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Abstract. In this paper, we prove lower bounds for a large class of
Subset Cover schemes (including all existing schemes based on pseudo-
random sequence generators). In particular, we show that
– For small r, bandwidth is Ω(r)
– For some r, bandwidth is Ω(n/ log(s))
– For large r, bandwidth is n − r

where n is the number of users, r is the number of revoked users, and s
is the space required per user.

These bounds are all tight in the sense that they match known con-
structions up to small constants.
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1 Introduction

A Broadcast Encryption scheme is a cryptographic construction allowing a
trusted sender to efficiently and securely broadcast information to a dynamically
changing group of users over an untrusted network. The area is well studied and
there are numerous applications, such as pay-per-view TV, CD/DVD content
protection, and secure group communication. For instance, the new Advanced
Access Content System (AACS) standard, which is used for content protection
with next-generation video disks, employs Broadcast Encryption.

A Broadcast Encryption scheme begins with an initialization phase where
every user is given a set of secrets. Depending on the application, a “user” in the
scheme could be an individual, a subscriber module for a cable TV receiver, or a
model of HD-DVD players. When the initialization is complete, the sender can
transmit messages. For each message it wants to transmit, it selects a subset of
users to receive the message. We will refer to this subset of intended recipients
as members (another common name is the privileged set). It then encrypts and
broadcasts the message, using the secrets of the members, in such a way that
only the members can decrypt the broadcast. Even if all the non-members (or
revoked users) collude, they should not be able to decrypt the broadcast. The
term key revocation scheme is also used for Broadcast Encryption schemes.
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The performance of a Broadcast Encryption scheme is generally measured
in three parameters: bandwidth, space and time. Bandwidth is the size of the
transmission overhead incurred by the scheme, space is the amount of storage
for each user, and time is a measurement of the computation time needed for
users to decrypt a message. In this paper, we will focus on the tradeoff between
bandwidth and space.

In general, Broadcast Encryption schemes work by distributing a fresh mes-
sage key, so that only the current members can recover the message key. The
actual message is then encrypted under the message key and broadcast. This con-
struction means that the bandwidth, i.e., the overhead incurred by the scheme,
does not depend on the sizes of the messages the sender wants to transmit.

The problem of Broadcast Encryption was first described by Berkovits in [5],
and later Fiat and Naor started a more formal study of the subject [7].

There are two naive schemes solving the broadcast encryption problem. In the
first naive scheme, we give each user her own secret key shared with the sender.
With this scheme, the space is 1 and the bandwidth is m, where m the number
of members. In the second naive scheme, we assign a key to every possible subset
of users, and give all users belonging to a subset access to the key for that subset.
In this case the space is 2n−1, where n is the number of users, and the bandwidth
is 1.

In 2001, the Subset Cover framework was introduced by Naor et al. [16],
along with two schemes, Complete Subtree and Subset Difference. In Subset
Cover based schemes, there is a family of subsets of users, where each subset is
associated with a key. When the sender wishes to make a broadcast, she finds
a cover of the members using the subsets and encrypts the message key with
each of the subset keys used in the cover. Both naive schemes can be seen as
Subset Cover schemes; in the scheme with constant space, the family consists
only of singleton subsets, and in the scheme with constant bandwidth, the family
consists of all subsets of users. The Subset Cover principle is very general, and
most published schemes are Subset Cover schemes.

In most Subset Cover schemes, each user is a member of a large number
of subsets, so storing the key for each subset would be expensive in terms of
memory. To solve this, the keys are chosen in such a way that users can compute
the keys they should have using some smaller set of secrets and a key derivation
algorithm. Schemes where keys are unrelated are called information-theoretic.

The most common key derivation algorithm is a straightforward application
of a Pseudo-Random Sequence Generator (PRSG). The first protocol of this
type was Subset Difference which has a bandwidth of min(2r − 1, n − r) with
a user space s = O

(
log2 n

)
where r is the number of revoked users. Many

more schemes [11,4,10,13,12] have been proposed using the same kind of key
derivation. They all have a bandwidth of O(r), the same as Subset Difference,
and their improvements lie in that some of them have a space of O(log n), some
offer increased flexibility, and some improve the bandwidth to c · r for c < 1 (as
opposed to c = 2 in the original scheme).
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Other forms of key derivation, such as RSA accumulators [2,3,8] and bilinear
pairings [6], have also been studied for Subset Cover based broadcast encryption.

