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Abstract

Research within the area of cryptography constitutes the core of this the-
sis. In addition to cryptography, we also present results in peer-assisted
streaming and web security. We present results on two specific cryptographic
problems: broadcast encryption and secure multi-party computation. Broad-
cast encryption is the problem of efficiently and securely distributing content
to a large and changing group of receivers. Secure multi-party computation
is the subject of how a number of parties can collaborate securely. All in all,
this thesis spans from systems work discussing the Spotify streaming system
with millions of users, to more theoretic, foundational results.

Streaming is among the largest applications of the Internet today. On-
demand streaming services allow users to consume the media content they
want, at their convenience. With the large catalogs offered by many services,
users can access a wide selection of content. Live streaming provides the
means for corporations as well as individuals to broadcast to the world. The
power of such broadcasts was shown in the recent (early 2011) revolts in
Tunisia and Egypt, where protesters streamed live from demonstrations.

To stream media to a large global audience requires significant resources,
in particular in terms of the bandwidth needed. One approach to reduce
the requirements is to use peer-to-peer techniques, where clients assist in
distributing the media. Spotify is a commercial music-on-demand streaming
system, using peer-to-peer streaming. In this thesis, we discuss the Spotify
protocol and measurements on its performance.

In many streaming systems, it is important to restrict access to content.
One approach is to use cryptographic solutions from the area of broadcast
encryption. Within this area, we present two results. The first is a protocol
which improves the efficiency of previous systems at the cost of lowered secu-
rity guarantees. The second contains lower-bound proofs, showing that early
protocols in the subset cover framework are essentially optimal.

Many streaming systems are web-based, where the user accesses content in
a web browser. Apart from this usage of the web, subscriptions for streaming
services are bought using a web browser. This means that to provide a secure
streaming service, we must understand web security. This thesis contains a
result on a new type of attack, using an old history detection vulnerability to
time the execution of a redirect of a victim’s browser.

Within the area of secure multi-party computation, this thesis has three
contributions. Firstly, we give efficient protocols for the basic functions of
summation and disjunction which adapt to the network they run on. Secondly,
we provide efficient protocols for sorting and aggregation, by using techniques
from the area of sorting networks. Finally, we prove a dichotomy theorem,
showing that all functions with three distinct outputs are either maximally
easy or maximally difficult with regards to the security provided.
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Foreword

During my Ph.D. studies, I have had the opportunity to work on a number of
different topics. My main research interest has been cryptography, studying how
we can cooperate with people we do not trust, and how to securely send information
to large numbers of recipients. Apart from cryptography, I have also been interested
in more general security issues, such as web security.
After having started my Ph.D. studies, I also begun working part-time at the

Swedish company Spotify, which develops and runs a music streaming service. This
lead me to study the issue of how to efficiently (quickly and cheaply) stream to a
large number of users.

Organization of this Thesis

This thesis is split into two parts. The first part consists of an introduction to the
topics contained within the thesis, and the second part consists of self-contained
articles. The first part briefly summarizes and unifies the topics contained in the
latter part, hopefully in an easy-to-read manner. The first chapter is intended to
be accessible also for a non-expert reader.
As the thesis contains contributions in several topics and sub-fields, the first part

also includes a somewhat more comprehensive scientific background on the topics.
It is my hope that these summaries can be easily read by experts from other fields,
and serve as a more detailed and gentle introduction to the field compared to the
background sections of the articles.
The first part of the thesis is not intended to add new technical material beyond

what is contained in the papers, but does contain a more elaborate discussion on
the background and context of the results.
The second part contains seven papers, constituting the main scientific content

of the thesis.
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Chapter 1

Introduction

With the advent of a global real-time communications network and the fast de-
velopment of computer hardware, we have entered an age of very large-scale and
global services on the Internet. The most outstanding example du jour may be
that of Facebook with over 500 million active users world wide, a number likely to
have reached 600 million by the time this thesis has been printed.
Facebook is not the only, or even the largest, company with such a staggering

number of users; Google has more traffic than Facebook [3]. Aside from such
giants, there now also exist a large number of systems with user numbers in the
tens of millions. Developing and operating such large systems poses a huge number
of interesting and difficult problems. These range from technical to legal, with
technical challenges coming from many different areas of computer science.
One concern that immediately arises from high user numbers is that of efficiency.

For a system receiving millions of queries per second, the system must be highly
efficient in its handling of requests. Similarly, if a system is to stream music to
millions of users, it must be efficient in how it handles and delivers data.
Another concern is that of security of the system. Any system connected to

the Internet is likely to be subject to fully automated attack scans looking for
security holes. A large-scale system, as we are interested in here, is also likely to
be the victim of more targeted and focused attacks. Security is a many faceted
problem, with attacks ranging from non-technical, such as tricking people (called
social engineering), to mathematical attacks on the cryptography used. In this
thesis, we mostly consider the technical aspects.
There are many other challenges involved in building a large-scale system, but

the two we discussed above, efficiency and security, are the focus of this thesis. We
now turn to the question of what task we want the system to solve. Current large
Internet applications include search engines, social networks, instant messaging,
streaming, and games.
In this thesis, we discuss the security and efficiency of systems for two tasks:

streaming and collaboration. The first task, streaming, is an area that has significant
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2 CHAPTER 1. INTRODUCTION

usage world-wide, with a large number of streaming services available, both for
audio and video. The largest of these is Youtube, which streams short video clips
over the web. There also exist a number of other large streaming systems, including
PPLive, Mog, Rhapsody, Spotify, and Voddler.
The second task that we investigate, collaboration, is more theoretical. Here,

we discuss if, and how, people can cooperate without necessarily trusting all other
participants. This is the field of secure multi-party computation, a fundamental
problem in the area of cryptography. This is an area with beautiful theoretical
results; we can jointly perform computations on secret data from multiple sources,
with the data remaining secret. While the results from this area can enforce a strong
notion of security, the constructions have so far seen relatively little practical use
in the real world.
In this introductory chapter of the thesis, we attempt to gently introduce the

reader to the thesis work, and the previous and related results in the areas discussed.
We begin with a discussion on streaming, and some topics related to streaming
systems. We then proceed with an introduction to the field of secure multi-party
computation.

1.1 Streaming and Efficiency

One of the important Internet applications, that has seen tremendous growth over
the past few years is streaming. Streaming in this context means to send media
over a network in a way such that playback begins before all content has been
downloaded. This is in contrast to downloading a media file, such as an mp3 file,
and then playing it when the download is complete.
As broadband Internet access is becoming more prevalent, streaming content

with a quality acceptable to most users has become feasible, and there is a large
number of streaming services. The largest streaming service is currently Youtube,
with its enormous library of (mostly) short video clips. While short, home-made
video clips is a type of content unique to Internet streaming1, there are also large
streaming systems for more traditional types of content such as music, TV programs
and full length movies.
The growth of streaming services adds load to the common Internet infras-
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where it is imperative to be efficient. In our discussion here we restrict our attention
to the bandwidth required by the service operator to run the service.
In this section, we discuss some questions pertinent to streaming. Firstly, we

discuss what the content that we are streaming is, and claim that the type of content
affects the technical design of a system. Secondly, we discuss how to efficiently
disseminate the content, in particular using peer-to-peer streaming. Lastly, we
touch upon the question of when to begin playing back streamed content. Having
discussed these three topics related to efficiency in streaming protocols, we proceed
to discuss issues related to their security in Section 1.2.

Types of Streaming
Within streaming, there are two main types of streaming considered today: on-
demand and live. In live streaming, all receivers get the same content at (roughly)
the same time, similar to a traditional radio or TV broadcast. A live streaming
system may offer only one single channel, for instance live streaming the Olympics, a
concert, or a specific radio channel resending its current broadcast over the Internet.
Some live streaming systems offer a number of different channels or events being
streamed, e.g., letting the viewer choose which game to watch.
In on-demand streaming, the streaming system lets the user select content from

a large catalog. The user selects what to play, when to begin playing, and can then
pause, skip within the stream, or switch to something else at any time. On-demand
streaming is used for most types of media content, such as music, radio and TV
programs, and movies.

Types of Content
Streaming protocols are being used today for streaming both audio and video. In
live streaming, there is no large difference between the types of content streamed
as audio and as video. In both categories we find sports events, conferences, and
re-broadcasting a TV or radio channel on the Internet.
For on-demand streaming, the content types differ a bit more between audio

and video. The most well-known type of content is probably video on-demand
streaming. It encompasses a large span of different content types, ranging from
short video clips to episodes of TV series and full-length movies. For on-demand
audio streaming, the most prevalent use case is streaming music.
From a user’s perspective, there is of course a difference between full-length

movies and music tracks, but how large is the difference technically when streaming?
Both types are encoded as streams of bits, with video having larger bitrate (number
of bits per second of content). Traditionally, much of the research literature has
focused on video streaming (live or on-demand) and, implicitly, the results have
been assumed to apply to audio as well. As we discuss in Section 2.1 there are,
however, important technical differences. A music-on-demand streaming system
typically has a very large catalog where each individual track is short. In contrast,
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a TV or movie streaming service would have a much smaller catalog where each
individual piece of content is large.
While there are important differences between different types of content, we

write mostly as if considering a video service. This to avoid too cumbersome lan-
guage. Thus, we write that a viewer watches a video.

Peer-to-Peer Streaming
Traditionally, the prevalent mode of operation across a network is the client-server
paradigm. In such protocols every client connects directly to a server, which helps
the client in solving a task. In the case of streaming, this means that each client
individually streams content directly from a server. We illustrate this in Figure 1.1a.
In streaming, a client-server protocol can provide good availability and response
times, but is often costly to operate.

Peer-to-peer (P2P) protocols have been much discussed both in the popular
press and academic literature. In a P2P protocol, the clients instead talk directly
to each other to accomplish the task at hand, which we illustrate in Figure 1.1b. In
most P2P protocols, a server remains in the picture, providing some functionality
such as helping peers to find each other. These tasks are much simpler than the
original problem (e.g., streaming). A useful property of a P2P system is that since
each additional client helps in serving other clients, they more easily scale to large
numbers of users. A drawback is that since content is sent from peers, it can be
difficult to ensure that data is always available; the peers who had the data may
have disconnected when a user wants it.
A combination approach also exists where a server provides the service, but P2P

techniques are used to move parts of the load to the clients. This approach is known
as peer-assisted, which we illustrate in Figure 1.1c. Peer-assisted protocols in many
ways combine the best properties of client-server and peer-to-peer protocols. They
can ensure availability and timeliness as in a client-server solution, but achieve
much of the cost savings from a P2P system.
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Protocols based on P2P have been proposed for a number of different prob-
lems. The most commonly studied and discussed task is that of file distribution,
popularized with protocols such as Napster, Kazaa, Gnutella, and BitTorrent. File
distribution protocols efficiently distribute a, typically large, file from one sender to
those who wish to receive it. Distributing files is a very general mechanism, and it
can be used for many purposes. Example applications include distributing a movie
under a permissive license3, and distributing software such as Linux distributions
or World of Warcraft patches. It can also be used to distribute copyrighted material
without a license. The latter usage typically gets more headlines than the former,
and is sometimes equated with P2P in the popular press. There is much more to
P2P and peer-assisted protocols than file sharing, however.
One example of a P2P protocol solving a different problem than file distribution

is Skype, which is a protocol for Internet telephony or Voice over IP (VoIP). Another
example is the subject of our present discussion, there is a large number of P2P
streaming protocols, both for live and on-demand streaming.
In a live system, all users want the same content at (almost) the same time.

Thus, a user can pass along all data she receives to a second user (or more). The
second user can then forward the data to additional users, and so on. For an on-
demand system, most content has been played at some time, so a user wanting to
play a piece of content could stream not only from the service provider but also
from other users who have previously played that same content, as they already
have the material. This can significantly reduce the amount of content the original
sender must transmit to the users of the system.

When to Begin Playing?
Having discussed how to distribute the data, we turn to another challenge in build-
ing a streaming system: when to begin playing. In a streaming system, the player
receives data over a network. At some point in time it needs to start playing the
data back to the viewer. When is the right time to begin playback?
A first idea may be “as soon as possible”. There is a drawback with this idea,

since network traffic can often vary over time. Sometimes, data sent over a network
may be dropped, or there is a delay in its delivery, or a viewer’s Internet connection
may simply go down for a while. If the data does not arrive at a sufficiently fast
rate, the client may not have the data it needs to play. This can either cause
playback to pause, waiting for the data to be received, or to skip a bit of the video.
This is known as a buffer underrun or jitter, we use the former term. By starting
the playback immediately, there is a large risk of buffer underrun occurring.
To reduce the risk of a buffer underrun, a client typically stores received data

in a buffer. It waits to commence playback until a sufficient amount of material
has been received. How much is sufficient? As an extreme point, if it waits until

3Examples include the movies “The Yes Men Fix the World” and “Nasty old People”, both
released with a Creative Commons license and distributed using P2P.
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those who wish to receive it. Distributing files is a very general mechanism, and it
can be used for many purposes. Example applications include distributing a movie
under a permissive license3, and distributing software such as Linux distributions
or World of Warcraft patches. It can also be used to distribute copyrighted material
without a license. The latter usage typically gets more headlines than the former,
and is sometimes equated with P2P in the popular press. There is much more to
P2P and peer-assisted protocols than file sharing, however.
One example of a P2P protocol solving a different problem than file distribution

is Skype, which is a protocol for Internet telephony or Voice over IP (VoIP). Another
example is the subject of our present discussion, there is a large number of P2P
streaming protocols, both for live and on-demand streaming.
In a live system, all users want the same content at (almost) the same time.

Thus, a user can pass along all data she receives to a second user (or more). The
second user can then forward the data to additional users, and so on. For an on-
demand system, most content has been played at some time, so a user wanting to
play a piece of content could stream not only from the service provider but also
from other users who have previously played that same content, as they already
have the material. This can significantly reduce the amount of content the original
sender must transmit to the users of the system.

When to Begin Playing?
Having discussed how to distribute the data, we turn to another challenge in build-
ing a streaming system: when to begin playing. In a streaming system, the player
receives data over a network. At some point in time it needs to start playing the
data back to the viewer. When is the right time to begin playback?
A first idea may be “as soon as possible”. There is a drawback with this idea,

since network traffic can often vary over time. Sometimes, data sent over a network
may be dropped, or there is a delay in its delivery, or a viewer’s Internet connection
may simply go down for a while. If the data does not arrive at a sufficiently fast
rate, the client may not have the data it needs to play. This can either cause
playback to pause, waiting for the data to be received, or to skip a bit of the video.
This is known as a buffer underrun or jitter, we use the former term. By starting
the playback immediately, there is a large risk of buffer underrun occurring.
To reduce the risk of a buffer underrun, a client typically stores received data

in a buffer. It waits to commence playback until a sufficient amount of material
has been received. How much is sufficient? As an extreme point, if it waits until
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the entire video has been buffered, then it can be certain to never suffer a buffer
underrun. On the other hand, playback would take much too long to begin, and
it would no longer even be a streaming system by our definition. A trade-off is
involved: the larger buffer the client waits for before starting, the smaller the risk
that a buffer underrun occurs during playback, but the longer the viewer has to
wait before the video starts playing.
Creating a good mechanism to decide when playback commences is important

in streaming systems, as it directly affects the user-perceived quality of the system.
In Paper I we discuss the Spotify system and protocol. Spotify is a commercial
music-on-demand service with millions of users. The system is rapid in beginning
to stream, with a median time to begin playback of 265ms. The frequency of
buffer underruns is reasonably low, occurring in less than 1% of tracks played.
This performance is achieved by a peer-assisted protocol and with a mechanism to
decide when to begin playback that is based on a statistical construction known as
a Markov chain.
Having finished our discussion on the efficiency of streaming systems, we now

proceed to two topics related to their security.

1.2 Security in Streaming

There are many aspects of the security of an actual streaming system. We cannot
hope to cover all of them, but we discuss two specific subjects: broadcast encryption
and web security. Broadcast encryption is one approach to protect the content in
a streaming system, and the primary motivation for studying broadcast encryption
is content distribution.
Web security is a large topic, and the problems we discuss here are not specific to

streaming. Web security is, however, an important topic in constructing a streaming
system. Many streaming services are entirely web based, and it is thus important
to understand the threats and solutions relevant to the web. Some services are not
web based. Web security is still important to them as well as sensitive operations
such as payment for subscriptions is typically handled over the web.
We begin with a discussion on broadcast encryption. Before this, we give a

minimal background on basic cryptography.

Cryptography
In the field of cryptography, we study the foundations of how to protect information.
The most classic example is that of two persons, Alice and Bob, who wish to
send secret messages to each other even though Eve the Eavesdropper can see all
messages they exchange. Alice and Bob can solve their problem by agreeing on
a secret key and using a cipher to encrypt their communication. A key here is a
large random number, sufficiently large that it cannot be guessed by an attacker. A
cipher consists of a pair of methods, one for encryption, and the other for decryption.
Encryption transforms a message and a key into a ciphertext. The decryption
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procedure takes as input a ciphertext together with the key used to encrypt it
and gives back the original message. With a secure cipher, the message cannot be
recovered from a ciphertext without knowledge of the key used to encrypt it.
To communicate, Alice can encrypt her message to Bob using the secret key

they share. She sends the resulting ciphertext to Bob, who can decrypt it using the
key and read the message. Eve can see the ciphertext, but as she does not know
the key shared by Alice and Bob, she cannot in general recover the message.
The art of creating secure ciphers and breaking insecure ciphers has been a topic

of study for several thousand years; one famous example is the successful attack on
the Enigma cipher used by Germany in World War II. A more detailed discussion
on the details of how a cipher works is beyond the scope of this thesis. There exists
a number of ciphers which have been thoroughly analyzed and are believed to be
secure, such as the Advanced Encryption Standard (AES) [86]. Omitting some
details, we say that two persons who share a key can securely communicate with
each other, even in the presence of eavesdroppers.
The security of the communication is based on the fact that Alice and Bob know

a key which Eve does not know. But where do Alice and Bob get their key from?
An easy case is if Alice and Bob can arrange a private meeting and decide upon a
key, a key they can then use to secure their communication.
The ciphers we have discussed so far are called symmetric, as Alice and Bob

must share the same key. Another option is the use of asymmetric cryptography
where a key consists of two parts: a public key and a private key. These parts
are such that messages encrypted using the public key can only be decrypted using
the private key. They public key can, as the name implies, be published, and the
private key needs to be kept secret. To communicate, Alice would encrypt messages
to Bob using Bob’s public key. The message could be decrypted by Bob, who knows
his private key. Bob would then encrypt the response using Alice’s public key.
There exist several methods for asymmetric cryptography which are believed

to be secure, the most well-known and mostly used being RSA [94], named after
Rivest, Shamir and Adleman. Another common asymmetric method is named after
El Gamal [45]. Most of the cryptography in this thesis is of the classic symmetric
type where Alice and Bob share a secret key.

Broadcast Encryption
What happens if it’s not just Alice and Bob wanting to speak, but rather a stream-
ing service that wants to send content to many millions of subscribers? When
streaming data over a network it needs to be encrypted, as otherwise anyone who
can eavesdrop on the network communication could receive the content without
paying.
In this section, we consider a live streaming scenario, where all subscribers

receive the same content at the same time. While there are other uses, this scenario
is the case where applying broadcast encryption is most straightforward, and thus
easiest to explain. Thus, the problem we consider is how to encrypt a single stream
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that is to be received by millions. From Section 1.1 we know that how to stream
efficiently (without trying to protect the content) is a problem on its own. To
focus the discussion on the new problem of protecting the content, we think of the
simplest network possible: a single sender sends messages, and all messages sent
are heard by all users. This is known as a broadcast channel.
Apart from the fact that the number of subscribers is large, a further difficulty

is that it also keeps changing! With millions of subscribers, there are always new
users signing up, and old users canceling subscriptions. The problem of how to
protect content distribution to a large and dynamic group is known as broadcast
encryption. When designing solutions, the sender is assumed to share a unique
secret key with each individual user, allowing the sender to securely communicate
individually with each user. The sender encrypts the message to the target user
and sends it on the broadcast channel, so all users can see the ciphertext, but only
the intended recipient can decrypt it. Such a key could be given automatically
to the user’s software the first time she buys a subscription, or be embedded in a
hardware device such as a set-top box.
We begin our discussion with two very simple suggestions, which do not quite

work. A first solution would be for the sender to encrypt the content to each sub-
scriber individually. This solution is very inefficient as it means that the whole con-
tent stream must be individually encrypted and sent to the millions of subscribers.
It would be much better if the sender only needed to encrypt and broadcast a single
copy of the stream.
Encrypting the stream once, we could pick some fixed key, give it to all sub-

scribers and use it to encrypt the stream. That would be an extremely efficient
solution. The problem is that it cannot accommodate changes in the set of sub-
scribers. If a user stops paying for her subscription, she could still remember the
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distribute updated media keys when the media key changes. But are the keys which
are used to decrypt media keys ever updated themselves? If they are, we say that
the scheme is stateful, and otherwise we say that the scheme is stateless.
The distinction between stateful and stateless is important if the scheme is

used in a setting where a subscriber may miss data. Consider what happens if a
subscriber’s Internet connection goes down for a minute during which the media
key is updated. As she then does not have the current media key, she cannot
decrypt the stream until the next media key is distributed. In a stateful scheme,
however, it is not certain that she will be able to decrypt the next media key. This
happens if the messages she missed while offline contained updates to the keys she
uses to recover the media key. Thus, a stateful scheme needs to be augmented with
a mechanism for subscribers to recover if they missed any messages. It is better for
a scheme to be stateless than to be stateful, but as we show in Paper VII one can
gain considerable efficiency by making a stateless scheme stateful.
How can we construct a broadcast encryption scheme? We begin with what we

here refer to as the naive scheme: each user is given a unique secret key which is also
known to the sender. To send out a media key, the sender sends each subscriber
a copy of the media key encrypted with the subscriber’s key. This sounds quite
similar to the two previous ideas we claimed to not quite work, what has changed?
Now, we only send a single stream, encrypted with a changing media key. The
media key is individually encrypted to each subscriber. This is much more efficient
as cryptographic keys are much smaller than a media stream. While the sender
still needs to encrypt a message individually to each subscriber, the messages are
now at least small. But we can still improve significantly on this design.

Subset Cover
The most common way to design a broadcast encryption scheme is to use the subset
cover paradigm [83]. Here, we keep the idea from the basic scheme that each user
shares a secret key with the sender, but we now add keys shared between several
users (a subset of users) and the sender. For instance, it may be that there is a
key k known only to the sender (Alice), and the users Bob, Charlotte and David.
In case all three of the users are current subscribers, k can be used to encrypt the
media key, and we do not have to encrypt it to each of them individually. If one
or more of them is not a member when a new media key is distributed, then we
cannot use the key k (as it is known to a non-subscriber who could then decrypt
the media key).
For each key, we consider the subset of users who know the key. If all users in

the subset are currently members, the key is currently usable. As users subscribe
and unsubscribe, keys (and their associated subsets) change back and forth between
being usable and unusable. When the sender is to distribute a new media encryption
key, she finds a number of subsets which together cover the current subscribers. By
this we mean that each subscriber must be in at least one of the subsets used, and
that no non-subscriber can be in one.
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Having selected such a cover, the sender then encrypts the media encryption key
with the key associated with each subset in the cover. This allows every subscriber
to recover the media encryption key as she is in at least one of the used subsets
and thus has the associated keys, and no non-subscriber can decrypt it as they do
not have any of the keys used. The amount of data the sender needs to send (the
bandwidth overhead) depends on the number of subsets she needs to use for the
cover, so she wants this number to be as small as possible. Coming up with a good
way of selecting the subsets of users who share keys is the most important part in
designing a subset cover based broadcast encryption scheme.
In the worst case, each subset selected will cover only a single user. This means

that we can never do worse than our naive scheme, but of course we would like to
do better! One of the contributions of this thesis is a proof in Paper VI, showing
that we cannot always do better. This means that no matter how smart we are
in selecting the subsets, sometimes when there are few subscribers our scheme will
perform the same as the naive scheme. We elaborate on this (and give the technical
caveats) in Section 5.2.
Having discussed how to cryptographically protect the streamed content, we

now turn to a quite different topic related to the security of a streaming system:
web security.

Web Security
As more and more financial transaction and integrity-sensitive interactions happen
over the web, it becomes more and more important to provide adequate security
on the web. As a first layer of protection, we need to encrypt sensitive information
such as credit card information as it is sent over a network. There are too many
user and web-based stores on the Internet that it is impossible for every user to
share a secret key with every store. Thus, to protect the communication between
a user and a store, we turn to the asymmetric cryptography we mentioned earlier.
Browsers have built-in support for sending information encrypted to a server, called
Hypertext Transfer Protocol Secure (HTTPS).
Just like we avoided going into any details on how ciphers work, we gloss over the

details of how HTTPS works. In the real world, there are some security concerns
with HTTPS. These include security problems in earlier versions of the protocol4,
problems with identity management, and usability problems causing users to ignore
warnings. To simplify our discussion, we assume that communication over HTTPS
securely transfers information from a user to the intended destination.
Assuming (as we now have) that we have solved the problem of securely com-

municating information to and from a web browser by always using HTTPS, what
remains to be discussed? A number of issues remain, both in how to build secure
server software and security within the browser. We focus on the latter. Web
browsers have evolved into complex pieces of software. For instance, web pages

4Most recently an issue with session renegotiation which was solved in RFC 5746 [93].
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Browsers have built-in support for sending information encrypted to a server, called
Hypertext Transfer Protocol Secure (HTTPS).
Just like we avoided going into any details on how ciphers work, we gloss over the

details of how HTTPS works. In the real world, there are some security concerns
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problems with identity management, and usability problems causing users to ignore
warnings. To simplify our discussion, we assume that communication over HTTPS
securely transfers information from a user to the intended destination.
Assuming (as we now have) that we have solved the problem of securely com-

municating information to and from a web browser by always using HTTPS, what
remains to be discussed? A number of issues remain, both in how to build secure
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browsers have evolved into complex pieces of software. For instance, web pages

4Most recently an issue with session renegotiation which was solved in RFC 5746 [93].
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may include code written in the JavaScript programming language that the web
browser needs to run. Web browsers also need to support a large number of formats
and protocols. Sometimes, all this functionality can interact in unforeseeable ways,
creating vulnerabilities that an attacker can use.
Within the context of security in a web browser, there is a large range of topics.

For brevity, we focus on one specific security property that we want to enforce: we
want to prevent a web site viewed in a browser from interfering with other sites
the user visits or spying on the user. First, we briefly motivate this, and then we
discuss a long-standing vulnerability that allows a web site to spy on its visitors in
what has been perceived as a fairly harmless way.

Isolation Between Tabs

At the same time as a browser must support a large number of features, it must
also offer strong protection and separation between content from different sources.
Multiple web pages can be open at the same time, and it is expected that they
cannot interfere with or spy on each other. As an example, a user should be able to
make a purchase from a store, entering their credit card details, without any other
page open at the same time being able to access that information.
In addition to different pages not being able to spy on each other, they should

not be able to affect each other in other ways either. Being logged into a bank, a
user can set up a transfer of money on the bank’s web site. The fact that the user
is logged in is tied to the browser. This is demonstrated by the fact that if the user
opens a new tab and navigates to the bank’s site, she will be logged in and can
make transfers. We sketch how this works in Section 4.1. Clearly, we do not want
a malicious page open in another tab at the same time as the user is logged in to
her bank to be able to set up bank transfers from the user’s account!

CSS History Detection

Apart from isolating pages open at the same time, there are also other concerns.
A user should be able to expect some privacy from a browser. For instance, if a
user visits a malicious web site, that site should not learn anything about what
pages the user has previously visited, her browsing history. A site may use such
information to target advertisements, for market research, or even blackmail5.
An attack that allows a web site to test if a user has visited a specific site was

publicly reported in 2000 [96], and was left open for a long time. Reasons for this
include that the impact of the problem was perceived as being fairly minor, and it
was difficult to fix. A solution was proposed in 2010 [8], which was implemented
in Chrome and Safari. Recently (March 2011), the two largest browser vendors
released new versions which also implement the fix, Internet Explorer 9 and Firefox

5Blackmail may seem far-fetched, but can be compared with “One Click Fraud” [35] where
a fraudster displays a message to the user on an erotic web site asking them to pay a fee and
threatening to send home an embarrassing “reminder” unless the user pays.
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4. This leaves Opera as the only major browser still vulnerable in its latest version.
We remark that Internet Explorer 9 is not compatible with Windows XP.
Most web browsers remember which links a user has visited. This information

is used to color visited links differently from unvisited links, to provide assistance
to a user navigating a web site. A malicious site can abuse the mechanism that
links are shown differently depending on their status as visited or unvisited. The
site evil.com may include a link to secret.com. When the user visits evil.com,
the link will be rendered in one of two ways, depending on if the user has previously
visited secret.com or not. In vulnerable browsers, the evil.com site can detect
which way the link was rendered. The attack is called CSS history detection;
Cascading Style Sheets (CSS) being the method by which a web site describes the
graphical layout of elements, including how visited and unvisited links are styled.
That a site can detect whether the user has visited a single link is less of a

privacy invasion than being able to extract the full history of the victim’s browser.
If a malicious web site is able to test many links quickly, an attacker may extract
a large fraction of the victim’s history. In an optimized version, it has been shown
that 30,000 links per second can be tested [54]. Some demonstration web sites were
created to raise user awareness of the issue, both attempting to extract history
of visiting popular sites [55] and specifically searching the user’s history for erotic
web sites [4]. These were published before the major browsers had implemented
defenses against the attack.
In Paper V, we show that the impact of history detection attacks go beyond

invasion of the victim’s privacy by using the CSS history detection attack to time
another attack. We show how a malicious page can use history detection to de-
termine when a victim is about to pay for a purchase. By redirecting the victim’s
browser at an opportune moment, she can more easily be tricked into revealing
credit card details or sending money to the attacker.
Having concluded our discussion on web security and the security of streaming

systems, we proceed to the second topic of this thesis: how to securely and efficiently
collaborate with people whom we do not fully trust.

1.3 Secure and Efficient Collaboration

The area of cryptography encompasses more topics than just protecting the security
of communications, be they between two or more participants. One example of more
complex tasks studied is that of secure voting. If we want to hold an election where
votes are counted electronically, how can we do that securely? What do we even
mean by securely? Clearly, each person should only be allowed to vote exactly once,
and it should be impossible to know how an individual voted. We also want the
voting system to protect against tampering; no organization should be able to alter
the outcome of the election. Furthermore, we may want the election to be amenable
to election monitoring by independent organizations who need to be able to verify
that all votes were correctly counted. Independent observers of the election should
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Figure 1.2: Replacing a trusted third party with a protocol.

not be allowed to learn how individual voters have voted.
Another related example of a more complex cryptographic task is that of auc-

tions, and in particular sealed-bid auctions. A sealed-bid auction is one where all
participants submit their bids in secret during a bidding period, and they are then
all opened at once. In some settings, the losing bids remain secret even after the
auction. Today, auctions are typically conducted through a middle-man, an auc-
tioneer, whom the seller and bidders trust to honestly conduct the auction and
maintain the secrecy of bids.
What do voting and auctions have in common? They are sensitive tasks where

people want to cooperate in a well-defined way, but where the participants cannot
fully trust each other. Today, such problems are typically solved by means of a
trusted third party, i.e. a person or organization which can be reasonably trusted
by all participants. In elections, we have election authorities and in auctions we have
auctioneers. We illustrate a traditional auction with an auctioneer in Figure 1.2a.
Sometimes there is no trusted third party available; in a corrupt state the election
authorities may not be trusted, and in international high-profile auctions it may
be impossible to find an auctioneer whom all parties trust. Can we somehow still
have secure elections or auctions?
In secure multi-party computation, we study if and how we can replace a trusted

third party with a cryptographic protocol. This is illustrated in Figure 1.2b. There,
instead of communicating via an auctioneer, the seller and all bidders communicate
using a cryptographic protocol. The goal is for the protocol to be just as secure
as the solution with an honest auctioneer. The reader may compare Figure 1.2 to
Figure 1.1 and note the similarities. In an analogy to the P2P paradigm, secure
multi-party computation also investigates how a central function (server or trusted
third party) can be replaced by a distributed protocol.
It turns out that in theory we can actually compute any function securely [46,

28, 15]! Furthermore, the security offered by these protocols is very good: no one
learns anything but what they can deduce themselves from their input and the
output of the function. What would those inputs and outputs be? In a common

1.3. SECURE AND EFFICIENT COLLABORATION 13
.

.

