
The Hidden Pub/Sub of Spotify (Industry Article)

Vinay Setty
University of Oslo, Norway

vinay@ifi.uio.no

Gunnar Kreitz
Spotify and KTH – Royal
Institute of Technology,

Stockholm, Sweden
gkreitz@kth.se

Roman Vitenberg
University of Oslo, Norway

romanvi@ifi.uio.no

Maarten van Steen
VU University and The

Network Institute
Amsterdam, The Netherlands

steen@cs.vu.nl

Guido Urdaneta
Spotify, Stockholm, Sweden

guidou@spotify.com

Staffan Gimåker
Spotify, Stockholm, Sweden

staffan@spotify.com

ABSTRACT
Spotify is a peer-assisted music streaming service that has
gained worldwide popularity. Apart from providing instant
access to over 20 million music tracks, Spotify also enhances
its users’ music experience by providing various features for
social interaction. These are realized by a system using the
widely-adopted pub/sub paradigm. In this paper we pro-
vide an interesting case study of a hybrid pub/sub system
designed for real-time as well as offline notifications for Spo-
tify users. We firstly describe a multitude of use cases where
pub/sub is applied. Secondly, we study the design of its
pub/sub system used for matching, disseminating and per-
sisting billions of publications every day. Finally, we study
pub/sub traffic collected from the production system, derive
characterizations of the pub/sub workload, and show some
interesting findings and trends.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications

Keywords
Pub/Sub Systems,Event Notifications,Workload Analysis

1. INTRODUCTION
Spotify is a successful peer-assisted music-streaming ser-

vice that provides access to over 20 million tracks to its users
residing in 20 countries. The technical architecture provid-
ing the streaming service and user behavior of Spotify have
been described in two recent studies [1, 2]. However, little
has been said about the technical details of one of Spotify ’s
most engaging features: its ability to facilitate sharing and
following of various music activities among its users in real
time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

In this paper, we explain how the architecture allows the
users to follow playlists, artists, and the music activities of
their friends. The distinctive feature of the architecture is
that this entire range of social interaction is supported by
pub/sub, a popular communication paradigm that provides
a loosely coupled form of interaction among a large num-
ber of publishing data sources and subscribing data sinks
[3]. Thus, this paper adds a new unique application to a
currently known list of large-scale systems that report bene-
fits from using pub/sub, which includes application integra-
tion [4], financial data dissemination [5], RSS feed distri-
bution and filtering [6], and business process management
[7].

The end-to-end architecture of the pub/sub engine at Spo-
tify is the main focus of our study. The subscriptions are
topic-based. The engine is hybrid: It allows relaying events
to online users in real time as well as storing and forwarding
selected events to offline users who come online at a later
point. The architecture includes a DHT-based overlay that
currently spans three sites in Sweden, UK, and USA. The
architecture is designed to scale: It stores approximately 600
million subscriptions at any given time and matches billions
of publication events every day under its current deploy-
ment.

We study the performance of the system based on re-
cently recorded traces. The objective of the study is twofold:
First, we characterize the workload of the pub/sub system
in terms of event publication rates, topic popularity, sub-
scription sizes, subscription cardinality, and temporal sub-
scription/unsubscription patterns. Unfortunately, there ex-
ist precious few characterizations of subscriptions and syn-
thetic workload generators for pub/sub systems [8]. In view
of this shortage, the value of our characterization is that it
can be used towards corroborating the validity of synthetic
workloads as well as their generation. One particularly sur-
prising finding that we explain in the paper is that the event
publication rate for a topic is not correlated with the topic
popularity.

The second goal of the study is to analyze the message
traffic produced by the pub/sub system and derive trends
and patterns. In particular, we show that the traffic due to
the activity of following friends dominates the total traffic
of social interactions.

Friend Feed,
Playlist Updates

In-client
 Notifications

Figure 1: Spotify Desktop Client Snapshot
Figure 2: Push Noti-
fication

2. SPOTIFY PUB/SUB MODEL AND FEA-
TURES

Spotify pub/sub follows the well-known topic-based
pub/sub model. Users can subscribe (or follow) topics, which
can be any of the following types:

Friends: Spotify allows its users to integrate with their
Facebook account, and, once this integration is done,
by default all Facebook friends who are also Spotify
users become topics that can be followed. A Spo-
tify user can also follow another Spotify user even if
they have not integrated their Facebook account by
finding each other by sharing music or Playlists.

Playlists: Playlists (collections of music tracks) in the
Spotify system have URIs, allowing users to subscribe
to playlists created by others. Additionally, a user
can search for publicly available user-created Playlists
within the Spotify client. Subscribing to a Playlist al-
lows users to receive future updates to the Playlist. By
default, a Playlist can only be modified by its creator,
but a Playlist can also be marked as “collaborative”,
making it world writable.

Artist pages: Spotify has dedicated pages for each artist
and allows users to follow them. This allows users
to get notifications about new album releases or news
related to the artist.