There have been attempts to reduce bandwidth by modifying the problem,
for instance by allowing some free-riders (non-members who can still decrypt
the broadcast) [1] or relaxing the security requirements [14].

There has been some analysis of lower bounds for Broadcast Encryption

schemes. In 1998 Luby and Staddon [15] showed s ≥
(

(n
r)

1/b

b − 1
)

/r for Broad-

cast Encryption without key derivation, using the Sunflower lemma. This bound
was sharpened in 2006 by Gentry et al. [9] to s ≥ (

(
n
r

)1/b − 1)/r. We remark
that schemes using key derivation beat these bounds.

1.1 Our Contribution

Table 1. Upper and lower bounds for Subset Cover schemes

Key derivation Lower bound Assumption Upper bound Space
None r log(n/r)

log(rs) — r log(n/r) s = O(log n)
PRSG, small r Ω(r) (our) s ≤ poly(n) O(r) s = O(log n)
PRSG, worst r Ω

�
n

log s

�
(our) — O

�
n

log s

�
—

PRSG, large r n − r (our) r ≥ n − n
6s

n − r s = O(1)

We present lower bounds for a large class of Subset Cover schemes, including
existing schemes based on PRSGs. These lower bounds match known construc-
tions up to a small constant, showing that current PRSG-based schemes are
essentially optimal. Table 1 gives a summary of our results.

Our bounds on the bandwidth usage are strong, and show that the early Sub-
set Difference scheme is in fact very close to being optimal. For instance, our
bound for small r shows that improving the bandwidth to o(r) would require
super-polynomial space, which is unreasonable. In fact, depending on the appli-
cation, space is generally considered reasonable if it is at most logarithmic (or
possibly polylogarithmic) in n.

Our second result implies that, in order to get constant bandwidth b, the
space required is exponential. It also implies that, using polylogarithmic space,
the worst case bandwidth will be almost linear, n/ log log n.

The third result says that, for a small number of members, the first naive
scheme is optimal. With polylogarithmic amount of space, this holds even if the
number of members is almost linear, n/ poly log n.

Also, in most current schemes, the decryption time for members is limited
to be polylogarithmic in n. Our proofs do not make use of any such restric-
tions, so allowing longer decryption time than current schemes cannot lower the
bandwidth requirements.
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1.2 Organization of This Paper

In Section 2 we discuss the structure of Subset Cover based Broadcast Encryp-
tion schemes and define the class of schemes, Unique Predecessor schemes, for
which we prove lower bounds. In Section 3 we give a proof showing that with
polynomial memory in clients, the bandwidth consumption is Ω(r) for “small”
r. In Section 4, we prove a bound for generic r, and in particular show that
for r ≈ n

e , the bandwidth is at least n
1.89 log s . Section 5 shows that for a large

number of revoked users, the worst case bandwidth is n − r, i.e., the same as for
the naive scheme where every user has a single key.

2 Preliminiaries

In this section, we review some preliminaries. The concepts of Broadcast Encryp-
tion and Subset Cover schemes are described, and notation will be introduced.
We also define a class of Broadcast Encryption schemes called Unique Predeces-
sor (UP) schemes to which our lower bounds apply.

2.1 Broadcast Encryption

In Broadcast Encryption, we have a trusted sender, and a set of users. After
some initialization, the sender can securely broadcast messages to some subset
of the users in a way which is efficient for both the sender and users. We will
refer to the users who are targeted by a broadcast as members and the users who
are not as revoked users. As the name Broadcast Encryption implies, we assume
there is a single broadcast medium, so all users see the messages transmitted by
the sender.

When evaluating the efficiency, three parameters are measured: bandwidth,
space, and time (for decryption). Most Broadcast Encryption schemes transmit
encrypted keys, so we will measure the bandwidth in terms of the number of
encrypted keys to be transmitted. The sender uses the broadcast encryption to
distribute a message key Km and then encrypts the actual message under Km,
so the bandwidth overhead incurred does not depend on the size of the actual
message.

The bandwidth required for a scheme with n users out of which r are revoked
can, and generally will, vary, depending on which r users are revoked. We define
the bandwidth b = f(n, r) of the Subset Cover scheme as being that of the
maximum bandwidth over the choice of the set of revoked users R ⊆ [n] such
that |R| = r. Thus, when we say that the bandwidth is at least c1r for r ≤ nc2 ,
we mean that for every such r, there is at least one choice of r revoked users
which requires bandwidth at least c1r.

