

 öre   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   6    2 [75.0/0.0]

Ins   14  99  45  78  11  15   9  10   9  22   3   0   1   1   0   1   1   1   1   1   1   1   0   0   0   0   3   1   4  11   0  13   3   0   3   7   1   0   1   3   3   8   1   0   0   0   1   4   0
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----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   d   h   i   j   k   k   m   n   o   s   s   s   v   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   e   a   n   a   o   r   e   e   c   o   p   t   a   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   t   r   t   g   m   o   n   j   h   m   ä   r   d       e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j           e       m   n                   n   e

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o                   a   o                   n   c              Del [ %c / %e]

noll 1043  2   5   0   0   0   0   1   0   2   0   0   0   0   0   0   0   0   0   0   1   0   0   1   1   0   0   3   0   0   0   0   1   1   0   0   2   0   0   2   0   0   0   0   1   0   28 [97.8/0.2]

 ett   0  850  1   9   1   4   1   0   4   0   0   0   0   1   0   0   2   0   0   1   0   1   0   0   0   0   0   1   2   1   0   0   0   1   0   0   0   0   0   2   0   0   0   0   0   0   49 [96.4/0.3]

 två   5   3  820  1   1   6   1   0   3   0   0   0   0   1   0   0   0   0   0   0   0   1   0   0   0   0   1   0   0   2   0   0   0   1   0   0   1   0   0   4   0   0   0   2   0   0   36 [96.1/0.3]

 tre   2   6   1  771 10   5   1   6   0   2   5   0   0   0   1   0   4   0   1   2   1   0   0   0   0   0   0   0   0   2   0   5   0   0   1   0   2   0   3   0   0   0   0   0   0   0   42 [92.8/0.5]

fyra   0   2   0   1  800  1   0   0   0   0   1   3   0   0   1   0   0   0   0   0   2   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   25 [98.4/0.1]

 fem   0  23   0   2   1  748  0   0   2   0   0   0   0   0   0   4   0   0   1   0   0   0   0   5   1   0   0   0   1   4   0   0   0   0   0   0   0   1   0   0   0   0   0   0   1   0   38 [94.2/0.4]

 sex   0   6   0   2   0   0  741  0   0   1   0   0   0   0   1   0   0   0   0   0   0   1   1   0   4   0   0   0   0   0   0   1   0   0   0   0   0   0   0   1   0   0   1   0   0   0   42 [97.5/0.2]

 sju   5   4   1   4   3   2   1  677  0   0   0   0   2   0   0   0   0   1   1   0   7   0   0   1   0   1   1   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   1   0   0   0   33 [94.8/0.3]

åtta   0   1   0   0   1   0   0   0  689  0   0   0   0   1   0   0   0   1   3   0   0   0   0   0   0   0   5   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   0   1   0   29 [97.9/0.1]

 nio   7  15   0   8  20   2   0   2   0  596  5   0   0   0   0   0   0   0   1   8   1   0   0   0   0   0   2   2   2   1   6   5   0   1   0   0   0   0   3   3   0   0   0   0   0   0   39 [86.4/0.9]

 tio   0   2   0   2   4   0   0   0   0   3  50   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [82.0/0.1]

elva   0   1   0   0   1   0   0   0   0   0   0  63   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [94.0/0.0]

tolv   1   0   3   0   0   0   0   0   0   0   0   0  45   0   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [88.2/0.1]

tret   0   2   0   0   1   0   0   0   0   0   1   0   0  141  1   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   1   0    3 [94.0/0.1]

fyrt   0   1   0   1   0   0   0   0   0   0   0   0   0   2  97   2   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [93.3/0.1]

femt   0   2   0   1   0   4   0   0   0   1   0   0   0   0   1  128  0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [92.8/0.1]

sext   0   1   0   0   1   0   8   1   0   0   0   0   0   0   0   0  126  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [92.0/0.1]

sjut   0   1   0   0   0   0   0   1   0   0   0   0   0   2   4   0   0  149  0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   1   0   0   0    4 [93.1/0.1]