Any user can become a subscriber of the topics of the
types mentioned above. A subscription is generally a pair of
strings, the username of the subscriber and the topic name.
The following are the publication events related to the above
mentioned topic types:

Friend feed: When a user plays a music track, creates or
modifies a Playlist, or marks an artist or a track or an
album as favorite, an event notification is sent to all
the friends following the user. Optionally, these events
can also be published on the associated Facebook wall
of the user. The friend feed can be seen at the bottom-
right pane of the desktop client as shown in Figure 1.

Playlist updates: Whenever a Playlist is modified by
adding or removing a track or renaming the Playlist,
the subscribers of the Playlist are notified about the
update via friend feed. The pub/sub system is also
responsible for instantly synchronizing the Playlist in-
formation across all the devices of all the subscribers
of the Playlist.

Artist pages: Whenever a new album related to an artist
is added in Spotify and whenever a playlist is created
by an artist a notification is sent to all the followers of
that artist.

It is worth mentioning that all of the publication events
mentioned above are delivered to subscribers in real-time
(best-effort as well as guaranteed delivery) when the user is
online, some of them can also be delivered as offline notifi-
cation via Email, and they can be retrieved by the user in
the future. For example, when a new album is added for a
famous artist with millions or followers, (a) an instant noti-
fication event is sent to the Spotify client software used by
all the followers of the artist who are currently online, (b)
an email notification is sent to the offline followers, and (c)
the event is also persisted so that current and future follow-
ers can retrieve the historical events related to the artist in
the future. The persistence of the update is also essential to
support multiple devices of the same user i.e. a user logged
into one device may want to retrieve the notification on a
different device at a later point in time.

3. ARCHITECTURE FOR SUPPORTING
SOCIAL INTERACTION

In this section we describe the technical architecture of the
system that facilitates the social interaction between users
based on the popular pub/sub communication paradigm.
The pub/sub system at one end consists of publishers gener-
ating publication events and at the other end consists of sub-
scribers, which are essentially Spotify clients. The pub/sub
system is hosted across several data-centers (referred to as
sites within Spotify). There are currently three sites: Stock-
holm - Sweden, London - UK and Ashburn - USA. These
sites are not limited to hosting the pub/sub system, their

Access	 Points

Pub/Sub Engine No,fica,on	 Service

Playlist	 Service

Presence	 Service

Social	 Service

Rule	 Engine

Cassandra	
Cluster

Subscrip,on	 data
Publica,on	 events

Client Client...

Ar,st	 Monitoring	
Service

events

no,fica,ons

,mestamps

Publishers

Subscribers

Notification Module

External
Database

Internet

Spo$fy	 Backend

Pull	 Request

Figure 3: Architecture Supporting Social Interaction

main purpose is to host the music streaming service and all
the back-end services necessary for Spotify to function.

3.1 Architecture Overview
A high-level architecture consisting of subscribers, pub-

lishers, and two core components, the Pub/Sub Engine and
the Notification Module, that are essential for enabling the
social interaction between users is shown in Figure 3. The
two core components are crucial for supporting
high-performance real-time event delivery and reliable offline
notifications in a resource-efficient manner.

Whenever designing a system for delivering publication
events, the architects have to address a fundamental trade-
off between latency and reliability. In order to address this
trade-off the system supports three essential event flow paths.

Real time to online clients: The real-time delivery of
events is done by Pub/Sub Engine. However, Pub/Sub
Engine is light-weight i.e. it does not make the incom-
ing events persistent, also there are no acknowledg-
ments in place to detect failures, which results in a
best-effort delivery of publication events without any
guarantees but with low latency. Notice that in Fig-
ure 3 the Pub/Sub Engine directly receives input from
three different sources: the Presence service, the
Playlist service, and the Notification Module. Output
is delivered to the subscribers via Access Points.

Persisted to online clients: The motivation for hav-
ing this event-flow path for the delivery of publication
events is purely based on the application requirement.
The requirement is that some publication events like
an album release or a Facebook friend joining Spo-
tify are classified as critical for the users, and these
critical publications must be delivered reliably, and at
least once across all devices. This event flow path is
realized by Notification Module by storing the incom-
ing publication events in the Cassandra cluster [9] for

reliable and offline delivery. This will be explained in
detail later in Section 3.3.

Persisted to offline clients: Whenever a client comes
online, it can retrieve the publication events from the
Notification Module by sending a pull request with the
time-stamp of the last seen event. This path is shown
in Figure 3. The client may receive the same notifi-
cation twice: once when it was online last time and
another time when it came back online. However, the
client software can distinguish already seen publica-
tions using the time-stamp of the publications.

3.2 Subscribers and Publishers
The Access Points (APs) act as an interface to all the

external clients. From a pub/sub perspective, APs are re-
sponsible for relaying client join/leave messages to various
services, relaying subscription/unsubscription requests from
clients to the pub/sub service, and relaying publication mes-
sages from the pub/sub service to clients. The APs are re-
sponsible for maintaining the mapping between the TCP
connection to the client software and the topics and vice
versa. This mapping is crucial for relaying subscriptions,
unsubscriptions and publications.