Similarly, we measure the space as the number of keys, seeds, or other secrets
that a user must store to be able to correctly decrypt transmissions she should
be able to decrypt. It need not be the case that all users have to store the same
amount of secrets, so we let the space of a scheme be the size of the largest
amount of secrets any one user must store.
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We remark that, in general, the keys and secrets may vary in length, so that
our convention of simply counting the number of keys may not measure the
exact bandwidth or space. However, such differences are generally small and not
taking them into account costs us at most a small constant factor.

In this paper, we will not concern ourselves with the computational time of the
clients. Our only assumption will be the very natural (and necessary) assumption
that users cannot derive keys which they should not have access to.

Broadcast Encryption schemes can be classified as either stateful or stateless.
In a stateful scheme, a transmission from the sender may update the set of secrets
a user uses to decrypt future broadcasts, whereas in the stateless case, the secrets
are given to the user at initialization and then remain constant. We focus on the
largest family of Broadcast Encryption schemes, Subset Cover schemes, and such
schemes are stateless.

2.2 Notation

Throughout the paper, we will use the following notation. We let n denote the
total number of users, and identify the set of users with [n] = {1, . . . , n}. We
let m denote the number of members and r the number of revoked users (so
n = r + m). The space of a scheme is denoted by s and the bandwidth by b.
Note that we are generally interested in the bandwidth as a function of r (or
equivalently, of m).

2.3 Subset Cover Schemes

1 2

1, 2 1, 4

3

2, 3

4

3, 4

1, 2, 3 1, 3, 4

(a) Example of a Subset Cover
scheme

1

1, 2 1, 4

2

2, 3

3 4

3, 4

1, 2, 3, 4

(b) Example of a Subset Cover
scheme S with indegree 1

Fig. 1. Illustration of Subset Cover schemes

In this paper, we consider a family of Broadcast Encryption schemes known as
Subset Cover schemes, introduced in [16]. In a Subset Cover scheme, the sender
starts by creating a family of subsets of users. Each such subset is associated
with a key. To make an encrypted broadcast, the sender first computes a cover
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of the current members. A cover is a choice of subsets from the family, so that
all members belong to at least one chosen subset, and no revoked user belong to
any chosen subset. The message broadcasted will then contain, for each subset
in the cover, the message key encrypted under that subset’s key.

Without key derivation, each user would have to store the key for each subset
of which she is a member. However, when using key derivation, keys of subsets
are related in a way that allows a user to derive keys of subsets by applying a
suitable function, typically a one way function, to her set of secrets. Thus the
space decreases, as one secret can be used to derive multiple keys.

Example 1. Figure 1(a) shows an example of a Subset Cover scheme on n = 4
users. In the example, the family of subsets consists of all four singleton subsets,
four subsets of size 2, and two subsets of size 3. An edge from Si to Sj indicates
that the secrets used to derive the key for Si can also be used to derive the key
for Sj . Thus, the secret used by user 2 to derive the key for her singleton set
{2} can also be used to derive the keys for nodes {1, 2}, {2, 3}, and {1, 2, 3}.
Without key derivation, she would have had to store four keys, but now she only
needs to store one secret.

More formally, a Subset Cover scheme consists of a family of subsets F = {S} ⊆
2[n] with the property that for every selection of members M ⊆ [n] there is a
cover T ⊆ F such that ∪S∈T S = M . There is a set of “secrets” K, and each
user i ∈ [n] is given a subset P (i) of these secrets. Additionally, there is, for
each S ∈ F , a set K(S) ⊆ K of secrets and a secret key k(S), with the following
properties:

– Any user with access to a secret in K(S) can compute k(S).
– For every S ∈ F and user i ∈ [n], P (i) ∩ K(S) 	= ∅ if and only if i ∈ S.
– An adversary with access to all secrets in K\K(S) cannot compute k(S)

To send a message key to the set M ⊆ [n] of members, the cover T ⊆ F of
subsets is chosen in such a way that ∪S∈T S = M . The server then broadcasts
the message key encrypted using k(S) for each S ∈ T . The bandwidth required
for this is |T |. We remark that a Subset Cover scheme is required to be able to
cover any member set M ⊆ [n].