åtti   2   1   0   2   0   0   0   0   6   0   1   0   0   0   1   0   0   2  153  0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   2   0   0   3   0   0   0   0   0   0   13 [87.9/0.2]

nitt   0   1   0   1   0   0   1   0   0   0   1   0   0   0   0   0   2   0   0  177  0   0   0   0   0   0   0   2   0   0   0   0   0   1   0   0   1   0   0   0   0   0   1   0   0   0    5 [94.1/0.1]

tjug   4   0   0   1   0   0   1   2   0   0   0   0   0   0   0   0   0   1   0   0  158  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   16 [94.0/0.1]

tret   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  35   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [94.6/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  43   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1

sext   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  42   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2

sjut   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  31   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

arto   0   0   0   0   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  19   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [86.4/0.0]

nitt   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  33   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [94.3/0.0]

hund   8   9   1   1   4   2   0   0   0   0   0   1   2   0   0   0   0   0   0   0   0   1   0   0   7   0   3   0  334  0   0   0   0   0   0   2   1   0   0   5   1   0   0   0   2   0   55 [87.0/0.5]

tuse   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  146  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [98.6/0.0]

milj   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  23   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0    0 [92.0/0.0]

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0    0

kron   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0  180  0   0   0   0   1   0   0   0   0    3 [98.4/0.0]

 och   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  13   0   0   0   0   0   0    7

stre   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   7   0   0   0    0 [87.5/0.0]

 öre   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8    1 [88.9/0.0]

Ins    6 120   5  18   5  11   3  14   9   6   6   1   1   1   1   1   0   0   3   0   0   1   0   0   0   0   1   0   2   1   0  10   1   3   4   0   3   0   2  16   1   0   3   0   3   0
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----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   d   h   h   i   j   k   k   k   m   n   n   o   s   s   s   v   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   e   a   ä   n   a   o   r   r   e   e   u   c   o   t   t   a   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   t   r   r   t   g   m   o   o   n   j   m   h   m   r   å           e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j               e       m   n   n           m           e   r

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o                       a   a   o           e           c                  Del [ %c / %e]

noll 1045  1   4   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   1   1   1   0   0   3   0   0   2   2   0   1   0   0   0   0   0   1   0   28 [98.0/0.2]

 ett   0  829  1  12   2   4   1   4   8   0   0   0   0   2   0   1   1   0   0   1   0   1   1   0   0   0   0   0   2   0   0   1   0   0   2   0   0   0   0   0   0   0   0   0   0   0   0   1   0   57 [94.9/0.4]

 två   6   3  815  0   1   8   1   1   4   0   0   0   1   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0   0   1   0   0   0   0   1   2   0   0   1   0   0   0   0   0   0   1   0   1   0   40 [96.0/0.3]

 tre   2   5   0  788  5   4   2   7   0   4   1   0   0   0   0   0   1   0   0   1   0   0   0   0   1   0   0   0   0   1   0   2   0   0   0   1   0   0   1   0   2   0   0   0   0   0   0   2   0   43 [94.9/0.4]

fyra   1   0   0   3  799  0   0   2   3   1   1   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   24 [98.2/0.1]

 fem   1   9   0   0   2  762  0   2   3   0   0   0   0   0   0   3   0   0   0   0   0   0   0   1   0   0   0   0   1   3   0   1   1   1   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   41 [96.3/0.3]

 sex   0   8   0   2   0   0  749  0   0   0   0   0   0   0   0   0   1   0   0   0   1   2   0   0   2   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   1   0   34 [97.5/0.2]

 sju   3   2   1   5   2   2   1  684  0   1   0   1   3   0   0   0   0   1   0   0   5   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   35 [96.1/0.3]

åtta   0   0   1   0   1   0   0   0  692  0   0   0   0   1   0   0   0   0   4   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   30 [98.4/0.1]

 nio   7   6   1  11  29   1   0   5   0  602  0   1   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   3   2   5   4   0   0   2   2   0   0   0   0   3   0   0   0   0   0   0   0   0   39 [87.2/0.8]

 tio   0   2   0   5   4   1   0   0   0   3  44   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [73.3/0.1]

elva   0   0   0   0   1   0   0   0   0   0   0  63   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [94.0/0.0]

tolv   0   1   2   0   0   0   0   0   0   0   0   0  45   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [90.0/0.0]

tret   0   7   0   2   1   0   0   0   0   0   0   0   0  137  1   0   1   0   0   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [90.7/0.1]

fyrt   0   1   0   2   0   0   1   0   0   0   0   0   0   0  92   2   1   4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [89.3/0.1]

femt   1   0   0   2   0   2   0   0   0   1   0   0   0   0   1  128  0   0   0   2   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [92.1/0.1]

sext   0   2   0   3   1   0  10   1   0   0   0   0   0   0   0   0  118  0   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [86.1/0.2]

sjut   1   0   0   0   0   0   1   4   0   0   1   0   0   2   2   0   0  143  1   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    6 [90.5/0.1]

