
Predicting Response Times
for the Spotify Backend

Rerngvit Yanggratoke∗, Gunnar Kreitz†, Mikael Goldmann†, and Rolf Stadler∗
∗ACCESS Linnaeus Center, KTH Royal Institute of Technology, Sweden

†Spotify, Sweden
Email: {rerngvit,stadler}@kth.se{gkreitz,migo}@spotify.com

Abstract—We model and evaluate the performance of
a distributed key-value storage system that is part of the
Spotify backend. Spotify is an on-demand music streaming
service, offering low-latency access to a library of over 16
million tracks and serving over 10 million users currently.
We first present a simplified model of the Spotify storage
architecture, in order to make its analysis feasible. We
then introduce an analytical model for the distribution of
the response time, a key metric in the Spotify service. We
parameterize and validate the model using measurements
from two different testbed configurations and from the op-
erational Spotify infrastructure. We find that the model is
accurate—measurements are within 11% of predictions—
within the range of normal load patterns. We apply the
model to what-if scenarios that are essential to capacity
planning and robustness engineering. The main difference
between our work and related research in storage system
performance is that our model provides distributions of
key system metrics, while related research generally gives
only expectations, which is not sufficient in our case.

Index Terms—Key-value store, distributed object store,
performance modeling, system dimensioning, performance
measurements, response times, streaming media services

I. INTRODUCTION

The Spotify service is a peer-assisted system, meaning
it has a peer-to-peer component to offload backend
servers, which are located at three sites (Stockholm,
Sweden, London, UK, and Ashburn, VA). While the Spo-
tify backend servers run a number of services, such as
music search, playlist management, and social functions,
its core service is audio streaming, which is provided by
the Spotify storage system [1]. When a client plays a
music track, its data is obtained from a combination of
three sources: the clients local cache (if the same track
has been played recently), other Spotify clients through
peer-to-peer technology, or the Spotify storage system in
a backend site [1].

Low latency is key to the Spotify service. When a user
presses “play”, the selected track should start “instantly.”
To achieve this, the client generally fetches the first part
of a track from the backend and starts playing as soon as
it has sufficient data so that buffer underrun (“stutter”)
will be unlikely to occur. Therefore, the main metric of
the Spotify storage system is the fraction of requests that
can be served with latency at most t for some small value
of t, typically around 50 ms. (We sometime use the term
response time instead of latency in this paper.)

The Spotify storage system has the functionality of
a (distributed) key-value store. It serves a stream of
requests from clients, whereby a request provides a key
and the system returns an object (e.g., a part of an audio
track). In this paper, we present an analytical model of
the Spotify storage architecture that allows us to estimate
the distribution of the response time of the storage
system, as a function of the load, the storage system
configuration and model parameters that we measure
on storage servers. The model centers around a simple
queuing system that captures the critical system resource
(i.e., the bottleneck), namely, access to the server’s
memory cache and disk where the objects are stored.

We validate the model (1) for two different storage
system configurations on our laboratory testbed, which
we load using anonymized Spotify traces, and (2) for
the operational Spotify storage system, whereby we
utilize load and latency metrics from storage servers of
the Stockholm site. We find that the model predictions
are within 11% of the measurements, for all system
configurations and load patterns within the confidence
range of the model. As a consequence, we can predict
how the response time distribution would change in the
Stockholm site, if the number of available servers would
change, or how the site in a different configuration would
handle a given load. Overall, we find that a surprisingly
simple model can capture the performance of a system of
some complexity. We explain this result with two facts:
(1) the storage systems we model are dimensioned with
the goal that access to memory/storage is the only poten-
tial bottleneck, while CPUs and the network are lightly
loaded; (2) we restrict the applicability of the model to
systems with small queues —they contain at most one
element on average. In other words: our model is ac-
curate for a lightly loaded storage system. Interestingly,
the model captures well the normal operating range of
the Spotify storage system. As our measurements show,
increasing the load beyond the confidence limit of our
analysis can lead to a significant increase in response
times for a large fraction of requests.

The paper is organized as follows. Section II briefly
describes the Spotify storage system. Section III contains
the analytical model of the system that suits our purpose.
Section IV describes our work on the evaluation of the
model and the estimation of the model parameters, both

117978-3-901882-48-7 c©2012 IFIP

Fig. 1. Spotify Storage Architecture

on the lab testbed and on the Spotify operational system.
Section V gives examples of applying the model. Section
VI discusses related work and Section VII contains our
conclusions and future work.