Naturally, a Subset Cover scheme should also include efficient ways of comput-
ing k(S) and the cover T , but as we are interested in lower bounds on the tradeoff
between space and bandwidth, these computational issues are not relevant to us.

We denote by B(F) the partially ordered set on the elements of F in which
S1 ≤ S2 if K(S1) ⊆ K(S2), i.e., if any secret that can be used to deduce k(S1)
can also be used to deduce k(S2). Note that S1 ≤ S2 implies S1 ⊆ S2 (since any
user u ∈ S1 will be able to compute k(S2) and thus has to be an element of S2).
From now on, we will ignore the set of secrets and the keys, and only study the
poset B(F), since it captures all information that we need for our lower bounds.
In Figure 1 we show Hasse diagrams of B(F) for two toy example Subset Cover
schemes.
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The number of secrets a user u needs to store, i.e., the space s, is precisely
the number of elements S of B(F) such that u occurs in S, but not in any of
the predecessors of S.

Lemma 1. Any Subset Cover scheme will have at least one singleton node for
each user.

Proof. If there is a user which does not occur in a singleton node, the Broadcast
Encryption scheme would fail when the sender attempts to broadcast only to
that user. ��

2.4 Key Derivation Based on a PRSG

The most common type of key derivation uses a Pseudo-Random Sequence Gen-
erator (PRSG), or equivalently, a family of hash functions. This type of key
derivation was first used in the context of Broadcast Encryption in the Subset
Difference scheme [16]. In [4] it is called Sequential Key Derivation Pattern. The
key derivation described here is the intuitive way to do key derivation using a
PRSG, and all Subset Cover schemes that the authors are aware of that use a
PRSG (or a family of hash functions) do have this form of key derivation.

Let � be a security parameter and let H(x) be a pseudo-random sequence
generator taking as seed a string x of length �. Let H0(x) denote the first � bits
of output when running H(x), let H1(x) denote the next � bits, and so on.

Each subset S in the scheme will be assigned a seed p(S) and a key k(S). The
key k(S) will be computed as k(S) = H0(p(S)), so from the seed for a subset,
one can always compute the key for that subset. All secrets given to users will
be seeds, no user is ever given a key directly. The reason for this is that it gives
an almost immediate proof of the security of the scheme by giving the keys the
property of key indistinguishability, which was proved in [16] to be sufficient for
the scheme to be secure in a model also defined in [16].

Consider an edge e = (Si, Sj) in the Hasse diagram of B(F). The edge means
that someone with access to the secrets to deduce k(Si), i.e. p(Si) should also
be able to deduce p(Sj). If we let p(Sj) = Hc(p(Si)) for some c ≥ 1, anyone
with p(Si) can derive p(Sj). For a node Si with edges to Sj1 , Sj2 , . . . , Sjk

we let
p(Sj1) = H1(p(Si)), p(Sj2) = H2(p(Si)), . . . p(Sjk

) = Hk(p(Si)).
This construction cannot support nodes with indegree greater than 1, since

that would require p(Sj) = Hc1(p(Si1 )) = Hc2(p(Si2)), which, in general, we
cannot hope to achieve. This means that the Hasse diagram will be a forest,
since all nodes have an indegree of either 0 or 1.

2.5 UP-Schemes

When the Hasse diagram of B(F) is a forest, we say that the Subset Cover scheme
is a Unique Predecessor scheme (UP-scheme). Schemes using key derivation as
described in Subsection 2.4 will always be UP-schemes. Schemes not using any
key derivation (there are no edges in B(F)) are also UP-schemes, this class of
schemes is sometimes referred to as information-theoretic.
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Example 2. The scheme in Figure 1(a) is not a UP-scheme, since there are several
sets which have multiple incoming edges, for instance the set {1, 2}. However,
the scheme S in Figure 1(b) is a UP-scheme. In this case, user 1 would have to
store two secrets, one for her singleton node, and one for the node {1, 2, 3, 4}.
The keys for nodes {1, 2} and {1, 4} can be derived from the same secret used
to derive the key for her singleton node.

We view a UP-scheme as a rooted forest S, in which each node V ⊆ [n] is labelled
with the set of users which are in V , but are not in the parent node. The number
of node labels in which a user occurs is the same as the number of secrets that
a user will need to store. Thus, when we say that a scheme S has space s we
mean that every user can be used in a label at most s times.