åtti   1   1   0   7   0   0   0   0   5   1   1   0   0   0   1   0   0   8  142  2   0   0   0   0   0   0   1   0   0   0   0   2   0   0   0   0   0   0   4   0   0   0   1   0   0   0   0   1   0    9 [79.8/0.3]

nitt   0   2   0   2   0   0   1   1   0   1   0   0   0   0   0   0   2   0   0  176  0   0   0   0   0   0   0   2   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    5 [93.6/0.1]

tjug   3   1   0   1   0   0   2   2   0   0   0   0   0   1   0   0   2   0   0   0  152  0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   19 [92.1/0.1]

tret   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  36   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [97.3/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  42   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [97.7/0.0]

sext   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  42   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2

sjut   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  30   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [96.8/0.0]

arto   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1  19   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [86.4/0.0]

nitt   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  34   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [97.1/0.0]

hund   9   1   1   0   2   3   0   1   1   0   0   0   2   0   0   0   0   0   0   0   0   1   0   0   3   2   0   1  346  0   0   1   0   0   0   0   4   0   1   0   0   0   0   1   0   0   0   2   0   57 [90.6/0.3]

tuse   0   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  145  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [98.0/0.0]

milj   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0   0   0    0

kron   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   3  175  0   0   0   0   0   0   0   0   0   1    4 [96.2/0.1]

 och   0   0   0   0   0   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8   0   0   0   0   0   0   10 [80.0/0.0]

stre   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   7   0   0   0   0    0 [87.5/0.0]

 öre   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   9    1

Ins    6  97   6  11   9  14   8  17  20  10   0   2   0   0   0   0   0   1   1   0   1   1   0   0   0   1   0   0   3   0   0  11   3   0   2   3   0   0   2   1   2   0   9   0   2   0   0   2   0
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----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   b   d   i   j   k   k   m   n   n   o   s   s   v   v   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   i   e   n   a   o   r   e   e   u   c   t   t   a   e   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   n   t   t   g   m   o   n   j   m   h   r   å   d   t       e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j   d       e       m   n           m       e   r

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o   e               a   o           e       c                      Del [ %c / %e]

noll 1026  2   2   1   1   1   0   2   0   7   1   1   1   2   0   0   0   0   0   0   1   1   0   2   1   1   1   3   0   0   0   0   0   0   0   0   2   0   0   1   1   0   0   0   0   2   0   31 [96.5/0.3]

 ett   0  802  4  20   2   1   2   1   5   2   1   0   0  17   0   2   1   1   5   5   0   4   1   0   0   0   0   0   2   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0   0   1   0   49 [90.9/0.7]

 två   5   6  803  0   0   4   2   1   2   0   4   0   2   2   0   0   0   0   0   1   0   3   0   1   1   1   1   1   0   1   0   0   0   0   2   0   1   0   0   0   0   0   1   1   0   0   0   43 [94.9/0.4]

 tre   0  15   0  719 11   2   6   5   1   6  12   0   0   7   1   7   5   1   1   3   1   0   0   0   1   0   0   1   1   1   0   0   1   0   0   0   1   0   2   0   0   0   0   0   0   0   0   62 [88.7/0.8]

fyra   0   1   0   3  788  1   0   0   1   4   3   0   0   0   1   1   0   0   0   0   0   1   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   30 [97.5/0.2]

 fem   0  38   2   7   3  686  0   0   3   0   0   0   0   0   0  17   0   0   0   0   1   1   1  12   2   1   0   0   1   9   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   47 [87.4/0.9]

 sex   0   3   0   5   0   0  710  0   0   0   0   0   1   0   0   0  25   0   0   2   0   0   0   0   6   0   1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   47 [94.0/0.4]

 sju   3   4   1   8   5   1   1  659  0   0   1   0   2   0   0   0   0   3   0   1   6   1   0   0   0   2   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   48 [94.3/0.4]