All Subscribers in the pub/sub system are client software
instances running on user devices. The client is a propri-
etary software application available for several desktop and
mobile devices. A snapshot of the desktop client is shown
in Figure 1. There are two ways of subscribing to a topic:
Firstly, when a user explicitly follows a particular user, artist
or playlist from the client interface and secondly, the social
relations established from Facebook connections. In the for-
mer case subscription to the topic is done explicitly, while
in the latter case subscriptions are done implicitly.

Whenever the client subscribes to a topic, the subscription
information is sent to the Access Points. This information

Table 1: List of topic types and corresponding services
Topic
Type

URI Service Notification Type

User hm://presence/user/<user-name>/ Presence Friend-feed
Playlist hm://playlist/user/<user-name>/playlist/<playlist-id>/ Playlist Friend-feed, In-Client, Push

and Email
Artist hm://notifications/feed/artist-id%notification-type/ Artist Monitoring In-Client, Push and Email
Social hm://notifications/feed/username%notification-type/ Social In-Client, Push and Email

includes the user name of the subscriber and the correspond-
ing URI for the service, as listed in Table 1. However, since
the subscription information is needed by both the Pub/Sub
Engine and the Notification Module there are two distinct
subscription flow paths:

Subscriptions to the Pub/Sub Engine: The client
sends a list of topics and the URI of the relevant ser-
vice to an AP, which are eventually forwarded to the
Pub/Sub Engine.

Subscriptions to the Notification Module: If the sub-
scription request is for the Social service, the Artist
monitoring service or the Playlist service, the request
is forwarded from an AP to the respective services.
These services are then responsible for providing the
subscription information to the Notification Module.

The Publishers of the pub/sub system are services run-
ning in the Spotify sites. All publications for the topics
mentioned in the previous section are generated from four
services, listed below and shown in Figure 3. The specific
topics for these services are used in the form of URIs for
communication and matching purposes and they are listed
in Table 1. These URIs use a protocol internal to Spotify,
denoted hm (Hermes).

The Presence Service is responsible for receiving friend
feed events generated by users from client software.
Whenever a user takes an action to trigger friend feed
(as described in Section 1) the client generates a mes-
sage to the user topic type via APs. The Presence
service then stores the event in main memory and for-
wards the received event to the Pub/Sub Engine
(shown in Figure 3 and explained in detail in Section
3.4) to be matched and delivered to the client software
of the subscribers. All the events from the Presence
service that are intended for the subscribers of a user
are delivered to clients in real time in a best-effort man-
ner (i.e., no fault-tolerance techniques are used and
hence no delivery guarantees). Also, Presence events
are not persisted in secondary memory. Instead, only
the last seen event is stored in main memory, due to the
significantly higher volume of traffic compared to other
services. All Presence events can be seen at a friend
feed pane at the bottom-right corner of the Spotify
desktop client software as shown in Figure 1.

The Playlist Service is mainly responsible for tracking
playlist modifications made by users. As explained in
Section 1, a playlist can be subscribed in two ways: a
user can explicitly subscribe to playlists, and, in addi-
tion to that, by default all users are also subscribed to
the playlists of their friends. The Playlist service treats

the publications for these two types of subscriptions
differently. playlist updates from friends are shown
in friend feed and are delivered via Pub/Sub Engine,
and the rest are delivered via the Notification Mod-
ule. The playlist service also provides subscription
lists (i.e., given a playlist, all the subscribers of the
playlist; and, given a user, all the subscribed playlists
of the user).

The Social Service is responsible for managing the social
relations of Spotify users as well as integration with
Facebook. The Social service generates a publication
event when a Facebook friend of an existing user who is
not already using Spotify joins Spotify. It also provides
an interface to obtain all the friends of a user who
are subscribers to the friend feed from the given user.
Finally, it is also responsible for posting user activities
on the Facebook wall for those users who opted for this
feature.

Artist Monitoring Service is responsible for generat-
ing publication events whenever there is a new album
or track for an artist and new playlists created by an
artist. Note that the artist monitoring-service is essen-
tially a batch job running at regular intervals (typically
once a day) that queries an external database to detect
any new album releases for the artist.

A summary of all topics types that can be subscribed by
the clients and the corresponding services producing publi-
cations are listed in Table 1.

3.3 Notification Module
The publication events for all the topics are delivered to

clients in several ways. The Notification Module receives
the publication events from all services, except the Pres-
ence service, and then classifies them and delivers them to
the subscribers in the form of the following Notification
Types:

In-client notification: Some events like artist updates
and new Facebook friends joining Spotify are shown
in a notification icon at the top-right corner of the
Spotify desktop client, as shown in Figure 1. Note that
unlike friend feed, in-client notifications are persisted
for guaranteed delivery.

Push notifications: Push notifications are for mobile de-
vices. The Notification service forwards the events to
the corresponding push notification services provided
by the vendors of the user devices. An example of the
push notification is shown in Figure 2.

Email notifications: When a user is not online, events
like artist, playlist and friend updates are sent via

AP1

Site	 1 Site	 2

Aggregator

A AB B

Service Service

AP2 AP1 AP2

Client Client Client Client Client Client Client Client...