Lemma 2. Any Unique Predecessor scheme will have at most ns distinct subsets.

Proof. Adding a new node to a Unique Predecessor scheme means increasing the
space for at least one member. Starting from an “empty” scheme, this can be
done at most ns times. ��

2.6 Normalized UP-Schemes

To simplify the proofs, we will work with normalized UP-schemes. We will show
that we can perform a simple normalization of a UP-scheme which gives a
new scheme with the same set of users, no more space, and at most the same
bandwidth. This normalization is similar to the construction of the Flexible SD
scheme in [4].

1 2

2 4

3 4

2 3

1

4

(a) Normalization S ′ of the UP-
scheme S in Figure 1(b)

1

4

3 4

3

(b) The subscheme S ′({1, 3, 4})

Fig. 2. Normalization of UP-schemes

Definition 1. A UP-scheme S is normalized when every node of S is labelled
with exactly one user and S has exactly n trees.
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Example 3. The scheme S from Figure 1(b) is a UP-scheme, but it is not normal-
ized. Two nodes violate the normalization criteria. First, the key for {1, 2, 3, 4}
can be directly derived from the secrets used for {2, 3}, which adds two new
users at the same time. Second, the node {2, 3} also adds two users at once. In
Figure 2(a) shows a normalized scheme S′ which is essentially equivalent with
S. The key for {2, 3} can now be derived from the secret for {3}, and an extra
node {1, 2, 3} was inserted between {2, 3} and {1, 2, 3, 4}.

Lemma 3. Let S be an arbitrary UP-scheme (on n users) with space s and
bandwidth b. Then there exists a normalized UP-scheme S′ (on n users) with
space s′ ≤ s and bandwidth b′ ≤ b.

Proof. The proof consists of two steps. First we ensure that each node is labelled
with exactly one user. Second, we merge identical nodes, which will ensure that
S′ has exactly n trees.

Consider a node labelled with a set U = {u1, . . . , uk} of users with k > 1. Now,
split this node into a chain of k nodes, adding one user at a time (in arbitrary
order) rather than all k at once. Call the resulting forest S0. Note that, strictly
speaking, it is possible that S0 is not a UP-scheme as we have defined it, since
there may be several nodes representing the same subset S of users. However, it
still makes sense to speak of the space and bandwidth of S0, and we note that
the space of S0 is the same as that of S, as each user occurs in the same number
of labels in both. Furthermore, the bandwidth of S0 is no more than that of S,
since all subsets of users present in S are also present in S0, and thus, any cover
in S is also valid in S0.

Next, we describe how to merge nodes representing the same set S ⊆ [n].
Given two such nodes v1 and v2, attach the children of v2 as children to v1,
and remove v2 from the scheme. Note that this operation does not change the
bandwidth of the scheme, since only a single node is removed, and this node
represents a subset which is still present in the resulting scheme. Also, the space
for the resulting scheme will be no larger than the space for the original scheme.
The user which was the label for v2 will now need to store one secret less, whereas
the space will be the same for all other users. Let S′ be the result of applying
this merging until every set is represented by at most one node.

It remains to show that S′ has exactly n trees. By Lemma 1, there must be at
least n trees in S′. Because of the first step every root of a tree will represent a
singleton set, and because of the second step every singleton set can be present
at most once, implying that there are at most n trees. ��

We will, without loss of generality, from now on assume UP-schemes we deal
with are normalized. See Figure 2(a) for an example of a normalized UP-scheme.
We would like to remark that while normalization can only improve bandwidth
and space, it does so at the cost of time. Thus, when applied to improve the
performance of practical schemes, one has to take into account the computation
time of users, as discussed in [4].

We remark that, in general, normalization will introduce key derivation, even
if the original UP-scheme had completely independent keys.
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Definition 2. Given a UP-scheme S and a set X ⊆ [n] of users, the subscheme
of S induced by X, denoted S(X), is defined as follows: for every user y 	∈ X,
we remove all nodes of S labelled with y, and their subtrees.

In other words, S(X) contains the nodes (and thus subsets) which are still usable
when [n] \ X have been revoked. See Figure 2(b) for an example.

3 Few Revoked Users

We prove that when the number of revoked users r is small, any UP-scheme
using at most polynomial space will require bandwidth Ω(r).