II. THE SPOTIFY BACKEND STORAGE ARCHITECTURE

We give a (simplified) overview of the part of the
Spotify backend responsible for music delivery to the
clients. Its architecture is captured in Figure 1. Each
Spotify backend site has the same layout of storage
servers, but the number of servers varies. The master
storage component is shared between the sites. When a
user logs in, the client connects to an Access Point (AP)
using a proprietary protocol. Through the AP, the client
can access the backend services including storage. The
client maintains a long-lived TCP connection to the AP,
and requests to backend services are multiplexed over
this connection.

Spotify’s storage is two-tiered. A client request for an
object goes to Production Storage, a collection of servers
that can serve most requests. The protocol between
the AP and Production Storage is HTTP, and in fact,
the Production Storage servers run software based on
the caching Nginx HTTP proxy [2]. The objects are
distributed over the production service machines using
consistent hashing of their respective keys [3]. Each
object is replicated on three different servers, one of
which is identified as the primary server for the object.
APs route a request for an object to its primary server. If
the primary server does not store the requested object,
the server will request it from one of the replicas. If
they do not store it, the request will be forwarded over
the Internet to Master Storage (which is based upon a
third-party storage service) and the retrieved object will
subsequently be cached in Production Storage. When the
primary server of an object fails, an AP routes a request
to one of the replicas instead.

While the presentation here centers on music delivery,
we remark that the storage system delivers additional

Fig. 2. Simplified architecture as a basis for the performance model

data to Spotify clients, in particular images (e.g., cover
art for albums) and advertisements. We also point out
that the number of requests that a client makes to the
backend storage for each track played varies signifi-
cantly, due to local caching and peer-to-peer function-
ality. As a consequence, the request rates presented in
this paper do not correspond to the actual number of
tracks played in the Spotify system.

III. AN ANALYTICAL MODEL OF THE STORAGE
ARCHITECTURE

In order to make a performance analysis feasible,
we develop a simplified model of the Spotify storage
architecture (Figure 1) for a single Spotify backend site,
the result of which is shown in Figure 2. First, we omit
Master Storage in the simplified model and thus assume
that all objects are stored in Production Storage servers,
since more than 99% of the requests to the Spotify
storage system are served from the Production Storage
servers. Second, we model the functionality of all APs
of a site as a single component. We assume that the AP
selects a storage server uniformly at random to forward
an incoming request, which approximates the statistical
behavior of the system under Spotify object allocation
and routing policies. Further, we neglect network delays
between APs and storage servers, because they are small
compared to the response times at the storage servers. In
the following, we analyze the performance of the model
in Figure 2 under steady-state conditions and Poisson
arrivals of requests.

A. Modeling a single storage server

In the context of a storage system, the critical re-
sources of a storage server are memory and disk access,
which is captured in Figure 3. When a request arrives at
a server, it is served from memory with probability q and
from one of the disks with probability 1− q. Assuming
that the server has nd identical disks, the request is
served from a specific disk with probability 1/nd. We
further assume that requests arrive at the server following
a Poisson process with rate λ. (All rates in this paper are
measured in requests/sec.) We model access to memory
or a disk as an M/M/1 queue. We denote the service

118 2012 8th International Conference on Network and Service Management (CNSM 2012)

Fig. 3. Queuing model of critical resources on a server

rate of the memory by μm and that of the disk by μd,
whereby μm � μd holds.

Based on Figure 3, we compute the latency T for a
request on a server, which we also refer to as response
time. (In queuing systems, the term sojourn time is
generally used for T .) The probability that a request
is served below a specific time t is given by Pr(T ≤
t) = qPr(Tm ≤ t) + (1 − q)Pr(Td ≤ t), whereby Tm

and Td are random variables representing the latency
of the request being served from memory or a disk,
respectively. For an M/M/1 queue in steady state with
arrival rate λ, service rate μ, and latency T , the formula
Pr(T ≤ t) = 1− e−μ(1−λ/μ)t holds [4]. Therefore, we
can write