.

.

.

.

.
.Seller .Auctioneer

.Bidders

(a) Trusted Third Party

.

.Protocol

.

.

.

.

.
.Seller

.Bidders

(b) Secure multi-party computation

Figure 1.2: Replacing a trusted third party with a protocol.

not be allowed to learn how individual voters have voted.
Another related example of a more complex cryptographic task is that of auc-

tions, and in particular sealed-bid auctions. A sealed-bid auction is one where all
participants submit their bids in secret during a bidding period, and they are then
all opened at once. In some settings, the losing bids remain secret even after the
auction. Today, auctions are typically conducted through a middle-man, an auc-
tioneer, whom the seller and bidders trust to honestly conduct the auction and
maintain the secrecy of bids.
What do voting and auctions have in common? They are sensitive tasks where

people want to cooperate in a well-defined way, but where the participants cannot
fully trust each other. Today, such problems are typically solved by means of a
trusted third party, i.e. a person or organization which can be reasonably trusted
by all participants. In elections, we have election authorities and in auctions we have
auctioneers. We illustrate a traditional auction with an auctioneer in Figure 1.2a.
Sometimes there is no trusted third party available; in a corrupt state the election
authorities may not be trusted, and in international high-profile auctions it may
be impossible to find an auctioneer whom all parties trust. Can we somehow still
have secure elections or auctions?
In secure multi-party computation, we study if and how we can replace a trusted

third party with a cryptographic protocol. This is illustrated in Figure 1.2b. There,
instead of communicating via an auctioneer, the seller and all bidders communicate
using a cryptographic protocol. The goal is for the protocol to be just as secure
as the solution with an honest auctioneer. The reader may compare Figure 1.2 to
Figure 1.1 and note the similarities. In an analogy to the P2P paradigm, secure
multi-party computation also investigates how a central function (server or trusted
third party) can be replaced by a distributed protocol.
It turns out that in theory we can actually compute any function securely [46,

28, 15]! Furthermore, the security offered by these protocols is very good: no one
learns anything but what they can deduce themselves from their input and the
output of the function. What would those inputs and outputs be? In a common

1.3. SECURE AND EFFICIENT COLLABORATION 13
.

.

.

.

.

.

.
.Seller .Auctioneer

.Bidders

(a) Trusted Third Party

.

.Protocol

.

.

.

.

.
.Seller

.Bidders

(b) Secure multi-party computation

Figure 1.2: Replacing a trusted third party with a protocol.

not be allowed to learn how individual voters have voted.
Another related example of a more complex cryptographic task is that of auc-

tions, and in particular sealed-bid auctions. A sealed-bid auction is one where all
participants submit their bids in secret during a bidding period, and they are then
all opened at once. In some settings, the losing bids remain secret even after the
auction. Today, auctions are typically conducted through a middle-man, an auc-
tioneer, whom the seller and bidders trust to honestly conduct the auction and
maintain the secrecy of bids.
What do voting and auctions have in common? They are sensitive tasks where

people want to cooperate in a well-defined way, but where the participants cannot
fully trust each other. Today, such problems are typically solved by means of a
trusted third party, i.e. a person or organization which can be reasonably trusted
by all participants. In elections, we have election authorities and in auctions we have
auctioneers. We illustrate a traditional auction with an auctioneer in Figure 1.2a.
Sometimes there is no trusted third party available; in a corrupt state the election
authorities may not be trusted, and in international high-profile auctions it may
be impossible to find an auctioneer whom all parties trust. Can we somehow still
have secure elections or auctions?
In secure multi-party computation, we study if and how we can replace a trusted

third party with a cryptographic protocol. This is illustrated in Figure 1.2b. There,
instead of communicating via an auctioneer, the seller and all bidders communicate
using a cryptographic protocol. The goal is for the protocol to be just as secure
as the solution with an honest auctioneer. The reader may compare Figure 1.2 to
Figure 1.1 and note the similarities. In an analogy to the P2P paradigm, secure
multi-party computation also investigates how a central function (server or trusted
third party) can be replaced by a distributed protocol.
It turns out that in theory we can actually compute any function securely [46,

28, 15]! Furthermore, the security offered by these protocols is very good: no one
learns anything but what they can deduce themselves from their input and the
output of the function. What would those inputs and outputs be? In a common

1.3. SECURE AND EFFICIENT COLLABORATION 13
.

.

.

.

.

.

.
.Seller .Auctioneer

.Bidders

(a) Trusted Third Party

.

.Protocol

.

.

.

.

.
.Seller

.Bidders

(b) Secure multi-party computation

Figure 1.2: Replacing a trusted third party with a protocol.

not be allowed to learn how individual voters have voted.
Another related example of a more complex cryptographic task is that of auc-

tions, and in particular sealed-bid auctions. A sealed-bid auction is one where all
participants submit their bids in secret during a bidding period, and they are then
all opened at once. In some settings, the losing bids remain secret even after the
auction. Today, auctions are typically conducted through a middle-man, an auc-
tioneer, whom the seller and bidders trust to honestly conduct the auction and
maintain the secrecy of bids.
What do voting and auctions have in common? They are sensitive tasks where

people want to cooperate in a well-defined way, but where the participants cannot
fully trust each other. Today, such problems are typically solved by means of a
trusted third party, i.e. a person or organization which can be reasonably trusted
by all participants. In elections, we have election authorities and in auctions we have
auctioneers. We illustrate a traditional auction with an auctioneer in Figure 1.2a.
Sometimes there is no trusted third party available; in a corrupt state the election
authorities may not be trusted, and in international high-profile auctions it may
be impossible to find an auctioneer whom all parties trust. Can we somehow still
have secure elections or auctions?
In secure multi-party computation, we study if and how we can replace a trusted

third party with a cryptographic protocol. This is illustrated in Figure 1.2b. There,
instead of communicating via an auctioneer, the seller and all bidders communicate
using a cryptographic protocol. The goal is for the protocol to be just as secure
as the solution with an honest auctioneer. The reader may compare Figure 1.2 to
Figure 1.1 and note the similarities. In an analogy to the P2P paradigm, secure
multi-party computation also investigates how a central function (server or trusted
third party) can be replaced by a distributed protocol.
It turns out that in theory we can actually compute any function securely [46,

28, 15]! Furthermore, the security offered by these protocols is very good: no one
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election, each voter inputs a single vote for a candidate, and the output is the
number of votes each candidate received6. Thus, in a secure system, everyone
learns the correct number of votes every candidate received, but learns nothing
about who voted how. A voter should also be able to verify that her vote was
correctly counted, a property that is difficult to impossible in current, real-world
voting systems.
What are the inputs and outputs of an auction? First of all, what is an auction?

Most readers will likely think of a traditional English auction where bidders raise
their bids successively (often by shouting out or holding up a paddle). When no
bidder wants to raise the bid, the auction is over and the last bidder wins, paying
the price of the winning bid. There are, however, many different types of auctions
studied. To simplify our discussion here, we will consider closed auctions, where
bidders submit sealed bids (and thus, cannot interactively change their bids). To
give a flavor of how auctions can differ from traditional auctions, we describe a
Vickrey auction. In such an auction, the highest bidder wins, but only pays the
bid of the second highest bidder. Compared to a normal auction, a Vickrey auction
has the advantage that the best option for a bidder is to always bid the maximum
price they are willing to pay, without any regard to how she believes other bidders
will act. When creating a secure multi-party computation protocol, we can freely
select the type of auction to implement.
Returning to our original question, what are the inputs and outputs of a closed

auction? The input of the bidders is their bids, and the input of the seller is a
reserve price. The outputs are more complicated, and here we have many options.
The winning bidder should clearly learn that she won. Both seller and buyer need
to know the final price. Should the seller learn the identity of the winner? In
most auctions, yes, but in some cases, we may only want the seller to be able
to communicate with the (anonymous) winner, to decide upon where and how to
perform the transaction [102].
What should a losing bidder learn? She should learn that she did not win the

auction. Should she learn what the winning bid was, the final price, or who won?
Depending on the setting, the answer to each of these questions may be either yes
or no. By using a secure multi-party computation protocol, we can create all types
of auctions, and precisely select who should learn what.
Given that the results on how to compute any function securely date back to

the late 1980’s, what is there left to research? While those results are very general,
the protocols can be too slow if run by a large number of parties or on complex
functions (and voting or auctions are complex in this sense). One area of research is
to look for improved general solutions, or general solutions which work in different
settings (one such example is the network requirements discussed below). A second
area is to create protocols for specific interesting functions, such as auctions. By
specializing the protocol, it is often possible to get more efficient solutions. Finally,

6There are many different election systems that we could consider and implement securely,
here we only pick a simple one.
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a third line of research investigates the limits of secure computation.
In the case of protocols for specific problems, a large number of functions have

been studied. These include the auctions and voting problems we have discussed,
but also problems such as comparing gene sequences or running database queries7.
In Paper III we give efficient protocols for the problem of sorting. A related protocol
also presented in that paper can be used for some database queries, e.g., to compute
the items which two databases have in common. Our Paper IV gives efficient
protocols for basic problems such as summation and computing the maximum input.
The novelty in our protocols lies in that they can run on (almost) any network, while
most secure multi-party computation protocols are designed for a network where
all participants can communicate directly with each other.
When positively stating that we can securely compute any function, we swept

an important condition under the rug. Namely the fact that the protocols only
remain secure as long as a too large number of the participants do not collude to
break the security. How large can we make this “too large” number be? The answer
is “it depends”, but often we can make it quite high. We return to this subject in
Chapter 3. For now we think of it as half of the participants, which is true for the
so-called information-theoretic honest-but-curious setting (terms also explained in
Chapter 3).
In our Paper II we prove results related to these limits. There, we show a so-

called zero-one law for a certain class of functions, those with a single trit (a value
that is 0, 1, or 2) as output. More precisely, we prove that each such function can
either be securely computed no matter how many participants collude to break the
security (the best possible case), or it cannot be securely computed without honest
majority (the worst possible case). For general functions (without the restriction to
three outputs), there are functions which lie between these two extreme points [30].
To place the role of secure multi-party computation, and cryptography in some

context, we briefly discuss the topic of how to actually run such a protocol.

Running a Secure Computation
Given that we have a secure protocol for secure multi-party computation for some
task we want to solve, how do we actually run it? A few protocols, e.g. our
protocol for summation in Paper IV, are so simple that they could be run directly
by humans with calculators, playing cards [40], or PEZ dispensers [7]. These are
rare exceptions, in reality the protocols will be implemented and run as computer
programs.
The typical setting to run a computation is that each party has her own com-

puter on which she runs a program implementing the protocol. Each party enters
her secret input on her own machine. The computers of all the parties are connected
by a network to allow them to communicate with each other. Once all parties have

7Some of these problems are studied in their own area and typically not as part of secure multi-
party computation. These include voting (mix-nets) and database queries (private information
retrieval).
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entered their inputs in the local machines, the protocol executes, and when the
computation is complete, each party receives her output.
Does a secure multi-party computation protocol solve all our security problems?

No! It, and cryptography in general, is more of a basic building block upon which
we can build secure solutions. Without a secure protocol as a foundation, we could
not implement the functionality securely, but even with the protocol, there are
many other issues which need to be solved.
For the execution to be secure, it is important that not only the protocol is

secure, but also that the implementation and computers are secure. In most cases,
it is unlikely that each party has the expertise or resources required to implement
the protocol herself or hire someone to do it. A more likely scenario is that all
parties would actually run the same software implementing the protocol, or buy
the software from one of a small number of vendors. If the implementation a
party uses is insecure, her security may be compromised no matter how good the
protocol is. If the execution is extremely valuable, each party could in theory
implement the protocol herself and use software verification techniques to prove
that the implementation is secure. Similarly to the issue of the implementation
of the protocol is the computer it is running on. If the operating system has
vulnerabilities, a party may again be compromised.
In the foregoing description, vendors implementing secure protocols seem similar

to being a TTP. A key difference here is that each participant only needs to trust
the vendor that she is buying from. There does not need to be a single vendor that
all parties trust.
This concludes our discussion on secure multi-party computation. We end the

present chapter with a brief summary of the contributions of this thesis.

1.4 Contributions

This thesis is based on the contents of seven papers. Out of these, the author be-
lieves that the two strongest scientific contributions are those contained in Paper II,
proving a zero-one law for secure computation with ternary outputs, and Paper I,
describing the peer-assisted streaming in the Spotify system.
In this thesis, we give both protocols and bounds for two cryptographic prob-

lems: broadcast encryption and secure multi-party computation. This means that
we both discuss how to solve problems, and also prove that some specific problems
cannot be solved. We also present contributions in streaming, detailing a large,
commercial system for music-on-demand streaming and providing measurements
showing how the system performs in the real world. Furthermore, we also describe
a new attack within the context of web security, and propose a new security policy
to prevent it and related attacks.
Each of the four remaining chapters of this thesis contains a more detailed

summary of the respective contributions within the area discussed in the chapter.
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lieves that the two strongest scientific contributions are those contained in Paper II,
proving a zero-one law for secure computation with ternary outputs, and Paper I,
describing the peer-assisted streaming in the Spotify system.
In this thesis, we give both protocols and bounds for two cryptographic prob-

lems: broadcast encryption and secure multi-party computation. This means that
we both discuss how to solve problems, and also prove that some specific problems
cannot be solved. We also present contributions in streaming, detailing a large,
commercial system for music-on-demand streaming and providing measurements
showing how the system performs in the real world. Furthermore, we also describe
a new attack within the context of web security, and propose a new security policy
to prevent it and related attacks.
Each of the four remaining chapters of this thesis contains a more detailed

summary of the respective contributions within the area discussed in the chapter.
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Chapter 2

Streaming and Peer-to-Peer
Streaming

A streaming system is a system for distributing and playing media, characterized
by its ability to begin playing before the entirety of the content has been down-
loaded. The core problem is to get data to the receiver at a sufficient rate to allow
interruption-free decoding and playback of the media stream. Streaming systems
have become very popular, with high user numbers. How to construct efficient
streaming systems is a rich area of research and there are a large number of differ-
ent topics that need to be addressed when constructing a streaming system.
A streaming system may be streaming either audio or video, and as we argue

in Section 2.1 there are important technical differences between the two cases. In
most of our discussion, we treat generic streaming problems that apply to both types
of streaming. To avoid too cumbersome language we write as if discussing video
streaming services, saying that a viewer watches a video, in discussions pertaining
to both audio and video.
Providing background on the problems in streaming, we discuss three central

questions in turn: what are we streaming, how do we distribute the data, and how
do we measure the results? We then summarize our contributions in streaming
after which we end the chapter with some conclusions and lines of future work.

2.1 Types of Streaming Systems

We begin our discussion on what type of media content is streamed, and how it
affects the properties of solutions. A number of different types of content have
been discussed in the literature. It is well recognized that there is clear difference
between live and on-demand streaming in protocol design. As we argue, there are
also important differences for on-demand systems between music and movies, apart
from the difference in bitrates. We discussed the different types of streaming in
Section 1.1, here we recall the terminology and turn to a more technical discussion.
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18 CHAPTER 2. STREAMING AND PEER-TO-PEER STREAMING

Live vs. On-Demand
One of the first distinctions is between live and on-demand streaming, which is
a categorization based on the availability of the content, and on the amount of
content offered. To exemplify the difference, there is a clear difference between a
video repository such as Youtube and a live broadcast of the summer Olympics.
On Youtube, the viewer can fully control playback of videos, whereas viewing the
Olympics she can only see what is happening at the moment. Additionally, a user
of the on-demand Youtube system has a huge number of different videos to choose
from, whereas the live Olympics viewer would likely only have a small number of
channels to select from, showing the current sports events and some studio discus-
sions.
The technical challenges posed by the two settings have both many similarities

and differences. We focus here on the differences. An on-demand system typically
offers much more control of playback, allowing the user to play, pause, and skip. In
addition, an on-demand system typically provides a much larger library of content
for the user to select from. A challenge in a live system is that it cannot afford to
do much, if any, pre-processing of the content delivered. An example of a similarity
is the topic of when to begin playback that we discussed in Section 1.1.
What about the timing of delivery? For a live streaming system, one is often

interested in minimizing the delay from the stream content being injected into the
system and until the user plays the content back. Similarly, in an on-demand
streaming system, one is interested in maintaining a low delay between when the
user selects an object and when playback begins. A major difference here is that in
live streaming, users want the same content at the same time, while in on-demand
system, all users are at a different point of playback.
How important is playback latency in an on-demand system? We are not aware

of any studies measuring this directly. An indication that it may be important is
given by Brutlag [21], who demonstrated the importance of speed in web browsers.
In an experiment, they added 50–400ms of artificial latency to Google web searches.
Their results indicated that even such small additions of latency resulted in de-
creased usage, with an average -0.59% daily Google usage from the users with the
most latency added.
The distinction between on-demand and live streaming is made in most of the

existing streaming literature. Most systems and proposals are specifically target at
one of the two use cases, but some systems are designed to handle both, such as
PPLive [51].

Music vs. Movies
A distinction that is not made very often in the existing academic literature is
that between music and movie streaming. Almost all of the existing literature is
primarily concerned with video streaming of longer videos such as TV episodes
or movies. We argue that in on-demand streaming, there are actually significant
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differences between streaming music and movies.
At a glance, it may seem that streaming music is simply easier than streaming

video as the bandwidth involved is lower. As an example, the Spotify on-demand
music services streams with an average bitrate of 96–320 kilobits per second (kbps),
with most tracks being streamed using a variable bit rate (VBR) coding averag-
ing 160 kbps. This can be compared with video streaming services where typical
bitrates are 400–800 kbps. Recently, Liu et al. [74] presented the Novasky video
streaming system, which streams at bitrates of 1–2Mbps.
Locally caching previously played content appears to be much more useful in a

music streaming service. In the Spotify service, our measurements show that 55.4%
of the data used by the clients came from the cache on the local machine. While
we are not aware of numbers on cache utilization in video streaming services, we
believe them to be significantly lower; users are more likely to listen to the same
music many times than they are to view the same movie many times. As videos
are larger than music tracks, a cache in a music streaming systems can store many
more objects than a cache of the same size in a video streaming system.
Another difference between the two types of systems is the amount of content

available. Many of the commercially deployed music-on-demand streaming systems
have catalogs with over 10 million tracks available for streaming [101, 79]. In movie
streaming services, catalog sizes are several orders of magnitude smaller, the movie
streaming site Voddler has a catalog of over 2,500 movies [104].
There is also a large difference in the play time of the items in the two systems.

A full-length movie is about two hours long, while a music track is a few minutes.
This means that users of a music streaming system start playback of many more
objects than users of a movie steaming system. In addition, it appears that users
of music streaming systems are highly active in selecting songs: our Paper I shows
that 39% of playbacks in the Spotify system begin due to user selection (as opposed
to continuing to the next scheduled track).
Taken together, this means that a music system must be efficient in streaming

tracks from a large catalog. As new tracks begin playing often, it is particularly
important that the system is efficient in beginning to play a new track. For systems
using a distribution method based on peer-to-peer techniques (one of the most
common designs, see Section 2.2), this means that a music streaming system must
be good at quickly finding peers with the correct content, and efficient in rapidly
setting up streaming from those peers.
At the same time, the lower bitrate and smaller pieces of content in a music

streaming service implies that the actual download strategy used when streaming
is less important compared to a video streaming system. For instance, the Spotify
system uses a straightforward strategy downloading content in-order to good re-
sults. By in-order, we mean that the data is downloaded in the order it is needed
for playback. In comparison, the mechanism to download content is a key piece of
a peer-to-peer video streaming system.
Why would a peer-to-peer video streaming system not download content in-

order? As typical cache sizes mean that a user can only store a few videos, it is

2.1. TYPES OF STREAMING SYSTEMS 19

differences between streaming music and movies.
At a glance, it may seem that streaming music is simply easier than streaming

video as the bandwidth involved is lower. As an example, the Spotify on-demand
music services streams with an average bitrate of 96–320 kilobits per second (kbps),
with most tracks being streamed using a variable bit rate (VBR) coding averag-
ing 160 kbps. This can be compared with video streaming services where typical
bitrates are 400–800 kbps. Recently, Liu et al. [74] presented the Novasky video
streaming system, which streams at bitrates of 1–2Mbps.
Locally caching previously played content appears to be much more useful in a

music streaming service. In the Spotify service, our measurements show that 55.4%
of the data used by the clients came from the cache on the local machine. While
we are not aware of numbers on cache utilization in video streaming services, we
believe them to be significantly lower; users are more likely to listen to the same
music many times than they are to view the same movie many times. As videos
are larger than music tracks, a cache in a music streaming systems can store many
more objects than a cache of the same size in a video streaming system.
Another difference between the two types of systems is the amount of content

available. Many of the commercially deployed music-on-demand streaming systems
have catalogs with over 10 million tracks available for streaming [101, 79]. In movie
streaming services, catalog sizes are several orders of magnitude smaller, the movie
streaming site Voddler has a catalog of over 2,500 movies [104].
There is also a large difference in the play time of the items in the two systems.

A full-length movie is about two hours long, while a music track is a few minutes.
This means that users of a music streaming system start playback of many more
objects than users of a movie steaming system. In addition, it appears that users
of music streaming systems are highly active in selecting songs: our Paper I shows
that 39% of playbacks in the Spotify system begin due to user selection (as opposed
to continuing to the next scheduled track).
Taken together, this means that a music system must be efficient in streaming

tracks from a large catalog. As new tracks begin playing often, it is particularly
important that the system is efficient in beginning to play a new track. For systems
using a distribution method based on peer-to-peer techniques (one of the most
common designs, see Section 2.2), this means that a music streaming system must
be good at quickly finding peers with the correct content, and efficient in rapidly
setting up streaming from those peers.
At the same time, the lower bitrate and smaller pieces of content in a music

streaming service implies that the actual download strategy used when streaming
is less important compared to a video streaming system. For instance, the Spotify
system uses a straightforward strategy downloading content in-order to good re-
sults. By in-order, we mean that the data is downloaded in the order it is needed
for playback. In comparison, the mechanism to download content is a key piece of
a peer-to-peer video streaming system.
Why would a peer-to-peer video streaming system not download content in-

order? As typical cache sizes mean that a user can only store a few videos, it is

2.1. TYPES OF STREAMING SYSTEMS 19

differences between streaming music and movies.
At a glance, it may seem that streaming music is simply easier than streaming

video as the bandwidth involved is lower. As an example, the Spotify on-demand
music services streams with an average bitrate of 96–320 kilobits per second (kbps),
with most tracks being streamed using a variable bit rate (VBR) coding averag-
ing 160 kbps. This can be compared with video streaming services where typical
bitrates are 400–800 kbps. Recently, Liu et al. [74] presented the Novasky video
streaming system, which streams at bitrates of 1–2Mbps.
Locally caching previously played content appears to be much more useful in a

music streaming service. In the Spotify service, our measurements show that 55.4%
of the data used by the clients came from the cache on the local machine. While
we are not aware of numbers on cache utilization in video streaming services, we
believe them to be significantly lower; users are more likely to listen to the same
music many times than they are to view the same movie many times. As videos
are larger than music tracks, a cache in a music streaming systems can store many
more objects than a cache of the same size in a video streaming system.
Another difference between the two types of systems is the amount of content

available. Many of the commercially deployed music-on-demand streaming systems
have catalogs with over 10 million tracks available for streaming [101, 79]. In movie
streaming services, catalog sizes are several orders of magnitude smaller, the movie
streaming site Voddler has a catalog of over 2,500 movies [104].
There is also a large difference in the play time of the items in the two systems.

A full-length movie is about two hours long, while a music track is a few minutes.
This means that users of a music streaming system start playback of many more
objects than users of a movie steaming system. In addition, it appears that users
of music streaming systems are highly active in selecting songs: our Paper I shows
that 39% of playbacks in the Spotify system begin due to user selection (as opposed
to continuing to the next scheduled track).
Taken together, this means that a music system must be efficient in streaming

tracks from a large catalog. As new tracks begin playing often, it is particularly
important that the system is efficient in beginning to play a new track. For systems
using a distribution method based on peer-to-peer techniques (one of the most
common designs, see Section 2.2), this means that a music streaming system must
be good at quickly finding peers with the correct content, and efficient in rapidly
setting up streaming from those peers.
At the same time, the lower bitrate and smaller pieces of content in a music

streaming service implies that the actual download strategy used when streaming
is less important compared to a video streaming system. For instance, the Spotify
system uses a straightforward strategy downloading content in-order to good re-
sults. By in-order, we mean that the data is downloaded in the order it is needed
for playback. In comparison, the mechanism to download content is a key piece of
a peer-to-peer video streaming system.
Why would a peer-to-peer video streaming system not download content in-

order? As typical cache sizes mean that a user can only store a few videos, it is

2.1. TYPES OF STREAMING SYSTEMS 19

differences between streaming music and movies.
At a glance, it may seem that streaming music is simply easier than streaming

video as the bandwidth involved is lower. As an example, the Spotify on-demand
music services streams with an average bitrate of 96–320 kilobits per second (kbps),
with most tracks being streamed using a variable bit rate (VBR) coding averag-
ing 160 kbps. This can be compared with video streaming services where typical
bitrates are 400–800 kbps. Recently, Liu et al. [74] presented the Novasky video
streaming system, which streams at bitrates of 1–2Mbps.
Locally caching previously played content appears to be much more useful in a

music streaming service. In the Spotify service, our measurements show that 55.4%
of the data used by the clients came from the cache on the local machine. While
we are not aware of numbers on cache utilization in video streaming services, we
believe them to be significantly lower; users are more likely to listen to the same
music many times than they are to view the same movie many times. As videos
are larger than music tracks, a cache in a music streaming systems can store many
more objects than a cache of the same size in a video streaming system.
Another difference between the two types of systems is the amount of content

available. Many of the commercially deployed music-on-demand streaming systems
have catalogs with over 10 million tracks available for streaming [101, 79]. In movie
streaming services, catalog sizes are several orders of magnitude smaller, the movie
streaming site Voddler has a catalog of over 2,500 movies [104].
There is also a large difference in the play time of the items in the two systems.

A full-length movie is about two hours long, while a music track is a few minutes.
This means that users of a music streaming system start playback of many more
objects than users of a movie steaming system. In addition, it appears that users
of music streaming systems are highly active in selecting songs: our Paper I shows
that 39% of playbacks in the Spotify system begin due to user selection (as opposed
to continuing to the next scheduled track).
Taken together, this means that a music system must be efficient in streaming

tracks from a large catalog. As new tracks begin playing often, it is particularly
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system uses a straightforward strategy downloading content in-order to good re-
sults. By in-order, we mean that the data is downloaded in the order it is needed
for playback. In comparison, the mechanism to download content is a key piece of
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Why would a peer-to-peer video streaming system not download content in-

order? As typical cache sizes mean that a user can only store a few videos, it is
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important that the user quickly receives pieces of content which can be usefully
redistributed to other users. When downloading in-order, all clients receive the
same content in the same order. This leads to a situation where the beginning of
videos are much more well-spread among peers than the last parts of videos, as
viewers can switch videos without viewing the whole video. This means that there
is an increased risk that the last part is lost from the peer-to-peer network.
If each peer uses a more advanced strategy for what to download than in-order,

the whole video can be quickly disseminated among the peers, and is thus more
likely to remain available even after some peers have disconnected. This is simi-
lar to the BitTorrent [37] protocol for file distribution, and several proposed video
streaming systems essentially use a modified BitTorrent protocol for streaming. But
in a streaming system, data is needed in-order for playback, so the client cannot
download all data out-of-order. This means that a video streaming system must
strike a balance between downloading enough data in-order that is available for
playback, while performing out-of-order downloading to achieve good data distri-
bution properties. In a music streaming system, caches are comparatively large, so
it is less imperative that a user can contribute upload capacity for the track they
are currently playing. This observation is used in the Spotify protocol, where users
only upload tracks which they have completely downloaded. This design simplifies
the protocol and reduces protocol overhead.
Is the distinction truly between music and movie streaming? No, not quite.

Systems with a huge catalog of short video clips, such as Youtube, have most of the
challenges present in both movie and music streaming: the higher bitrate of video,
but the large catalog and short playback times of music. We believe, however, that
making a distinction between the two cases, and referring to them as music and
movie streaming respectively immediately gives the right idea, even if there are also
interesting systems “in between”.

2.2 Distribution Methods for Streaming Systems

A streaming system typically starts with a single sender who has some content that a
number of users wish to receive. How is that content distributed over the network
from the sender to the viewers? Consider a system with ten million concurrent
users, streaming at 500 kbps. If the streams are naively sent from the server to the
end users, this would use 5Tbps of bandwidth at the server. This number can be
compared to the DE-CIX Frankfurt Internet exchange point where the historical
traffic peak at the time of writing is 3.2Tbps [39]. There is clearly a need to devise
a better distribution strategy than naively sending data to each user individually
from a single point. In Figure 2.1a we illustrate a network where all clients connect
directly to the server to download their content.
Here, we discuss three approaches to solving the data distribution problem.

Firstly, we discuss multicast, which requires support for the underlying network, but
results in optimal distribution for live streaming. Secondly, we discuss a solution
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Figure 2.1: Three modes of distribution. Thickness indicates bandwidth usage.
Dotted indicates unused connection. Boxes with arrows represent network routers.

based upon what amounts to placing servers at many locations in the network,
through the use of a content distribution network. Lastly, we discuss peer-to-peer
based approaches. Both of the two latter approaches are practically usable today
for both live and on-demand streaming.

Multicast
The most common type of network traffic is unicast, meaning that a single sender
sends data to a single recipient. Almost all traffic on the Internet is unicast. An-
other type of traffic is broadcast, where a sender can send a single piece of data
that is propagated in the network to reach everyone in an addressed part (we omit
details on what parts of the network can be addressed) of the network. Broadcast
traffic is often targeted at the local network the sender is connected to. Due to
security concerns1, broadcast packets to networks beyond the local network are
typically blocked.
The Internet also includes a more complex mechanism called multicast. With

this mechanism, computers can sign up, using the Internet Group Management
Protocol [24] (IGMP) to receive traffic destined to a multicast group. A sender can
then send a single packet addressed to the multicast group and have the routers
in the network distribute the packet to all recipients in the group. The routers
maintain a spanning tree from the sender to all receivers, so the data distribution
is optimal for the network: each packet is only sent once over precisely the links
required to reach all receivers. We illustrate this in Figure 2.1b.
While it may be difficult to apply multicast to on-demand streaming, it seems

ideally suited to live streaming. Sadly, it is difficult to use multicast over the
Internet. Due to several reasons, including scalability and network management

1An example of which is the Smurf attack [25], a classic Denial of Service attack where an
attacker sends a ping packet to the broadcast address of a network in order to generate large
amounts of network traffic.
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Figure 2.2: A spanning tree overlay used for streaming, and the bandwidth utiliza-
tion in the substrate network.

concerns, multicast is typically not deployed between Internet Service Providers,
making it unusable in an Internet-wide streaming service. Multicast-based stream-
ing can be a usable option for more local live streaming services to efficiently dis-
tribute information within a single Internet Service Providers’ network.
The fact that multicast is not widely deployed, despite having been a part

of the standard Internet protocols for over a decade was discussed by Chu, Rao,
and Zhang [36]. They proposed to instead implement multicast on top of normal
unicast links, building a peer-to-peer network. We illustrate this in Figure 2.2,
where Figure 2.2a shows the structure of the virtual spanning tree that the parties
are connected in. We show how this corresponds to network traffic in Figure 2.2b.
We return to this construction in our discussion of peer-to-peer streaming later in
this section.