Pub/Sub
Broker	 Overlay

Aggregator AggregatorAggregator

Access	
Points

Pub/Sub
Engine

Figure 4: Real-Time Pub/Sub

email excluding the users who have opted out of this
service.

A summary of the topics and the notification types with
which they can be delivered to the subscribers is listed in
Table 1.

An important component of the Notification Module is
the Rule Engine. It has the logic for classifying every pub-
lication event into one of the above mentioned notification
types. The rules are embedded in the Rule Engine, but
the subscription information is obtained from the respective
publication services. The rules are based on the following
parameters:

• Online status of the user.

• Client device type (desktop or mobile).

• User subscription preferences on email notifications.

Depending on the notification type, the Rule Engine will
forward the publication event to Pub/Sub Engine and Cas-
sandra for persistence.

3.3.1 Publication Event Persistence
The motivation for persistence of publication events is

driven by the following goals: reliable delivery of publica-
tions, offline delivery and future retrieval of publications,
and a smooth way to deliver publication events to the same
user but using clients from different devices. All publication
events generated from the playlist, Social and Artist services
are persisted in a Cassandra cluster in a column family called
events, as shown in Figure 3. It is worth noting here that
each publication event is stored as (topic, subscriber) pairs
in the Cassandra cluster. This is a significant blowup of
data for the topics with millions of subscribers. Since the
persistence of these events requires significant storage and
computing resources the following measures are taken:

• Presence events, which are of significantly higher vol-
ume (as shown with workload analysis in Section 4),
are not persisted.

• Each publication event in the events column family has
an expiry date of 90 days by default (i.e., no events are
retained over 90 days).

Once the events are written to the events column family,
each event is processed by the Rule Engine, which constantly
polls events and detects the new events. Based on the gen-
erated rules, the Rule Engine decides if the events are to be
sent to the Pub/Sub Engine for real-time delivery or writ-
ten back to the Cassandra cluster but to a different column
family called Notifications along with the notification type
to be used. The Notification service, which polls the Notifi-
cations column family, delivers the publication events using
the Notification Type suggested by the Rule Engine.

Finally, to support pull requests from clients, the column
family Timestamps is used for keeping track of the time-
stamp of the last seen event for each client. Whenever a
client connects to an AP, a request is sent to the Notifi-
cation service with the time-stamp of the last seen event,
and the Notification service responds with all publications
that were generated after than the given time-stamp. Note
that time synchronization is not a problem here since the
clients adhere to the clock of an AP. The time-stamp check
also helps avoid duplicate delivery of publication events and,
once a notification is read on one device it will be shown as
read in all the other devices of the same user.

3.4 Pub/Sub Engine
The Pub/Sub Engine consists of Aggregators, responsible

for aggregating subscriptions and distributing publications.
The core component of the Pub/Sub Engine is a DHT over-
lay of broker servers managing subscriptions, publication
matching, and delivery. A diagram with the different com-
ponents of the Pub/Sub Engine is shown in Figure 4.

The Aggregators sit between the APs and the pub/sub
broker overlay. When a client connects to Spotify via an
AP, it also sends a set of subscriptions by sending all the
friends, playlists and artists the user is interested in. Each
subscriber-topic pair is considered a separate subscription.
All subscriptions are managed for matching purposes in main
memory. In order to scale w.r.t. the number of subscrip-

tions and publication events, the Aggregators are crucial.
The Aggregator locally aggregates all the subscriptions for
a given topic and sends a single subscription on their behalf
to the pub/sub broker overlay. The Aggregator distributes
the publication to the APs in the reverse direction. The Ag-
gregator is also responsible for hashing the subscription to
a respective broker in the pub/sub broker overlay.

The pub/sub brokers are organized as a DHT (Distributed
Hash Table) overlay with the subscription as the key. The
overlay of pub/sub brokers have the following responsibili-
ties:

Managing subscriptions: pub/sub brokers are respon-
sible for receiving subscription requests from Aggre-
gators and storing the subscriptions in memory. The
brokers are responsible for maintaining the mapping
between the topics and the corresponding Aggregator
where the subscription came from. This mapping is ab-
solutely crucial for routing the publications to the right
Aggregator. Pub/sub brokers also receive unsubscrip-
tion requests for a topic from the Aggregators when
there are no more online subscribers for that topic.

Matching publications: pub/sub brokers match the in-
coming publications from the publisher services against
in-memory subscriptions.

Forwarding matched publications: Once the matching
entries are found the publication is forwarded to all the
corresponding Aggregators.

Cross-site forwarding: The broker overlay is also re-
sponsible for forwarding publications to a different site
if there are any subscribers. Note that the pub/sub
broker overlay spans all the sites.