Pr(T ≤ t) = q(1 − e−μm(1−λm/μm)t)

+(1− q)(1 − e−μd(1−λd/μd)t),
whereby λm is the arrival rate to the memory queue and
λd to a disk queue. Typical values in our experiments
are t ≥ 10−3 sec, λm ≤ 103 requests/sec, and μm ≥ 105

requests/sec. We therefore approximate e−μm(1−λm/μm)t

with 0. Further, since λm = qλ and λd = (1 − q)λ/nd

hold, the probability that a request is served under a
particular latency t is given by
Pr(T ≤ t) = q+(1−q)(1−e−μd(1−(1−q)λ/μdnd)t). (1)

B. Modeling a storage cluster

We model a storage cluster as an AP and a set S
of storage servers, as shown in Figure 2. The load to
the cluster is modeled as a Poisson process with rate
λc. When a request arrives at the cluster, it is forwarded
uniformly at random to one of the storage servers. Let
Tc be a random variable representing the latency of a
request for the cluster. We get that Pr(Tc ≤ t) =∑

s∈S
1
|S|Pr(Ts ≤ t), whereby Ts is a random variable

representing the latency of a request for a storage server
s ∈ S.

For a particular server s ∈ S, let μd,s be the service
rate of a disk, nd,s the number of identical disks, and qs
the probability that the request is served from memory.
Let f(t, nd, μd, λ, q) := Pr(T ≤ t) defined in equation
1. Then, the probability that a request to the cluster is
served under a particular latency t is given by

Pr(Tc ≤ t) =
1

|S|

∑
s∈S

f(t, nd,s, μd,s,
λc

|S|
, qs). (2)

The above model does not explicitly account for the
replications of objects. As explained in Section II, the
Spotify storage system replicates each object three times.
The AP routes a request to the primary server of the
object. A different server is only contacted, if the primary
server either fails or does not store the object. Since both
probabilities are small, we consider in our model only
the primary server for an object.

IV. EVALUATION OF THE MODEL ON THE LAB
TESTBED AND THE SPOTIFY OPERATIONAL

ENVIRONMENT

A. Evaluation on the lab testbed

The first part of the evaluation is performed on our the
KTH lab testbed, which comprises some 60 rack-based
servers interconnected by Ethernet switches. We use two
types of servers, which we also refer to as small servers
and large servers (Table I).

1) Single storage server: In this series of experi-
ments, we measure the response times of a single server
as a function of the request rate, and we estimate
the model parameters. This allows us to validate our
analytical model of a single server, as expressed in
equation 1. The requests are generated using a Spotify
request trace, and they follow a Poisson arrival process.
A request retrieves an object, which has an average size
of about 80 KB.

The setup consists of two physical servers, a load
injector and a storage server, as shown in Figure 4 (top).
Both servers have identical hardware; they are either
small or large servers. All servers run Ubuntu 10.04 LTS.
The load injector has installed a customized version of
HTTPerf [5]. It takes as input the Spotify trace, generates
a stream of HTTP requests, and measures the response
times. The storage server runs Nginx [2], an open-source
HTTP server.

Before conducting an experiment, we populate the
disk of the storage server with objects. A small server is
populated with about 280K objects (using 22GB), a large
one with about 4,000K objects (using 350GB). Each run
of an experiment includes a warm-up phase, followed by
a measurement phase. During warm up, the memory is
populated with the objective to achieve the same cache
hit ratio as the server would achieve in steady state, i.e.,
after a long period of operation. The memory of the
small server holds some 12K objects, the memory of
the large server some 750K objects. We use a Spotify
request trace for the warmup, with 30K requests for the
small server and 1,000K requests for the large server.
The measurement runs are performed with a different
Spotify trace than the warmup runs. A measurement run
includes 30K requests for the small server and 100K
requests for the large server.

We perform a series of runs. The runs start at a request
rate of 10 and end at 70, with increments of 5, for the
small server; they start at a rate of 60 and end at 140,

2012 8th International Conference on Network and Service Management (CNSM 2012) 119

Fig. 4. Setup and measurement of request latency for a single server.

with increments of 20, for the large server. The response
time for a request is measured as indicated in Figure
4 (bottom). Figures 6a and 6b show the measurement
results for three selected latencies for the small and large
server, respectively. The vertical axis gives the fraction
of requests that have been served within a particular
latency. The horizontal axis gives the rate of the request
arrival process. All measurement points in a figure that
correspond to the same request rate result from a single
run of an experiment.