As noted in the introduction, the requirement that the space is polynomial
is very generous. Anything beyond polylogarithmic space per user is generally
considered impractical.

Theorem 1. Let c ≥ 0 and 0 ≤ δ < 1. Then, any UP-scheme with n users and
space s ≤ nc will, when the number of revoked users r ≤ nδ, require bandwidth

b ≥ 1 − δ

c + 1
· r (1)

Proof. Let S be an arbitrary UP-scheme with s ≤ nc and let r ≤ nδ. An upper
bound on the number t of sets of users that can be handled using bandwidth
at most b is given by the number of sets of nodes of S of cardinality at most b.
Since S contains at most ns nodes, this is upper-bounded by

b∑

i=1

(
ns

i

)
≤ (ns)b ≤ n(c+1)b (2)

In order for S to be able to handle every set of revoked users of size r, we
need t to be at least

(
n
r

)
, giving

n(c+1)b ≥
(

n

r

)
≥ (n/r)r ≥ n(1−δ)r (3)

and the theorem follows. ��

Theorem 1 comes very close to matching many of the previous works, for instance
Subset Difference [16] with s = O

(
log2 n

)
and b = min(2r−1, n−r). For r ≤

√
n,

our bound gives b ≥ r
2(1+c) which is within a factor 4 + o(1).

As mentioned in the introduction, [9] has shown a stronger bound, roughly
r log(n/r)

log(rs) , using the Sunflower lemma. However, their bound applies only to Sub-
set Cover schemes without key derivation, and is in fact stronger than existing
schemes using key derivation – e.g. the Subset Difference scheme mentioned
above for r < n1/3.
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4 Arbitrarily Many Revoked Users

In this section we show that, for a certain choice of r, any UP-scheme has to
use bandwidth at least n

1.89 log s . We start with Theorem 2, which gives a lower
bound on the bandwidth as a function of m/n. Plugging in a suitable value of
m/n in Corollary 1 will then give the desired result.

Theorem 2. Let δ ∈ (0, 1] and ε > 0. Then for every UP-scheme S with n >
2δ(1−δ)

ε2 there exists a set of users M of size δ−3ε ≤ |M |/n ≤ δ+ε which requires
bandwidth b ≥ |M | log(1/δ)

log(s/ε)

Proof. Pick M0 ⊆ [n] randomly where every element is chosen with probability
δ, independently.

Set d = logδ(ε/s) and let X be the set of users which occur at depth exactly
d in S(M0) (where the roots are considered to be at depth 1). Let M = M0 \ X .
Since each node can cover at most d users of M , the bandwidth required for M
is at least

|M |
d

= |M | log(1/δ)
log(s/ε)

It remains to show that there is a positive probability (over the random choice
of M0) that M ends up having the required size, as this implies that such an M
exists.

The probability that a node at depth d of S remains in S(M0) is δd = ε/s.
The total number of nodes at depth d in S is upper-bounded by ns, and thus,
the expected number of nodes at depth d in S(M0), i.e. the expected size of X ,
is at most δdns = εn. By Chebyshev’s inequality, we have Pr

[∣∣
∣ |M0|

n − δ
∣
∣
∣ ≥ ε

]
≤

δ(1−δ)
nε2 < 1/2. By Markov’s inequality, we have Pr

[
|X|
n ≥ 2ε

]
≤ 1/2. The union

bound then gives that Pr[δ − 3ε ≤ |M |/n ≤ δ + ε] > 0. Thus, there exists some
choice of M0 such that |M | falls within this range. ��

As a corollary, we have:

Corollary 1. For any ε > 0 there exist n0 and s0 such that any UP-scheme S
with n ≥ n0 and s ≥ s0 uses bandwidth at least

n

(e ln(2) + ε) log2(s)
≈ n

1.89 log2(s)
(4)

Proof. Let δ = 1/e. Invoking Theorem 2 with parameters δ and ε′ (the value of
which will be addressed momentarily), we get a set M of size at least (δ − 3ε′)n
requiring bandwidth at least

n
δ − 3ε′

ln(s/ε′)
= n

1 − 3eε′

e ln(2) log2(s) + e ln(1/ε′)
(5)

Pick ε′ small enough so that

e ln(2)
1 − 3eε′

≤ e ln(2) + ε/2.
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Then Equation (5) is lower-bounded by Equation (4) for any s satisfying

e ln(1/ε′)
1 − 3eε′

≤ ε

2
log2(s)

log2(s) ≥ 2e ln(1/ε′)
ε(1 − 3eε′)

,

and we are done. ��

We remark that Corollary 1 is tight up to the small constant 1.89, as seen by
the following theorem.