Each broker in a site has a one-to-one corresponding
broker in other sites which exchange their subscrip-
tions and publications from the corresponding sites.
For example, as shown in Figure 4, broker A in Site
1 has a corresponding broker A in Site 2 (i.e., all the
subscriptions obtained within Site 1 and managed at
broker A, are also forwarded and replicated at corre-
sponding broker A of Site 2 and vice-versa). Whenever
there is a publication for a subscription at the broker
A of Site 1, if there is a matching subscription regis-
tered from the broker A of Site 2, the publication is
forwarded via a cross-site link to the broker A of Site
2. Then the broker A of Site 2 forwards the publica-
tion to the corresponding subscriber in Site 2 via an
AP. This cross-site DHT overlay of pub/sub brokers
facilitates interaction among Spotify users that follow
each other but are connected to different sites.[10]

Load Balancing: Since all subscriptions are in memory, it
is crucial to have a scalable solution to manage them.
The DHT organization of the pub/sub brokers is the
key to scale in-memory storage of over 600 million sub-
scriptions. The pub/sub broker overlay is also designed
to distribute the load publication matching and for-
warding load among the brokers.

4. ANALYSIS OF SPOTIFY PUB/SUB
WORKLOAD

In this section we study the different characteristics and
patterns emerging from the pub/sub traffic at Spotify. The
main goal of the study is to characterize the workload used
by a deployed pub/sub system, thereby serving as a refer-
ence for workload-modeling purposes in the pub/sub com-
munity in both industry and academia. Another goal of this
study is to analyze the message traffic produced by the Spo-
tify pub/sub system and derive trends and patterns. All the
results presented in this paper are based on traces collected
from production data. The traces were collected during 10
days from Thursday, 10 Jan 2013 to Saturday, 19 Jan 2013.

4.1 Analysis of Traces From The Presence Ser-
vice

In this section, unless explicitly mentioned, we study the
subscriptions and publications given as input to the Presence
service. We restrict our analysis to the Presence service due
to its dominance of the pub/sub workload in Spotify, which
is illustrated later in this section. In order to simplify our
analysis, at any time we consider only users with desktop
clients, who have been online at the Stockholm site and have
produced at least one publication in the studied time period,
and their corresponding subscribers.

We study the following characteristics of the workload:

• The distribution of Topic Popularity: The Compli-
mentary Cumulative Distribution Function (CCDF) of
the percentage of the total number of subscribers sub-
scribing to a topic, shown in Figure 5.

• The distribution of Subscription Size: The CCDF
of the percentage of total number of topics subscribed
by a single subscriber, shown in Figure 6.

• The distribution of Publication Event Rate (per-
topic): The CCDF of the percentage of total pub-
lication events generated for the chosen time period,
shown in Figure 7.

It is easy to see that log-log plots CCDFs of topic popularity
and subscription size Figure 6 follow a distribution close to
a power law. The CCDF of Publication Event Rate, on
the other hand, does not follow power-law. There is a sharp
deviation around 0.0005% of the total number of publication
events.

Notice that the CCDF of topic popularity and subscrip-
tion size are similar to the typical degree distribution in
social networks [11]. This behavior is due to the fact that
subscriptions and topics in Spotify pub/sub are predomi-
nantly defined by the social relations between Spotify users.
Also, as mentioned in Section 1, it is known that when a
Facebook friend of a Spotify user joins Spotify, by default
they become subscribers of each other. This observation
motivates the use of social graphs as workload for academic
works on topic-based pub/sub systems as done in [10, 12].

Next we study the distribution of the number of publi-
cations attracted by subscriptions. We call it Subscription
Cardinality per subscriber, which we define as the percent-
age of total publications events matching the topics sub-
scribed by a subscriber. It is mathematically expressed as
below:

C(S) =

∑
tS∈S

ev(tS)∑
t∈T ev(t)

∗ 100

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-05 0.0001 0.001 0.01 0.1 1 10

P
ro

b
[%

 o
f

to
ta

l
s
u

b
s
c
ri
b

e
rs

 >
=

 x
%

](
lo

g
 s

c
a

le
)

% of total subscribers (Topic Popularity)

CCDF of Topic Popularity

Figure 5: CCDF of Topic Popularity

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-05 0.0001 0.001 0.01 0.1 1 10

P
ro

b
[%

 o
f

to
ta

l
to

p
ic

s
 >

=
 x

%
]

% of total topics (Subscription Size)

CCDF of Subscription Size

Figure 6: CCDF of Subscription Size per user

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01

P
ro

b
[%

 o
f

to
ta

l
p

u
b

lic
a

ti
o

n
 e

v
e

n
t

ra
te

 >
=

 x
%

]

% of total publication event rate

CCDF of Event Rate

Figure 7: CCDF of Publication Event Rate per
topic

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

P
ro

b
[s

u
b
s
c
ri
p
ti
o
n
 c

a
rd

in
a
lit

y
 C

(S
)

>
=

 x
%

]

Subscription Cardinality C(S)

CCDF of C(S)

Figure 8: CCDF of Subscription Cardinality per
user

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-05 0.0001 0.001 0.01 0.1 1 10

S
u

b
s
c
ri
p

ti
o

n
 C

a
rd

in
a

lit
y

% of total number of topics (Subscription Size)

Figure 9: Relationship between subscription car-
dinality and subscription size (%of total number
of topics)