The figures further include the model predictions in
forms of solid lines. These predictions come from the
evaluation of equation 1 and an estimation of the model
parameters/confidence limits, which will be discussed in
Section IV-C.

We make three observations regarding the measure-
ment results. First, the fraction of requests that can
be served under a given time decreases as the load
increases. For small delays, the relationship is almost
linear. Second, the model predictions agree well with
the measurements below the confidence limit. In fact,
measurements and models diverge at most 11%. A third
observation can not be made from the figures but from
the measurement data. As expected, the variance of the
response times is small for low requst rates and becomes
larger with increasing rate. For instance, for the small
server, we did not measure any response times above
200 msec under a rate of 30; however, at the rate of 70,
we measured several response times above 1 sec.

2) A cluster of storage servers: In this series of
experiments, we measure the response times of a cluster
of storage servers as a function of the request rate, and
we estimate the model parameters. This allows us to
validate our analytical model of a cluster as expressed
in equation 2. Similar to the single-server experiments,
the requests are generated using a Spotify request trace,
and they follow a Poisson arrival process.

We perform experiments for two clusters: one cluster
with small servers (one load injector, one AP, and five
storage servers) and one with large servers (one load

Small server Specification
Model Dell Power edge 750 1U server
RAM 1GB
CPU Intel(R) Pentium(R) 4 CPU 2.80GHz
Harddisk Single disk 40GB
Network Controller Intel 82547GI Gigabit Ethernet Controller

Large server Specification
Model Dell PowerEdge R715 2U Rack Server
RAM 64GB
CPU two 12-core AMD Opteron(tm) processors
Harddisk Single disk - 500GB
Network Controller Broadcom 5709C Gigabit NICs

TABLE I
SERVERS ON THE KTH TESTBED

Fig. 5. Setup and measurement of request latency for clusters.

injector, one AP, and three storage servers). The testbed
setup can be seen in Figure 5 (top). The software setup of
the load injector and storage servers have been discussed
above. The AP runs a customized version of HAProxy
[6] that forwards a request to a storage server and returns
the response to the load injector.

Before conducting an experiment, we populate the
disks of the storage servers with objects: we allocate
each object uniformly at random to one of the servers.
We then create an allocation table for request routing
that is placed in the AP. This setup leads to a system
whose statistical behavior closely approximates that of
the Spotify storage system. During the warmup phase
for each run, we populate the memory of all storage
servers in the same way as discussed above for a single
server. After the warmup phase, the measurement run is
performed. Driven by a Spotify trace, the load injector
sends a request stream to the AP. Receiving a request
from the load injector, the AP forwards it to a storage
server according to the allocation table. The storage
server processes the request and sends a response to

120 2012 8th International Conference on Network and Service Management (CNSM 2012)

(a) Single small server (b) Single large server

(c) Cluster of small servers (d) Cluster of large servers
Fig. 6. Lab testbed measurements and model predictions

the AP, which forwards it to the load injector. The
response time of each request is measured as shown in
Figure 5 (bottom). Regarding dimensioning, the number
of allocated objects per server is similar to the one in the
experiments discussed above involving single servers.
The same is true regarding the number of objects cached
in memory, the number of requests for a warmup run,
and the number of requests for a measurement run.

For each experimental run, a request stream is gener-
ated at a certain rate, and, for each request, the response
time is measured. The runs start at a request rate of 50
and end at 300, with increments of 50, for the cluster
of small servers; they start at a rate of 180 and end
at 360, with increments of 60, for the cluster of large
servers. Figures 6c and 6d show the measurement results
for three selected latencies for the cluster of small and
large servers, respectively. The figures further include the
model predictions in form of solid lines. The predictions
are obtained from equation 2 and model parameters,
discussed in Section IV-C. Our conclusions from the
experiments on the two clusters are similar to those on
the single servers: the fraction of requests that can be
served under a given time decreases as the load increases.
The relationship is almost linear; the slopes of the curves
decrease slightly with increasing request rate. Further,
the measurements and models diverge at most 9.3%
below the confidence limit.