Content Distribution Networks and HTTP-based Streaming
As it is difficult for a streaming service provider to distribute the huge data volumes
involved, one strategy is to outsource the problem. Content Distribution Networks
(CDNs) are businesses specialized in global content distribution. Among the large
CDNs active today are Akamai, Amazon, and Level3.
Somewhat simplified, a CDN operates by having a large number of servers in

data centers distributed across the globe and by intelligently distributing popular
content to a data center near the users where the content is popular. Users are
automatically directed to download content from the closest data center where it
resides. This is shown in Figure 2.1c.
Distribution of content from the CDN to the end user uses unicast traffic, but in

the common case over short distances. In addition, not all content is sent from the
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same source, meaning that there is no single hotspot needing tremendous amounts of
bandwidth. Access to files hosted on a CDN is most often done using the Hypertext
Transfer Protocol (HTTP) used for web browsing. Furthermore, by having many
data centers, a CDN is able to offer good redundancy; if a user’s closest data center
has service problems, she can temporarily be redirected to another one.
As CDNs mostly use the standardized HTTP protocol for streaming, a service

may opt to host parts of, or all of its material itself. It may then move content to a
CDN as the need arises to save on server resources or bandwidth. Or alternatively,
some large services such as Youtube essentially have their own CDN.
Most of the commercial streaming services today use CDNs for streaming. To

the best of our knowledge, Spotify is the only music streaming service today not
using a CDN (or self-hosted HTTP-based streaming) as its primary distribution
mechanism. Within video streaming, the market is more mixed, with a few services
such as PPLive, UUSee, and Voddler not building on CDNs.

Peer-to-Peer and Peer-Assisted
Peer-to-peer (P2P) systems have been intensely studied and garnered much atten-
tion in the popular press. While there are many uses for P2P techniques, here we
are interested in their use in streaming. A large amount of academic research has
been devoted to P2P-based streaming, and a number of streaming systems, both
commercial and academic, based on P2P techniques have been deployed.
In a P2P streaming system, once a client has downloaded a piece of content,

it may upload it to other clients. This way, a part of the bandwidth cost in the
streaming service is moved from the sender to the receivers. A key point of P2P
based systems is the scalability properties: as the number of users of the system
increases, so does the serving capacity! P2P systems were largely popularized
through P2P-based file-sharing services such as BitTorrent, Gnutella, and Napster.
Building a streaming system using P2P techniques, no special requirements are

placed on the network, so it is easier to deploy than a multicast based solution. The
peers make unicast connections to each other, sending and receiving data. Looking
at the connections the peers make, we can imagine these as being a new, virtual
network, running over the real, physical network. This network of the peers and
their unicast connections is known as an overlay network, as it is running on top of
another network. The underlying physical network is known as the substrate. This
is illustrated in in Figure 2.2b.
What is the structure of this overlay network? At a minimum, we most often

want it to be connected, so the simplest form is a tree. Some proposals do use a
tree structure, or multiple overlapping trees, as we discuss below. Another common
design approach is an unstructured, or mesh, overlay where peers connect to each
other without any specific structure imposed.
To provide some background on design topics relevant to a peer-to-peer stream-

ing system, we mention two fundamental design decisions: the structure of the
overlay and basing distribution on pushing or pulling content. We also touch upon
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same source, meaning that there is no single hotspot needing tremendous amounts of
bandwidth. Access to files hosted on a CDN is most often done using the Hypertext
Transfer Protocol (HTTP) used for web browsing. Furthermore, by having many
data centers, a CDN is able to offer good redundancy; if a user’s closest data center
has service problems, she can temporarily be redirected to another one.
As CDNs mostly use the standardized HTTP protocol for streaming, a service
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the distinction between peer-to-peer and peer-assisted systems.

Tree-Based and Mesh-Based

There are two primary approaches to structuring a P2P-based streaming system
[77]: tree or mesh. In a basic tree-based system, a tree is formed with the sender at
the root and the peers as nodes in the tree. Content propagates down in a tree along
its edges; a peer sends content to its children in the tree. This approach is illustrated
in Figure 2.2. Single-tree approaches include PeerCast [41], SpreadIT [10], and
ZIGZAG [103]. Single-tree streaming systems can be understood as constructing a
multicast tree on top of unicast links.
A problem with the single-tree approaches is that peers who end up as leafs

in the tree do not contribute any bandwidth. Another issue is that a node near
the top of the tree disconnecting can affect the quality for a large number of other
users. When a user disconnects, some mechanism must be applied to repair the
tree, and while the reparation is done, users below the disconnected user may not
receive content.
One approach to reducing the impact of users disconnecting is through the use of

multiple trees, as in CoopNet [88]. Tree-based approaches are typically targeted at
the live streaming scenario where a large number of viewers want the same content
at the same time. We are not aware of any tree-based proposals for on-demand
streaming.
Mesh-based, or unstructured, approaches do not impose any particular struc-

ture on who talks to whom in the P2P network. Mesh-based approaches include
Bullet [65], CoolStreaming/DONet [110], AnySee [73], PPLive [51], and Spotify [69]
(Paper I).

Push-Based and Pull-Based

Another distinction in the literature is between push-based and pull-based ap-
proaches. In a push-based approach, peers distribute data to each other auto-
matically, where in a pull-based approach a peer explicitly requests the data it
needs. Similarly to the issue of tree-based and mesh-based design, the question of
push vs. pull is mostly relevant in the context of live streaming [90] where many
peers want the same content at the same time.
Push is mainly used in conjunction with tree-based system (and not in mesh-

based systems), while pull is the most common paradigm in mesh-based streaming.
Some approaches to live streaming built on gossiping have also been proposed.
Gossiping is an important design paradigm in the field of distributed algorithms
in general. For streaming, the approaches we are aware of are mesh-based and use
gossiping to push information on what blocks are available at what peers, but then
use a pull-based where peers ask someone they know to have data to send it to
them. An example of a gossip-based system is Gossip++ [44].
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Peer-to-Peer vs. Peer-Assisted

So far, we have called the systems we have discussed peer-to-peer. In many of
the settings we consider, there is a distinguished node, a server, from which the
streaming data originates, and the clients then only assist in offloading the server
in data distribution. A purist may argue that such a system is not truly peer-to-
peer as not all nodes are equal (peers). As was noted in e.g. [95], many popular
deployed peer-to-peer systems also include some central part, such as the tracker
in BitTorrent.
To be a bit more careful with terminology, the term peer-assisted is often used

to describe systems where peer-to-peer techniques are used to augment or offload,
rather than replace a client-server solution. Many of the protocols we have discussed
are peer-assisted. An example of a more pure peer-to-peer streaming system is
Tribler [91, 80].
In a peer-assisted system, an important design point is how a client is best to

combine streaming from the two sources available: peers and the server. The server
has better availability and bandwidth, and is typically guaranteed to be ready to
serve all content. On the other hand, to achieve good offloading properties, clients
should download as much as possible from peers. In the Spotify system, latency-
critical requests (such as when the user clicks on a song she does not have in her
cache) are sent to the server, while other requests are sent to the peer-to-peer
network.
This concludes our overview of the basic design decisions on data distribution

in streaming. We proceed to the related topic of how to measure the performance
of a streaming system.

2.3 Evaluation of a Streaming System

There are several different measures of the efficiency of a streaming system. One
measure is the amount of local resources in terms of storage, memory, or CPU are
required from the sender, receivers, or both. Another measure of efficiency is the
bandwidth required, where we could measure at the sender, receivers, some network
links, or a combination thereof. In this thesis we are primarily interested in the
bandwidth required at the sender. Focusing on the sender can be motivated by the
fact that the resources required from the receivers are typically such that they are
“reasonable”. Bandwidth is arguably the most important metric, and the one most
directly affected by protocol design.
Apart from being interested in efficiency in the form of low resource consump-

tion, we also want our streaming system to work well. What do we measure to
know how well a streaming system works? One value of importance is the playback
latency, the time taken from when the user clicks play until media playback begins.
Another important parameter is how often playback is affected by a lack of data
available at the client during playback. As throughput over a network varies with
time, it may be that data needed for playback has not arrived at the client. Such
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events are referred to as buffer underruns, as mentioned in Section 1.1. The longer
the client waits with playing, the more data it has when it starts playing, thus re-
ducing the risk of a buffer underrun. This means that there is an inherent trade-off
between playback latency and the frequency of buffer underruns, as discussed by
Liang and Liang [72].
Given that there is a trade-off a system designer must select a target for her

system. Is it better to start very rapidly, but have a large risk of buffer underruns, or
to be more conservative? We are not aware of any user studies comparing different
trade-offs. When evaluating the PPLive system, Huang et al. [51] proposed a metric
called user satisfaction index weighing waiting time and the quality of playback
(which is related to buffer underruns).
In the Spotify system, the trade-off has been selected such that at most 1% of

playbacks should suffer from a buffer underrun. To do this, each client accumulates
information on how the local network behaves as a Markov chain and uses this to
simulate a playback of the song. If the simulations indicate that the risk for a buffer
underrun is greater than 1% the client waits to commence playback. The approach
is more fully described in Paper I.

2.4 Contributions

The contributions in the area of efficient streaming were published in Paper I.
During his thesis work, the author has worked at the Swedish company Spotify
which develops and operates a peer-assisted music on-demand streaming system.
The peer-to-peer protocol is a pull-based, mesh-based structure. At Spotify the
author has worked on designing the protocol used by the Spotify client, as well as
other contributions to the Spotify system.
The peer-to-peer protocol designed and developed for Spotify is described in

Paper I. As it is a large and deployed system, the efficiency of the protocol was
demonstrated by measurements based on instrumentation of Spotify clients. At the
time of evaluation, Spotify had over 7 million users. We show that the caching by
clients and the peer-to-peer distribution mechanisms achieve significant resource
savings: less than 10% of the data is sent from Spotify’s servers. We also show
that this efficiency is achieved without sacrificing the playback latency: the me-
dian playback latency is 265 ms, and 75% of played tracks start within 515 ms.
The bandwidth efficiency is comparable to that of video-on-demand streaming in
PPLive, where [51] claims that 7–11% of the data comes from the server.

2.5 Conclusions and Future Work

In conclusion, peer-assisted streaming protocols are used in practice today in large
systems. There is still, however, room for future improvements. Firstly, we believe
there is much room for future studies specifically targeting the music on-demand
problem in peer-to-peer or peer-assisted settings. Much research has been devoted
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to video streaming, but as discussed in Section 2.1, music on-demand streaming
has some quite different properties from movies on-demand streaming.
One open question is how to best select the trade-off between latency and the risk

of buffer underruns. This would likely have to be empirically evaluated with users,
as it comes down to what users dislike the most: interruptions during playback, or
having to wait for the playback to commence. We would expect that good trade-off
points may differ between different types of streaming.
Another open question in general on-demand streaming is how to provide a low-

latency playback experience when streaming to peers. The Spotify system achieves
low latency by always sending latency-critical requests to the central servers, but if
some of these requests could instead be routed to peers, more bandwidth resources
could be saved.
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Chapter 3

Secure Multi-Party Computation

In Secure Multi-party Computation (MPC), we study how cooperation can be
achieved without trust. In particular, we consider the task of n parties jointly
evaluating a function f(x1, . . . , xn) where party Pi has a secret input xi, a problem
known as Secure Function Evaluation. The goal is that no party should learn any-
thing beyond what they can deduce from their input and the output of the function.
Furthermore, they should not be able to affect the output of the function, apart
from the selection of their input.
MPC is one of the central areas of modern cryptography, and has been exten-

sively studied since introduced by Yao [107]. The problem discussed by Yao was
the Millionaires’ Problem, where two millionaires want to learn who of them is the
richest. They do not, however, want to reveal any other information about their
wealth to each other.
The story of the two millionaires may seem a bit contrived, but could easily be

turned into a more useful example, for instance as a first step in a price negotiation.
Let our first “millionaire” be a seller, and the second “millionaire” be a potential
buyer. The seller would put the absolutely lowest price she would be willing to
sell at as her “wealth”, and the buyer the highest price he is willing to pay as his
“wealth”. If the seller is “richest”, there is no way to find a deal, and no point in
negotiating for a price. Otherwise, there is some price range to which both parties
would be willing to agree, and it would be worthwhile to proceed. In this example,
we also see why it may be important that no information leaks; if the seller were to
learn the buyer’s maximum bid, she would ask for that and refuse to go any lower.
Just as with the problems of voting and elections discussed in Section 1.3, one

way for the two millionaires to solve their problem would be to find a trusted third
party (TTP). They could then each reveal to the TTP how much money they have,
and the TTP could tell them who has the most money. This solution generalizes;
if we can find a TTP, we can securely evaluate any function by having all parties
reveal their respective secret inputs to the TTP. Our goal is to construct a protocol
solving the problem without a TTP.
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Before discussing how to achieve our goal of replacing a TTP, we bring up
another example. Consider the market for music subscription services. How large
is the total value of the music streaming market? Each company knows its own
revenue, but does not know the revenues of its competitors. We can view this as
an MPC problem, where we wish to compute the sum of the companies’ revenues.
In this example, multiple parties participate in the companies, and not only two
parties as in the millionaires’ problem. More formally:

Example 3.1 There are n companies active in the music streaming market. Each
company Pi knows its last annual revenue xi. The companies would now like to
learn the total size of the market,

∑n
i=1 xi, without anyone learning any additional

information.

As it turns out, summation is among the simplest functions to compute securely.
As the example illustrates, there are also immediate applications for a protocol to
compute the sum of inputs.
We now provide some background on secure multi-party computation. First,

we discuss what it is we want to accomplish. Here, we discuss what our goals
are with regards to security, and what we require from the network our protocols
are run on. We then summarize the classic results showing that all functions can
be securely computed. Then, we turn to the topic of understanding what cannot
be done, discussing impossibility results and give a flavor of the most common
proof technique. Next, we summarize our contributions, and discuss the real-world
applicability of those, and MPC in general. Finally, we conclude and outline some
future work.

3.1 Security Model

What do we mean by security in the context of MPC, and what can we hope to
achieve? What we are trying to accomplish is not only to protect against outsiders,
but to protect against attacks from the other parties participating in the computa-
tion. Intuitively, the goal is to come up with a protocol that performs the role of
a TTP. This also means that we do not attempt to do anything more than what
a TTP does. In particular, we cannot prevent a dishonest party from carefully
selecting, or lying about her input.
Returning to Example 3.1, we do not prevent a dishonest company Pi from

participating in the computation as if its input was x′i = xi + k, where k is some
constant known only to Pi. The total size of the market that all parties would
learn after the protocol execution would then be k +

∑n
i=1 xi. Only company Pi

would know to subtract k from the result, learning the true size of the market. The
other companies would receive the wrong value as output, and not know. We do
not consider this a security problem in an MPC protocol, as Pi could do the same
if a TTP was performing the computation.
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Example 3.1 There are n companies active in the music streaming market. Each
company Pi knows its last annual revenue xi. The companies would now like to
learn the total size of the market,

∑n
i=1 xi, without anyone learning any additional

information.
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Attacks such as this could be somewhat mitigated by adding sanity checks to the
inputs, e.g., if all companies are known to have roughly equal revenues, the function
may be specified to forbid any inputs differing too much from other inputs. This
would not prevent a party from lying, but would reduce the impact on the output
of someone lying.
One approach to convince the parties to use truthful inputs may be to apply

techniques from the area of algorithmic mechanism design [85], an area in the
intersection of computer science and economic game theory. A more full discussion
on this subject is beyond the scope of this thesis.
We now proceed to discuss the security we want to achieve. Firstly, we consider

how parties may cheat, distinguishing between active and passive attacks. Next,
we treat the case when two or more parties collude to break the security. Lastly,
we discuss how computationally powerful the cheating parties are.

Passive vs. Active
Discussing security models, we begin with the question of how maliciously cheating
parties are willing to behave. A number of models have been discussed, but here
we consider the two most prominent models of what a cheating party is willing to
do. These models are known as a passive or active adversary.
In the passive case, also known as honest-but-curious or semi-honest, cheating

parties follow the protocol specification exactly, but record all messages they send
and received in the protocol. After the protocol execution, they try to use this
information to deduce information about the inputs of other parties. Their goal
is to learn information that they could not deduce from their own inputs, and
the output of the function. If the adversary cannot succeed with this, we say the
protocol is secure.
In Example 3.1, a company can compute the sum of all other companies’ rev-

enues from its own input and the output of the function. Thus, this is not a violation
of the security. It cannot, however, learn anything that cannot be inferred from the
sum1 about the individual inputs of other companies, or of a group of companies.
In the active case, also known as byzantine or malicious, a cheating party may

misbehave arbitrarily. She may send whatever messages she wants, at whatever
time she wants, to whom she wants. Or she may simply at any point in time refuse
to participate further in the protocol. Her goal may be the same as that of the
passive adversary: learning something she should not learn. The goal may also
be to affect the result of the computation in a way which would not be possible
with a TTP. If the adversary succeeds with either goal, we say that the protocol is
insecure.
As an example of affecting the output in a way which we do consider a security

violation, in Example 3.1 an active adversary may want the output to be exactly

1Some information can be deduced from the sum, e.g., no company has input greater than the
sum.
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$1,000,000. When a TTP performs the computation, there is no good way for her
to achieve this except for by guessing the sum of the other parties’ inputs and then
selecting her own input appropriately. With an insecure protocol, it may be the
case that she can force a specific output, or that she can learn the sum of others’
inputs before being forced to select her own input.

Threshold Adversaries
If n parties participate in a computation, we want the protocol to remain secure
not only against a single party misbehaving. It may be that several parties in the
computations collude to break the security. Thus, we need to consider the ways in
which parties may collude.
We model collusions as a single adversary who corrupts a number of the par-

ticipants in the protocol. When the adversary corrupts a party, she takes control
of the party in the protocol. She learns all the information known to the party in
question. Additionally, in the case of an active attacker, she can decide how the
party acts in the protocol.
To be able to create secure protocols, we often need to place some limit on the

parties an adversary may choose to corrupt. The most common type of restriction
studied is a threshold adversary. By this we mean that there is some threshold
t ≤ n, and that the adversary can corrupt any set of parties, as long as she corrupts
at most t parties. Common values of t are n, ⌊(n − 1)/2⌋ (honest majority), and
⌊(n−1)/3⌋. These occur as the generic solutions (to securely compute any function,
cf. Section 3.3) yield protocols secure with these thresholds in the various models of
an adversary’s capabilities (e.g., passive or active and computational or information-
theoretic security, which we proceed to discuss).
The concept of a threshold is easy to work with, but may not precisely capture

what collusions we are trying to protect against. As an example, we may know that
two specific parties would never collude. Such knowledge cannot be captured when
analyzing a threshold adversary, but may be useful in constructing a more efficient
protocol. Alternatively we may be worried about one specific collusion of many
parties, but know that all other potential collusions will be small. Such scenarios
were treated by Hirt and Maurer [50], who considered an adversary structure, which
defines the possible collusions. We use such more general definitions of whom the
adversary can corrupt in our Paper IV. There, our protocols are secure as long
as an adversary cannot corrupt parties which separate the network on which the
protocol is run into two or more components.
A model of an adversary is used when proving a protocol secure. In a real-world

execution, however, there is typically no puppet-master who “corrupts” parties,
but rather the parties themselves may collude. So how do we interpret a proof of
security saying that the protocol is secure when the adversary corrupts at most
t parties? Such a proof means that as long as no more than t parties collude,
the protocol remains secure. If more than t parties collude, however, we cannot
guarantee the security. In a sense, the security is very binary; the protocol offers
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very strong security guarantees up to a point where security is provided and then
no security at all. The topic of making the degradation more graceful has been
studied, there is a result along these lines by Lucas, Raub and Maurer [76].

Computational vs. Information-Theoretical
Another distinction made is how much computational time an adversary is willing
or able to invest to break the security. Here, two main models exist. Either we con-
sider an adversary with unlimited computational power, or we consider an adversary
limited to “practical”, but very large, computations (more formally, probabilistic
polynomial time). If we achieve security against a computationally unlimited ad-
versary, we say that the protocol is information-theoretically secure, and if the
protocol is secure against the more limited adversary, we say it is computationally
secure.
How big is the difference between the two settings? The major difference stems

from that fact that we can no longer use traditional ciphers in the case of an
unlimited adversary. If such an adversary sees an encrypted message, she could
simply try decrypting with all possible keys, until she finds the one that correctly
decrypts the message!
One may argue that computational security should suffice for all practical sit-

uations. After all, any real-world attacker would have limited (but possibly large)
resources at their disposal. So, why work with information-theoretic security? One
answer is that such protocols are unconditionally secure: we can mathematically
prove their security, and the protocols remain secure independent of other devel-
opments. Even if a breakthrough is made in computing technology, for instance
if quantum computers become practical, information-theoretically secure protocols
remain secure. In contract, quantum computers are known to break some of the
computationally secure protocols.
Computationally secure protocols could also be broken by mathematical break-

throughs. All the computationally secure protocols rely on a conjecture known
as P ̸= NP, and often more specific conjectures. While many of these are likely
to be true, they have not been proven. With a computationally secure protocol,
one may also worry that an attacker records all data sent in the protocol, in the
hope that she will some day have the resources or algorithms to violate the security
and learn information about other parties’ inputs. Müller-Quade and Unruh [82]
have suggested the concept of long-term security which combines computational
and information-theoretical security. There, the attacker is assumed to be com-
putationally bounded while the protocol is executed, but may then use unlimited
resources to analyze recorded material from the protocol execution.

3.2 Network and Computation Model

With a few exceptions, most protocols for secure multi-party computation require
all parties participating in the computation to be able to speak directly to each
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other, or in networking terms: a full mesh network. In the information-theoretic
setting, we furthermore require the pairwise channels between participants to be
perfectly private, meaning that they are secure from eavesdropping. This is pro-
hibitively costly to achieve even for moderately large n, as the total number of
connection is O

(
n2
)
. Do we really need all these connections? Or alternatively,

what can we do if our protocol is to run on a partial-mesh network2? When dis-
cussing the network topology an MPC protocol is run on, we also refer to the parties
as nodes in the network.
One approach is to simulate a full-mesh network on top of a partial-mesh net-

work. Thus, we construct an overlay network, as in peer-to-peer protocols (cf.
Section 2.2). A difference is that require much stronger security guarantees from
our overlay here. Solutions to constructing secure full-mesh overlays were discussed
by Franklin and Yung [43], and Ashwin Kumar et al. [70]. There is, however, a
large efficiency penalty in running a protocol designed for a full-mesh network on
an overlay over a partial-mesh network. A message that was supposed to be a
single message across a single link will instead be forwarded along a number of
node-disjoint paths. To successfully be able to simulate a full-mesh network, we
require certain properties on the network connectivity. We say that a network is
k-connected if there are at least k node-disjoint paths between every pair of nodes.
To information-theoretically securely simulate a full-mesh network, we need the
network to be t+ 1-connected or 2t+ 1-connected (passive [43] and active [70] ad-
versary, respectively) to remain secure against a threshold adversary corrupting up
to t nodes.
A second approach is to design secure MPC protocols that can run directly on

a partial-mesh network. This means that the protocol can only ask a party to send
messages to those which it is connected to. Preferably, such a protocol should be
able to run on any network, but sometimes we may need to require some properties
of the network. The Dining Cryptographers networks by Chaum [27] can be seen3

as an early result for summation following this approach. In Paper IV we continue
along these lines, giving protocols for additional functions.
Finally, a third approach has also been suggested: to make sure that n is small.

How do we do this, if we want to compute functions on inputs contributed from a
large number of nodes? We select a subset of parties, called privacy peers to perform
the computation, and the other parties, called data collecting parties contribute
their input to the privacy peers in secret shared form, but then do not participate
further in the MPC computation. This approach is discussed in e.g. [22, 18].
A different line of research has been to investigate what functions can still be

computed in networks with low connectivity, in particular 1-connected networks. A
1-connected network is a network where there at least one pair of nodes such that all
their communication must pass through some specific, third, node. Categorizations
have been given by Bläser et al. [17] and Beimel [13] for which functions can be

2Partial-mesh is a network which does not have direct connection between any pair of parties.
3It was presented as a protocol for anonymous communication, not summation.
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securely computed in 1-connected networks. Such a result of determining the exact
limits for what can be achieved typically takes the form of two proofs: a positive
result giving a secure protocol for some class of functions, and a mathematical proof
that no secure protocol can exist for some other class of functions.
Having discussed the topic of network connectivity, we now return to the classic

setting with full-mesh networks. We begin by describing the general positive results,
showing that any function can be privately computed. We then move to a discussion
on impossibility results, proving that some functions cannot be privately computed
beyond some threshold.

3.3 Sharing a Secret and Computing on Secret Shares

Very general solutions for MPC were given by Goldreich, Micali, and Wigder-
son [46], Ben-Or, Goldwasser, and Wigderson [15], and Chaum, Crépeau, and
Damgård [28]. These results showed that any function could be securely evaluated
by computing on secret shared values, which we discuss next. In our description
here, we focus on the latter two results. To describe these, we first explain secret
sharing, and then we outline its use in MPC protocols.

Secret Sharing
Imagine you have a very important piece of secret information, that must be kept
secret for a long time, and revealed at some date in the future. It is highly important
both that the information is kept secret, and that it can be reconstructed later,
even if unforeseen events happen. To make sure that the secret is not easily lost,
you cannot keep it to yourself (in case anything happens). Thus, you want some
mechanism where you also give information to your friends, allowing them to recover
the secret. As it is a very important secret, you cannot just give it immediately to
them as you cannot fully trust them not to reveal the secret.
The scenario may sound a bit strange, but the problem (and solutions) does

arise in practice. A recent example of this is the cryptographic key used to sign the
root zone in the DNSSEC protocol. This key is used to protect the lookup from
a domain name to an IP address. To protect this key, a number of precautions
were taken, as described in [75]. Simplifying slightly, the core of the mechanism is
the following: seven trusted officers from around the world were given a piece of
information, such that any five of them can reassemble the key.
We refer to the party who begins knowing the secret as the dealer. The problem

of a dealer handing out n shares of a secret s such that any t of them can recover
the secret (but any choice of t−1 cannot) is known as secret sharing. For t = 1, the
problem is simple as we can just tell everyone the secret. Technically, we require
the secret to be in a finite field Zp, and the arithmetic in the remainder of this
section is in this field.
For t = n there is also an easy scheme. Give party Pi a random value ri for

1 ≤ i ≤ n−1. Finally, give the last party Pn the value s−
∑n−1
i=1 ri. One can simply
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sum all shares to retrieve the secret s. It can be (easily) proved that learning any
choice of n− 1 shares does not reveal any information at all about s. This type of
secret sharing is sometimes used in MPC protocols, for instance in Sharemind [18]
and Paper IV.
For more general choices of t, we need something slightly more complicated.

Here, we sketch Shamir’s secret sharing [98]. The construction is motivated by the
fact that a t−1-degree polynomial is uniquely determined from t points. The dealer
begins by selecting a random polynomial Q(x) of degree t − 1 with constant term
Q(0) = s. Each party Pi then receives Q(i), the value of the polynomial evaluated
at “their” point.
From t such shares, the polynomial is uniquely determined, and can be computed

using polynomial interpolation. From the polynomial, the parties learn its constant
term s, which is the shared secret. With t− 1 or fewer pieces, it can be shown that
the parties learn no information at all about the value s.
This scheme works when all parties honestly report their shares when pooling

them to recover the secret, as is the case with a passive adversary. But what
happens if a party is dishonest and lies about their share, as an active adversary
might? Then the wrong polynomial (and thus, secret) is recovered. This problem is
addressed by Verifiable Secret Sharing (VSS) [31]. There, even if some of the parties
lie about their shares, the correct secret can be recovered. We omit a description
of VSS schemes, and simply note that they exist.

Computing on Secret Shares
Having described secret sharing, how do we use it in an MPC protocol? The results
of [15, 28] give protocols to add and multiply values under secret sharing. What
we mean by this is that if we have the value a and the value b secret shared among
the parties, there is a protocol for multiplication that results in the parties also
having a secret sharing of a · b. For addition, we don’t even require a protocol, if
each party simply sums her share of a with her share of b, this results in a share of
the value a + b. This holds for the secret sharing schemes described above, other
schemes could require a protocol also for addition.
Such functionality for addition and multiplication is sufficient to compute any

function. This can be seen by considering addition and multiplication of Boolean
values, which corresponds to the functions XOR and AND. We can represent any
function by a Boolean circuit using only these two functions. For most functions,
such a representation will be very large. To evaluate a function, the parties secret
share their inputs bit by bit, and the function is then evaluated gate by gate with
multiplications and additions. After all gates have been evaluated, the parties have
the output values in secret shared form. They then pool the shares of these values,
revealing the output of the function.
Depending on what level of security is targeted, the protocol may run over a

standard secret sharing scheme such as [98] or a VSS scheme such as [31]. The
difference between these two approaches is whether the result protocol is secure
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happens if a party is dishonest and lies about their share, as an active adversary
might? Then the wrong polynomial (and thus, secret) is recovered. This problem is
addressed by Verifiable Secret Sharing (VSS) [31]. There, even if some of the parties
lie about their shares, the correct secret can be recovered. We omit a description
of VSS schemes, and simply note that they exist.

Computing on Secret Shares
Having described secret sharing, how do we use it in an MPC protocol? The results
of [15, 28] give protocols to add and multiply values under secret sharing. What
we mean by this is that if we have the value a and the value b secret shared among
the parties, there is a protocol for multiplication that results in the parties also
having a secret sharing of a · b. For addition, we don’t even require a protocol, if
each party simply sums her share of a with her share of b, this results in a share of
the value a + b. This holds for the secret sharing schemes described above, other
schemes could require a protocol also for addition.
Such functionality for addition and multiplication is sufficient to compute any

function. This can be seen by considering addition and multiplication of Boolean
values, which corresponds to the functions XOR and AND. We can represent any
function by a Boolean circuit using only these two functions. For most functions,
such a representation will be very large. To evaluate a function, the parties secret
share their inputs bit by bit, and the function is then evaluated gate by gate with
multiplications and additions. After all gates have been evaluated, the parties have
the output values in secret shared form. They then pool the shares of these values,
revealing the output of the function.
Depending on what level of security is targeted, the protocol may run over a

standard secret sharing scheme such as [98] or a VSS scheme such as [31]. The
difference between these two approaches is whether the result protocol is secure
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against a passive or active adversary. In the information-theoretic setting, the
general protocols are secure with threshold ⌊(n − 1)/2⌋ in the passive case, and
with threshold ⌊(n− 1)/3⌋ in the active case. These are also the thresholds used in
the secret sharing schemes.
We remark that there are other general solutions to MPC. A significantly dif-

ferent approach is based on the idea of a garbled circuit, and was presented by
Yao [108] for two-party computation (i.e., when n = 2). Garbled circuits are used
between pairs of parties in [46], and were generalized to the multi-party case by
Beaver, Micali, and Rogaway [12]. We omit further discussion on the garbled circuit
paradigm.
Having touched upon the positive results that we can compute any function

securely, we may ask what the limits of secure computation are. For instance, is
threshold ⌊(n− 1)/2⌋ the best we can do in the information-theoretic passive case,
or could we hope for a better general protocol? Thus, we turn to the subject of
impossibility results.