Theorem 3. There exists a UP-scheme S using bandwidth at most
⌈

n
log2(s)

⌉
.

Proof. Partition the users into �n/ log2(s)� blocks of size ≤ log2(s). Then, in
each block, use the naive scheme with exponential space and bandwidth 1, in-
dependently of the other blocks. ��

5 Bandwidth is n − r for Large r

We show that when the number of revoked users gets very large, all UP-schemes
will have a bandwith of n−r, e.g. one encryption per member. Exactly how large
r has to be for this bound to apply depends on s. This is the same bandwidth
as is achieved by the naive solution of just giving each user her own private key.

Theorem 4. For any UP-scheme S and m ≤ n
6s , there is a member set M of

size |M | = m requiring bandwidth b = |M |.

Proof. We will build a sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mm of sets of members
with the properties that |Mi| = i, and that the bandwidth required for Mi is i.

The initial set M0 is the empty set. To construct Mi+1 from Mi, we pick a
user u 	∈ Mi satisfying:

– There is no v ∈ Mi such that some node labelled with u occurs as the parent
of some node labelled with v

– There is no v ∈ Mi such that the root node labelled with v occurs as the
parent of some node labelled with u

– The root node labelled u has outdegree ≤ 2s

We then set Mi+1 = Mi ∪ {u}. Clearly |Mi| = i, so there are two claims which
remain to be proved. First, that the required bandwidth of Mi is i. Second, that
the process can be repeated at least m times.

To compute the bandwidth of Mi, we prove that the only way to cover Mi is
to pick the singleton sets of every u ∈ Mi. To see this, assume for contradiction
that there exists some set S with |S| > 1 that can be used when constructing a
cover. This corresponds to a node x at depth |S| of some tree, and S is given by
the labels of all nodes from x up to the root. In order for us to be able to use
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S when constructing a cover, all these nodes need to belong to Mi. However,
the first two criterions in the selection of u above guarantee that not all of these
nodes can belong to Mi. The first criterion states that, once we have added a
node, we can never add its parent. The second criterion states that, once we
have added a root, we can never add any of its children. This shows that there
can be no such S.

To see how many steps the process can be repeated, let ri be the total number
of nodes which are “disqualified” after having constructed Mi. Then, Mi+1 can
be constructed if and only if ri < n. First, r0 equals the number of roots which
have degree > 2s. Since the total number of nodes is at most ns, this number
is at most r0 ≤ n/2. When going from Mi to Mi+1, the total number of new
disqualified nodes can be at most 3s – the node added, the parents of the at
most s − 1 non-root occurrences of u, and the at most 2s children of the root
labelled with u. Thus, we have that ri ≤ n/2+3si, which is less then n if i < n

6s .
��

The lower bound of Theorem 4 is tight up to a small constant in the following
sense.

Theorem 5. There exists a UP-scheme S such that for any set M of |M | >
⌈

n
s

⌉

members, the bandwidth is b < |M |.

Proof. Partition the set of users into B =
⌈

n
s

⌉
blocks of size ≤ s, and let each

user share a key with each of the s − 1 other users in her block. Then, given a
set M of size |M | > B, there must be two users i, j ∈ M belonging to the same
block. Using the key shared by i and j to cover both them both, we see that the
bandwidth of M is at most b ≤ |M | − 1. ��

6 Conclusion

In this paper, we have shown lower bounds for a large class of Subset Cover
based Broadcast Encryption schemes. This type of scheme is probably the most
explored class of schemes today, with many constructions. Our proofs are in a
model with very relaxed constraints compared to what is considered practical, so
it would not help to simply relax requirements slightly (e.g. allowing more space
or time). The lower bounds shown in this paper match known constructions very
well.

In particular, our bounds show that it will be impossible to get a bandwidth of
o(r) without increasing the space requirements to unreasonable levels or using
some new form of key derivation. We do not have any lower bounds on the
memory needed for O(r) bandwidth, an open question is thus if it is possible to
get O(r) bandwidth with space o(log n).
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