B. Evaluation on the Spotify operational environment

For this evaluation, we had access to hardware and
direct, anonymized measurements from the Spotify op-
erational environment. The single server evaluation has
been performed on a Spotify storage server, and the

cluster evaluation has been performed with measurement
data from the Stockholm backend site.

1) Single storage server: We benchmark an opera-
tional Spotify server with the same method as discussed
in Section IV-A1. Such a server stores about 7.5M
objects (using 600GB), and a cache after the warm-
up phase contains about 375K objects (using 30GB).
(The actual capacity of the Spotify server is significantly
larger. We only populate 600GB of space, since the
traces for our experiment contains requests for objects
with a total size of 600GB.) For a run of the experiment,
1000K requests are processed during the warm-up phase,
and 300K requests during the measurement phase. The
runs start at a request rate of 100 and end at 1,100, with
increments of 100. Figure 7a shows the measurement
results for three selected latencies for the Spotify oper-
ational server.

The qualitative observations we made for the two
servers on the KTH testbed (Section IV-A1) hold also for
the measurements from the Spotify server. Specifically,
the measurements and model predictions diverge at most
8.45%, for request rates lower than the model confidence
limit.

2) Spotify storage system: For the evaluation, we
use 24 hours of anonymized monitoring data from the
Stockholm site. This site has 31 operational storage
servers. The monitoring data includes, for each storage
server, measurements of the arrival rate and response
time distribution for the requests that have been sent
by the APs. The measurement values are five-minutes
averages. The data includes also measurements from
requests that have been forwarded to the Master Storage,
but as stated in Section III, such requests are rare, below

2012 8th International Conference on Network and Service Management (CNSM 2012) 121

1% of all requests sent to the storage servers.
Some of the servers at the Stockholm site have a

slightly different configuration from the one discussed
above. These differences have been taken in account for
the estimation of model parameters. Figure 7b presents
the measurement results in the same form as those we
obtained from the KTH testbed. It allows us to compare
the performance of the storage system with predictions
from the analytical model. Specifically, it shows mea-
surement results and model predictions for three selected
latencies, starting at a request rate of 1,000 and ending at
12,000, with increments of 1,000. The confidence limit is
outside the measurement interval, which means that we
have confidence that our analytical model is applicable
within the complete range of available measurements.

We make two observations. First, similar to the eval-
uations we performed on the KTH testbed, the measure-
ments and the model predictions diverge at most 9.61%.
This is somewhat surprising, since this operational en-
vironment is much more complex and less controllable
for us than the lab testbed. For instance, for our testbed
measurements, (1) we generate requests with Poisson
arrival characteristics, which only approximates arrivals
in the operational system; (2) on the testbed we use
identical servers, while the production system has some
variations in the server configuration; (3) the testbed
configurations do not consider Master Storage, etc.

Furthermore, the measurements suggested that the
fraction of requests under a specific latency stays almost
constant within the range of request rates measured. In
fact, our model predicts that, the fraction of requests
served within 50 msec stays almost constant until the
confidence limit, at about 22,000 requests/sec. Therefore,
we expect that this site can handle a much higher load
than observed during our measurement period, without
experiencing a significant decrease in performance when
considering the 50 msec response-time limit. A response
time of up to 50 msec provides the user experience that
a selected track starts “instantly”.

C. Estimating model parameters / confidence limit

We determine the model parameters for the single
server, given in equation 1, namely, the service rate
of a disk μd, the number of identical disks nd, and
the probability that a request is served from memory
q. While nd can be read out from the system config-
uration, the other two parameters are obtained through
benchmarking. We first estimate the average service time
Ts of the single disk through running iostat [7] while
the server is in operation (i.e. after the warm-up phase),
and we obtain μd = 1/Ts. We estimate parameter q
as a fraction of requests that have a latency below 1
msec while the server is in operation. Figure 8 shows
the measured values for q, for different server types
and request rates. We observe a significant difference in
parameter q between the testbed servers(small and large
server) and Spotify operational server. We believe that

Parameter Small server Large server Spotify server
μd 93 120 150
nd 1 1 6
α 0.0137 0.00580 0.000501
q0 0.946 1.15 0.815

TABLE II
MODEL PARAMETERS FOR A SINGLE STORAGE SERVER

this is because software and hardware of the operational
server is highly optimized for serving Spotify traffic
while the testbed servers are general-purpose servers and
configured with default options.