3.4 Impossibility Results

Apart from coming up with protocols to securely compute a function, it is also
important to understand the limits of what can be done. An impossibility result
is a mathematical proof, proving that something is impossible to do. Two reasons
as to why it is important to prove impossibility results are that it saves research
resources, and it helps in understanding the problem at a more fundamental level,
which may lead to improved protocols. An impossibility result may show that one
approach will never succeed, diverting research effort into alternate approaches.
In the area of MPC, we are interested in what threshold is the best possi-

ble for some specific function f , or class of functions. As one may imagine, this
value depends on the adversarial model used. Here, we consider only information-
theoretically secure protocols with a passive adversary.
We say that a function is k-private if there exists a protocol to securely compute

it in this setting with threshold k. The general results [15, 28] then show that all
functions are ⌊(n−1)/2⌋-private. But is that the whole story? No, for instance the
summation function we used as Example 3.1 is n-private4. On the other hand, for
the Boolean OR function, it was shown [15, 71] that ⌊(n− 1)/2⌋-privacy is the best
possible.
The general problem of finding the threshold for any function f is a long-

standing open problem. There exist a number of partial results. A first question
one may ask is if the hierarchy is complete, i.e., is there for all t some function which
is t-private but not t + 1-private? As we know that all functions are ⌊(n − 1)/2⌋-
private, there cannot be any functions below that level. What about the other
levels? Chor, Geréb-Graus, and Kushilevitz [30] proved that in general the hierar-

4Actually, n-privacy is equivalent to n − 1-privacy; if the adversary corrupts all parties, she
already has complete information and cannot learn anything more from the protocol execution.
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chy is complete: for every ⌈n/2⌉ ≤ t ≤ n− 2 there is a function which is t-private
but not t+ 1-private.
One way of restricting the problem is to consider the case of few parties. In

particular, the case when n = 2, known as two-party computation. In this case,
the general MPC solutions cannot be used, as they give 0-privacy in this case, i.e.,
the protocol is only secure as long as neither party attempts to break the security.
Beaver [11] and Kushilevitz [71] independently gave a complete characterization of
the functions that can be computed 1-privately in the two-party case. They gave
a 1-private protocol for functions which are decomposable, and also proved that a
function which is not decomposable cannot be 1-privately computed. We use a
generalization of the notion of decomposition in our proofs in Paper II.
Another restricted formulation is to analyze functions with a fixed number of

distinct outputs. This approach was taken by Chor and Kushilevitz [33] who gave
a complete characterization of the privacy threshold of all Boolean functions, i.e.,
functions with a single bit as output. What they showed was a so called zero-one
law: a Boolean function is either ⌊(n − 1)/2⌋-private (the lowest possible), or n-
private (the highest possible). In Paper II, we extended their result to functions
with a single trit (value 0, 1, or 2) as output, and showed that a zero-one law also
holds for such functions.
We now go into a bit more mathematical detail on the proof of the zero-one

law for Boolean privacy, and related techniques. We use these in the proof of our
Paper II.

Embedded ORs and Partition Proofs
A core idea in the proof of Chor and Kushilevitz is to make use of the fact that OR
cannot be 1-privately computed. But OR is a function with two inputs, how can we
make use of this in the n-party case? We consider functions f that contain an OR
as a subfunction, which we call an embedded OR. We give a definition from [63] of
an embedded OR, but we remark that we use a different (more general) definition
in Paper II.

Definition 3.1 (Embeded OR) A 2-argument function f contains an embedded
OR if there exists inputs x1, x2, y1, y2 such that f(x1, y1) = f(x2, y1) = f(x1, y2) ̸=
f(x2, y2).

An n-argument function f contains an embedded OR if there exists indices i, j
and values ak such that the 2-argument function

h(x, y) = f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an)

contains an embedded OR.

We claim that a protocol for a function f which is ⌈n/2⌉-private would yield a
1-private protocol for OR. If there was such a protocol for f , two parties wanting to
compute OR could use the protocol, having one party simulate ⌈n/2⌉ parties, and
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h(x, y) = f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an)

contains an embedded OR.

We claim that a protocol for a function f which is ⌈n/2⌉-private would yield a
1-private protocol for OR. If there was such a protocol for f , two parties wanting to
compute OR could use the protocol, having one party simulate ⌈n/2⌉ parties, and
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having the other simulate the remaining ⌊n/2⌋ parties. They would select the inputs
simulated for these parties such that the protocol computes OR. By the privacy
guarantees of the assumed protocol, this would be 1-private, as each party controls
no more than ⌈n/2⌉ parties, and the original protocol was ⌈n/2⌉-private. As we
know that no 1-private protocol for OR exists, we conclude that no ⌈n/2⌉-private
protocol for a function with an embedded OR can exist.
Having proven this, what remains to get the result of [33] is to give a classifica-

tion of all Boolean functions. As it turns out, a Boolean function either contains
an embedded OR, or it can be written as a (Boolean) summation, f(x1, . . . , xn) =∑n
i=1 fi(xi). Sums can be computed n-privately, and thus the zero-one law for

Boolean functions is proved. In the case of functions with a trit as output one can
prove an analogous, but more complex, structure lemma.
The technique of proving that functions cannot be ⌈n/2⌉-privately computed by

showing that they contain an embedded OR has been used in many results since.
The technique was generalized by Chor and Ishai [32] to consider partitions into
more sets, which was showed to yield stronger impossibility results. In Paper II we
only need partitions into two sets.
This concludes our summary of the background in MPC. We proceed with a

discussion on our contributions, and the real-world applications of MPC.

3.5 Contributions

In this thesis, we include three papers on the topic of secure multi-party computa-
tion. Two of these are focused on the more practical side of the area: constructing
secure protocols for important functions. The third paper explores the limitations
by investigating what functions can still be securely computed even if half the
participants or more collude to break the protocol.
In Paper IV we propose protocols for some basic functions which do not require

private channels between every pair of participants. Instead, our protocols can
run on any network. This opens up some new applications, an example of which
is joint network monitoring by a number of competing Internet Service Providers.
We provide protocols for three basic functions: summation, disjunction (OR), and
computing the maximum input. As we discussed in Section 3.3, summation and
disjunction is sufficient to evaluate any function. This is not the case here, however,
as our protocols inherently reveal the output to the parties, while the protocols
discussed in Section 3.3 take input and produce output in secret shared form.
Another contribution is in Paper III where we construct efficient protocols for

sorting, and a related problem of aggregating data sets. Our protocols here make
use of results on sorting networks to sort data using few comparisons. We build on
the general MPC protocols and our protocols were implemented and tested on the
Sharemind platform to measure their performance. The evaluation showed that lists
of up to 16000 entries could be sorted within a few minutes. These protocols could
be used to build a joint Intrusion Detection System across multiple organizations.
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Finally, Paper II extends the zero-one law for Boolean functions by Chor and
Kushilevitz [33] to functions with a trit as output. We show that, surprisingly, an
analogous zero-one law to the Boolean case holds. By this, we mean that for each
function f with a single trit as output, it is either the case that it is n-private, or
it is ⌊(n− 1)/2⌋-private and not ⌈n/2⌋-private.

3.6 Real-world Applications

Despite the fact that MPC protocols to securely compute any function were pub-
lished more than 20 years ago [15, 28], their real-world use has so far been limited.
As the security offered by MPC protocols is very high, and they can perform many
general tasks, one may ask why they are not in more widespread use. It is likely
that a number of factors contribute to this, including technical factors such as is-
sues with scalability, and performance issues in naive implementations based on the
general protocols. In particular, many protocols do not scale well in n, the number
of parties participating in the computation. Furthermore, the requirement that all
parties can securely communicate pairwise is also problematic in some scenarios.
There are also non-technical obstacles preventing widespread use of MPC tech-

niques. Firstly, the results in the area and their implications are not well-known
outside the cryptographic research community. Secondly, several of the traditional
roles as TTP are lucrative to the TTP, giving them economic incentive to maintain
status quo. Additionally, in some scenarios, the requirement to use a TTP may be
mandated by law.

Auctioning Sugar Beet Production Rights
One notable real-world use of MPC was by Bogetoft et al. [19] who executed a
secure auction. An auction is a real-world example which is normally solved with
the assistance of a TTP, in this case an auctioneer. Their application was to
reallocate production rights for sugar beets. A production right in this context is
a contract allowing a farmer to produce and sell a specific amount of sugar beets
per year to Danisco, the only sugar-producing company in Denmark.
The production rights can be sold between farmers, something which has oc-

curred to a limited extent historically. Due to drastic reductions in support for
sugar beet production by the European Union, a more complete reallocation of
production rights were needed than what can easily be accomplished by bilateral
agreements between individual farmers. Thus, it was decided to run an auction in
which a total of 1200 bidders participated.
Why could the auction not be run using a TTP? As the bid submitted by a

farmer reveals information on how profitable their business is, Danisco could not
serve as auctioneer due to the concern that they may use the information learned
in future negotiations with farmers. The contracts in some cases act as security for
debts farmers have to Danisco. This meant that Danisco could not accept a solution
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where the farmers’ association would serve as TTP. Recruiting some outside TTP
was considered too expensive.
The computation was done using a privacy peer construction. Each farmer used

their own computer and software provided by the team of researchers. The software
then sent the farmer’s inputs in secret shared form to three computers, one run by
Danisco, one by the farmers’ association, and one by the research team. These
three computers ran an MPC protocol to compute the result of the auction.

Developer Tools
Apart from the sugar beet auction, there have been other developments pointing in
the direction that MPC protocols may see more real-world applications in the near
future. One of these is that a number of software projects have been developed that
allows programmers to more easily implement MPC programs. These frameworks
consist either of libraries implementing MPC primitives in some standard program-
ming language such as Java or Python, or contain their own programming language
in which to write MPC programs. With this support, the level of expertise required
for programmers to make use of MPC techniques is significantly reduced.
One framework is Fairplay [78] which is only for the two-party (n = 2) case and

its extension to the multi-party case, FairplayMP [14]. Another is Sharemind [18]
which is specialized for the case when n = 3. Finally, two other, general, frameworks
are SEPIA [22] and VIFF [38].

Applicability of Contributions of this Thesis
We believe that the contributions given in Paper IV and Paper III can be of practical
application. The protocols for partial-mesh networks presented in Paper IV could
be applied in settings such as network monitoring, joint intrusion detection systems,
and also in the context of sensor networks.
Secure protocols for sorting also have a number of applications. In addition

to potential application in joint intrusion detection, we believe that they could
be applied in database settings. Companies or government agencies could use the
protocols to find entries in common in databases, without revealing any further
information apart from the entries in common.

3.7 Conclusions and Future Work

The area of Secure Multi-Party Computation studies a fundamental problem in
how to cooperate without trust. There exist very general solutions, and the security
properties provided by MPC protocols are very good. Yet there have been relatively
few applications of MPC in the real world, or even broader areas of science beyond
the field of cryptography where the design and properties of the protocols are
studied. Thus, one line of future work includes raising awareness of MPC protocols,
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its extension to the multi-party case, FairplayMP [14]. Another is Sharemind [18]
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making them more practical, and applying them as parts of more complex and
complete security mechanisms.
One venue of research is to more fully investigate MPC protocols which can

run on partial-mesh networks. This includes both investigating positive results,
creating protocols which adapt to the network upon which they are run, as well as
further investigating impossibility results in more general classes of networks.
Another area is the continued investigation of the thresholds at which various

functions can be computed. While there are partial results, the general problem is
still far from solved.
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Chapter 4

Web Security

One interesting case of security architecture is the World Wide Web, and in par-
ticular the security implemented by a web browser. Many financial transactions
are done over the web, including bank transfers and credit card payments. Apart
from the integrity of financial transactions, there are also privacy issues. We access
private information and communicate via web pages and do not want a malicious
server to be able to spy on our activity.
General security principles and problems apply to the web, and attacks and

defenses in web applications and browsers are often well studied and have specific
names. As an example, the cross-site request forgery (CSRF) attack which we
discuss in Section 4.2 is an instance of the confused deputy problem. Here, we focus
on the web-specific attacks and use the web-specific terminology.
The Open Web Application Security Project (OWASP) publishes a list [87]

with the top ten web related security issues. These include both attacks which are
performed by an attacker directly against a server, such as injection attacks, but
also attacks which affect a web browser or the interaction between browser and
server, such as CSRF attacks. Here, we focus on the latter class and describe in
some detail three attacks: cross-site request forgery, cross-site scripting, and history
detection. Our contribution in web security, Paper V, builds on history detection
and has some similarities to a cross-site request forgery attack. Cross-site scripting
is the largest class of web vulnerabilities, and provides background for a discussion
on JavaScript security policies. Sometimes, several minor vulnerabilities can be
combined to increase their impact. After having described basic vulnerabilities,
we include a discussion on this with two examples, including our Paper V. We
conclude this chapter with a summary of the contributions of this thesis.
To begin discussing security issues pertinent to the web, we must first under-

stand how web sites keep track of their users. When a web browser visits a page,
it makes a connection to the server hosting the web page. If the user then follows
a link on the page, the web browser makes a new connection to the server and
requests the new page indicated by the link. By default, the server has no infor-
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mation on who it is that makes a request, or even that two requests are made by
the same user.

4.1 Keeping Track of Users

Many web sites have a way for users to log in, so clearly there has to be some
way for a server to know which user is making a request. This is done through
a mechanism known as cookies. A cookie is a small piece of information that a
server can give to a web browser, and which the web browser sends back to the
server in each request. This seems to offer a very easy solution: once a user has
successfully logged in, the server could set a cookie with the username to remember
who the user is. When Alice logs in, the server could set the cookie user=alice.
Her browser would include this cookie in all future requests, so the server would
know that those came from Alice.
We think of an attacker, Mallory, who would like to access Alice’s account on the

service. One way for Mallory to access a cookie is if the cookie is sent unencrypted
over a network she is connected to. When using the encrypted HTTPS protocol,
the cookies are protected, but many sites still use plain HTTP, where the traffic
is not encrypted. To illustrate the risk of cookies being stolen over the network,
an application called Firesheep was developed by Butler [23]. It received much
publicity after its release in late 2010, prompting large sites like Facebook and
Twitter to migrate to HTTPS. Firesheep listens for unencrypted cookies on a local
network (e.g., a wireless network at a coffee shop or conference) for popular services
like Facebook and Gmail. It provides a convenient GUI to show whose cookies it
has captured, and to log in using a stolen cookie.
We assume that the cookies we consider here are only sent over HTTPS. With

our current proposal, Mallory could easily log in as Alice, if she only knows Alice’s
username. It is reasonable to assume that Mallory does know Alice’s username,
but not her password. Mallory could then simply set the cookie user=alice in her
own browser and connect to the server to be logged in as Alice.
The problem with the username in the cookie was that it is very easy for an

attacker to guess a cookie value which would log her in. This could be solved by
a cryptographic construction known as a Message Authentication Code (MAC),
but the most common mechanism is to use a session cookie. A session cookie is
a cookie where the information is simply a long random number, so long that it
would take too long for an attacker to guess a number which is in use. When a user
visits the web site, the server gives them a session cookie, consisting of a random
number, for instance session=1445975142 (in reality, the number is larger). In
every subsequent request they make to the server, the same number will be present.
This allows the server to know that a series of request is made by the same browser.
When a user logs in, the server itself stores some information associating the

number in the session cookie with the username of the logged in user. Thus, on
the server, the mapping that session 1445975142 corresponds to Alice is stored once
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Alice has logged in. If Alice logs out, the mapping is removed, and the session cookie
becomes useless. To become logged in as Alice, Mallory would have to somehow
learn the session number of Alice. If she learned this number, then she could set the
cookie session=1445975142 in her own browser and access the site, being logged
in as Alice.
The use of cookies to handle user logins means that it becomes important for a

browser to protect its cookies. For instance, if a user visits evil.com, the server for
that site should not be able to access the user’s session cookie for her bank. As a first
measure of protection, a cookie is tied to a specific domain name, and is only sent
back to servers in the same domain as where it was set. Other mechanisms are also
in place, in particular restrictions on how JavaScript programs may interact between
pages served from other domains, but we defer that discussion to Section 4.3. The
key point is that if an attacker can somehow get hold of your session cookie for a
site, she is logged in as you and can do all actions you can when logged in1.
From the discussion on a session cookie, we saw that it is important to protect

the cookie. Can Mallory still attack Alice in some other way than by stealing her
cookie? Yes, there is more to the story, and we now discuss three other classes of
problems in web security.

4.2 Cross-Site Request Forgery

Recall that the session cookie is included in every request the user makes to the
server. Some requests not only fetch a web page for the user to view, but also
have side effects, such as placing an order or making a bank transfer2. To identify
who is making a bank transfer, the session cookie included in the request is used.
When Alice wants to make a bank transfer of $100 to Bob, she would go to her
bank’s web site and enter the details of the transaction. Finally, when she clicks
the confirmation button, her browser goes to a link looking something like bank.
com/transfer?amount=100&to=Bob, and the browser would include Alice’s session
cookie, identifying her to the bank.
What happens if Mallory can trick Alice into following a link to bank.com/

transfer?amount=100&to=Mallory? Alice’s browser would include Alice’s session
cookie with the request, so the bank would transfer money from Alice to the at-
tacker. If Alice is very observant, she may notice that the link looks suspicious
and refuse to click on it. Even then, Alice would still be susceptible to the follow-
ing attack. A web page can include parts which come from different servers, the
so-called iframes are one example of this. So Mallory may may set up evil.com,
a page which would include an iframe with address bank.com/transfer?amount=

1This is not true in all systems; additional security measures such as tying a cookie to the IP
address from which the user connects are sometimes used.

2Here we consider a simple bank web page. Some banks have additional protection mechanisms
where a user must sign off on transfers by means of a small hardware device or a one-time code.
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where a user must sign off on transfers by means of a small hardware device or a one-time code.
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ing attack. A web page can include parts which come from different servers, the
so-called iframes are one example of this. So Mallory may may set up evil.com,
a page which would include an iframe with address bank.com/transfer?amount=

1This is not true in all systems; additional security measures such as tying a cookie to the IP
address from which the user connects are sometimes used.

2Here we consider a simple bank web page. Some banks have additional protection mechanisms
where a user must sign off on transfers by means of a small hardware device or a one-time code.
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100&to=Mallory. If Alice were to visit evil.com, her browser would automatically
also make a request to transfer money, unbeknownst to her.
This type of attack, where one site causes a visitor’s browser to make a request

with side effects to a second site, is referred to as a Cross-Site Request Forgery
(CSRF). This is an attack where viewing one page automatically causes a side effect
on some other site. The problem here is essentially that visiting a confirmation URL
should perform a bank transfer when the user makes a bank transfer, but visiting
the same address with the same session cookie should not if the request was made
automatically without the user’s knowledge. How is the bank’s server to distinguish
between the two cases?
What distinguishes a legitimate request from a request caused by a CSRF at-

tack? A distinction is that a legitimate request occurs because the user fills out a
form or follows a link on the bank’s web site, while the CSRF attack causes the
request to come from a third-party page. When designing a defense mechanism, we
should try to make use of this difference.
A number of mechanisms have been proposed [9, 99], we only describe one here:

a CSRF token. This is entirely a server-side protection mechanism. A CSRF token
is another random value, specific to the session, but separate from the value of
the session cookie. This value is inserted by the bank into the URLs of internal
links. If Alice’s CSRF token is 7401932, the link for her to set up a transfer would
be bank.com/transfer?amount=100&to=Bob&token=7401932. The server when
receiving the request verifies that the token is present and matches Alice’s session.
If the token is missing or wrong, the server does not perform the transaction but
instead displays an error message. As the CSRF token is random and specific to
Alice’s session, our attacker Mallory cannot guess it, and thus does not know the
right link to direct Alice’s browser to.
We now turn to the next attack, cross-site scripting. This is a vulnerability

which can be used to steal session cookies as well as circumventing CSRF defenses
on vulnerable pages.

4.3 Cross-Site Scripting

One of the most frequent security problems in web security is known as cross-
site scripting (XSS). It was the most common vulnerability reported in MITRE’s
database of Common Vulnerabilities and Exposures (CVE) in their 2007 statis-
tics [34], and it is item number two on OWASP’s 2010 top-10 list [87]. This type of
vulnerability has been publicly documented for over 10 years [26]. We now explain
what an XSS attack is, and hint at why it is so prevalent.
Before this, we need to cover a bit of background on scripting on the web. Web

pages may contain programs, or scripts, written in a language called JavaScript.
These programs can read and modify the content of the page that is displayed. As
scripts can be automatically executed as soon as the browser visits a web site, there
clearly needs to be some restrictions placed on what they can do (for instance, we
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do not want a malicious web site we visit to be able to read information from a
bank site we have open in another tab). JavaScript can be included anywhere on a
web page using the HTML tag <script>.
When adding security restrictions in the JavaScript language, it is important

to not hinder useful, legitimate functionality more than necessary. Browsers need
a good security policy that prevents attacks, allows legitimate functionality, and
that can be understood by developers. The common solution, first implemented in
Netscape Navigator 2.0 in 1996, is the same-origin policy. This policy states that
scripts on a page cannot access information on pages from a different origin. Origin
in this context can be thought of as meaning server3. This means that the security
permissions of a script depends on which web site includes the script’s code.
If an attacker could trick a bank’s web server into including a malicious script

when a victim visits the bank’s web site, then the security context of the script is
that of the bank’s web server. This means that a malicious script could steal the
victim’s login credentials, session cookie, or CSRF token. Additionally, it could
access the victim’s bank information or perform transactions. In XSS attacks, the
attacker is attacking a session between two other parties, here the bank and the
user. We refer to the server as the target, and the user as the victim.

Reflected and Persistent XSS
How could an attacker get a bank to include her malicious JavaScript on their web
page? There are two primary types of XSS attacks, reflected and persistent. A
third type, called DOMXSS has also been published [64], but we focus here on the
two main types.
We begin with the case of a reflected XSS attack, and begin introducing it

by means of an example. Consider a search box on the target’s web site. When
searching, most web sites include the sought for terms in the resulting web page,
e.g. “Your search for life gave 3,770,000,000 results”. This may be sent in HTML
as <p>Your search for life gave 3,770,000,000 results</p>.
What happens if we search for <script>alert(``Hello'');</script>4? A

vulnerable web site would return the text in the resulting HTML, <p>Your search
for <script>alert(``Hello'');</script> gave 45,700,000 results</p>.
This is legitimate HTML, with a script to be executed. Thus, the browser would ex-
ecute the JavaScript, in this case simply displaying a dialog window saying “Hello.”
The issue here is that the web server did not sanitize the input before including it
as part of the output.
The argument to search for is typically part of a URL, so having found a vulner-

able page on the target server, the attacker could construct a link that corresponds
to a “search” for a script she wants the victim to execute. She would then trick the

3The same-origin policy restrictions apply if there is a difference in protocol, host name, or
port. For a more full description, we refer to Zalewski [109].

4Alert is a JavaScript function which opens a dialog. It is commonly used as a demonstrator
of XSS vulnerabilities.
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victim into following the link. As the script is sent to the victim’s browser from
the target web server, it has the security permissions of any script served from that
site. What we just showed is known as a reflected XSS attack; the link contains
malicious data which the target server reflects back to the victim’s web browser.
In the case of a persistent XSS attack, the attacker instead looks for ways of

including information directly on the server. In the case of a bank, it is often the
case that bank transfers may include short messages to the recipient. These mes-
sages are displayed to the recipient when they look at their bank statement in the
bank’s web interface. The attacker may thus send the victim $0.01 with a message
of <script>alert(``Hello'');</script>. If the bank’s site is vulnerable, this
JavaScript would be passed on to the victim’s browser every time the victim looks
at her bank statement. This is a persistent XSS; the attacker found a mechanism
to post data to the target server that is included in a web page.
These two example attack vectors may help in explaining why XSS attacks are

so prevalent. An XSS attack vector exists any time user-controlled information is
sent back on a web site without proper sanitization. Typical web sites have a huge
number of input paths, and failing to sanitize a single path from input to inclusion
in output results in an XSS vulnerability.
We now proceed to the third and last attack we discuss, history detection.

4.4 History Detection Attacks

Another long-standing security problem in the area of web security is is history de-
tection. Here, we primarily discuss a single, specific problem that has been publicly
known since at least 2000 [96]. This vulnerability is due to unforeseen interaction
between to legitimate, standardized functionalities. This means that all browsers
have traditionally been vulnerable to the attack as they have all implemented the
standardized functionality. A defense has now also been standardized, and imple-
mented in most of the major browsers.
The attack uses the fact that a visited link is styled differently from an unvisited

link, and is referred to as CSS history detection. The name comes from Cascading
Style Sheets (CSS), used to describe layout of web pages. We remark that there
are other attacks to achieve history detection, an attacker may also measure how
quickly elements load to determine if they were cached or not as outlined by Felten
and Schneider [42], but in this discussion we only detail the CSS history detection
flaw.
In this attack, the attacker who operates evil.com wants to learn if her visitors

have also visited example.com. The basic flaw, as discussed in Section 1.2 is that
the style applied to a link on a page can be read by JavaScript executing on a page.
Since visited links are styled differently from unvisited links, evil.com can include
a link to example.com. JavaScript on evil.com can then detect if the link is styled
as if it is visited or unvisited, revealing whether the visitor has visited example.com
or not. We remark that the same-origin policy discussed in Section 4.3 does not
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link, and is referred to as CSS history detection. The name comes from Cascading
Style Sheets (CSS), used to describe layout of web pages. We remark that there
are other attacks to achieve history detection, an attacker may also measure how
quickly elements load to determine if they were cached or not as outlined by Felten
and Schneider [42], but in this discussion we only detail the CSS history detection
flaw.
In this attack, the attacker who operates evil.com wants to learn if her visitors

have also visited example.com. The basic flaw, as discussed in Section 1.2 is that
the style applied to a link on a page can be read by JavaScript executing on a page.
Since visited links are styled differently from unvisited links, evil.com can include
a link to example.com. JavaScript on evil.com can then detect if the link is styled
as if it is visited or unvisited, revealing whether the visitor has visited example.com
or not. We remark that the same-origin policy discussed in Section 4.3 does not
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victim into following the link. As the script is sent to the victim’s browser from
the target web server, it has the security permissions of any script served from that
site. What we just showed is known as a reflected XSS attack; the link contains
malicious data which the target server reflects back to the victim’s web browser.
In the case of a persistent XSS attack, the attacker instead looks for ways of

including information directly on the server. In the case of a bank, it is often the
case that bank transfers may include short messages to the recipient. These mes-
sages are displayed to the recipient when they look at their bank statement in the
bank’s web interface. The attacker may thus send the victim $0.01 with a message
of <script>alert(``Hello'');</script>. If the bank’s site is vulnerable, this
JavaScript would be passed on to the victim’s browser every time the victim looks
at her bank statement. This is a persistent XSS; the attacker found a mechanism
to post data to the target server that is included in a web page.
These two example attack vectors may help in explaining why XSS attacks are

so prevalent. An XSS attack vector exists any time user-controlled information is
sent back on a web site without proper sanitization. Typical web sites have a huge
number of input paths, and failing to sanitize a single path from input to inclusion
in output results in an XSS vulnerability.
We now proceed to the third and last attack we discuss, history detection.
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prevent this; the script is running on evil.com, and the link element is likewise on
the evil.com page, so the script is allowed to access information about the link.
A proposed fix to the CSS history detection hole by Jackson et al. [52] was to es-

sentially apply the same-origin policy for the visited history of a browser, something
they also implemented in the form of the SafeHistory extension. Their suggestion
was not adopted in any of the major browsers, however. Instead, a different defense
mechanism was later suggested by Baron [8], and has now5 been implemented in
almost all major browsers. This defense mechanism severely restricts how the vis-
ited attribute of a link may affect styling. In essence, only the color of a link may
be affected by if it is visited or not, and a JavaScript querying the color of the link
will always get a return value as if the link was unvisited.
Several uses has been proposed for history detection, both maliciously and help-

ful to the user. Using history detection to assist a user, a web site may detect if
the user has visited known malicious sites and warn them that they may have been
infected with malware [53]. Janc and Olejnik [54] investigated the privacy impli-
cations of the attack and reported that they were able to detect probable US ZIP
code for 9.2% of tested users. Their study was done before the major browsers had
implemented defenses.
Having finished our discussion on the specific attacks we cover, we continue with

a discussion on how an attacker can combine multiple attacks.

4.5 Combining Attacks

In security in general, an attacker may sometimes chain together attacks to achieve
their goals. A good example of this in web security is a combination of XSS and
CSRF attacks. Recall that the primary mechanism to defend against CSRF attacks
is the inclusion of CSRF tokens on the target web site. Normally, the same-origin
policy prevents an attacker’s page from accessing the CSRF token on the target
site. If the target has an XSS vulnerability, however, injected JavaScript can read
the CSRF token, which allows the attacker to then perform CSRF attacks.
For a more complex example, we turn to a presentation by Kamkar titled “How I

Met Your Girlfriend” [60]. Here, the attacker wants to know where Bob’s girlfriend
Alice lives. The chained attack begins by exploiting a vulnerability in the random-
ness in the session cookie generated by the PHP programming language [61]. As
we discussed in Section 4.1, the session cookie should be a long random number.
As it turned out, the numbers used by earlier versions of PHP were not sufficiently
random, and could be guessed by an attacker. Using this, the attacker guesses
Bob’s session cookie and is thus logged into his account on a social networking site.
The attacker then posts a message to Alice, tricking her into visiting evil.com, a
domain under the attacker’s control.
On the evil.com domain, the attacker uses a reflected XSS attack against

Alice’s home router. Such devices almost always have a built-in web server to
5Firefox 4 and Internet Explorer 9, both implementing this were both released March 2011.
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configure them using a web interface. The reflected XSS reads out the so-called
MAC address of Alice’s wireless network. The MAC address is a globally unique
number identifying the wireless network interface in Alice’s router. A MAC address
is no big secret; it is broadcast over radio in the local area by the wireless router,
so they can be easily collected by someone nearby. The vulnerability here is that
our attacker was able to retrieve the address across the Internet through an XSS
hole in the victim’s home router.
How do we go from the MAC address to a geographic position? As it turns

out, Google has a database that allows a lookup of the approximate position of a
wireless router from a MAC address. The reader may at this point wonder why
such a database exists. This service is used for instance by the Firefox browser’s
implementation of geolocation services [81]; most computers do not know where
they are located, so for Firefox to provide location services, the computer looks for
nearby wireless routers, collects their MAC addresses, and sends them to Google
to learn its approximate position.
The latter part of the attack is a good illustration of how a seemingly harmless

attack (learning the MAC address of a home router) combined with legitimate
functionality can have unforeseen consequences. In this case, a malicious web site
visited by the victim could learn her home address.

4.6 Contributions

Included in this thesis is Paper V on web security, detailing a new attack we call
Flow Stealing. The attack builds on the fact that a web page retains control over
windows which it has opened. In particular, on most browsers, a web site can at
any point in time navigate a window it has opened to a new address. Why would
that be a security problem?
The core scenario in the attack is as follows: our attacker runs a malicious web

site, visited by the victim in tab t1. The web site has a link to a store, opening
in a new tab t2 when clicked. The victim browses the store, selects goods to buy,
and proceeds to pay. Payments are handled by a payment provider, external to
the store, so when the victim is about to pay, the store (legitimately) redirects her
browser to the payment provider’s web site. The attacker’s site which is still open
in tab t1 in the victim’s browser detects that the victim hits the payment provider.
At this moment, the attacker’s JavaScript in tab t1 redirects the tab t2 to the same
payment provider, but with the attacker as recipient of the payment.
To detect when the victim reaches the payment provider, the attacker uses the

CSS history detection attack in a new way. She repeatedly tests if the victim
has visited the payment provider. We assume that the payment provider begins as
unvisited in the victim’s browser. When the visited status of the payment provider’s
page switches from unvisited to visited, the JavaScript on the malicious web site
triggers the redirect.