åtta   0   1   2   0   1   0   0   0  680  0   0   0   0   1   0   0   0   1   4   0   0   0   2   0   0   1   5   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   34 [97.3/0.2]

 nio   2  13   1  11  16   2   0   2   0  602  8   1   0   0   0   1   1   0   0  11   1   0   2   0   0   0   1   2   1   2   3   0   2   0   1   0   1   0   1   0   1   0   0   0   1   0   1   38 [87.1/0.8]

 tio   0   5   0   3   1   0   0   0   0   3  46   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [76.7/0.1]

elva   0   0   0   0   0   1   0   0   0   0   0  63   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [94.0/0.0]

tolv   0   1   1   0   0   0   0   0   0   0   0   0  44   0   0   0   0   0   0   0   0   1   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1    1 [88.0/0.1]

tret   0   1   0   1   0   0   2   0   0   1   1   0   0  138  0   0   1   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    6 [93.9/0.1]

fyrt   0   0   0   0   0   0   0   0   0   0   0   0   0   3  96   1   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [94.1/0.1]

femt   0   0   0   3   0   1   0   0   0   1   0   0   0   3   2  126  1   1   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [90.6/0.1]

sext   0   0   0   1   0   0   8   0   0   0   0   0   0   1   0   0  126  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [92.6/0.1]

sjut   0   0   0   0   0   0   0   4   0   0   0   0   0   1   3   0   0  147  3   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [91.9/0.1]

åtti   0   1   0   1   0   0   0   1   6   0   0   0   0   0   1   1   0   2  159  0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   0   12 [90.9/0.1]

nitt   0   1   0   2   0   0   1   0   0   0   0   0   0   1   0   1   2   0   1  172  0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   10 [94.0/0.1]

tjug   1   0   0   1   0   0   1   2   0   0   0   0   0   0   2   0   0   0   0   0  159  0   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   16 [94.6/0.1]

tret   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   1   0   0  34   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [91.9/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0  42   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [97.7/0.0]

sext   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  42   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2

sjut   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1  30   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [96.8/0.0]

arto   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  22   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

nitt   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   1   0  30   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [88.2/0.0]

hund   8   2   1   0   6   2   0   1   2   3   6   2   5   0   0   1   1   0   0   2   2   3   0   0   5   1   3   0  333  0   0   0   0   0   0   2   2   0   0   0   0   0   0   0   0   0   0   46 [84.7/0.5]

tuse   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   0   0   0   0   0   0   0   0  143  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [97.3/0.0]

milj   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  24   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [96.0/0.0]

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0   0    0

kron   0   0   0   0   1   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   1   0   0   0   0   0   0   0  179  0   0   0   0   0   0   0   0   0   0    2 [97.3/0.0]

 och   0   0   0   0   0   1   0   0   1   0   2   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   7   0   0   0   0   0   0    8 [58.3/0.0]

stre   0   0   0   2   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   5   0   0   0   0   0    0 [62.5/0.0]

 öre   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8    1 [88.9/0.0]

Ins    4 203  34  47   7  13   7  13  25  20   1   1   0   6   0   1   1   2   8   1   2   0   1   0   0   0   0   0   2   3   1   0   2   1   1   0   1   1   3   0   3   2   0   0   0   2   0
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----------------------------- Confusion Matrix -------------------------------

       n   e   t   t   f   f   s   s   å   n   t   e   t   t   f   f   s   s   å   n   t   t   f   f   s   s   a   n   h   t   m   d   e   h   i   j   k   k   k   n   o   s   s   s   ä   ö

       o   t   v   r   y   e   e   j   t   i   i   l   o   r   y   e   e   j   t   i   j   r   j   e   e   j   r   i   u   u   i   e   l   a   n   a   o   r   r   e   c   o   t   t   r   r

       l   t   å   e   r   m   x   u   t   o   o   v   l   e   r   m   x   u   t   t   u   e   o   m   x   u   t   t   n   s   l   t   l   r   t   g   m   o   o   j   h   m   r   å       e

       l               a               a           a   v   t   t   t   t   t   i   t   g   t   r   t   t   t   o   t   d   e   j       e       e       m   n   n               e   r

                                                           t   i   i   i   t   o   i   o   t   t   o   o   t   n   o   r   n   o       r               a   a   o               c              Del [ %c / %e]

noll 1042  0   2   0   0   0   0   0   0   0   0   0   3   0   0   0   0   0   0   0   2   0   0   2   1   0   3   1   1   0   0   0   0   1   0   1   0   0   6   1   1   0   0   0   2   0   25 [97.5/0.2]

 ett   0  806  4  18   2   7   1   1   3   0   0   0   0   9   1   5   1   0   1   2   0   6   0   0   0   0   0   1   2   1   0   1   0   0   3   0   0   0   0   0   0   0   0   0   1   0   55 [92.0/0.6]

 två   3   0  804  2   2   6   0   1   2   0   1   0   3   0   0   2   0   0   1   0   1   1   0   1   1   2   0   0   0   1   0   0   0   0   0   0   0   0   3   0   1   0   0   7   0   0   44 [95.1/0.4]