Based on the results in Figure 8 and other measure-
ments, we approximate, through least-square regression,
q with the linear function q = −αλ + q0, whereby λ is
the request rate. All model parameters of a single storage
server are summarized in Table II.

We now compute the model confidence limit for the
single server, i.e., the maximum request rate below
which we feel confident that our model (i.e., equation
1) applies. Through extensive testing, we found that our
model predictions are close to the measurements from
the real system, as long as the average length of any
disk queue is at most one. From the behavior of an
M/M/1 queue, we know that the average queue length
for one of the disks is Ld = λd

μd−λd
. Applying the

linear approximation for q and setting Ld = 1, simple
manipulations give the model confidence limit λL for a
single server as the positive root of αλ2

L+(1− q0)λL−
1
2μdnd = 0. The confidence limits in Figures 6a, 6b, and
7a are computed using this method. As can be observed,
increasing request rates beyond the confidence limits
coincides with a growing gap between model predictions
and measurements, specifically for the latency of 50
msec, which is an important value for the Spotify storage
system.

The model parameters for a cluster, appearing in
equation 2, contain the model parameters of each server
in the cluster. Therefore, if the model parameters for each
server are known, then the parameters for the cluster can
be obtained.

We now discuss the model confidence limit for the
cluster, i.e., the maximum request rate to the cluster
below which we have confidence that the model pre-
dictions are close to actual measurements, under the
assumption that we know the confidence limit for each
server. The allocation of objects to primary servers in the
Spotify storage system can be approximated by a process
whereby each object is placed on a server uniformly at
random, weighted by the storage capacity of the server.
Therefore, the number of objects allocated to servers
can vary, even for a cluster with homogeneous servers.
The distribution of the number of objects on servers
can be modeled using the balls-and-bins model [8]. If
the server contains a large number of objects, as in our
system, the expected load on the server is proportional to
the number of objects. To compute the confidence limit
for the cluster, we must know the load of the highest

122 2012 8th International Conference on Network and Service Management (CNSM 2012)

(a) Single Spotify Storage server (b) Cluster of Spotify Storage servers
Fig. 7. Spotify operational environment measurements and model predictions

Fig. 8. Estimating the parameter q

loaded server. A result from the analysis of the balls-
and-bins model states that, when m balls are thrown
independently and uniformly at random into n bins and
m � n · (log n)3 can be assumed, then there is no bin

having more than M = m/n+
√

2m log n
n (1− 1

β
log logn
2 log n)

balls with high probability, for any β > 1 [9]. We
apply this result by interpreting balls as request rates
and bins as servers. By doing so, we obtain the con-
fidence limit λL,c of the cluster as a function of the
minimum λL of the confidence limits of all servers and
the number of servers |S|. We can conclude that the
confidence limit for the cluster is the smaller root of
1
|S|2λ

2
L,c+(2λL

|S| −
2 log |S|Kβ,|S|

|S|)λL,c+λ2
L = 0, whereby

β = 2 and Kβ,|S| = 1 − 1
β

log log |S|
2 log |S| . The confidence

limits in Figures 6c and 6d are computed using this
method. Similar to the case of the single server, the
model predictions can diverge significantly from the
measurements for rates beyond the confidence limits.

V. APPLICATIONS OF THE MODEL

We apply the analytical model to predict, for the
Spotify storage system at the Stockholm site, the fraction
of requests served under given latencies for a load of
12,000 requests/sec, which is the peak load from the
dataset we used. While our evaluation has involved 31
servers, we use the model to estimate response time
for configurations from 12 to 52 storage servers. The
result is shown in Figure 9a. The confidence limit is 17
servers. Above this number, we have confidence that the
model applies. We observe that for each latency curve
in the figure the slope decreases with increasing number
of servers. This means that adding additional servers to

the storage system of, say, 20 servers result in a much
larger reduction of response time than adding servers to
the storage system of, say, 50 servers.