50 CHAPTER 4. WEB SECURITY

configure them using a web interface. The reflected XSS reads out the so-called
MAC address of Alice’s wireless network. The MAC address is a globally unique
number identifying the wireless network interface in Alice’s router. A MAC address
is no big secret; it is broadcast over radio in the local area by the wireless router,
so they can be easily collected by someone nearby. The vulnerability here is that
our attacker was able to retrieve the address across the Internet through an XSS
hole in the victim’s home router.
How do we go from the MAC address to a geographic position? As it turns

out, Google has a database that allows a lookup of the approximate position of a
wireless router from a MAC address. The reader may at this point wonder why
such a database exists. This service is used for instance by the Firefox browser’s
implementation of geolocation services [81]; most computers do not know where
they are located, so for Firefox to provide location services, the computer looks for
nearby wireless routers, collects their MAC addresses, and sends them to Google
to learn its approximate position.
The latter part of the attack is a good illustration of how a seemingly harmless

attack (learning the MAC address of a home router) combined with legitimate
functionality can have unforeseen consequences. In this case, a malicious web site
visited by the victim could learn her home address.

4.6 Contributions

Included in this thesis is Paper V on web security, detailing a new attack we call
Flow Stealing. The attack builds on the fact that a web page retains control over
windows which it has opened. In particular, on most browsers, a web site can at
any point in time navigate a window it has opened to a new address. Why would
that be a security problem?
The core scenario in the attack is as follows: our attacker runs a malicious web

site, visited by the victim in tab t1. The web site has a link to a store, opening
in a new tab t2 when clicked. The victim browses the store, selects goods to buy,
and proceeds to pay. Payments are handled by a payment provider, external to
the store, so when the victim is about to pay, the store (legitimately) redirects her
browser to the payment provider’s web site. The attacker’s site which is still open
in tab t1 in the victim’s browser detects that the victim hits the payment provider.
At this moment, the attacker’s JavaScript in tab t1 redirects the tab t2 to the same
payment provider, but with the attacker as recipient of the payment.
To detect when the victim reaches the payment provider, the attacker uses the

CSS history detection attack in a new way. She repeatedly tests if the victim
has visited the payment provider. We assume that the payment provider begins as
unvisited in the victim’s browser. When the visited status of the payment provider’s
page switches from unvisited to visited, the JavaScript on the malicious web site
triggers the redirect.

50 CHAPTER 4. WEB SECURITY

configure them using a web interface. The reflected XSS reads out the so-called
MAC address of Alice’s wireless network. The MAC address is a globally unique
number identifying the wireless network interface in Alice’s router. A MAC address
is no big secret; it is broadcast over radio in the local area by the wireless router,
so they can be easily collected by someone nearby. The vulnerability here is that
our attacker was able to retrieve the address across the Internet through an XSS
hole in the victim’s home router.
How do we go from the MAC address to a geographic position? As it turns

out, Google has a database that allows a lookup of the approximate position of a
wireless router from a MAC address. The reader may at this point wonder why
such a database exists. This service is used for instance by the Firefox browser’s
implementation of geolocation services [81]; most computers do not know where
they are located, so for Firefox to provide location services, the computer looks for
nearby wireless routers, collects their MAC addresses, and sends them to Google
to learn its approximate position.
The latter part of the attack is a good illustration of how a seemingly harmless

attack (learning the MAC address of a home router) combined with legitimate
functionality can have unforeseen consequences. In this case, a malicious web site
visited by the victim could learn her home address.

4.6 Contributions

Included in this thesis is Paper V on web security, detailing a new attack we call
Flow Stealing. The attack builds on the fact that a web page retains control over
windows which it has opened. In particular, on most browsers, a web site can at
any point in time navigate a window it has opened to a new address. Why would
that be a security problem?
The core scenario in the attack is as follows: our attacker runs a malicious web

site, visited by the victim in tab t1. The web site has a link to a store, opening
in a new tab t2 when clicked. The victim browses the store, selects goods to buy,
and proceeds to pay. Payments are handled by a payment provider, external to
the store, so when the victim is about to pay, the store (legitimately) redirects her
browser to the payment provider’s web site. The attacker’s site which is still open
in tab t1 in the victim’s browser detects that the victim hits the payment provider.
At this moment, the attacker’s JavaScript in tab t1 redirects the tab t2 to the same
payment provider, but with the attacker as recipient of the payment.
To detect when the victim reaches the payment provider, the attacker uses the

CSS history detection attack in a new way. She repeatedly tests if the victim
has visited the payment provider. We assume that the payment provider begins as
unvisited in the victim’s browser. When the visited status of the payment provider’s
page switches from unvisited to visited, the JavaScript on the malicious web site
triggers the redirect.

50 CHAPTER 4. WEB SECURITY

configure them using a web interface. The reflected XSS reads out the so-called
MAC address of Alice’s wireless network. The MAC address is a globally unique
number identifying the wireless network interface in Alice’s router. A MAC address
is no big secret; it is broadcast over radio in the local area by the wireless router,
so they can be easily collected by someone nearby. The vulnerability here is that
our attacker was able to retrieve the address across the Internet through an XSS
hole in the victim’s home router.
How do we go from the MAC address to a geographic position? As it turns

out, Google has a database that allows a lookup of the approximate position of a
wireless router from a MAC address. The reader may at this point wonder why
such a database exists. This service is used for instance by the Firefox browser’s
implementation of geolocation services [81]; most computers do not know where
they are located, so for Firefox to provide location services, the computer looks for
nearby wireless routers, collects their MAC addresses, and sends them to Google
to learn its approximate position.
The latter part of the attack is a good illustration of how a seemingly harmless

attack (learning the MAC address of a home router) combined with legitimate
functionality can have unforeseen consequences. In this case, a malicious web site
visited by the victim could learn her home address.

4.6 Contributions

Included in this thesis is Paper V on web security, detailing a new attack we call
Flow Stealing. The attack builds on the fact that a web page retains control over
windows which it has opened. In particular, on most browsers, a web site can at
any point in time navigate a window it has opened to a new address. Why would
that be a security problem?
The core scenario in the attack is as follows: our attacker runs a malicious web

site, visited by the victim in tab t1. The web site has a link to a store, opening
in a new tab t2 when clicked. The victim browses the store, selects goods to buy,
and proceeds to pay. Payments are handled by a payment provider, external to
the store, so when the victim is about to pay, the store (legitimately) redirects her
browser to the payment provider’s web site. The attacker’s site which is still open
in tab t1 in the victim’s browser detects that the victim hits the payment provider.
At this moment, the attacker’s JavaScript in tab t1 redirects the tab t2 to the same
payment provider, but with the attacker as recipient of the payment.
To detect when the victim reaches the payment provider, the attacker uses the

CSS history detection attack in a new way. She repeatedly tests if the victim
has visited the payment provider. We assume that the payment provider begins as
unvisited in the victim’s browser. When the visited status of the payment provider’s
page switches from unvisited to visited, the JavaScript on the malicious web site
triggers the redirect.



Chapter 5

Broadcast Encryption

Broadcast encryption is the problem of how to distribute encrypted content to a
large, dynamic group of recipients from a single, trusted sender. Typical application
include a streaming system or traditional cable TV. These two use cases both
concern protecting a media stream in an online setting. Another application is to
protect media content offline, by using broadcast encryption to distribute content-
specific keys on discs like DVDs or BluRay discs. In fact, broadcast encryption is
used today for content protection on BluRay discs. We return to this in Section 5.5.
While the typical motivation and applications all involve content protection,

there are also other uses for broadcast encryption schemes. Another application is
to enable secure group communication, where we want to establish a shared secret
known only by all current members of a group and where the membership changes
over time.
As we discussed in Section 1.2, the core problem in broadcast encryption is to

establish a joint secret that is known to all current members, but not known to
any non-members. We recall that a mechanism solving the problem is known as a
broadcast encryption scheme. By focusing on constructing a mechanism to establish
and maintain such a joint secret, we can mostly ignore if we are solving a problem
in streaming, offline content distribution, or group communication. We want our
broadcast encryption scheme to be as efficient way possible, where our measure
of efficiency is the bandwidth used by the sender, which we want to be as small
as possible. Other important performance parameters, that we for the most part
ignore, are the amounts of memory and computation time needed by both sender
and receivers.
We proceed to define the problem and discuss some of the proposed schemes

from the literature. We go into more detail on subset cover schemes in Section 5.2,
as our work in broadcast encryption relates to such schemes. After this, we touch
upon the subject of relaxing the security requirements in broadcast encryption to
gain efficiency. Finally, we summarize the contributions of this thesis and discuss
the key real-world application of broadcast encryption.
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any non-members. We recall that a mechanism solving the problem is known as a
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and maintain such a joint secret, we can mostly ignore if we are solving a problem
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52 CHAPTER 5. BROADCAST ENCRYPTION

5.1 Defining the Problem

We begin by establishing some terminology for the recipients in a system. A broad-
cast encryption is thought of as having a universe of users comprised of everyone
who may ever receive content from the system. At any given moment, a user may
be a member, or may be revoked. We denote the number of members by m, and the
number of revoked users by r. We denote the total number of users by n, which is
equal to r +m. The system’s purpose is to establish and maintain a shared secret
which is known only by all current members and the sender. We recall that this
shared secret is called a media key.
Many schemes require the number of users to be constant and fixed before the

system begins broadcasting. This is a problem in some applications, e.g. stream-
ing. There it is difficult to know how many different users will use the system,
and impossible to identify all potential customers for the lifespan of the system in
advance! One solution is to set the system up with a very high number of users n.
All “users” would be initially unassigned, and depending on the system, unassigned
users may either be treated as members or revoked. When a new user becomes a
member for the first time, she is then assigned the identity of the first unassigned
“user” in the system.
In the standard definition of a broadcast encryption scheme, there are two steps.

In the first step, initialization, keys are generated for all users of the system and for
the sender. Each user ui then receives her unique set of secrets si. These secrets
allow her to efficiently compute the cryptographic keys she should have. In a few
systems, the set of secrets is simply a number of keys. In most system, however,
a user has access to so many keys that it would be cumbersome to store them all.
We want users to only have to store a “reasonable”1 amount of secrets. The initial
distribution of secrets to a new user is assumed to happen in some secure way.
The sender also needs to know the keys that the users have, so it can encrypt

with them. To simplify our discussion, we assume that the sender has access to all
keys. In a real system it is important, just like for the users, to also ensure that
the sender is able to compute all keys from some set of secrets of reasonable size.
Having been initialized, the system repeatedly is asked to send out a new media

key to the current set of members. It may be that this is done every time a user joins
or leaves, or it may occur periodically. There should not be a limit on how many
times the system can distribute a new media key2. When the system distributes a
new key, the sender sends out a message to all users. The message has the property
that a user ui who is a member can use her secrets si together with the message
to recover the new media key, and that a revoked user uj cannot recover the media
key using her secrets sj . The size of such a message is the bandwidth overhead of
the system.

1The systems we discuss require users to store O(logm), O(logn), O
(

log2 n
)

, or O
(√
n
)

elements.
2The earliest broadcast encryption schemes, e.g. one by Berkovits [16], could only distribute

a limited number of keys.
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We now discuss the security we want a broadcast encryption system to have,
and then turn to the main solution strategies to construct broadcast encryption
schemes. Finally, we discuss the related concept of identifying dishonest members,
known as traitor tracing.

Security of Broadcast Encryption
How do we define the security of a broadcast encryption system? We want to
protect against revoked users being able to access the media key. It is conceivable
that multiple revoked users would collude in order to access the media key, so
we would prefer the system to provide security against such attacks. To capture
collusions we think of a single adversary attacking the system, who corrupts users
as in our discussion on secure multi-party computation in Section 3.13. When the
adversary corrupts a user ui she is given the user’s secrets si. The adversary’s goal
is to learn the media key. In the case of broadcast encryption, we only consider the
case of computational security, i.e., we assume the attacker has limited (but very
high, probabilistic polynomial time) computational power.
Could we tolerate an adversary who corrupts all the users in the system, or do

we need to restrict her powers? Yes, we do need to restrict our adversary. If she
has corrupted a member, then she can just follow the normal decryption process
using the secrets of the corrupted member to recover the media key. This cannot be
prevented, as the mechanism should deliver the media key to all members. Thus,
we see that the adversary must be restricted such that she can not corrupt any
members.
As it turns out, we can build secure schemes with only this restriction; we can

tolerate an adversary corrupting all revoked users. This corresponds to a very strong
security property when a broadcast encryption system is used: even if all revoked
users were to collude to break the system’s security, they would not succeed. On
the other hand, if a single member is dishonest, she can re-distribute the media
key to revoked users every time it updates, allowing them to also view the content.
The problem of dishonest members is mitigated by what is known as traitor tracing,
which we return to later in this section.

Solution Strategies
The problem of broadcast encryption was introduced by Berkovits [16], who sug-
gested a solution based on polynomial interpolation. The idea builds on Shamir’s
secret sharing [98] which we previously discussed in the context of MPC in Sec-
tion 3.3.
Since the introduction of the problem, and the first scheme, many new schemes

have been proposed. We recall from Section 1.2 that an important property of a
scheme is whether it is stateful or stateless. In stateless systems, users’ secrets si

3Such a model is used in most of cryptography, not only the two areas we discuss in this thesis.

5.1. DEFINING THE PROBLEM 53

We now discuss the security we want a broadcast encryption system to have,
and then turn to the main solution strategies to construct broadcast encryption
schemes. Finally, we discuss the related concept of identifying dishonest members,
known as traitor tracing.

Security of Broadcast Encryption
How do we define the security of a broadcast encryption system? We want to
protect against revoked users being able to access the media key. It is conceivable
that multiple revoked users would collude in order to access the media key, so
we would prefer the system to provide security against such attacks. To capture
collusions we think of a single adversary attacking the system, who corrupts users
as in our discussion on secure multi-party computation in Section 3.13. When the
adversary corrupts a user ui she is given the user’s secrets si. The adversary’s goal
is to learn the media key. In the case of broadcast encryption, we only consider the
case of computational security, i.e., we assume the attacker has limited (but very
high, probabilistic polynomial time) computational power.
Could we tolerate an adversary who corrupts all the users in the system, or do

we need to restrict her powers? Yes, we do need to restrict our adversary. If she
has corrupted a member, then she can just follow the normal decryption process
using the secrets of the corrupted member to recover the media key. This cannot be
prevented, as the mechanism should deliver the media key to all members. Thus,
we see that the adversary must be restricted such that she can not corrupt any
members.
As it turns out, we can build secure schemes with only this restriction; we can

tolerate an adversary corrupting all revoked users. This corresponds to a very strong
security property when a broadcast encryption system is used: even if all revoked
users were to collude to break the system’s security, they would not succeed. On
the other hand, if a single member is dishonest, she can re-distribute the media
key to revoked users every time it updates, allowing them to also view the content.
The problem of dishonest members is mitigated by what is known as traitor tracing,
which we return to later in this section.

Solution Strategies
The problem of broadcast encryption was introduced by Berkovits [16], who sug-
gested a solution based on polynomial interpolation. The idea builds on Shamir’s
secret sharing [98] which we previously discussed in the context of MPC in Sec-
tion 3.3.
Since the introduction of the problem, and the first scheme, many new schemes

have been proposed. We recall from Section 1.2 that an important property of a
scheme is whether it is stateful or stateless. In stateless systems, users’ secrets si

3Such a model is used in most of cryptography, not only the two areas we discuss in this thesis.

5.1. DEFINING THE PROBLEM 53

We now discuss the security we want a broadcast encryption system to have,
and then turn to the main solution strategies to construct broadcast encryption
schemes. Finally, we discuss the related concept of identifying dishonest members,
known as traitor tracing.

Security of Broadcast Encryption
How do we define the security of a broadcast encryption system? We want to
protect against revoked users being able to access the media key. It is conceivable
that multiple revoked users would collude in order to access the media key, so
we would prefer the system to provide security against such attacks. To capture
collusions we think of a single adversary attacking the system, who corrupts users
as in our discussion on secure multi-party computation in Section 3.13. When the
adversary corrupts a user ui she is given the user’s secrets si. The adversary’s goal
is to learn the media key. In the case of broadcast encryption, we only consider the
case of computational security, i.e., we assume the attacker has limited (but very
high, probabilistic polynomial time) computational power.
Could we tolerate an adversary who corrupts all the users in the system, or do

we need to restrict her powers? Yes, we do need to restrict our adversary. If she
has corrupted a member, then she can just follow the normal decryption process
using the secrets of the corrupted member to recover the media key. This cannot be
prevented, as the mechanism should deliver the media key to all members. Thus,
we see that the adversary must be restricted such that she can not corrupt any
members.
As it turns out, we can build secure schemes with only this restriction; we can

tolerate an adversary corrupting all revoked users. This corresponds to a very strong
security property when a broadcast encryption system is used: even if all revoked
users were to collude to break the system’s security, they would not succeed. On
the other hand, if a single member is dishonest, she can re-distribute the media
key to revoked users every time it updates, allowing them to also view the content.
The problem of dishonest members is mitigated by what is known as traitor tracing,
which we return to later in this section.

Solution Strategies
The problem of broadcast encryption was introduced by Berkovits [16], who sug-
gested a solution based on polynomial interpolation. The idea builds on Shamir’s
secret sharing [98] which we previously discussed in the context of MPC in Sec-
tion 3.3.
Since the introduction of the problem, and the first scheme, many new schemes

have been proposed. We recall from Section 1.2 that an important property of a
scheme is whether it is stateful or stateless. In stateless systems, users’ secrets si

3Such a model is used in most of cryptography, not only the two areas we discuss in this thesis.

5.1. DEFINING THE PROBLEM 53

We now discuss the security we want a broadcast encryption system to have,
and then turn to the main solution strategies to construct broadcast encryption
schemes. Finally, we discuss the related concept of identifying dishonest members,
known as traitor tracing.

Security of Broadcast Encryption
How do we define the security of a broadcast encryption system? We want to
protect against revoked users being able to access the media key. It is conceivable
that multiple revoked users would collude in order to access the media key, so
we would prefer the system to provide security against such attacks. To capture
collusions we think of a single adversary attacking the system, who corrupts users
as in our discussion on secure multi-party computation in Section 3.13. When the
adversary corrupts a user ui she is given the user’s secrets si. The adversary’s goal
is to learn the media key. In the case of broadcast encryption, we only consider the
case of computational security, i.e., we assume the attacker has limited (but very
high, probabilistic polynomial time) computational power.
Could we tolerate an adversary who corrupts all the users in the system, or do

we need to restrict her powers? Yes, we do need to restrict our adversary. If she
has corrupted a member, then she can just follow the normal decryption process
using the secrets of the corrupted member to recover the media key. This cannot be
prevented, as the mechanism should deliver the media key to all members. Thus,
we see that the adversary must be restricted such that she can not corrupt any
members.
As it turns out, we can build secure schemes with only this restriction; we can

tolerate an adversary corrupting all revoked users. This corresponds to a very strong
security property when a broadcast encryption system is used: even if all revoked
users were to collude to break the system’s security, they would not succeed. On
the other hand, if a single member is dishonest, she can re-distribute the media
key to revoked users every time it updates, allowing them to also view the content.
The problem of dishonest members is mitigated by what is known as traitor tracing,
which we return to later in this section.

Solution Strategies
The problem of broadcast encryption was introduced by Berkovits [16], who sug-
gested a solution based on polynomial interpolation. The idea builds on Shamir’s
secret sharing [98] which we previously discussed in the context of MPC in Sec-
tion 3.3.
Since the introduction of the problem, and the first scheme, many new schemes

have been proposed. We recall from Section 1.2 that an important property of a
scheme is whether it is stateful or stateless. In stateless systems, users’ secrets si

3Such a model is used in most of cryptography, not only the two areas we discuss in this thesis.



54 CHAPTER 5. BROADCAST ENCRYPTION

1

2 3

4 5 6 7

Figure 5.1: The keys in a LKH system with four users (at positions 4–7).

are never updated, while in a stateful system, the secrets of users may be updated
by a message delivering a new media key. This means that a stateful scheme can
be difficult to use in a setting where users may not receive all messages, and must
often be augmented with a resending mechanism. We now discuss some stateful
and some stateless schemes.

Stateful

An early broadcast encryption schemes is the Logical Key Hierarchy (LKH) scheme,
proposed by Wallner, Harder and Agee [105] and Wong, Gouda and Lam [106]
independently. In this scheme, a binary tree of keys is maintained. Each leaf node
corresponds to a member, and the internal nodes of the tree are only used for key
management. A member knows all the keys on the path from its leaf to the root
node. As long as the tree is balanced, this means that each member will need to
store O(logm) keys, this is her set of secrets si. Revoked users do not have any
keys in the tree, but do share a key with the sender so the sender can send them
new keys if they join. We illustrate an instance of the LKH system with four users
in Figure 5.1. In this example, there are four users, at positions 4–7 in the tree.
The user at position 6 knows the keys associated with nodes 6, 3, and 1.
Assuming we have a tree with these properties, how can we handle updates in

the membership? We proceed to describe algorithms to handle a single user joining,
and a single member leaving. To handle larger updates, these operations can be
repeated. We remark that it is also possible to more efficiently handle a number of
membership changes simultaneously.
When a user joins, she needs to be inserted as a leaf to the tree. This involves

adding a new internal node in the tree where there was previously a leaf. The
member associated with that leaf needs to receive the key for the new internal
node. Furthermore, the newly joined member is sent all the keys on the path from
her leaf to the root. These are sent to the newly joined member using the secret
key shared between her and the sender. This is slightly simplified; we also need
to replace all keys that the newly joined member receives. This is to prevent her
from being able to decrypt content sent before she joined. As these keys are not
known to any attacker, we can send out the updated keys encrypted under the
old keys, as everyone who had the old key should also have the new key. In fact,
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her leaf to the root. These are sent to the newly joined member using the secret
key shared between her and the sender. This is slightly simplified; we also need
to replace all keys that the newly joined member receives. This is to prevent her
from being able to decrypt content sent before she joined. As these keys are not
known to any attacker, we can send out the updated keys encrypted under the
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new keys if they join. We illustrate an instance of the LKH system with four users
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we do not even need to broadcast new keys, they can be updated locally by each
member, using a function which is difficult to invert, such as a cryptographically
strong pseudo-random number generator (PRNG).
To handle that a member leaves, all the keys known to that member must be

replaced. We also remove the internal node closest to the leaf corresponding to the
leaving member. To distribute a new key for an internal node, we note that the
leaving member knew the key corresponding to one of the two child nodes. Thus,
we can encrypt the new key with the key of the child node the leaving member does
not have. For the child which the leaving member is below, we will have distributed
a new key accessible to everyone but the leaving member, so we use the new key of
the child to encrypt the new key of the parent.
Building upon a similar structure as LKH, other schemes have been proposed.

In LKH, we update keys with new keys which are unrelated to any other keys
(except for our remark about joining members where we can apply a PRNG to
update keys). To make schemes more efficient, we can use cryptographic functions
to not only update a single key from an old one, but also to relate keys in different
nodes of the tree. Works along these lines are One-way Function Trees by Sherman
and McGrew [100] and ELK by Perrig, Song and Tygar [89]. Using keys which are
related to each other via a cryptographic function is an idea we come back to in
the context of the stateless subset cover schemes in Section 5.2.

Stateless

The largest class of stateless schemes are the schemes in the subset cover family,
which we briefly discussed in Section 1.2. We discuss an alternate stateless approach
in this section, and return to the subset cover paradigm in more detail in Section 5.2.
Boneh, Gentry and Waters [20] presented a stateless scheme based on so-called

bilinear maps. We omit any details on what a bilinear map is, but we note that
(cryptographically strong) bilinear maps have provided efficient solutions to many
problems in cryptography. The scheme in [20] result in constant bandwidth to
update a media key, and with constant amount of secret storage at each receiver.
The drawback is that it requires each user to know O(n) public values. As the name
implies, the public values need not be kept secret, but must still be stored and used
in computations. As the memory requirements are a bit high, a modification to
run O(

√
n) instances of the scheme in parallel was also proposed in [20], resulting

in O(
√
n) bandwidth and O(

√
n) (public) memory.

There are also a number of proposals that combine ideas from stateless and
stateful schemes. As our Paper VII concerns making a stateless scheme stateful,
we describe the related approaches in some detail.

Combining Stateless and Stateful Schemes
The stateless schemes in the subset cover paradigm are typically highly efficient
when a small number of users are revoked, but inefficient when only a small fraction
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of users are members. The stateful schemes are more efficient when the number
of members is small. Thus, one natural idea is to attempt to combine the two
approaches. Such modifications typically yield a scheme that is stateful.
One approach presented by Chen et al. [29] is called Dynamic Subset Difference4.

The core idea of [29] is to run a number of parallel, instances of a subset cover
schemes (in this case, subset difference in particular, but the idea generalizes), with
a relatively small n in each instance. When a new media key is distributed, the same
key is distributed simultaneously in all instances. New users joining are assigned
to the newest instance, if there are still unassigned positions in it. Otherwise, a
new instance is created, and the user is assigned to it. Each individual member
is a member (and user) in precisely one instance. When a member leaves, they
are revoked in that instance, and thus cannot recover future media keys. If they
become a member again, their status in that instance is switched back to being a
member. If a too large fraction of users in an instance are revoked, the remaining
members are reassigned to new instances, and the old instance is removed entirely.
Reassignment is expensive and the authors evaluate several different policies for
reassignment. The reassignment operation is the only stateful operation in [29].
Another approach by Jiang and Gong [57] is called hybrid broadcast encryp-

tion. Their proposed scheme is a more direct combination of a stateless and stateful
scheme. The stateless scheme is used until some fixed number of users has been
revoked, at which point a stateful round is run to update the key structure. A
drawback with their scheme is that keys in the original scheme are replaced indi-
vidually. They present specialized and more efficient key update methods for two
particular subset cover schemes.
Finally, we get to our contribution! In Paper VII we propose a cheap mechanism

to convert any subset cover scheme into a stateful scheme. This is done by adding
a state key in addition to the media key, that is updated whenever the media key
is updated. By encrypting the broadcast of a new media key (and state key) using
a combination of the key for a selected subset and the current state key, the subset
cover process need only avoid subsets containing the revoked users who left since
the last update of the state key. This results in significantly better bandwidth
performance than in subset cover schemes, but two drawbacks is that the resulting
scheme is stateful and that it is no longer secure against a collusion of users.
With this we conclude our overview of approaches to constructing broadcast en-

cryption schemes. We return to a more detailed discussion on subset cover schemes
in Section 5.2, but first we discuss how to identify dishonest members.

Traitor Tracing
A topic related to broadcast encryption is that of traitor tracing. In many of the
media distribution scenarios where broadcast encryption can be used, a real-world
attacker would want to build unlicensed decoding equipment. For instance in the

4Subset Difference is the most influential scheme in the subset cover family.
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context of cable TV, so-called pirate decoders are a problem for the cable networks.
If broadcast encryption is used to protect the content, then such a pirate decoder
would have keys corresponding to one or more users in the system. By revoking
those keys, the decoder would cease to function. But how do we know what keys
were used to build the decoder?
Traitor tracing is the problem of efficiently discovering what keys were used to

build an unlicensed decoder. The assumption is that the sender can get hold of an
unlicensed device. The sender can then create broadcasts targeted at specific sets
of users and test if the decoder can successfully decrypt those. A naive solution
would be to create n test broadcasts, one for each user in system, and test them
in turn. This may take too much time to be practically usable, however, imagine
sending a million test signals to a box and waiting to get to the single one that
works. By looking at the properties of how keys are distributed, it is often possible
to find more efficient testing methods which can find the user with far fewer tests,
typically O(logn).
The traditional traitor tracing notions relate primarily to unlicensed hardware

or software decoders. There has been work to extend this model to also cover other
types of illegitimate use. These include techniques which cause members to decrypt
content slightly differently, slight differences that can then be used to identify the
member from content uploaded to a pirate site [58].
Having finished our introduction of broadcast encryption and discussion on

traitor tracing, we return to the subject of subset cover schemes. These are the
most common and influential stateless broadcast encryption schemes.

5.2 Subset Cover

The subset cover framework is a very general framework for constructing state-
less broadcast encryption schemes, and was introduced by Naor, Naor, and Lots-
piech [83]. We call a scheme constructed following the framework a subset cover
scheme. The core idea is that there is a fixed set of keys used to distribute the
media keys. As the subsets are fixed, subset cover keys require the number of users
n to be constant, fixed when the system is initialized5. Each key is known to the
sender and to some subset of the users. We can associate each key with the subset
of the users who know the key. We denote the keys by k1, k2, . . . , km, and the
associated sets by S1, S2, . . . , Sm.
To distribute a media key KM , the sender selects a number of subsets such

that each member is in at least one selected subset and no revoked user is in any
selected subset. Such a selection is known as a subset cover. The sender’s message
contains the media key encrypted under the key of each subset in the cover. The
message also contains information on what subsets were used in the cover, to inform
members which part of the message to decrypt. We write encryption of m under

5There are a few exceptions without this requirement, e.g. [56].
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piech [83]. We call a scheme constructed following the framework a subset cover
scheme. The core idea is that there is a fixed set of keys used to distribute the
media keys. As the subsets are fixed, subset cover keys require the number of users
n to be constant, fixed when the system is initialized5. Each key is known to the
sender and to some subset of the users. We can associate each key with the subset
of the users who know the key. We denote the keys by k1, k2, . . . , km, and the
associated sets by S1, S2, . . . , Sm.
To distribute a media key KM , the sender selects a number of subsets such

that each member is in at least one selected subset and no revoked user is in any
selected subset. Such a selection is known as a subset cover. The sender’s message
contains the media key encrypted under the key of each subset in the cover. The
message also contains information on what subsets were used in the cover, to inform
members which part of the message to decrypt. We write encryption of m under

5There are a few exceptions without this requirement, e.g. [56].

5.2. SUBSET COVER 57

context of cable TV, so-called pirate decoders are a problem for the cable networks.
If broadcast encryption is used to protect the content, then such a pirate decoder
would have keys corresponding to one or more users in the system. By revoking
those keys, the decoder would cease to function. But how do we know what keys
were used to build the decoder?
Traitor tracing is the problem of efficiently discovering what keys were used to

build an unlicensed decoder. The assumption is that the sender can get hold of an
unlicensed device. The sender can then create broadcasts targeted at specific sets
of users and test if the decoder can successfully decrypt those. A naive solution
would be to create n test broadcasts, one for each user in system, and test them
in turn. This may take too much time to be practically usable, however, imagine
sending a million test signals to a box and waiting to get to the single one that
works. By looking at the properties of how keys are distributed, it is often possible
to find more efficient testing methods which can find the user with far fewer tests,
typically O(logn).
The traditional traitor tracing notions relate primarily to unlicensed hardware

or software decoders. There has been work to extend this model to also cover other
types of illegitimate use. These include techniques which cause members to decrypt
content slightly differently, slight differences that can then be used to identify the
member from content uploaded to a pirate site [58].
Having finished our introduction of broadcast encryption and discussion on

traitor tracing, we return to the subject of subset cover schemes. These are the
most common and influential stateless broadcast encryption schemes.