 0

 0.001

 0.002

 0.003

 0.004

 1e-05 0.0001 0.001 0.01 0.1 1

%
o
f
to

ta
l
E

v
e
n
t
R

a
te

% of total number of subscribers

Figure 10: Relationship between topic Popularity
(% of total number of subscribers) and Publica-
tion Event Rate

 0

 0.05

 0.1

 0.15

 0.2

Thu - 0:00

Fri - 0:00

Sat - 0:00

Sun - 0:00

M
on - 0:00

Tue - 0:00

W
ed - 0:00

Thu - 0:00

Fri - 0:00

Sat - 0:00

%
 o

f
d

a
ily

 t
o

ta
l
p

u
b

lic
a

ti
o

n
 t

ra
ff

ic

UTC Time(Day - Hour)

Total traffic
Presence traffic

Playlist traffic
Notifications traffic

Figure 11: Pattern of publications generated per
service-basis

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Thu - 0:00

Fri - 0:00

Sat - 0:00

Sun - 0:00

M
on - 0:00

Tue - 0:00

W
ed - 0:00

Thu - 0:00

Fri - 0:00

Sat - 0:00

%
 o

f
d

a
ily

 t
o

ta
l
p

u
b

lic
a

ti
o

n
 t

ra
ff

ic

UTC Time(Day - Hour)

Traffic within a site
Traffic across sites

Figure 12: Publication traffic within the sites vs
across the sites

Where, T is a global set of all topics, S ⊆ T is a set of
topics subscribed by a subscriber, ev(t) is the publication
event rate of topic t. Thus, a subscriber with a subscrip-
tion cardinality of, for example, 0.1%, receives 0.1% of all
publications in the system.

In Figure 8 the x-axis is the cardinality of a subscription
C(S) and y-axis is the probability that a subscription has
cardinality greater than or equal to that of corresponding
value in x-axis (in other words CCDF). This distribution is
an interesting result for the pub/sub community since car-
dinality of subscriptions is an important design parameter
for many pub/sub systems [13] and they are generally esti-
mated probabilistically. Our analysis shows a diverse sub-
scription cardinality ranging from 0.2% to as low as 10−7%.
Also more than 90% of the subscribers have C(S) < 0.001%
which shows a very low cardinality.

Each subscriber is allowed to subscribe to an arbitrary
number of topics and that results in arbitrary subscription
sizes for the subscribers. A study about the relationship
between subscription sizes and the corresponding matching
events is crucial to understand the resources needed to han-
dle the publication traffic at the brokers. We do this study
by considering each subscriber’s subscription cardinality and
the corresponding subscription size. We show in Figure 9
that, as the number of topics followed by a subscriber (i.e.,
subscription size) increases, the number of publications re-
ceived by the subscriber (i.e, the cardinality) also increases
linearly. In Figure 9 we show a 1% random sample of all the
points due to significantly high number of data points slows
down the pdf rendering.

As suggested earlier, the subscription workload for the
Spotify pub/sub system is characterized by a social graph.
However, when we study the topic popularity (number of
subscribers of each topic) and the corresponding publication
event rate for that topic, we see no correlation at all. i.e.
a topic with very few subscribers can lead to significantly
more publications than topics with many subscribers. This
behavior is shown in Figure 10. We conjecture that the
reason for this is that, unlike social networks, the activ-
ity in Spotify pub/sub is determined by the music listening
behavior of users. This implies that a frequent listener of

music in Spotify does not necessarily have a high number
of subscribers, similarly a user with many subscribers is not
necessarily a frequent listener of music. We leave the confir-
mation of this conjecture for future research. Again we show
a 1% random subset of the original data points to improve
pdf rendering speed.

4.2 Pub/Sub Traffic Analysis
The following measurements correspond to all the pub-

lisher services mentioned in Section 3 and are not limited to
the Presence service. We also include traces from all sites for
these measurements for the same 10 days mentioned earlier.

4.2.1 Publication Traffic
First we study the distribution of publication traffic by

separately decomposing it per service.

The Presence Traffic: From Figure 11 it is easy to ob-
serve that, for the Presence service, there is a periodic
pattern of publication traffic on a daily basis with peak
traffic towards the evening around 6 PM and the lowest
traffic around 2 AM in the morning. Also, the traffic is
slightly lower during weekends compared to weekdays.
Without further analysis it is easy to see that this pat-
tern is similar to the pattern for playbacks as observed
in [2]. The reason for this pattern is simply because the
publications generated by the Presence service are due
to the playback of music tracks. It is easy to observe
from Figure 11 that Presence events are the major-
ity among the publication traffic, followed by Playlist
events.

Playlist Traffic: There is a similar daily periodic pattern
in the Playlist publication traffic, with highest traffic
around 6 PM and lowest traffic around 2 AM. However,
in contrast to the Presence service, the Playlist service
traffic has slightly higher traffic on Sunday compared
to the weekdays.