Second, we predict the fraction of requests served
under specific response times for a storage system with
25 servers. We consider a scenario where the load varies
from 1,000 to 20,000 requests/sec. The result is shown in
Figure 9b. The confidence limit is 18,000 below which
our model applies. We observe that the slope of all
curves in the figure is almost zero between 1,000 to
3,000 requests/sec, beyond which it starts decreasing.
We can predict that increasing the load on the storage
system from 1,000 to 3,000 requests/sec does not have
any measurable impact on performance, while we ex-
pect that an increase from 1,000 to 15,000 requests/sec
clearly will. Our model also predicts that, for a response
time limit of 50 msec, the fraction of requests remains
almost unchanged for rates between 1,000 and 18,000
requests/sec.

VI. RELATED WORK

Substantial research has been undertaken in modeling
the performance of storage devices (see, e.g., [10]–[12]).
Our work differs from these, since our modeling work
is on the systems level and thus captures aspects of
an entire system. Several works present performance
models of storage systems [13]–[15]. However, to the
best of our knowledge, none of them discusses and
validates models for predicting the latency distribution
of requests to a real storage system. The authors in [13]
present a performance model for Ursa Minor [16], a
robust distributed storage system. Their model allows
them to predict the average latency of a request, as well
as the capacity of the system. A second performance
model of a storage system is presented in [14]. In this
work, expected latency and throughput metrics can be
predicted for different allocation schemes of virtual disks
to physical storage devices. The authors of [15] discuss
in that paper a performance model for predicting the
average response time of an IO request when multiple
virtual machines are consolidated on a single server.

The development and evaluation of distributed key-
value stores has been an active research area. While

2012 8th International Conference on Network and Service Management (CNSM 2012) 123

(a) Varying the number of servers in the storage system for a load of
12,000 requests/sec

(b) Varying the load in the storage system for 25 storage servers

Fig. 9. Applications of the model to system dimensioning

these systems generally provide more functionality than
the Spotify storage system, to our knowledge, no per-
formance model has yet been developed for any of
them. In contrast to Spotify’s storage system design,
which is hierarchical, many advanced key-value storage
systems in operation today are based on a peer-to-peer
architecture. Among them are Amazon Dynamo [17],
Cassandra [18], and Scalaris [19]. Facebook’s Haystack
storage system follows a different design which is closer
to Spotify’s. Most of these systems use some forms of
consistent hashing to allocate objects to servers. The
differences in the designs of the systems are motivated
by their respective operational requirements, and they
relate to the number of objects to be hosted, the size of
the objects, the rate of update, the number of clients, and
the expected scaling of the load.

VII. DISCUSSION

We make the following contributions with this paper.
First, we introduce an architectural model of a dis-
tributed key-value store that simplifies the architecture
and functionality of the Spotify storage system. We then
present a queuing model that allows us to compute the
response time distribution of the storage system. Further,
we estimate the confidence range for this model, under
the assumption that the system is lightly loaded. Second,
we perform an extensive evaluation of the model, first
on our testbed and later on the Spotify operational
infrastructure. This evaluation shows that the model
predictions are accurate, with the error of at most 11%.

The reported errors result from the fact that we use
a simple model to describe, on an abstract level, the
behavior of a complex distributed system. This sim-
plicity is a virtue insofar as it allows us to predict
metrics like the response time distribution without much
mathematical and computational effort. The downside
is that applicability of the model is restricted to a
lightly loaded system; however, this corresponds to the
operational range of the Spotify storage system (see
further discussion below). To increase the accuracy of
the model, or to extend the range of load patterns for
which it can make predictions, one needs to refine the
system model. Such refinements can include, modeling

the specific software process structure in a server, the
OS scheduling policies, heterogeneous hardware, the
detailed request routing policy in the cluster, as well
as the real arrival process and service discipline of
the queuing model. The difficulty will be to identify
refinements that significantly increase the accuracy of
the model while keeping it simple and tractable.

As it turns out, the confidence range of our model
covers the entire operational range of the load to the
Spotify storage system. As we have validated through
experimentation, the performance of the system deteri-
orates when the load significantly surpass the model-
predicted confidence limit. Lastly, applying our model,
we predict for a specific Spotify backend site that the
system could handle the peak load observed during a
specific day with fewer servers, or, alternatively, that
the system with 25 servers could handle a significantly
higher load than observed, without noticable perfor-
mance degradation (for important response time limit,
which is 50 msec).