5.2 Subset Cover

The subset cover framework is a very general framework for constructing state-
less broadcast encryption schemes, and was introduced by Naor, Naor, and Lots-
piech [83]. We call a scheme constructed following the framework a subset cover
scheme. The core idea is that there is a fixed set of keys used to distribute the
media keys. As the subsets are fixed, subset cover keys require the number of users
n to be constant, fixed when the system is initialized5. Each key is known to the
sender and to some subset of the users. We can associate each key with the subset
of the users who know the key. We denote the keys by k1, k2, . . . , km, and the
associated sets by S1, S2, . . . , Sm.
To distribute a media key KM , the sender selects a number of subsets such

that each member is in at least one selected subset and no revoked user is in any
selected subset. Such a selection is known as a subset cover. The sender’s message
contains the media key encrypted under the key of each subset in the cover. The
message also contains information on what subsets were used in the cover, to inform
members which part of the message to decrypt. We write encryption of m under

5There are a few exceptions without this requirement, e.g. [56].

5.2. SUBSET COVER 57

context of cable TV, so-called pirate decoders are a problem for the cable networks.
If broadcast encryption is used to protect the content, then such a pirate decoder
would have keys corresponding to one or more users in the system. By revoking
those keys, the decoder would cease to function. But how do we know what keys
were used to build the decoder?
Traitor tracing is the problem of efficiently discovering what keys were used to

build an unlicensed decoder. The assumption is that the sender can get hold of an
unlicensed device. The sender can then create broadcasts targeted at specific sets
of users and test if the decoder can successfully decrypt those. A naive solution
would be to create n test broadcasts, one for each user in system, and test them
in turn. This may take too much time to be practically usable, however, imagine
sending a million test signals to a box and waiting to get to the single one that
works. By looking at the properties of how keys are distributed, it is often possible
to find more efficient testing methods which can find the user with far fewer tests,
typically O(logn).
The traditional traitor tracing notions relate primarily to unlicensed hardware

or software decoders. There has been work to extend this model to also cover other
types of illegitimate use. These include techniques which cause members to decrypt
content slightly differently, slight differences that can then be used to identify the
member from content uploaded to a pirate site [58].
Having finished our introduction of broadcast encryption and discussion on

traitor tracing, we return to the subject of subset cover schemes. These are the
most common and influential stateless broadcast encryption schemes.

5.2 Subset Cover

The subset cover framework is a very general framework for constructing state-
less broadcast encryption schemes, and was introduced by Naor, Naor, and Lots-
piech [83]. We call a scheme constructed following the framework a subset cover
scheme. The core idea is that there is a fixed set of keys used to distribute the
media keys. As the subsets are fixed, subset cover keys require the number of users
n to be constant, fixed when the system is initialized5. Each key is known to the
sender and to some subset of the users. We can associate each key with the subset
of the users who know the key. We denote the keys by k1, k2, . . . , km, and the
associated sets by S1, S2, . . . , Sm.
To distribute a media key KM , the sender selects a number of subsets such

that each member is in at least one selected subset and no revoked user is in any
selected subset. Such a selection is known as a subset cover. The sender’s message
contains the media key encrypted under the key of each subset in the cover. The
message also contains information on what subsets were used in the cover, to inform
members which part of the message to decrypt. We write encryption of m under

5There are a few exceptions without this requirement, e.g. [56].



58 CHAPTER 5. BROADCAST ENCRYPTION

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a) Complete Subtree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b) Subset Difference

Figure 5.2: Two subset cover schemes, both covering the same member set (sets
used marked in grey).

key k as E(k,m). If the sender uses subsets S1, S4, S7 in the cover, her message
would be 1, 4, 7,E(k1,KM ),E(k4,KM ),E(k7,KM ).
From this description, we see that the size of the broadcast is proportional to

the number of subsets used in the cover. To minimize the bandwidth a sender
wants to select as few subsets as possible while still covering all members and not
covering any revoked users. As it turns out, finding the smallest possible cover is a
problem we cannot solve efficiently in general (it is NP-hard [62]). This difficulty
applies to a scheme with the subsets Si used in the scheme selected in an arbitrary
fashion. Most schemes have subsets Si such that it is easy to compute the smallest
possible cover for any choice of revoked users.
A number of subset cover schemes have been proposed in the literature. Along

with the definition of the subset cover framework, two schemes were also presented
in [83]: Complete Subtree (CS) and Subset Difference (SD). In both schemes, as
with many other schemes, the structure of the subsets used can be described by
thinking of the users as positioned in the leafs of a balanced binary tree. A key
difference here compared to the stateful LKH scheme we discussed in Section 5.1 is
that all users are part of the tree and know some of the keys, not only the current
members.
In the complete subtree scheme, there is a key associated with each node in

the binary tree. This construction is similar to that of LKH, and each user knows
the keys of all the nodes on the path from their leaf to the root. We illustrate in
Figure 5.2a a complete subtree scheme where the current members are the users at
nodes 8, 9, 11, 14, and 15. To cover this set, three subsets are used, corresponding
to the subtrees rooted in nodes 4, 11, and 7. In the complete subtree scheme, each
user ui has to store logn keys as her set of secrets si, and the size of a cover (and
thus bandwidth) can be shown to be min(r logn/r,m).
The subset difference (SD) scheme is the most influential broadcast encryption

scheme. In this scheme, the subsets in the scheme are the subsets on the form
“all users below node x, except for those who are also below node y”, for all x
and y. This family of subsets is significantly larger than the one in the complete
subtree scheme, and results in much lower bandwidth. In Figure 5.2b we illustrate
an SD example where the current members are the same as in our complete subtree
example. This time, only two subsets are needed to cover the members: all below
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2 but not 10, and all below 3 but not 6. In general, the sender needs only to select
at most min(2r − 1,m) subsets in the cover.
In Section 5.1 we said that a user ui stores a set of secrets si, that can be used

to derive her keys. In the SD scheme, each user belongs to O(n) subsets. Storing
that many keys is infeasible in many settings, e.g. cable TV and BluRay players,
where the set-top box or player must be as cheap as possible. To solve this, the keys
are related to each other by a cryptographic function, a pseudo-random sequence
generator (PRSG). This allows each user to only store O

(
log2 n

)
secrets, and still be

able to generate all the keys for the subsets to which she belongs. The secrets here
are so-called seeds of the PRSG, a construction that the SD scheme has in common
with most other subset cover schemes. We omit details on how the derivation of
keys works, for details see [83, 5].
Since the publication of [83], a large number of subset cover schemes have been

proposed. We do not go into detail on such constructions. Many of them use a
similar key structure as the SD schemes, examples include Layered Subset Differ-
ence [49], and Stratified Subset Difference [47] which yield constructions where a
user need only store O(logn) keys with only slightly higher bandwidth requirements
than in the SD scheme. Another scheme is the Punctured Interval scheme [56],
which also has the property that new users can be added to the scheme after ini-
tialization has been performed.
Having discussed some subset cover schemes, we now turn to the question of

whether it is possible to construct more efficient schemes within the subset cover
framework.

Impossibility Results
All of the subset cover schemes we have presented so far have almost the same worst-
case performance in terms of the numbers of sets needed in a cover. In particular,
they all need to select min(cr,m) sets in the worst case, for a small constant c
depending on the scheme and its parameters. Thus, one may naturally ask: could
we do better?
In [84], the full version of [83], a lower bound on the bandwidth required in a

broadcast encryption scheme was proven by a simple information-theoretic argu-
ment. It was stated that the message sent from the sender, implicitly or explicitly,
contains information on who is a member. This means that the message, at a min-
imum, must contain sufficient information to encode the membership information.
There are

(
n
r

)
ways to revoke r users out of n, so the message must be of a size at

least log
(
n
r

)
≈ r logn. As the scheme selects O(r) subsets for small r, the overhead

is O(r · keysize), where keysize is the size of the media key.
In Paper VI, we prove that schemes which use reasonably sized6 sets of secrets

si and which use a PRSG for key derivation, must use Ω(r) subsets in the cover,

6Here, “reasonably sized” means polynomial, which is much higher than what is normally
considered reasonable.
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and thus have a bandwidth of Ω(r · keysize). This shows that the bandwidth of
the original SD scheme is in fact optimal, up to a small constant. In the same
paper, we also prove that for some number of revoked users, the scheme must select
Ω(n/ log s) sets, where s is the size of the set of secrets si stored at each user.
Finally, we also prove that for sufficiently large r, the scheme must select Ω(m)
sets, meaning that the performance degrades to that of the naive scheme.
Our impossibility results show that to significantly outperform the SD scheme,

one must change one of the conditions used in the impossibility result. This may
entail using a more advanced mechanism than a PRSG to compute keys, or working
outside of the subset cover framework. Another option is to slightly modify the
problem we solve, an approach we discuss next.
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Apart from the normal broadcast encryption model, related problems and models
have been proposed. One of these is the case of attribute-based encryption and
its application to broadcast. In this setting, each user is associated with some set
of attributes. A broadcast can then be targeted to specific attributes, or combi-
nations of attributes. This can allow for efficient revocations of users based on
e.g. properties of their cable-TV subscriptions which can be encoded as attributes.
Using attribute-encryption in broadcast encryption applications was discussed by
Goyal et al. [48].

Free Riders and Weakened Security Models
For subset cover based schemes, it may be the case that allowing a few revoked
users to access the media key can reduce the bandwidth requirements. To see this,
consider the case where a very large subset is unusable due to a small number of
revoked users being in the subset, forcing the scheme to select many small sets to
cover the members. An idea for an optimization is to allow the scheme to sometimes
also cover revoked members, allowing them to access the content.
This can be acceptable in commercial settings for media streaming, a pirate

decoder which can access content at unpredictable times is not something that
most users would buy. The relaxed problem where revoked users can access content
sometimes is known as broadcast encryption with free riders, a setting first discussed
by Abdalla, Shavitt, and Wool [1].
One scheme in the setting with free riders is due to Adelsbach and Greveler [2].

They proposed two schemes, which essentially distribute the key piece-wise7 to
multiple sets. Each member is guaranteed to get enough pieces that they can
recover the key, while most revoked users receive too few pieces to do the same.
A drawback of their scheme is that it is not secure against collusions. Another
result is by Ramzan and Woodruff [92] who gave algorithms to optimally select the
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revoked users who are allowed to receive the content to save as much bandwidth as
possible for a given number of free riders.
Another weakening of properties to build a more efficient system is presented in

our Paper VII. There, the system prevents all revoked users from accessing content,
so there are no free riders. The property we weaken is that we lose security against
collusions. The transformation presented there is vulnerable to a leaving member
colluding with a previously revoked user. With such a collusion, it may be that the
pair would be able to continue decrypting the broadcast.
With this, we are now ready to conclude this section by summarizing our results

and discussing the main real-world application of broadcast encryption.

5.4 Contributions

In this thesis, we present two results on broadcast encryption, in particular on
subset cover based broadcast encryption schemes. The work here is focused on the
bandwidth requirements of such systems.
The first contribution, Paper VII, is the introduction of a state-key to transform

a subset cover scheme into what we call a stateful subset cover scheme to save
bandwidth. The state key is distributed along-side the media encryption key, so
only the current members have the state key. To distribute a new media encryption
key (and state key), the sender encrypts using a combination of the current state
key and the key associated with the selected subsets. This allows us to use larger
subsets which may cover some revoked user, as those revoked users do not know
the current state key. This increased efficiency comes at a price as the security
properties of a stateful subset cover scheme are worse than those of the original
scheme. In commercial settings, this may still be acceptable, as e.g. a pirate decoder
which works only sometimes is of relatively little value. The drawback can also be
mitigated by periodically distributing a new media key and state key using the
original subset cover scheme we build upon, doing so revokes colluding users until
one of them becomes a member again.
Our second contribution, Paper VI, is more on the theoretical side. We prove

three lower bounds on the bandwidth a subset cover scheme must use. Our bounds
apply to schemes using a PRSG to compute keys, the most common design choice.
We show that the original SD scheme was close to being optimal.

5.5 Real-world Applications

The largest deployment of broadcast encryption schemes is to protect the content
of BluRay discs (and also the now-dead HD-DVD format). These use a copy-
protection method called Advanced Access Content System (AACS). One of the core
components of this method is a subset cover based broadcast encryption scheme,
more specifically the subset difference (SD) scheme.
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Each manufacturer of BluRay players must have a license from the AACS Li-
censing Administrator (AACS LA). When licensed, they receive sets of secrets
corresponding to users in an SD scheme. The manufacturer may either let each
user in the SD scheme correspond to a specific product (i.e., a BluRay player), or
it may choose to let multiple products be the same user in the SD scheme. The set
of secrets corresponding to the user is embedded in the hardware.
The AACS LA acts as a sender in this system. When a BluRay disc is produced,

the AACS LA produces a message in the SD system with a new random media key
unique to the disc. The message and the media key is given to the company creating
the disc, which encrypts the content using the media key, and places the SD message
at the beginning of the disc. Thus, the content on a BluRay disc is the same as the
broadcast of encrypted media in a broadcast encryption scheme: first a message
with a media key, and then the content encrypted with the key.
A licensed player can recover the media key from the message on the disc and

decrypt the content. If it is discovered that the secrets corresponding to some
BluRay player have leaked, that “user” can be revoked. This means that such
players are unable to play any BluRay discs manufactured after when the revocation
occurred (as the player will then be revoked in the SD scheme and cannot decrypt
the media key).
The AACS standard also has support for traitor tracing. Firstly, if an unlicensed

player appears on the market, normal traitor tracing methods can be applied to
discover what user to revoke to disable the device from decrypting future discs.
Secondly, the AACS standard also provides mechanisms to make players decrypt
content slightly differently, such that content uploaded to pirate sites can be traced
back to a player model.
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Errata for Included Publications

At least one of the publications included in this thesis contained at least one error
at the time of publication. We included the version as published in this thesis, and
note the known error here:

• In Paper VII on page 7 (184 in the paper), S3,14 should be S3,15.
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Abstract—Spotify is a music streaming service offering low-
latency access to a library of over 8 million music tracks.
Streaming is performed by a combination of client-server access
and a peer-to-peer protocol. In this paper, we give an overview
of the protocol and peer-to-peer architecture used and provide
measurements of service performance and user behavior.

The service currently has a user base of over 7 million and
has been available in six European countries since October 2008.
Data collected indicates that the combination of the client-server
and peer-to-peer paradigms can be applied to music streaming
with good results. In particular, 8.8% of music data played comes
from Spotify’s servers while the median playback latency is only
265 ms (including cached tracks). We also discuss the user access
patterns observed and how the peer-to-peer network affects the
access patterns as they reach the server.

I. INTRODUCTION

Spotify is a streaming music service using peer-to-peer
techniques. The service has a library of over 8 million tracks,
allowing users to freely choose tracks they wish to listen to and
to seek within tracks. Data is streamed from both servers and
a peer-to-peer network. The service launched in October 2008
and now has over 7 million users in six European countries.

The service is offered in two versions: a free version with
advertisement, and a premium, pay-per-month, version. The
premium version includes some extra features such as the
option to stream music at a higher bitrate, and to synchronize
playlists for offline usage. Both versions of the service allow
unlimited streaming, and a large majority of users are on
the free version. The music catalog is the same for both
free and premium users with the exception of some pre-
releases exclusive to premium users. However, due to licensing
restrictions, the tracks accessible to a user depends on the
user’s home country.

One of the distinguishing features of the Spotify client is its
low playback latency. The median latency to begin playback
of a track is 265 ms. The service is not web-based, but instead
uses a proprietary client and protocol.

A. Related Services

There are many different on-demand music streaming ser-
vices offered today. To our knowledge, all such services but
Spotify are web-based, using either Adobe Flash or a web
browser plug-in for streaming. Furthermore, they are pure

client-server applications without a peer-to-peer component.
Among the more well-known such services are Napster, Rhap-
sody, and We7.

The application of peer-to-peer techniques to on-demand
streaming is more prevalent when it comes to video-on-
demand services. Such services include Joost, PPLive, and
PPStream. These vary between supporting live streaming (usu-
ally of a large number of channels), video-on-demand access,
or both. While there are many similarities between video-on-
demand and music-on-demand streaming, there are also many
differences; including user behavior, the size of streaming
objects, and the number of objects offered for streaming.

A service offering on-demand streaming has many things in
common with file-sharing applications. For instance, the mech-
anisms for locating peers in Spotify are similar to techniques
from BitTorrent and Gnutella.

B. Related Work

Leveraging the scalability of peer-to-peer networks to per-
form media streaming is a well-studied area in the academic
literature. Most such systems are concerned with live stream-
ing, where viewers watch the same stream simultaneously.
This setting is different in nature from the Spotify application,
where a user has on-demand access to a large library of tracks.

The peer-to-peer live streaming literature can be roughly
divided into two general approaches [1]: tree-based (e.g. [2]),
and mesh-based (e.g. [3], [4]), depending on whether they
maintain a tree structure in the overlay. While both techniques
have their advantages, intuitively it seems that a mesh structure
is a better fit for on-demand streaming applications.

There have been several studies measuring the perfor-
mance and behavior of large peer-to-peer systems, describing
and measuring both on-demand streaming [5], [6], and file-
sharing [7], [8] protocols. We believe that there is high value in
understanding how peer-to-peer techniques perform in today’s
networks.

Huang et al. [5] describe the PPLive video-on-demand
streaming system, and also present measurements on its per-
formance. To the best of our knowledge, their work is the
only other detailed study of an on-demand streaming system
of this size, with a peer-to-peer component. While there are
naturally many similarities between PPLive and Spotify, there
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are also many differences, including the overlay structure and
Spotify’s focus on low latency techniques.

C. Our Contribution

In this paper we give an in-depth description and evaluation
of Spotify. We discuss the general streaming protocol in
Section II, and go into more details on the peer-to-peer parts
in Section III.

Furthermore, in Section IV, we present and comment on
data gathered by Spotify while operating its service. We give
detailed measurements on many aspects of the service such
as latency, stutter, and how much data is offloaded from the
server by the peer-to-peer protocol. Some measurement data
is also presented in Sections II and III; that data was collected
as described in Section IV-A.

II. SPOTIFY OVERVIEW

The Spotify protocol is a proprietary network protocol
designed for streaming music. There are clients for OS X and
Windows as well as for several smartphone platforms. The
Windows version can also be run using Wine. The smartphone
clients do not participate at all in the peer-to-peer protocol,
but only stream from servers. Since the focus of this paper is
the evaluation of peer-to-peer techniques we will ignore the
smartphone clients in the remainder of this paper.

The clients are closed-source software available for free
download, but to use a client, a Spotify user account is needed.
Clients automatically update themselves, and only the most
recent version is allowed to access the service.

The user interface is similar to those found in desktop mp3
players. Users can organize tracks into playlists which can be
shared with others as links. Finding music is organized around
two concepts: searching and browsing. A user can search
for tracks, albums, or artists, and she can also browse—for
instance, when clicking on an artist name, the user is presented
with a page displaying all albums featuring that artist.

Audio streams are encoded using Ogg Vorbis with a default
quality of q5, which has variable bitrate averaging roughly
160 kbps. Users with a premium subscription can choose
(through a client setting) to instead receive Ogg Vorbis in q9
quality, averaging roughly 320 kbps. Both types of files are
served from both servers and the peer-to-peer network. No re-
encoding is done by peers, so a peer with the q9 version of a
track cannot serve it to one wanting the q5 version.

When playing music, the Spotify client monitors the sound
card buffers. If the buffers underrun, the client considers a
stutter to have occurred. Stutters can be either due to network
effects, or due to the client not receiving sufficient local
resources to decode and decrypt data in a timely manner. Such
local starvation is generally due to the client host doing other
(predominantly I/O-intensive) tasks.

The protocol is designed to provide on-demand access
to a large library of tracks and would be unsuitable for
live broadcasts. For instance, a client cannot upload a track
unless it has the whole track. The reason for this is that it
simplifies the protocol, and removes the overhead involved

with communicating what parts of a track a client has. The
drawbacks are limited, as tracks are small.

While UDP is the most common transport protocol in
streaming applications, Spotify instead uses TCP. Firstly, hav-
ing a reliable transport protocol simplifies protocol design and
implementation. Secondly, TCP is nice to the network in that
TCP’s congestion control is friendly to itself (and thus other
applications using TCP), and the explicit connection signaling
helps stateful firewalls. Thirdly, as streamed material is shared
in the peer-to-peer network, the re-sending of lost packets is
useful to the application.

Between a pair of hosts a single TCP connection is used,
and the application protocol multiplexes messages over the
connection. While a client is running, it keeps a TCP con-
nection to a Spotify server. Application layer messages are
buffered, and sorted by priority before being sent to the oper-
ating system’s TCP buffers. For instance, messages needed to
support interactive browsing are prioritized over bulk traffic.

A. Caching

Caching is important for two reasons. Firstly, it is common
that users listen to the same track several times, and caching
the track obviates the need for it to be re-downloaded. Sec-
ondly, cached music data can be served by the client in the
peer-to-peer overlay. The cache can store partial tracks, so if a
client only downloads a part of a track, that part will generally
be cached. Cached content is encrypted and cannot be used
by other players.

The default setting in the clients is for the maximum cache
size to be at most 10% of free disk space (excluding the size
of the cache itself), but at least 50 MB and at most 10 GB.
The size can also be configured by the user to be between 1
and 100 GB, in 1 GB increments. This policy leads to most
client installations having large caches (56% have a maximum
size of 5 GB or more, and thus fit approximately 1000 tracks).

Cache eviction is done with a Least Recently Used (LRU)
policy. Simulations using data on cache sizes and playback
logs indicate that, as caches are large, the choice of cache
eviction policy does not have a large effect on cache efficiency.
This can be compared to the finding of Huang et al.[5] that the
PPLive system gained much efficiency by changing from LRU
to a more complex, weight-based evaluation process. However,
in their setting, the objects in the cache are movies, and their
caches are of a size such that a client can only cache one, or
a few movies.

B. Random Access to a Track

The easiest case for a streaming music player is when tracks
are played in a predictable order. Assuming sufficient band-
width available, this allows the player to begin fetching data
needed to play upcoming tracks ahead of time (prefetching).
A more difficult, and perhaps interesting, case is when the
user chooses a new track to be played, which we refer to as
a random access. We begin by describing the random access
case and then proceed to discuss prefetching in Section II-C.
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Approximately 39% of playbacks in Spotify are by random
access (the rest start because the current track finished, or
because the user clicked the forward button to skip to the
next track). Unless the client had the data cached, it makes
an initial request to the server asking for approximately 15
seconds of music, using the already open TCP connection.
Simultaneously, it searches the peer-to-peer network for peers
who can serve the track, as described in Section III-C.

In most cases the initial request can be quickly satisfied. As
the client already has a TCP connection to the server no 3-
way handshake is needed. Common TCP congestion avoidance
algorithms, such as TCP New Reno [9] and CUBIC [10],
maintain a congestion window limiting how large bursts of
data can be sent. The congestion window starts out small for
a new connection and then grows as data is successfully sent.
Normally, the congestion window (on the server) for the long-
lived connection between client and server will be large as data
will have been sent over it. This allows the server to quickly
send much, or all, of the response to the latency-critical initial
request without waiting for ACKs from the client.

The connection to the server is long-lived, but it is also
bursty in nature. For instance, if a user is streaming from
a popular album, a very large fraction of the traffic will be
peer-to-peer traffic, and the connection to the server will then
be almost unused. If the user then makes a random access
playback there is a sudden burst of traffic. RFC 5681 [11]
states that an implementation should reduce its congestion
window if it has not sent data in an interval exceeding the
retransmission timeout. Linux kernels can be configured to
disable that reduction, and when Spotify did so the average
playback latency decreased by approximately 50 ms. We
remark that this was purely a server-side configuration change.

If a user jumps into the middle of a track (seeks), the client
treats the request similarly to a random access, immediately
requesting data from the server as described above. The Ogg
Vorbis format offers limited support for seeking in a streaming
environment, so Spotify adds a custom header to all their files
to better support seeking.

C. Predictable Track Selection

Most playbacks (61%) occur in a predictable sequence, i.e.
because the previous track played to its end, or because the
user pressed the forward button. Clients begin prefetching the
next track before the currently playing track has been played to
completion. With prefetching there is a trade-off between cost
and benefit. If clients begin prefetching too late the prefetching
may not be sufficient to allow the next track to immediately
start playing. If they prefetch too early the bandwidth may be
wasted if the user then makes a random request.

The clients begin searching the peer-to-peer network and
start downloading the next track when 30 seconds or less
remain of the current track. When 10 seconds or less remain
of the current track, the client prefetches the beginning of the
next track from the server if needed.

We did not have data to directly measure how good the
choice of these parameters are. But, we can measure how often

a user who listens to a track for the duration of the track
minus t seconds continues to the next track. If a user seeks
within a track, the measured event does not correspond to
playback coming within t seconds of the end of the track. For
t = 10, 30, the next scheduled track was played in 94%, and
92% of cases, respectively. This indicates that the choice of
parameters is reasonable, possibly a bit conservative.

During a period of a few weeks, all clients had a bug
where prefetching of the next track was accidentally disabled.
This allows us to directly measure the effects of prefetching
on the performance of the system. During a week when
prefetching was disabled the median playback latency was
390 ms, compared with the median latency over the current
measurement period of 265 ms. Furthermore, the fraction of
track playbacks in which stutter occurred was 1.8%, compared
to the normal rate of 1.0%.

D. Regular Streaming

While streaming, clients avoid downloading data from the
server unless it is necessary to maintain playback quality or
keep down latency. As discussed in Section II-B, when the user
makes a random access, an initial request for data is sent to
the server. Clients make local decisions about where to stream
from depending on the amount of data in their play-out buffers.
The connection to the server is assumed to be more reliable
than peer-connections, so if a client’s buffer levels are low, it
requests data from the server. As long as the client’s buffers
are sufficiently full and there are peers to stream from, the
client only streams from the peer-to-peer network.

There is also an “emergency mode” where, if buffers
become critically low (less than 3 seconds of audio buffered
during playback), the client pauses uploading data to its peers.
The reason for this is that many home users have asymmetric
connection capacity, a situation where ACK compression can
occur and cause degradation of TCP throughput [12]. The
“emergency mode” has been in the protocol since the first
deployment, so we have not been able to evaluate its effects.

A given track can be simultaneously downloaded from the
server and several different peers. If a peer is too slow in
satisfying a request, the request is resent to another peer or, if
getting the data has become too urgent, to the server.

While streaming from a server, clients throttle their requests
such that they do not get more than approximately 15 seconds
ahead of the current playback point, if there are peers avail-
able for the track. When downloading from the peer-to-peer
network, no such throttling occurs and the client attempts to
download the entire currently playing track. If a user changes
tracks, requests relating to the current track are aborted.

Files served within the peer-to-peer network are split into
chunks of 16 kB. When determining which peers to request
chunks from, the client sorts peers by their expected down-
load times (computed as the number of bytes of outstanding
requests from the peer, divided by the average download speed
received from that peer) and greedily requests the most urgent
chunk from the peer with the lowest estimated download time
(and then updates the expected download times). This means
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parameters is reasonable, possibly a bit conservative.

During a period of a few weeks, all clients had a bug
where prefetching of the next track was accidentally disabled.
This allows us to directly measure the effects of prefetching
on the performance of the system. During a week when
prefetching was disabled the median playback latency was
390 ms, compared with the median latency over the current
measurement period of 265 ms. Furthermore, the fraction of
track playbacks in which stutter occurred was 1.8%, compared
to the normal rate of 1.0%.

D. Regular Streaming

While streaming, clients avoid downloading data from the
server unless it is necessary to maintain playback quality or
keep down latency. As discussed in Section II-B, when the user
makes a random access, an initial request for data is sent to
the server. Clients make local decisions about where to stream
from depending on the amount of data in their play-out buffers.
The connection to the server is assumed to be more reliable
than peer-connections, so if a client’s buffer levels are low, it
requests data from the server. As long as the client’s buffers
are sufficiently full and there are peers to stream from, the
client only streams from the peer-to-peer network.

There is also an “emergency mode” where, if buffers
become critically low (less than 3 seconds of audio buffered
during playback), the client pauses uploading data to its peers.
The reason for this is that many home users have asymmetric
connection capacity, a situation where ACK compression can
occur and cause degradation of TCP throughput [12]. The
“emergency mode” has been in the protocol since the first
deployment, so we have not been able to evaluate its effects.

A given track can be simultaneously downloaded from the
server and several different peers. If a peer is too slow in
satisfying a request, the request is resent to another peer or, if
getting the data has become too urgent, to the server.

While streaming from a server, clients throttle their requests
such that they do not get more than approximately 15 seconds
ahead of the current playback point, if there are peers avail-
able for the track. When downloading from the peer-to-peer
network, no such throttling occurs and the client attempts to
download the entire currently playing track. If a user changes
tracks, requests relating to the current track are aborted.

Files served within the peer-to-peer network are split into
chunks of 16 kB. When determining which peers to request
chunks from, the client sorts peers by their expected down-
load times (computed as the number of bytes of outstanding
requests from the peer, divided by the average download speed
received from that peer) and greedily requests the most urgent
chunk from the peer with the lowest estimated download time
(and then updates the expected download times). This means

Approximately 39% of playbacks in Spotify are by random
access (the rest start because the current track finished, or
because the user clicked the forward button to skip to the
next track). Unless the client had the data cached, it makes
an initial request to the server asking for approximately 15
seconds of music, using the already open TCP connection.
Simultaneously, it searches the peer-to-peer network for peers
who can serve the track, as described in Section III-C.

In most cases the initial request can be quickly satisfied. As
the client already has a TCP connection to the server no 3-
way handshake is needed. Common TCP congestion avoidance
algorithms, such as TCP New Reno [9] and CUBIC [10],
maintain a congestion window limiting how large bursts of
data can be sent. The congestion window starts out small for
a new connection and then grows as data is successfully sent.
Normally, the congestion window (on the server) for the long-
lived connection between client and server will be large as data
will have been sent over it. This allows the server to quickly
send much, or all, of the response to the latency-critical initial
request without waiting for ACKs from the client.

The connection to the server is long-lived, but it is also
bursty in nature. For instance, if a user is streaming from
a popular album, a very large fraction of the traffic will be
peer-to-peer traffic, and the connection to the server will then
be almost unused. If the user then makes a random access
playback there is a sudden burst of traffic. RFC 5681 [11]
states that an implementation should reduce its congestion
window if it has not sent data in an interval exceeding the
retransmission timeout. Linux kernels can be configured to
disable that reduction, and when Spotify did so the average
playback latency decreased by approximately 50 ms. We
remark that this was purely a server-side configuration change.

If a user jumps into the middle of a track (seeks), the client
treats the request similarly to a random access, immediately
requesting data from the server as described above. The Ogg
Vorbis format offers limited support for seeking in a streaming
environment, so Spotify adds a custom header to all their files
to better support seeking.

C. Predictable Track Selection

Most playbacks (61%) occur in a predictable sequence, i.e.
because the previous track played to its end, or because the
user pressed the forward button. Clients begin prefetching the
next track before the currently playing track has been played to
completion. With prefetching there is a trade-off between cost
and benefit. If clients begin prefetching too late the prefetching
may not be sufficient to allow the next track to immediately
start playing. If they prefetch too early the bandwidth may be
wasted if the user then makes a random request.

The clients begin searching the peer-to-peer network and
start downloading the next track when 30 seconds or less
remain of the current track. When 10 seconds or less remain
of the current track, the client prefetches the beginning of the
next track from the server if needed.

We did not have data to directly measure how good the
choice of these parameters are. But, we can measure how often
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The reason for this is that many home users have asymmetric
connection capacity, a situation where ACK compression can
occur and cause degradation of TCP throughput [12]. The
“emergency mode” has been in the protocol since the first
deployment, so we have not been able to evaluate its effects.
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server and several different peers. If a peer is too slow in
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such that they do not get more than approximately 15 seconds
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download the entire currently playing track. If a user changes
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load times (computed as the number of bytes of outstanding
requests from the peer, divided by the average download speed
received from that peer) and greedily requests the most urgent
chunk from the peer with the lowest estimated download time
(and then updates the expected download times). This means



that chunks of a track are requested in sequential order. As
all peers serving a file have the entire file, requesting blocks
in-order does not affect availability or download speeds.