Notifications Traffic: For Notifications traffic, which in-
cludes updates to artist pages and updates from the

 0.0005

 0.001

 0.0015

 0.002

 0.0025

Thu - 0:00

Fri - 0:00

Sat - 0:00

Sun - 0:00

M
on - 0:00

Tue - 0:00

W
ed - 0:00

Thu - 0:00

Fri - 0:00

Sat - 0:00

%
 o

f
d
a
ily

 t
o
ta

l
s
u
b
s
c
ri
p
ti
o
n
s

UTC Time(Day - Hour)

Subscription rate
Unsubscription rate

Figure 13: Subscription and unsubscription rate

 0.0001

 0.001

 0.01

 0.1

 1

Thu - 0:00

Fri - 0:00

Sat - 0:00

Sun - 0:00

M
on - 0:00

Tue - 0:00

W
ed - 0:00

Thu - 0:00

Fri - 0:00

Sat - 0:00

%
 o

f
d
a
ily

 t
o
ta

l
n
u
m

b
e
r

o
f
s
u
b
s
c
ri
p
ti
o
n
s
 (

lo
g
 s

c
a
le

)

UTC Time(Day - Hour)

Total subscriptions
Presence subscriptions

Playlist subscriptions
Notifications subscription

Figure 14: Pattern of percentage of total number
of subscriptions

Social service, one can observe small spikes with noti-
fications every day stemming from batch jobs launched
for artist updates. Notice the significantly low traffic
due to notification module compared to the Presence
service and the Playlist service. This is in consistent
with the hybrid design principle for real-time notifica-
tion for the Presence service and offline notification for
artist pages and social updates.

Next we compare the total publication traffic (from all
services) generated from within the same site (local site)
against the publication traffic generated from the rest of
the sites (called remote sites). Remote traffic is due to the
music activity of users in a remote site for which there is at
least 1 subscriber in the local site. As we can observe from
Figure 12, remote traffic is nearly an order of magnitude
lower than local traffic. This result is in accordance with the
design of Spotify pub/sub with each site having a pub/sub
system designed to handle high local traffic, and low remote
traffic with cross-site links at the pub/sub broker overlay (as
described in Section 3.4).

4.2.2 Subscription Traffic
Figure 13 shows the pattern of subscriptions and unsub-

scriptions. There is a periodic pattern in subscriptions and
unsubscription rates as well, and this is due to users join-
ing and leaving Spotify at regular intervals. This periodic
churn behavior can help model the churn of subscribers in a
pub/sub system. Many research works [10, 14, 13] in the
area of pub/sub use synthetic churn workloads or adapt
churn traces from other peer-to-peer systems like file-sharing
services or Skype. In this paper we characterize churn using
traces from an actually deployed pub/sub system. Again,
similar to publication traffic, subscription requests exhibit a
daily pattern of evening peaks and early morning troughs as
well. However, the weekly pattern of subscription patterns
is significantly different from weekly pattern of publication
traffic due to the simple fact that subscription traffic is due
to the users logging in and out of the system while publi-
cation traffic is due to the playback of music. An interest-
ing observation to make in Figure 13 is that the curve for
unsubscription rate is ahead of the curve for subscriptions

approximately 2 hours on average. Also the rate of subscrip-
tions and unsubscriptions match approximately, hence the
number of subscriptions for a small period remain constant.
This hypothesis is confirmed by Figure 14, which shows that
there is little variation in the number of subscriptions for the
chosen time period. In Figure 14 we can also see that the
number of subscriptions is dominated by the Presence ser-
vice. This is because Spotify users by default have more
subscriptions to follow their friends than subscriptions to
follow Playlists, artists and album pages. This also confirms
our previous claim that the Presence traffic dominates Spo-
tify pub/sub traffic.

4.3 Summary
Here is the summary of important observations from the

analysis of the Spotify pub/sub workload:

• Topic popularity and subscription sizes follow a distri-
bution close to a power law, similar to degree distribu-
tions in social graphs.

• The Publication Event Rate does not follow power law
distribution.

• Subscription cardinality is significantly low (max 1%)
and varies from 1% to as low as 10−7%, indicating
subscriptions with diverse subscription cardinality.

• Subscription cardinality of a subscriber is linearly pro-
portional number of topics subscribed by that sub-
scriber.

• The Publication Event Rate of a topic bears no relation
to its popularity.

• Publication traffic shows a daily pattern. It is lowest at
2 AM and highest around 6 PM. It also shows a weekly
pattern with slightly lower traffic during weekends.

• Publication traffic from local sites is much higher com-
pared to publication traffic from remote sites.

• Subscription and unsubscription rates significant churn
in subscriptions. However, the total number of sub-
scriptions does not change much in a 10-day period.

• Both subscription and publication traffic is dominated
by traffic related to the Presence service.

5. RELATED WORK
Pub/sub systems have been a subject of research for sev-

eral decades, and a large number of topic-based pub/sub
systems have been proposed in that period. Many academic
research systems like Scribe [14], Bayeux [15], Tera [16], Spi-
derCast[17], Vitis [12], PolderCast[10] have focused on topic-
based pub/sub. Several topic-based pub/sub systems have
been proposed in the industry as well [4, 5].