This work is important to Spotify, since latency is the
key performance metric of its storage system. The main
reason for this is that estimating latency distributions is
essential to guarantee the quality of the overall service.
Note that recent performance studies on storage systems
cover only expected latencies, which is not sufficient for
our case. The validity of the results in this paper goes
beyond the scope of Spotify’s technology. In fact, our
approach can be applied to similar types of distributed
key-value stores and other services that rely on them,
such as video streaming.

As for future work, we plan to develop a subsys-
tem that continuously estimates the model parameters
at runtime, taking into account that the resources of
the storage servers may be used by other processes
than object retrieval, for instance, for maintainence or
system reconfiguration. Based on such a capability, we
envision an online performance management system for
a distributed key-value store like the Spotify storage
system.

ACKNOWLEDGEMENTS

Viktoria Fodor provided helpful comments and sug-
gestions regarding the queuing model used in this work.

124 2012 8th International Conference on Network and Service Management (CNSM 2012)

REFERENCES

[1] G. Kreitz and F. Niemelä, “Spotify – large scale, low latency,
P2P music-on-demand streaming,” in Peer-to-Peer Computing.
IEEE, 2010, pp. 1–10.

[2] I. Sysoev, “Nginx,” http://nginx.org/.
[3] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.

Levine, and D. Lewin, “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web,” in STOC, F. T. Leighton and P. W. Shor, Eds. ACM,
1997, pp. 654–663.

[4] L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[5] D. Mosberger and T. Jin, “httperf - a tool for measuring web
server performance,” SIGMETRICS Perform. Eval. Rev., vol. 26,
no. 3, pp. 31–37, Dec. 1998.

[6] W. Tarreau, “Haproxy,” http://haproxy.1wt.eu/.
[7] S. Godard, “iostat,” http://linux.die.net/man/1/iostat.
[8] M. Mitzenmacher and E. Upfal, Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, Jan. 2005.

[9] M. Raab and A. Steger, ““Balls into Bins” - A Simple and Tight
Analysis,” in Proceedings of the Second International Workshop
on Randomization and Approximation Techniques in Computer
Science, ser. RANDOM ’98. London, UK: Springer-Verlag,
1998, pp. 159–170.

[10] J. Garcia, L. Prada, J. Fernandez, A. Nunez, and J. Carretero,
“Using black-box modeling techniques for modern disk drives
service time simulation,” in Simulation Symposium, 2008. ANSS
2008. 41st Annual, april 2008, pp. 139 –145.

[11] A. Lebrecht, N. Dingle, and W. Knottenbelt, “A performance
model of zoned disk drives with i/o request reordering,” in
Quantitative Evaluation of Systems, 2009. QEST ’09. Sixth In-
ternational Conference on the, sept. 2009, pp. 97 –106.

[12] F. Cady, Y. Zhuang, and M. Harchol-Balter, “A Stochastic Anal-
ysis of Hard Disk Drives,” International Journal of Stochastic
Analysis, vol. 2011, pp. 1–21, 2011.

[13] E. Thereska, M. Abd-El-Malek, J. Wylie, D. Narayanan, and
G. Ganger, “Informed data distribution selection in a self-
predicting storage system,” in Autonomic Computing, 2006. ICAC
’06. IEEE International Conference on, june 2006, pp. 187 – 198.

[14] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and
M. Uysal, “Pesto: online storage performance management in
virtualized datacenters,” in Proceedings of the 2nd ACM Sym-
posium on Cloud Computing, ser. SOCC ’11. New York, NY,
USA: ACM, 2011, pp. 19:1–19:14.

[15] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kil-
patrick, “Io performance prediction in consolidated virtualized
environments,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, pp.
295–306, Sep. 2011.

[16] M. Abd-El-Malek, W. V. Courtright, II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad,
B. Salmon, R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk,
E. Thereska, M. Wachs, and J. J. Wylie, “Ursa minor: versatile
cluster-based storage,” in Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies - Volume
4, ser. FAST’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 5–5.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: amazon’s highly available key-value store,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[18] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2,
pp. 35–40, Apr. 2010.

[19] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable
transactional p2p key/value store,” in Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, ser. ERLANG ’08. New York,
NY, USA: ACM, 2008, pp. 41–48.

2012 8th International Conference on Network and Service Management (CNSM 2012) 125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