A client can at most have outstanding requests from a given
peer for data it believes the peer can deliver within 2 seconds.
An exception to this is that it is always allowed to have
requests for 32 kB outstanding from a peer. If the estimated
download time for a block exceeds the point in time at which
the block is needed, that block is not requested.

E. Play-out Delay

Streaming applications need to employ some mechanism to
combat the effects of packet loss and packet delay variation.
Several different options have been suggested in the literature;
for a survey see [13]. Spotify clients do not drop any frames or
slow down the playout-rate, and are thus non delay-preserving
in the nomenclature of [13]. As TCP is used as transport
protocol, all data requested will be delivered to the application
in-order, but the rate at which data is delivered is significantly
affected by network conditions such as packet loss. If a buffer
underrun occurs in a track, the Spotify client pauses playback
at that point, re-performing latency adjustment.

As discussed by Liang et al.[14], there is a trade-off between
initial playback latency, receiver buffer size, and the stutter
free probability. Spotify clients do not limit the buffer size,
and thus the crux of the problem is the appropriate modeling
of the channel and using that information to adjust the initial
playback latency. As a simplification, the client only considers
the channel to the server for latency adjustment.

Spotify clients use a Markovian model for throughput as
observed by the client (i.e., affected by packed delay variation,
packet loss, and TCP congestion control). Clients make obser-
vations of throughput achieved while it is downloading from
the server to estimate a Markov chain. Only data collected
during the last 15 minutes of downloading is kept and used.
The states of the Markov chain is the throughput during
1 second, discretized to 33 distinct levels between 0 and
153 kBps (more granular at lower throughputs).

The model is not used to compute an explicit playback
latency. Instead, before playback has commenced, the client
periodically uses the Markov chain to simulate the playback
of the track, beginning with the current amount of buffered
data, and the current data throughput. Each such simulation is
considered as failing or passing, depending on if an underrun
occurred or not. The client performs 100 simulations and if
more than one of them fails, it waits longer before begin-
ning playback. During these simulations the client makes the
simplifying assumption that data is consumed at a constant
rate despite the fact that the codec used has a variable bitrate
encoding.

III. SPOTIFY’S PEER-TO-PEER NETWORK

Spotify’s protocol has been designed to combine server-
and peer-to-peer streaming. The primary reason for developing
a peer-to-peer based protocol was to improve the scalability
of the service by decreasing the load on Spotify’s servers

and bandwidth resources. An explicit design goal was that
the usage of a peer-to-peer network should not decrease the
performance in terms of playback latency for music or the
amount of stutter. While that design goal is addressed by the
reliance on a server for latency-critical parts, it puts demands
on the efficiency of the peer-to-peer network in order to
achieve good offloading properties.

We discussed in Sections II-B and II-D how the clients
combine streaming from the peers and servers. In this section,
we give an overview of the peer-to-peer network.

A. General Structure

The peer-to-peer overlay used is an unstructured network,
the construction and maintenance of which is assisted by
trackers. This allows all peers to participate in the network
as equals so there are no “supernodes” performing any special
network-maintenance functions. A client will connect to a new
peer only when it wishes to download a track it thinks the
peer has. It locates peers likely to have a track it is looking
for through the mechanisms described in Section III-C.

As discussed in Section II-A, clients store (relatively large)
local caches of the tracks they have downloaded. The content
of these caches are also what the clients offer to serve to their
peers. As tracks are typically small and as live streaming is
not supported, a simplification made in the protocol is that
a client only offers to serve tracks which it has completely
cached. This allows for a slightly simpler protocol, and keeps
the protocol overhead down.

There is no general routing performed in the overlay net-
work, so two peers wishing to exchange data must be directly
connected. There is a single message forwarded on the behalf
of other peers, which is a message searching for peers with
a specific track. The rationale for the lack of routing in the
overlay is to keep the protocol simple and keep download
latencies and overhead down.

B. A Split Overlay Network

The service is currently run from two data centers, one in
London and one in Stockholm. A peer uniformly randomly
selects which data center to connect to, and load is evenly
spread over both data centers. Each data center has an inde-
pendent peer-to-peer overlay. Thus, the peer-to-peer overlay is
in fact split into two overlays, one per site.

The split is not complete since if a client loses its connection
to the server, it reconnects to a new server. If it reconnected to
the other site it keeps its old peers but is unable to make any
new connections to peers connected to servers at its old site.
For simplicity of presentation, we will describe the protocol
as having a single overlay network.

C. Locating Peers

Two mechanisms are used to locate peers having content
the client is interested in. The first uses a tracker deployed in
the Spotify back-end, and the second a query in the overlay
network.

The problem of locating peers is somewhat different in
music-on-demand streaming compared to many other settings.

that chunks of a track are requested in sequential order. As
all peers serving a file have the entire file, requesting blocks
in-order does not affect availability or download speeds.
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of the track, beginning with the current amount of buffered
data, and the current data throughput. Each such simulation is
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occurred or not. The client performs 100 simulations and if
more than one of them fails, it waits longer before begin-
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simplifying assumption that data is consumed at a constant
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in the nomenclature of [13]. As TCP is used as transport
protocol, all data requested will be delivered to the application
in-order, but the rate at which data is delivered is significantly
affected by network conditions such as packet loss. If a buffer
underrun occurs in a track, the Spotify client pauses playback
at that point, re-performing latency adjustment.

As discussed by Liang et al.[14], there is a trade-off between
initial playback latency, receiver buffer size, and the stutter
free probability. Spotify clients do not limit the buffer size,
and thus the crux of the problem is the appropriate modeling
of the channel and using that information to adjust the initial
playback latency. As a simplification, the client only considers
the channel to the server for latency adjustment.

Spotify clients use a Markovian model for throughput as
observed by the client (i.e., affected by packed delay variation,
packet loss, and TCP congestion control). Clients make obser-
vations of throughput achieved while it is downloading from
the server to estimate a Markov chain. Only data collected
during the last 15 minutes of downloading is kept and used.
The states of the Markov chain is the throughput during
1 second, discretized to 33 distinct levels between 0 and
153 kBps (more granular at lower throughputs).

The model is not used to compute an explicit playback
latency. Instead, before playback has commenced, the client
periodically uses the Markov chain to simulate the playback
of the track, beginning with the current amount of buffered
data, and the current data throughput. Each such simulation is
considered as failing or passing, depending on if an underrun
occurred or not. The client performs 100 simulations and if
more than one of them fails, it waits longer before begin-
ning playback. During these simulations the client makes the
simplifying assumption that data is consumed at a constant
rate despite the fact that the codec used has a variable bitrate
encoding.

III. SPOTIFY’S PEER-TO-PEER NETWORK

Spotify’s protocol has been designed to combine server-
and peer-to-peer streaming. The primary reason for developing
a peer-to-peer based protocol was to improve the scalability
of the service by decreasing the load on Spotify’s servers

and bandwidth resources. An explicit design goal was that
the usage of a peer-to-peer network should not decrease the
performance in terms of playback latency for music or the
amount of stutter. While that design goal is addressed by the
reliance on a server for latency-critical parts, it puts demands
on the efficiency of the peer-to-peer network in order to
achieve good offloading properties.

We discussed in Sections II-B and II-D how the clients
combine streaming from the peers and servers. In this section,
we give an overview of the peer-to-peer network.

A. General Structure

The peer-to-peer overlay used is an unstructured network,
the construction and maintenance of which is assisted by
trackers. This allows all peers to participate in the network
as equals so there are no “supernodes” performing any special
network-maintenance functions. A client will connect to a new
peer only when it wishes to download a track it thinks the
peer has. It locates peers likely to have a track it is looking
for through the mechanisms described in Section III-C.

As discussed in Section II-A, clients store (relatively large)
local caches of the tracks they have downloaded. The content
of these caches are also what the clients offer to serve to their
peers. As tracks are typically small and as live streaming is
not supported, a simplification made in the protocol is that
a client only offers to serve tracks which it has completely
cached. This allows for a slightly simpler protocol, and keeps
the protocol overhead down.

There is no general routing performed in the overlay net-
work, so two peers wishing to exchange data must be directly
connected. There is a single message forwarded on the behalf
of other peers, which is a message searching for peers with
a specific track. The rationale for the lack of routing in the
overlay is to keep the protocol simple and keep download
latencies and overhead down.

B. A Split Overlay Network

The service is currently run from two data centers, one in
London and one in Stockholm. A peer uniformly randomly
selects which data center to connect to, and load is evenly
spread over both data centers. Each data center has an inde-
pendent peer-to-peer overlay. Thus, the peer-to-peer overlay is
in fact split into two overlays, one per site.

The split is not complete since if a client loses its connection
to the server, it reconnects to a new server. If it reconnected to
the other site it keeps its old peers but is unable to make any
new connections to peers connected to servers at its old site.
For simplicity of presentation, we will describe the protocol
as having a single overlay network.

C. Locating Peers

Two mechanisms are used to locate peers having content
the client is interested in. The first uses a tracker deployed in
the Spotify back-end, and the second a query in the overlay
network.

The problem of locating peers is somewhat different in
music-on-demand streaming compared to many other settings.



As tracks are small, a client generally only needs to find
one, or a few peers to stream a track from. However, as
tracks are also short in duration, downloading new tracks is
a very frequent operation, and it is important to minimize
the overhead. Furthermore, the lookup time becomes a big
issue, which is one of the reasons for Spotify not using a
Distributed Hash Table (DHT) to find peers. Other reasons for
not implementing a DHT include keeping the protocol simple
and keeping overhead down.

The functionality of the tracker is similar, but not identical,
to that of a tracker in the BitTorrent protocol [15]. It maintains
a mapping from tracks to peers who have recently reported that
they have the track. As a peer only offers to serve a track if
it has the whole track cached, peers listed in the tracker have
the whole track.

As two complementary mechanisms are used, the tracker
can be simplified compared to many other system. In particu-
lar, the tracker only keeps a list of the 20 most recent peers for
each track. Furthermore, clients are only added to the tracker
when they play a track and do not periodically report the
contents of their caches, or explicitly notify the tracker when
content is removed. This helps in keeping overhead down,
and simplifies the implementation of the tracker. As clients
keep a TCP connection open to a Spotify server, the tracker
knows which clients are currently online. When a client asks
the trackers for peers who have a track, the tracker replies
with up to 10 peers who are currently online. The response is
limited in size to minimize overhead.

In addition to the tracker-based peer searches, clients also
send search requests in the overlay network, similar to the
method used in Gnutella [16]. A client in search of a track
sends a search request to all its neighbors in the overlay, who
forward the request to all their neighbors. Thus, all peers
within distance two of the searcher in the overlay see the
request, and send a response back if they have the track cached.
Search queries sent by clients have a query id associated
with them, and peers remember the 50 most recent searches
seen, allowing them to ignore duplicate messages. This limited
message forwarding is the only overlay routing in the Spotify
peer-to-peer protocol.

When a client is started, how does it get connected to the
peer-to-peer network? If it was still listed in the tracker for
some tracks then it is possible that other clients will connect
to it asking for those tracks. If the user starts streaming a track,
it will search the peer-to-peer network and connect to peers
who have the track, thus becoming a part of the overlay.

D. Neighbor Selection

Keeping the state required to maintain a large number
of TCP connections to peers is expensive, in particular for
home routers acting as stateful firewall and Network Address
Translation (NAT) devices. Thus, each client has a maximum
number of peers it may be connected to at any given time.
Clients are configured with both a soft and a hard limit, and
never go above the hard limit. The client does not make new
connections above the soft limit and periodically prunes its

connections to keep itself below the soft limit (with some
headroom for new connections). These limits are set to 50
and 60, respectively.

When a client needs to disconnect one or more peers, it
performs a heuristic evaluation of the utility of each connected
peer. The intention is for the heuristic to take into account both
how useful the connection is to the evaluating peer, as well as
how useful the link is to the overlay as a whole.

The client sorts all its connected peers according to 6
criteria: bytes sent in the last 10 minutes, bytes sent in
the last 60 minutes, bytes received in the last 10 minutes,
bytes received in the last 60 minutes, the number of peers
found through searches sent over the connection in the last
60 minutes, and the number of tracks the peer has that the
client has been interested in in the last 10 minutes. For each
criterion, the top scoring peer in that criterion gets a number
of points, the second peer a slightly lower number, and so
on (with slightly different weights for the different criteria).
Peers with a raw score of 0 for a criterion do not get any
points for that criterion. The peers points are then summed
over all the criteria, and the peers with the least total scores
are disconnected.

The client simultaneously uploads to at most 4 peers. This
stems from the fact that TCP congestion control gives fairness
between TCP connections, so many simultaneous uploads can
have adverse effects on other internet usage, in particular for
a home user with small uplink bandwidth.

E. State Exchanged Between Peers
A client wanting to download a track will inform its

neighbors of its interest in that track. The interest notification
also contains a priority, where the client informs its peer of
the urgency of the request. Currently, three discrete levels (in
falling order of priority) are used: currently streaming track,
prefetching next track, and offline synchronization.

A serving client selects which peers to service requests from
by sorting them by the priority of the request, and previously
measured upload speed to that peer, and then offer to service
the requests of the top 4 peers. Peers are informed whenever
their status changes (if their requests become sufficiently
prioritized to be serviced, or if their requests no longer are).

F. NAT Traversal
All traffic in the peer-to-peer network uses TCP as transport

protocol so the most common protocols for NAT traversal,
e.g. STUN [17], are not immediately applicable as they are
designed for UDP. While there are techniques for performing
TCP NAT traversal as well [18], Spotify clients currently do
not perform any NAT traversal.

This lack of NAT traversal is mitigated by two factors.
Firstly, when a client wishes to connect to a peer a request is
also forwarded through the Spotify server asking the connectee
to attempt a TCP connection back to the connecter. This allows
the connection to be established provided one of the parties
can accept incoming connections. Secondly, clients use the
Universal Plug n’ Play (UPnP) protocol to ask home routers
for a port to use for accepting incoming connections.

As tracks are small, a client generally only needs to find
one, or a few peers to stream a track from. However, as
tracks are also short in duration, downloading new tracks is
a very frequent operation, and it is important to minimize
the overhead. Furthermore, the lookup time becomes a big
issue, which is one of the reasons for Spotify not using a
Distributed Hash Table (DHT) to find peers. Other reasons for
not implementing a DHT include keeping the protocol simple
and keeping overhead down.

The functionality of the tracker is similar, but not identical,
to that of a tracker in the BitTorrent protocol [15]. It maintains
a mapping from tracks to peers who have recently reported that
they have the track. As a peer only offers to serve a track if
it has the whole track cached, peers listed in the tracker have
the whole track.

As two complementary mechanisms are used, the tracker
can be simplified compared to many other system. In particu-
lar, the tracker only keeps a list of the 20 most recent peers for
each track. Furthermore, clients are only added to the tracker
when they play a track and do not periodically report the
contents of their caches, or explicitly notify the tracker when
content is removed. This helps in keeping overhead down,
and simplifies the implementation of the tracker. As clients
keep a TCP connection open to a Spotify server, the tracker
knows which clients are currently online. When a client asks
the trackers for peers who have a track, the tracker replies
with up to 10 peers who are currently online. The response is
limited in size to minimize overhead.

In addition to the tracker-based peer searches, clients also
send search requests in the overlay network, similar to the
method used in Gnutella [16]. A client in search of a track
sends a search request to all its neighbors in the overlay, who
forward the request to all their neighbors. Thus, all peers
within distance two of the searcher in the overlay see the
request, and send a response back if they have the track cached.
Search queries sent by clients have a query id associated
with them, and peers remember the 50 most recent searches
seen, allowing them to ignore duplicate messages. This limited
message forwarding is the only overlay routing in the Spotify
peer-to-peer protocol.

When a client is started, how does it get connected to the
peer-to-peer network? If it was still listed in the tracker for
some tracks then it is possible that other clients will connect
to it asking for those tracks. If the user starts streaming a track,
it will search the peer-to-peer network and connect to peers
who have the track, thus becoming a part of the overlay.

D. Neighbor Selection

Keeping the state required to maintain a large number
of TCP connections to peers is expensive, in particular for
home routers acting as stateful firewall and Network Address
Translation (NAT) devices. Thus, each client has a maximum
number of peers it may be connected to at any given time.
Clients are configured with both a soft and a hard limit, and
never go above the hard limit. The client does not make new
connections above the soft limit and periodically prunes its

connections to keep itself below the soft limit (with some
headroom for new connections). These limits are set to 50
and 60, respectively.

When a client needs to disconnect one or more peers, it
performs a heuristic evaluation of the utility of each connected
peer. The intention is for the heuristic to take into account both
how useful the connection is to the evaluating peer, as well as
how useful the link is to the overlay as a whole.

The client sorts all its connected peers according to 6
criteria: bytes sent in the last 10 minutes, bytes sent in
the last 60 minutes, bytes received in the last 10 minutes,
bytes received in the last 60 minutes, the number of peers
found through searches sent over the connection in the last
60 minutes, and the number of tracks the peer has that the
client has been interested in in the last 10 minutes. For each
criterion, the top scoring peer in that criterion gets a number
of points, the second peer a slightly lower number, and so
on (with slightly different weights for the different criteria).
Peers with a raw score of 0 for a criterion do not get any
points for that criterion. The peers points are then summed
over all the criteria, and the peers with the least total scores
are disconnected.

The client simultaneously uploads to at most 4 peers. This
stems from the fact that TCP congestion control gives fairness
between TCP connections, so many simultaneous uploads can
have adverse effects on other internet usage, in particular for
a home user with small uplink bandwidth.

E. State Exchanged Between Peers
A client wanting to download a track will inform its

neighbors of its interest in that track. The interest notification
also contains a priority, where the client informs its peer of
the urgency of the request. Currently, three discrete levels (in
falling order of priority) are used: currently streaming track,
prefetching next track, and offline synchronization.

A serving client selects which peers to service requests from
by sorting them by the priority of the request, and previously
measured upload speed to that peer, and then offer to service
the requests of the top 4 peers. Peers are informed whenever
their status changes (if their requests become sufficiently
prioritized to be serviced, or if their requests no longer are).

F. NAT Traversal
All traffic in the peer-to-peer network uses TCP as transport

protocol so the most common protocols for NAT traversal,
e.g. STUN [17], are not immediately applicable as they are
designed for UDP. While there are techniques for performing
TCP NAT traversal as well [18], Spotify clients currently do
not perform any NAT traversal.

This lack of NAT traversal is mitigated by two factors.
Firstly, when a client wishes to connect to a peer a request is
also forwarded through the Spotify server asking the connectee
to attempt a TCP connection back to the connecter. This allows
the connection to be established provided one of the parties
can accept incoming connections. Secondly, clients use the
Universal Plug n’ Play (UPnP) protocol to ask home routers
for a port to use for accepting incoming connections.

As tracks are small, a client generally only needs to find
one, or a few peers to stream a track from. However, as
tracks are also short in duration, downloading new tracks is
a very frequent operation, and it is important to minimize
the overhead. Furthermore, the lookup time becomes a big
issue, which is one of the reasons for Spotify not using a
Distributed Hash Table (DHT) to find peers. Other reasons for
not implementing a DHT include keeping the protocol simple
and keeping overhead down.

The functionality of the tracker is similar, but not identical,
to that of a tracker in the BitTorrent protocol [15]. It maintains
a mapping from tracks to peers who have recently reported that
they have the track. As a peer only offers to serve a track if
it has the whole track cached, peers listed in the tracker have
the whole track.

As two complementary mechanisms are used, the tracker
can be simplified compared to many other system. In particu-
lar, the tracker only keeps a list of the 20 most recent peers for
each track. Furthermore, clients are only added to the tracker
when they play a track and do not periodically report the
contents of their caches, or explicitly notify the tracker when
content is removed. This helps in keeping overhead down,
and simplifies the implementation of the tracker. As clients
keep a TCP connection open to a Spotify server, the tracker
knows which clients are currently online. When a client asks
the trackers for peers who have a track, the tracker replies
with up to 10 peers who are currently online. The response is
limited in size to minimize overhead.

In addition to the tracker-based peer searches, clients also
send search requests in the overlay network, similar to the
method used in Gnutella [16]. A client in search of a track
sends a search request to all its neighbors in the overlay, who
forward the request to all their neighbors. Thus, all peers
within distance two of the searcher in the overlay see the
request, and send a response back if they have the track cached.
Search queries sent by clients have a query id associated
with them, and peers remember the 50 most recent searches
seen, allowing them to ignore duplicate messages. This limited
message forwarding is the only overlay routing in the Spotify
peer-to-peer protocol.

When a client is started, how does it get connected to the
peer-to-peer network? If it was still listed in the tracker for
some tracks then it is possible that other clients will connect
to it asking for those tracks. If the user starts streaming a track,
it will search the peer-to-peer network and connect to peers
who have the track, thus becoming a part of the overlay.

D. Neighbor Selection

Keeping the state required to maintain a large number
of TCP connections to peers is expensive, in particular for
home routers acting as stateful firewall and Network Address
Translation (NAT) devices. Thus, each client has a maximum
number of peers it may be connected to at any given time.
Clients are configured with both a soft and a hard limit, and
never go above the hard limit. The client does not make new
connections above the soft limit and periodically prunes its

connections to keep itself below the soft limit (with some
headroom for new connections). These limits are set to 50
and 60, respectively.

When a client needs to disconnect one or more peers, it
performs a heuristic evaluation of the utility of each connected
peer. The intention is for the heuristic to take into account both
how useful the connection is to the evaluating peer, as well as
how useful the link is to the overlay as a whole.

The client sorts all its connected peers according to 6
criteria: bytes sent in the last 10 minutes, bytes sent in
the last 60 minutes, bytes received in the last 10 minutes,
bytes received in the last 60 minutes, the number of peers
found through searches sent over the connection in the last
60 minutes, and the number of tracks the peer has that the
client has been interested in in the last 10 minutes. For each
criterion, the top scoring peer in that criterion gets a number
of points, the second peer a slightly lower number, and so
on (with slightly different weights for the different criteria).
Peers with a raw score of 0 for a criterion do not get any
points for that criterion. The peers points are then summed
over all the criteria, and the peers with the least total scores
are disconnected.

The client simultaneously uploads to at most 4 peers. This
stems from the fact that TCP congestion control gives fairness
between TCP connections, so many simultaneous uploads can
have adverse effects on other internet usage, in particular for
a home user with small uplink bandwidth.

E. State Exchanged Between Peers
A client wanting to download a track will inform its

neighbors of its interest in that track. The interest notification
also contains a priority, where the client informs its peer of
the urgency of the request. Currently, three discrete levels (in
falling order of priority) are used: currently streaming track,
prefetching next track, and offline synchronization.

A serving client selects which peers to service requests from
by sorting them by the priority of the request, and previously
measured upload speed to that peer, and then offer to service
the requests of the top 4 peers. Peers are informed whenever
their status changes (if their requests become sufficiently
prioritized to be serviced, or if their requests no longer are).

F. NAT Traversal
All traffic in the peer-to-peer network uses TCP as transport

protocol so the most common protocols for NAT traversal,
e.g. STUN [17], are not immediately applicable as they are
designed for UDP. While there are techniques for performing
TCP NAT traversal as well [18], Spotify clients currently do
not perform any NAT traversal.

This lack of NAT traversal is mitigated by two factors.
Firstly, when a client wishes to connect to a peer a request is
also forwarded through the Spotify server asking the connectee
to attempt a TCP connection back to the connecter. This allows
the connection to be established provided one of the parties
can accept incoming connections. Secondly, clients use the
Universal Plug n’ Play (UPnP) protocol to ask home routers
for a port to use for accepting incoming connections.

As tracks are small, a client generally only needs to find
one, or a few peers to stream a track from. However, as
tracks are also short in duration, downloading new tracks is
a very frequent operation, and it is important to minimize
the overhead. Furthermore, the lookup time becomes a big
issue, which is one of the reasons for Spotify not using a
Distributed Hash Table (DHT) to find peers. Other reasons for
not implementing a DHT include keeping the protocol simple
and keeping overhead down.

The functionality of the tracker is similar, but not identical,
to that of a tracker in the BitTorrent protocol [15]. It maintains
a mapping from tracks to peers who have recently reported that
they have the track. As a peer only offers to serve a track if
it has the whole track cached, peers listed in the tracker have
the whole track.

As two complementary mechanisms are used, the tracker
can be simplified compared to many other system. In particu-
lar, the tracker only keeps a list of the 20 most recent peers for
each track. Furthermore, clients are only added to the tracker
when they play a track and do not periodically report the
contents of their caches, or explicitly notify the tracker when
content is removed. This helps in keeping overhead down,
and simplifies the implementation of the tracker. As clients
keep a TCP connection open to a Spotify server, the tracker
knows which clients are currently online. When a client asks
the trackers for peers who have a track, the tracker replies
with up to 10 peers who are currently online. The response is
limited in size to minimize overhead.

In addition to the tracker-based peer searches, clients also
send search requests in the overlay network, similar to the
method used in Gnutella [16]. A client in search of a track
sends a search request to all its neighbors in the overlay, who
forward the request to all their neighbors. Thus, all peers
within distance two of the searcher in the overlay see the
request, and send a response back if they have the track cached.
Search queries sent by clients have a query id associated
with them, and peers remember the 50 most recent searches
seen, allowing them to ignore duplicate messages. This limited
message forwarding is the only overlay routing in the Spotify
peer-to-peer protocol.

When a client is started, how does it get connected to the
peer-to-peer network? If it was still listed in the tracker for
some tracks then it is possible that other clients will connect
to it asking for those tracks. If the user starts streaming a track,
it will search the peer-to-peer network and connect to peers
who have the track, thus becoming a part of the overlay.

D. Neighbor Selection

Keeping the state required to maintain a large number
of TCP connections to peers is expensive, in particular for
home routers acting as stateful firewall and Network Address
Translation (NAT) devices. Thus, each client has a maximum
number of peers it may be connected to at any given time.
Clients are configured with both a soft and a hard limit, and
never go above the hard limit. The client does not make new
connections above the soft limit and periodically prunes its

connections to keep itself below the soft limit (with some
headroom for new connections). These limits are set to 50
and 60, respectively.

When a client needs to disconnect one or more peers, it
performs a heuristic evaluation of the utility of each connected
peer. The intention is for the heuristic to take into account both
how useful the connection is to the evaluating peer, as well as
how useful the link is to the overlay as a whole.

The client sorts all its connected peers according to 6
criteria: bytes sent in the last 10 minutes, bytes sent in
the last 60 minutes, bytes received in the last 10 minutes,
bytes received in the last 60 minutes, the number of peers
found through searches sent over the connection in the last
60 minutes, and the number of tracks the peer has that the
client has been interested in in the last 10 minutes. For each
criterion, the top scoring peer in that criterion gets a number
of points, the second peer a slightly lower number, and so
on (with slightly different weights for the different criteria).
Peers with a raw score of 0 for a criterion do not get any
points for that criterion. The peers points are then summed
over all the criteria, and the peers with the least total scores
are disconnected.

The client simultaneously uploads to at most 4 peers. This
stems from the fact that TCP congestion control gives fairness
between TCP connections, so many simultaneous uploads can
have adverse effects on other internet usage, in particular for
a home user with small uplink bandwidth.

E. State Exchanged Between Peers
A client wanting to download a track will inform its

neighbors of its interest in that track. The interest notification
also contains a priority, where the client informs its peer of
the urgency of the request. Currently, three discrete levels (in
falling order of priority) are used: currently streaming track,
prefetching next track, and offline synchronization.

A serving client selects which peers to service requests from
by sorting them by the priority of the request, and previously
measured upload speed to that peer, and then offer to service
the requests of the top 4 peers. Peers are informed whenever
their status changes (if their requests become sufficiently
prioritized to be serviced, or if their requests no longer are).

F. NAT Traversal
All traffic in the peer-to-peer network uses TCP as transport

protocol so the most common protocols for NAT traversal,
e.g. STUN [17], are not immediately applicable as they are
designed for UDP. While there are techniques for performing
TCP NAT traversal as well [18], Spotify clients currently do
not perform any NAT traversal.

This lack of NAT traversal is mitigated by two factors.
Firstly, when a client wishes to connect to a peer a request is
also forwarded through the Spotify server asking the connectee
to attempt a TCP connection back to the connecter. This allows
the connection to be established provided one of the parties
can accept incoming connections. Secondly, clients use the
Universal Plug n’ Play (UPnP) protocol to ask home routers
for a port to use for accepting incoming connections.



Mon 12:00 Tue 00:00
   0

  10

  20

  30

  40

  50

  60

  70

  80

  90

 100
%

Tracks played - by day

R
R
D
T
O
O
L
 
/
 
T
O
B
I
 
O
E
T
I
K
E
R

                              Cur:       Min:       Avg:       Max:
  Tracks                      72.91       7.10      51.67     100.00 

(a) Tracks played
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  Users                       67.59       3.14      60.72     100.00 

(b) Users connected

Figure 1. The weekly usage pattern of the Spotify service. Data has been normalized to a 0-1 scale.
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(a) Playback latency
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(b) Stutter during playback

Figure 3. Playback latency and music stutter over a week.
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Figure 2. Sources of data used by clients

IV. PEER-TO-PEER EVALUATION

In this section, we will present and discuss measurements
indicating the performance of the Spotify system with focus on
the peer-to-peer network performance. For business reasons,
some data is presented as ratios rather than absolute volumes.

A. Measurement Methodology

Both Spotify clients and servers perform continuous in-
strumentation and monitoring of the system. Most client
measurements are aggregated locally before being sent to the
server. For instance, reports on connection statistics are sent
every 30 minutes to the server.

The raw log messages are collected and stored on log
servers and in a Hadoop cluster (an open-source map-reduce
and distributed storage implementation), where they are avail-
able for processing. There is also a real-time monitoring
system, based on the open-source Munin monitoring system,
storing aggregated data and generating graphs based on the log
messages and instrumentation of Spotify servers. Most of our
graphs are based on the aggregated Munin databases, while
most aggregate statistics (e.g., median playback latency) were
computed from the raw log files.

In the graphs presented in this paper, min and avg gives the
mimimum and average (per time unit) values taken over the
measurement period, and cur denotes the current value when
the measurement was made. Values below 1 will be denoted
with units m or u, denoting milli (10−3) and micro (10−6),
respectively.
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Figure 1. The weekly usage pattern of the Spotify service. Data has been normalized to a 0-1 scale.
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Figure 3. Playback latency and music stutter over a week.
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In this section, we will present and discuss measurements
indicating the performance of the Spotify system with focus on
the peer-to-peer network performance. For business reasons,
some data is presented as ratios rather than absolute volumes.
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measurements are aggregated locally before being sent to the
server. For instance, reports on connection statistics are sent
every 30 minutes to the server.

The raw log messages are collected and stored on log
servers and in a Hadoop cluster (an open-source map-reduce
and distributed storage implementation), where they are avail-
able for processing. There is also a real-time monitoring
system, based on the open-source Munin monitoring system,
storing aggregated data and generating graphs based on the log
messages and instrumentation of Spotify servers. Most of our
graphs are based on the aggregated Munin databases, while
most aggregate statistics (e.g., median playback latency) were
computed from the raw log files.

In the graphs presented in this paper, min and avg gives the
mimimum and average (per time unit) values taken over the
measurement period, and cur denotes the current value when
the measurement was made. Values below 1 will be denoted
with units m or u, denoting milli (10−3) and micro (10−6),
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the peer-to-peer network performance. For business reasons,
some data is presented as ratios rather than absolute volumes.
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measurements are aggregated locally before being sent to the
server. For instance, reports on connection statistics are sent
every 30 minutes to the server.