However, supporting social interaction between Spotify
users poses a specific set of requirements. There is a need
to handle publications with different levels of criticality. As
a result, there is a need for resource-efficient real-time de-
livery of events as well as reliable and offline delivery. Spo-
tify also demands at-least-once delivery of events across all
devices of the same user. In addition to that, there are mul-
tiple services generating publication events which need to be
efficiently channeled via different paths to the subscribers.
These requirements result in the need for a hybrid pub/sub
system with different event flow paths.

Given the lack of real data, researchers in academia rely
on synthetic workload generation techniques [14, 16, 18,
17]. Even though there have been some characterizations
of pub/sub workloads from real systems in the past [6, 19,
8], they all mainly focus on characterizing the distribution of
topic popularity in the workload. To the best of our knowl-
edge, this work is the first to characterize the distributions
of topic popularity, subscription sizes, distribution of per-
topic publication event rate and its relationship with topic
popularity, as well as the distribution of subscription cardi-
nality and its relationship with subscription sizes. All of the
analyses have been performed based on an actual deployed
system.

6. CONCLUSIONS
In this paper, we presented the architecture of a system

that allows Spotify users to follow playlists, artists, and the
music activities of their friends. The architecture is real-
ized by pub/sub, a popular communication paradigm. We
described how a hybrid system with a scalable Pub/Sub En-
gine driven by a DHT overlay of brokers that facilitates real-
time delivery of events and also a Notification Module to per-
sist important events for offline notification as well as future
retrieval of events. We did an extensive study of the system
by analyzing real traces collected from an actual deployed
system. We characterize the system workload, which helps
model pub/sub workloads for research. We also analyze the
pub/sub traffic at Spotify to derive trends and patterns.

Acknowledgments
We would like to thank the following engineers of Spotify
specifically, for their invaluable inputs and support for this
paper: Tommie Gannert, Mikael Goldmann and Javier Ubil-
los.

7. REFERENCES
[1] G. Kreitz and F. Niemela, “Spotify – large scale, low

latency, P2P music-on-demand streaming,” in P2P,
2010.

[2] B. Zhang, G. Kreitz, M. Isaksson, J. Ubillos, and
G. Urdaneta, “Understanding user behavior in
spotify,” in IEEE INFOCOM, 2013.

[3] P. Eugster, P. Felber, R. Guerraoui, and
A. Kermarrec, “The many faces of publish/subscribe,”
ACM Computing Surveys, 2003.

[4] J. Reumann, “GooPS: Pub/Sub at Google.” Lecture &
Personal Communications at EuroSys & CANOE
Summer School, 2009.

[5] “Tibco rendezvous.” http://www.tibco.com.

[6] H. Liu, V. Ramasubramanian, and E. G. Sirer, “Client
behavior and feed characteristics of RSS, a
publish-subscribe system for web micronews,” in IMC,
2005.

[7] G. Li, V. Muthusamy, and H. Jacobsen, “A distributed
service-oriented architecture for business process
execution,” ACM Transactions on the web, 2010.

[8] A. Yu, P. Agarwal, and J. Yang, “Generating
wide-area content-based publish/subscribe workloads,”
in Network Meets Database (NetDB), 2009.

[9] A. Lakshman and P. Malik, “Cassandra: a
decentralized structured storage system,” SIGOPS,
2010.

[10] V. Setty, M. van Steen, R. Vitenberg, and
S. Voulgaris, “Poldercast: Fast, robust, and scalable
architecture for P2P topic-based pub/sub,” in
Middleware, Springer-Verlag New York, Inc., 2012.

[11] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee, “Measurement and analysis of
online social networks,” in SIGCOMM, IMC, 2007.

[12] F. Rahimian, S. Girdzijauskas, A. Payberah, and
S. Haridi, “Vitis: A gossip-based hybrid overlay for
internet-scale publish/subscribe enabling rendezvous
routing in unstructured overlay networks,” in IPDPS,
2011.

[13] G. Li, Optimal and Robust Routing of Subscriptions
for Unifying Access to the Past and the Future in
Publish/Subscribe. PhD thesis, Graduate Department
of Computer Science, University of Toronto, 2010.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron, “Scribe: a large-scale and decentralized
application-level multicast infrastructure,” IEEE
Journal on Selected Areas in Communications, 2002.

[15] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and
J. Kubiatowicz, “Bayeux: an architecture for scalable
and fault-tolerant wide-area data dissemination,” in
NOSSDAV, 2001.

[16] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and
S. Tucci-Piergiovanni, “Tera: topic-based event
routing for peer-to-peer architectures,” in DEBS, 2007.

[17] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg,
“Spidercast: a scalable interest-aware overlay for
topic-based pub/sub communication,” in DEBS, 2007.

[18] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg,
“Constructing scalable overlays for pub-sub with many
topics,” in PODC, 2007.

[19] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky,
“Hierarchical Clustering of Message Flows in a
Multicast Data Dissemination System,” Parallel and
Distributed Computing and Systems (PDCS 05), 2005.