 tre   0  10   1  753 13   4   2   5   1   3   5   0   0   3   0   5   4   0   0   1   0   0   0   0   1   1   0   0   1   4   0   2   1   0   0   0   0   0   0   2   0   0   2   0   1   0   48 [91.3/0.7]

fyra   0   1   0   5  793  1   0   1   2   1   3   0   0   0   1   0   0   0   0   0   0   1   0   0   0   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   25 [97.5/0.2]

 fem   0  12   2   2   3  712  0   0   2   0   0   0   0   0   0  21   0   0   0   0   0   0   1   8   2   1   0   0   1   7   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   57 [91.9/0.6]

 sex   0   3   0   1   0   0  731  1   0   0   0   0   0   0   0   1  12   0   0   0   0   0   0   0   5   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   45 [96.6/0.2]

 sju   4   0   2   6   4   1   3  662  0   0   0   0   4   0   0   0   0   1   1   0   6   0   0   0   0   1   0   0   2   5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   45 [94.3/0.4]

åtta   0   1   0   2   1   1   0   0  690  0   0   0   0   1   0   0   0   1   5   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   0   0   27 [97.7/0.1]

 nio   3   2   0  13  19   3   0   3   0  604  1   0   1   0   0   3   1   0   1   7   0   0   0   0   0   0   0   1   3   4   6   2   0   1   0   0   0   0   1   2   0   0   0   0   1   1   46 [88.4/0.7]

 tio   0   2   0   4   5   0   0   0   0   2  44   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [75.9/0.1]

elva   0   0   0   0   0   1   0   0   0   0   0  62   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [93.9/0.0]

tolv   0   1   1   0   0   0   0   0   0   0   0   0  45   0   0   0   0   0   0   0   0   1   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1    0 [88.2/0.1]

tret   0   3   0   2   0   0   0   0   0   0   0   0   0  138  1   0   1   1   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    6 [93.9/0.1]

fyrt   0   0   0   0   0   0   1   0   0   0   0   0   0   1  94   1   0   6   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [91.3/0.1]

femt   0   0   1   3   0   0   0   0   0   1   0   0   0   0   1  128  1   0   0   0   0   0   0   2   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [92.8/0.1]

sext   0   0   0   2   0   0   8   0   0   1   0   0   0   0   0   0  125  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    3 [91.9/0.1]

sjut   0   1   0   0   0   0   0   3   0   0   0   0   0   2   4   0   0  148  0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    4 [92.5/0.1]

åtti   1   2   0   7   0   0   0   0   4   0   3   0   0   2   4   0   0  15  126  2   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   4   0   1   0   0   0   1   0   14 [72.8/0.4]

nitt   0   0   0   5   0   0   2   0   0   1   1   0   0   2   0   0   2   1   0  172  0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0   0   0   0   0   0    5 [91.5/0.1]

tjug   2   0   0   0   0   0   0   3   0   0   0   0   0   2   1   2   2   1   0   0  147  0   0   0   0   0   0   0   0   3   0   1   0   0   0   0   0   0   0   0   0   0   0   0   1   0   19 [89.1/0.2]

tret   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0  35   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [94.6/0.0]

fjor   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0

femt   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0  41   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1 [95.3/0.0]

sext   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  42   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2

sjut   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0  29   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [93.5/0.0]

arto   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  21   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0 [95.5/0.0]

nitt   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   1   0  30   0   1   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0    1 [88.2/0.0]

hund   8   2   0   1   6   4   0   2   2   1   1   1   6   0   0   2   1   0   0   0   2   3   0   1   7   2   1   0  328  0   0   1   0   0   0   0   3   0   0   0   1   0   0   0   0   0   53 [85.0/0.5]

tuse   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0  146  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    2 [98.6/0.0]

milj   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  24   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0    0 [96.0/0.0]

komm   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0    0

kron   0   0   0   0   2   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   1  176  0   0   0   0   0   1   0    3 [96.2/0.1]

 och   0   0   0   0   0   3   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   7   0   0   0   0   0    9 [63.6/0.0]

stre   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8   0   0   0    0

 öre   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   8    1 [88.9/0.0]

Ins    4  95   9  22   9  16   6  20  18  20   2   0   1   1   0   1   1   0   2   1   1   0   0   0   1   0   1   0   4   3   0   8   0   0   2   1   0   0   2   0   9   0   2   0   1   0
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