The raw log messages are collected and stored on log
servers and in a Hadoop cluster (an open-source map-reduce
and distributed storage implementation), where they are avail-
able for processing. There is also a real-time monitoring
system, based on the open-source Munin monitoring system,
storing aggregated data and generating graphs based on the log
messages and instrumentation of Spotify servers. Most of our
graphs are based on the aggregated Munin databases, while
most aggregate statistics (e.g., median playback latency) were
computed from the raw log files.

In the graphs presented in this paper, min and avg gives the
mimimum and average (per time unit) values taken over the
measurement period, and cur denotes the current value when
the measurement was made. Values below 1 will be denoted
with units m or u, denoting milli (10−3) and micro (10−6),
respectively.
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In this section, we will present and discuss measurements
indicating the performance of the Spotify system with focus on
the peer-to-peer network performance. For business reasons,
some data is presented as ratios rather than absolute volumes.

A. Measurement Methodology

Both Spotify clients and servers perform continuous in-
strumentation and monitoring of the system. Most client
measurements are aggregated locally before being sent to the
server. For instance, reports on connection statistics are sent
every 30 minutes to the server.

The raw log messages are collected and stored on log
servers and in a Hadoop cluster (an open-source map-reduce
and distributed storage implementation), where they are avail-
able for processing. There is also a real-time monitoring
system, based on the open-source Munin monitoring system,
storing aggregated data and generating graphs based on the log
messages and instrumentation of Spotify servers. Most of our
graphs are based on the aggregated Munin databases, while
most aggregate statistics (e.g., median playback latency) were
computed from the raw log files.

In the graphs presented in this paper, min and avg gives the
mimimum and average (per time unit) values taken over the
measurement period, and cur denotes the current value when
the measurement was made. Values below 1 will be denoted
with units m or u, denoting milli (10−3) and micro (10−6),
respectively.



We collected log messages and monitoring databases for a
measurement period of the week between Tuesday 23 March
and Monday 29 March 2010 (inclusive). During the measure-
ment period there was a brief disruption (lasting approximately
1.5 hours) in the service during the evening of Friday March
26th. Times are given in UTC.

B. Periodic Variations

When looking at measurements of the Spotify network it
quickly becomes apparent that there are significant periodic
effects. As users are located in Western Europe, the effect
of nighttime is clearly visible. We remark that usage is high
throughout the workday, as Spotify is legal and music-listening
can be done while working.

There is also a clear weekly pattern with a distinct difference
in the shape of data between weekdays and weekends. We be-
lieve these effects can likely be attributed to both a difference
in user behavior and in the difference of computer setup and
network architecture between corporate and home networks.
At home, we would expect most users to have machines with
much free hard disk space, connected to the Internet through
a NAT device speaking UPnP. At work, we would expect a
larger variation with many users being behind more restrictive
firewalls. In Figure 1, we show the variation over a week
in the number of users connected, and the number of tracks
played, where the data was normalized to a 0-1 scale. As the
two curves have almost the same shape we use different time
frames for the two graphs, and show tracks played during a
single day in Figure 1(a), and users connected over a week in
Figure 1(b). The dip during the early morning hours of March
25th appears to be due to an error in the collection of the data,
while the dip during the 26th is due to the outage mentioned
above.

C. Data Sources

We now turn to the question of how effectively the servers
are offloaded. Figure 2 shows the sources of track data for the
client and its variation throughout a week. All (non-duplicate)
data downloaded from servers and peers is counted, even if it
is not played (due to the user skipping the track). Data from
the cache is counted when the client reads the data from its
cache for playback, meaning that it corresponds reasonably
closely, but not exactly, to cached data played by the client.

Some periodic effects are clearly visible. During nighttime,
a significantly larger fraction of data played comes from the
cache. This effect is less pronounced on weekend nights, when
users play more new music. There is a distinct decrease in the
fraction offloaded by the peer-to-peer overlay while the logged
in population is increasing during the morning, and there is
a lesser, but more prolonged decrease when users log off in
the evening. There is also a difference between weekdays and
weekends, with peer-to-peer data offloading a larger fraction
of data during the weekends.

In total, during the measurement period, 8.8% of data came
from servers, 35.8% from the peer-to-peer network, and the
remaining 55.4% were cached data. Thus, we can see that the

large caches and peer-to-peer network together significantly
decrease the load on Spotify’s servers. Our results are com-
parable to the measurements performed by Huang et al. [5]
where PPLive was shown to have 8.3% data downloaded from
servers.

D. Playback Latency and Stutter

Two important measures for on demand streaming services
are the playback latency and the stutter frequency. As dis-
cussed by Liang et al. [14], streaming applications must make
a trade-off between the two quantities. We are not aware of
any studies discussing in detail how user’s satisfaction with a
streaming service depends on these two factors, but we believe
them to be very important. We think that studying the impact
of streaming performance on user satisfaction would be an
interesting subject for future research.

When combining peer-to-peer and server streaming, there
is also a trade-off between server load and latency and stutter
frequencies. Spotify has designed to prioritize the latter two.

The Spotify client measures the playback latency as the time
between when a track should start, either due to user action
or due to the previous track ending, and the time the OS is
instructed to begin playback. Thus, the latency measured not
only includes network latency but also the time needed on the
client’s host to decrypt and decompress downloaded data. We
remark that, due to digital rights management (DRM), even
fully cached material must wait for a reply over the network
before playback can commence and such a network request
is sent when the track should start, unless the track has been
synchronized for offline playback. Thus, the latency almost
always includes at least one RTT to the Spotify servers.

In Figure 3(a), we show how playback latency varied over
the measurement period. The large fraction of playbacks
shown as having a latency of more than 10 seconds was
discovered to be due to an error in latency reporting, the true
value is significantly lower, and was below 1% throughout the
measurement period.

We observe that the latency is significantly lower during
the night, when the number of tracks played is also low. This
is mainly due to two reasons. Firstly, more data is played
from the cache during the night. Secondly, users are less
interactive during the night, allowing the prefetching discussed
in Section II-B to be much more efficient.

Throughout the measurement period the median latency
was 265 ms, the 75th percentile was 515 ms, and the 90th
percentile was 1047 ms. As over half the data during the
measurement period came from the cache, it is likely that the
median playback latency measures the time needed for DRM
together with local processing time.

Intimately related to the playback latency is the amount
of stutter occurring upon playback. In Figure 3(b), we show
the fraction of playbacks during which one or more stutters
occurred. During the measurement period, less than 1% of all
playbacks stuttered. However, in 64% of stutters, the client had
more than 20 kilobytes of compressed music data available.
This indicates that stutters are often due to local effects (e.g.,
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remaining 55.4% were cached data. Thus, we can see that the

large caches and peer-to-peer network together significantly
decrease the load on Spotify’s servers. Our results are com-
parable to the measurements performed by Huang et al. [5]
where PPLive was shown to have 8.3% data downloaded from
servers.

D. Playback Latency and Stutter

Two important measures for on demand streaming services
are the playback latency and the stutter frequency. As dis-
cussed by Liang et al. [14], streaming applications must make
a trade-off between the two quantities. We are not aware of
any studies discussing in detail how user’s satisfaction with a
streaming service depends on these two factors, but we believe
them to be very important. We think that studying the impact
of streaming performance on user satisfaction would be an
interesting subject for future research.

When combining peer-to-peer and server streaming, there
is also a trade-off between server load and latency and stutter
frequencies. Spotify has designed to prioritize the latter two.

The Spotify client measures the playback latency as the time
between when a track should start, either due to user action
or due to the previous track ending, and the time the OS is
instructed to begin playback. Thus, the latency measured not
only includes network latency but also the time needed on the
client’s host to decrypt and decompress downloaded data. We
remark that, due to digital rights management (DRM), even
fully cached material must wait for a reply over the network
before playback can commence and such a network request
is sent when the track should start, unless the track has been
synchronized for offline playback. Thus, the latency almost
always includes at least one RTT to the Spotify servers.

In Figure 3(a), we show how playback latency varied over
the measurement period. The large fraction of playbacks
shown as having a latency of more than 10 seconds was
discovered to be due to an error in latency reporting, the true
value is significantly lower, and was below 1% throughout the
measurement period.

We observe that the latency is significantly lower during
the night, when the number of tracks played is also low. This
is mainly due to two reasons. Firstly, more data is played
from the cache during the night. Secondly, users are less
interactive during the night, allowing the prefetching discussed
in Section II-B to be much more efficient.

Throughout the measurement period the median latency
was 265 ms, the 75th percentile was 515 ms, and the 90th
percentile was 1047 ms. As over half the data during the
measurement period came from the cache, it is likely that the
median playback latency measures the time needed for DRM
together with local processing time.

Intimately related to the playback latency is the amount
of stutter occurring upon playback. In Figure 3(b), we show
the fraction of playbacks during which one or more stutters
occurred. During the measurement period, less than 1% of all
playbacks stuttered. However, in 64% of stutters, the client had
more than 20 kilobytes of compressed music data available.
This indicates that stutters are often due to local effects (e.g.,

We collected log messages and monitoring databases for a
measurement period of the week between Tuesday 23 March
and Monday 29 March 2010 (inclusive). During the measure-
ment period there was a brief disruption (lasting approximately
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26th. Times are given in UTC.
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can be done while working.
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in the shape of data between weekdays and weekends. We be-
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users play more new music. There is a distinct decrease in the
fraction offloaded by the peer-to-peer overlay while the logged
in population is increasing during the morning, and there is
a lesser, but more prolonged decrease when users log off in
the evening. There is also a difference between weekdays and
weekends, with peer-to-peer data offloading a larger fraction
of data during the weekends.

In total, during the measurement period, 8.8% of data came
from servers, 35.8% from the peer-to-peer network, and the
remaining 55.4% were cached data. Thus, we can see that the

large caches and peer-to-peer network together significantly
decrease the load on Spotify’s servers. Our results are com-
parable to the measurements performed by Huang et al. [5]
where PPLive was shown to have 8.3% data downloaded from
servers.

D. Playback Latency and Stutter

Two important measures for on demand streaming services
are the playback latency and the stutter frequency. As dis-
cussed by Liang et al. [14], streaming applications must make
a trade-off between the two quantities. We are not aware of
any studies discussing in detail how user’s satisfaction with a
streaming service depends on these two factors, but we believe
them to be very important. We think that studying the impact
of streaming performance on user satisfaction would be an
interesting subject for future research.

When combining peer-to-peer and server streaming, there
is also a trade-off between server load and latency and stutter
frequencies. Spotify has designed to prioritize the latter two.

The Spotify client measures the playback latency as the time
between when a track should start, either due to user action
or due to the previous track ending, and the time the OS is
instructed to begin playback. Thus, the latency measured not
only includes network latency but also the time needed on the
client’s host to decrypt and decompress downloaded data. We
remark that, due to digital rights management (DRM), even
fully cached material must wait for a reply over the network
before playback can commence and such a network request
is sent when the track should start, unless the track has been
synchronized for offline playback. Thus, the latency almost
always includes at least one RTT to the Spotify servers.

In Figure 3(a), we show how playback latency varied over
the measurement period. The large fraction of playbacks
shown as having a latency of more than 10 seconds was
discovered to be due to an error in latency reporting, the true
value is significantly lower, and was below 1% throughout the
measurement period.

We observe that the latency is significantly lower during
the night, when the number of tracks played is also low. This
is mainly due to two reasons. Firstly, more data is played
from the cache during the night. Secondly, users are less
interactive during the night, allowing the prefetching discussed
in Section II-B to be much more efficient.

Throughout the measurement period the median latency
was 265 ms, the 75th percentile was 515 ms, and the 90th
percentile was 1047 ms. As over half the data during the
measurement period came from the cache, it is likely that the
median playback latency measures the time needed for DRM
together with local processing time.

Intimately related to the playback latency is the amount
of stutter occurring upon playback. In Figure 3(b), we show
the fraction of playbacks during which one or more stutters
occurred. During the measurement period, less than 1% of all
playbacks stuttered. However, in 64% of stutters, the client had
more than 20 kilobytes of compressed music data available.
This indicates that stutters are often due to local effects (e.g.,
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(b) Track server request frequencies (normalized), log-log scale

Figure 4. Frequency of track accesses, both as played by clients and as blocks requested from the Spotify servers
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Figure 5. Peers found through broadcasting searches in the overlay and through the tracker

not receiving sufficient CPU time), rather than the network.
While we think a rate of 1% is acceptably low, there seems
to be room for further improvement.

E. Distribution of Track Accesses

There has been a considerable amount of discussion on how
an on-demand system affects usage patterns [19], [20], [21]. In
particular, it has been discussed whether all-you-can-eat on-
demand access leads users to access content according to a
long-tail distribution. A full discussion of the access pattern of
music in the Spotify service is out of scope for this paper, but
we will briefly mention some findings on the access pattern.

In Figure 4(a), we show the shape of the probability
density function of track playbacks in the Spotify system,
normalized so the most popular item has frequency 1. During
the measurement period 88% of the track accesses were within
the most popular 12% of the library. While much weight is on
the most popular tracks, it turns out that a large fraction of the
catalog is played. During our week-long measurement period,
approximately 60% of the content available was accessed at
least once.

Given the distribution of track accesses one could wonder
how well the peer-to-peer network works at varying degrees of
popularity. In Figure 4(b), we show the shape of frequencies
of tracks as requested from the Spotify servers. The graph is

based on data collected during February 21–23 2010, which
is outside our measurement period. This graph gives the
relative frequencies of tracks requested at servers. Clients
normally make between zero and ten server requests for a
track, depending on how much of it they download from a
server. The size of blocks requested varies, with the mean
size being 440 kB. The distribution of requests to the servers
is significantly less top-heavy than that of track playbacks with
79% of accesses being within the most popular 21%.

F. Locating Peers

Spotify provides two separate mechanisms for locating peers
having a piece of content, as described in Section III-C. In Fig-
ure 5, we show diagrams indicating how well the mechanisms
work. We have divided the neighborhood search into two types
of responses, peers who were already neighbors (Figure 5(a)),
and new peers found who were at distance 2 (Figure 5(b)).
We observe that locating peers through the overlay appears to
be essentially binary in nature—most requests receive either
none or many replies. In contrast, the number of peers located
through the tracker mechanism is more varied.

The fact that a client so often finds that many of its overlay
neighbors have the track it is interested in indicates that a
certain amount of clustering by interest is occurring in the
overlay. We believe it would be an interesting topic for future
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(b) Track server request frequencies (normalized), log-log scale

Figure 4. Frequency of track accesses, both as played by clients and as blocks requested from the Spotify servers
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not receiving sufficient CPU time), rather than the network.
While we think a rate of 1% is acceptably low, there seems
to be room for further improvement.

E. Distribution of Track Accesses

There has been a considerable amount of discussion on how
an on-demand system affects usage patterns [19], [20], [21]. In
particular, it has been discussed whether all-you-can-eat on-
demand access leads users to access content according to a
long-tail distribution. A full discussion of the access pattern of
music in the Spotify service is out of scope for this paper, but
we will briefly mention some findings on the access pattern.

In Figure 4(a), we show the shape of the probability
density function of track playbacks in the Spotify system,
normalized so the most popular item has frequency 1. During
the measurement period 88% of the track accesses were within
the most popular 12% of the library. While much weight is on
the most popular tracks, it turns out that a large fraction of the
catalog is played. During our week-long measurement period,
approximately 60% of the content available was accessed at
least once.

Given the distribution of track accesses one could wonder
how well the peer-to-peer network works at varying degrees of
popularity. In Figure 4(b), we show the shape of frequencies
of tracks as requested from the Spotify servers. The graph is

based on data collected during February 21–23 2010, which
is outside our measurement period. This graph gives the
relative frequencies of tracks requested at servers. Clients
normally make between zero and ten server requests for a
track, depending on how much of it they download from a
server. The size of blocks requested varies, with the mean
size being 440 kB. The distribution of requests to the servers
is significantly less top-heavy than that of track playbacks with
79% of accesses being within the most popular 21%.

F. Locating Peers

Spotify provides two separate mechanisms for locating peers
having a piece of content, as described in Section III-C. In Fig-
ure 5, we show diagrams indicating how well the mechanisms
work. We have divided the neighborhood search into two types
of responses, peers who were already neighbors (Figure 5(a)),
and new peers found who were at distance 2 (Figure 5(b)).
We observe that locating peers through the overlay appears to
be essentially binary in nature—most requests receive either
none or many replies. In contrast, the number of peers located
through the tracker mechanism is more varied.

The fact that a client so often finds that many of its overlay
neighbors have the track it is interested in indicates that a
certain amount of clustering by interest is occurring in the
overlay. We believe it would be an interesting topic for future
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(b) Track server request frequencies (normalized), log-log scale

Figure 4. Frequency of track accesses, both as played by clients and as blocks requested from the Spotify servers
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not receiving sufficient CPU time), rather than the network.
While we think a rate of 1% is acceptably low, there seems
to be room for further improvement.

E. Distribution of Track Accesses

There has been a considerable amount of discussion on how
an on-demand system affects usage patterns [19], [20], [21]. In
particular, it has been discussed whether all-you-can-eat on-
demand access leads users to access content according to a
long-tail distribution. A full discussion of the access pattern of
music in the Spotify service is out of scope for this paper, but
we will briefly mention some findings on the access pattern.

In Figure 4(a), we show the shape of the probability
density function of track playbacks in the Spotify system,
normalized so the most popular item has frequency 1. During
the measurement period 88% of the track accesses were within
the most popular 12% of the library. While much weight is on
the most popular tracks, it turns out that a large fraction of the
catalog is played. During our week-long measurement period,
approximately 60% of the content available was accessed at
least once.

Given the distribution of track accesses one could wonder
how well the peer-to-peer network works at varying degrees of
popularity. In Figure 4(b), we show the shape of frequencies
of tracks as requested from the Spotify servers. The graph is

based on data collected during February 21–23 2010, which
is outside our measurement period. This graph gives the
relative frequencies of tracks requested at servers. Clients
normally make between zero and ten server requests for a
track, depending on how much of it they download from a
server. The size of blocks requested varies, with the mean
size being 440 kB. The distribution of requests to the servers
is significantly less top-heavy than that of track playbacks with
79% of accesses being within the most popular 21%.

F. Locating Peers

Spotify provides two separate mechanisms for locating peers
having a piece of content, as described in Section III-C. In Fig-
ure 5, we show diagrams indicating how well the mechanisms
work. We have divided the neighborhood search into two types
of responses, peers who were already neighbors (Figure 5(a)),
and new peers found who were at distance 2 (Figure 5(b)).
We observe that locating peers through the overlay appears to
be essentially binary in nature—most requests receive either
none or many replies. In contrast, the number of peers located
through the tracker mechanism is more varied.

The fact that a client so often finds that many of its overlay
neighbors have the track it is interested in indicates that a
certain amount of clustering by interest is occurring in the
overlay. We believe it would be an interesting topic for future
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Figure 4. Frequency of track accesses, both as played by clients and as blocks requested from the Spotify servers
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Figure 5. Peers found through broadcasting searches in the overlay and through the tracker

not receiving sufficient CPU time), rather than the network.
While we think a rate of 1% is acceptably low, there seems
to be room for further improvement.

E. Distribution of Track Accesses

There has been a considerable amount of discussion on how
an on-demand system affects usage patterns [19], [20], [21]. In
particular, it has been discussed whether all-you-can-eat on-
demand access leads users to access content according to a
long-tail distribution. A full discussion of the access pattern of
music in the Spotify service is out of scope for this paper, but
we will briefly mention some findings on the access pattern.

In Figure 4(a), we show the shape of the probability
density function of track playbacks in the Spotify system,
normalized so the most popular item has frequency 1. During
the measurement period 88% of the track accesses were within
the most popular 12% of the library. While much weight is on
the most popular tracks, it turns out that a large fraction of the
catalog is played. During our week-long measurement period,
approximately 60% of the content available was accessed at
least once.

Given the distribution of track accesses one could wonder
how well the peer-to-peer network works at varying degrees of
popularity. In Figure 4(b), we show the shape of frequencies
of tracks as requested from the Spotify servers. The graph is

based on data collected during February 21–23 2010, which
is outside our measurement period. This graph gives the
relative frequencies of tracks requested at servers. Clients
normally make between zero and ten server requests for a
track, depending on how much of it they download from a
server. The size of blocks requested varies, with the mean
size being 440 kB. The distribution of requests to the servers
is significantly less top-heavy than that of track playbacks with
79% of accesses being within the most popular 21%.

F. Locating Peers

Spotify provides two separate mechanisms for locating peers
having a piece of content, as described in Section III-C. In Fig-
ure 5, we show diagrams indicating how well the mechanisms
work. We have divided the neighborhood search into two types
of responses, peers who were already neighbors (Figure 5(a)),
and new peers found who were at distance 2 (Figure 5(b)).
We observe that locating peers through the overlay appears to
be essentially binary in nature—most requests receive either
none or many replies. In contrast, the number of peers located
through the tracker mechanism is more varied.

The fact that a client so often finds that many of its overlay
neighbors have the track it is interested in indicates that a
certain amount of clustering by interest is occurring in the
overlay. We believe it would be an interesting topic for future
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Figure 6. Overlay properties — sizes of peer’s neighborhoods, and churn (fraction of currently connected clients connecting/disconnecting per second)

Table I
SOURCES OF PEERS

Sources for peers Fraction of searches
Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No peers found 8.9%

work to further explore the extent of such clustering, and if it
can be further enhanced by the protocol design, or if it can be
leveraged in other peer-to-peer systems.

Recall that the tracker mechanism is necessary for boot-
strapping a newly joined client into the overlay network (as
without a tracker, she would never get connected to anyone
and could not use searches in the overlay to find new peers).
Referring to Figure 5(c), it seems as if once the bootstrapping
was done it is possible that the searching within the overlay
could be a sufficiently effective mechanism on its own.

When designing the two complementary mechanisms, a
reason for having both mechanisms was that the tracker would
allow for “long jumps” within the overlay. Assuming that some
amount of clustering is occurring, if a user’s mood changes
and she now feels like listening to Jazz instead of the Hip
Hop she has been listening to for the last hour, intuitively it
seems that searching locally in her overlay would not yield
much, if anything. A reason for having overlay searches given
that there is a tracker is to make the system more robust to
tracker failures, and to allow for a simpler and cheaper tracker
implementation.

We analyzed the traces for those tracks where the client
had downloaded at least one byte. Thus, tracks played from
the cache, or skipped before the client received any data were
ignored in this analysis. The results of a tracker query and a
neighborhood search can overlap, and a client may learn of a
given peer from both sources simultaneously. Such peers are
reported by the client as having been found in the peer-to-peer
network (only).

Table II
DISTRIBUTION OF APPLICATION-LAYER TRAFFIC IN OVERLAY NETWORK

Type Fraction
Music data, used 94.80%
Music data, unused 2.38%
Search overhead 2.33%
Other overhead 0.48%

The results are summarized in Table I. We note that,
for a majority of requests, both mechanisms are successful
in locating new peers. We believe that the relatively high
frequency (7%) of the event that peers are found only through
the overlay is mostly an artifact of the reporting of overlapping
search results.

G. Peer-to-Peer Protocol Overhead

An issue in all peer-to-peer networks is to keep the overhead
cost of the overlay at a minimum. A potential problem in
Gnutella-like systems in particular is the overhead incurred
by searches in the peer-to-peer network.

Clients periodically report the total number of bytes received
on peer-to-peer TCP sockets as well as the total number of
bytes of useful song data they have downloaded over the peer-
to-peer network. Song data is considered useful if the request
had not been cancelled before the data arrived, and if it is not
duplicate to data the client has received from other peers or
the server. Our measurements do not include overhead caused
by lower-layer protocols such as TCP and IP.

Over our measurement period, 5.20% of the traffic received
from the peer-to-peer network was not useful song data. In Ta-
ble II we break down the overhead into three categories. Most
of the overhead, 2.38% of received traffic, comes form song
data downloaded which was not useful to the client. Closely
following is the overhead coming from searching for peers.
The measurements on protocol overhead can be compared
with experimental measurements on the BitTorrent protocol
by Legout et al. [7] where they found the BitTorrent protocol
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Table I
SOURCES OF PEERS

Sources for peers Fraction of searches
Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No peers found 8.9%

work to further explore the extent of such clustering, and if it
can be further enhanced by the protocol design, or if it can be
leveraged in other peer-to-peer systems.

Recall that the tracker mechanism is necessary for boot-
strapping a newly joined client into the overlay network (as
without a tracker, she would never get connected to anyone
and could not use searches in the overlay to find new peers).
Referring to Figure 5(c), it seems as if once the bootstrapping
was done it is possible that the searching within the overlay
could be a sufficiently effective mechanism on its own.

When designing the two complementary mechanisms, a
reason for having both mechanisms was that the tracker would
allow for “long jumps” within the overlay. Assuming that some
amount of clustering is occurring, if a user’s mood changes
and she now feels like listening to Jazz instead of the Hip
Hop she has been listening to for the last hour, intuitively it
seems that searching locally in her overlay would not yield
much, if anything. A reason for having overlay searches given
that there is a tracker is to make the system more robust to
tracker failures, and to allow for a simpler and cheaper tracker
implementation.

We analyzed the traces for those tracks where the client
had downloaded at least one byte. Thus, tracks played from
the cache, or skipped before the client received any data were
ignored in this analysis. The results of a tracker query and a
neighborhood search can overlap, and a client may learn of a
given peer from both sources simultaneously. Such peers are
reported by the client as having been found in the peer-to-peer
network (only).

Table II
DISTRIBUTION OF APPLICATION-LAYER TRAFFIC IN OVERLAY NETWORK

Type Fraction
Music data, used 94.80%
Music data, unused 2.38%
Search overhead 2.33%
Other overhead 0.48%

The results are summarized in Table I. We note that,
for a majority of requests, both mechanisms are successful
in locating new peers. We believe that the relatively high
frequency (7%) of the event that peers are found only through
the overlay is mostly an artifact of the reporting of overlapping
search results.

G. Peer-to-Peer Protocol Overhead

An issue in all peer-to-peer networks is to keep the overhead
cost of the overlay at a minimum. A potential problem in
Gnutella-like systems in particular is the overhead incurred
by searches in the peer-to-peer network.

Clients periodically report the total number of bytes received
on peer-to-peer TCP sockets as well as the total number of
bytes of useful song data they have downloaded over the peer-
to-peer network. Song data is considered useful if the request
had not been cancelled before the data arrived, and if it is not
duplicate to data the client has received from other peers or
the server. Our measurements do not include overhead caused
by lower-layer protocols such as TCP and IP.

Over our measurement period, 5.20% of the traffic received
from the peer-to-peer network was not useful song data. In Ta-
ble II we break down the overhead into three categories. Most
of the overhead, 2.38% of received traffic, comes form song
data downloaded which was not useful to the client. Closely
following is the overhead coming from searching for peers.
The measurements on protocol overhead can be compared
with experimental measurements on the BitTorrent protocol
by Legout et al. [7] where they found the BitTorrent protocol
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Table I
SOURCES OF PEERS

Sources for peers Fraction of searches
Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No peers found 8.9%

work to further explore the extent of such clustering, and if it
can be further enhanced by the protocol design, or if it can be
leveraged in other peer-to-peer systems.

Recall that the tracker mechanism is necessary for boot-
strapping a newly joined client into the overlay network (as
without a tracker, she would never get connected to anyone
and could not use searches in the overlay to find new peers).
Referring to Figure 5(c), it seems as if once the bootstrapping
was done it is possible that the searching within the overlay
could be a sufficiently effective mechanism on its own.

When designing the two complementary mechanisms, a
reason for having both mechanisms was that the tracker would
allow for “long jumps” within the overlay. Assuming that some
amount of clustering is occurring, if a user’s mood changes
and she now feels like listening to Jazz instead of the Hip
Hop she has been listening to for the last hour, intuitively it
seems that searching locally in her overlay would not yield
much, if anything. A reason for having overlay searches given
that there is a tracker is to make the system more robust to
tracker failures, and to allow for a simpler and cheaper tracker
implementation.

We analyzed the traces for those tracks where the client
had downloaded at least one byte. Thus, tracks played from
the cache, or skipped before the client received any data were
ignored in this analysis. The results of a tracker query and a
neighborhood search can overlap, and a client may learn of a
given peer from both sources simultaneously. Such peers are
reported by the client as having been found in the peer-to-peer
network (only).

Table II
DISTRIBUTION OF APPLICATION-LAYER TRAFFIC IN OVERLAY NETWORK

Type Fraction
Music data, used 94.80%
Music data, unused 2.38%
Search overhead 2.33%
Other overhead 0.48%

The results are summarized in Table I. We note that,
for a majority of requests, both mechanisms are successful
in locating new peers. We believe that the relatively high
frequency (7%) of the event that peers are found only through
the overlay is mostly an artifact of the reporting of overlapping
search results.

G. Peer-to-Peer Protocol Overhead

An issue in all peer-to-peer networks is to keep the overhead
cost of the overlay at a minimum. A potential problem in
Gnutella-like systems in particular is the overhead incurred
by searches in the peer-to-peer network.

Clients periodically report the total number of bytes received
on peer-to-peer TCP sockets as well as the total number of
bytes of useful song data they have downloaded over the peer-
to-peer network. Song data is considered useful if the request
had not been cancelled before the data arrived, and if it is not
duplicate to data the client has received from other peers or
the server. Our measurements do not include overhead caused
by lower-layer protocols such as TCP and IP.

Over our measurement period, 5.20% of the traffic received
from the peer-to-peer network was not useful song data. In Ta-
ble II we break down the overhead into three categories. Most
of the overhead, 2.38% of received traffic, comes form song
data downloaded which was not useful to the client. Closely
following is the overhead coming from searching for peers.
The measurements on protocol overhead can be compared
with experimental measurements on the BitTorrent protocol
by Legout et al. [7] where they found the BitTorrent protocol
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Table I
SOURCES OF PEERS

Sources for peers Fraction of searches
Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No peers found 8.9%

work to further explore the extent of such clustering, and if it
can be further enhanced by the protocol design, or if it can be
leveraged in other peer-to-peer systems.

Recall that the tracker mechanism is necessary for boot-
strapping a newly joined client into the overlay network (as
without a tracker, she would never get connected to anyone
and could not use searches in the overlay to find new peers).
Referring to Figure 5(c), it seems as if once the bootstrapping
was done it is possible that the searching within the overlay
could be a sufficiently effective mechanism on its own.

When designing the two complementary mechanisms, a
reason for having both mechanisms was that the tracker would
allow for “long jumps” within the overlay. Assuming that some
amount of clustering is occurring, if a user’s mood changes
and she now feels like listening to Jazz instead of the Hip
Hop she has been listening to for the last hour, intuitively it
seems that searching locally in her overlay would not yield
much, if anything. A reason for having overlay searches given
that there is a tracker is to make the system more robust to
tracker failures, and to allow for a simpler and cheaper tracker
implementation.

We analyzed the traces for those tracks where the client
had downloaded at least one byte. Thus, tracks played from
the cache, or skipped before the client received any data were
ignored in this analysis. The results of a tracker query and a
neighborhood search can overlap, and a client may learn of a
given peer from both sources simultaneously. Such peers are
reported by the client as having been found in the peer-to-peer
network (only).

Table II
DISTRIBUTION OF APPLICATION-LAYER TRAFFIC IN OVERLAY NETWORK

Type Fraction
Music data, used 94.80%
Music data, unused 2.38%
Search overhead 2.33%
Other overhead 0.48%

The results are summarized in Table I. We note that,
for a majority of requests, both mechanisms are successful
in locating new peers. We believe that the relatively high
frequency (7%) of the event that peers are found only through
the overlay is mostly an artifact of the reporting of overlapping
search results.

G. Peer-to-Peer Protocol Overhead

An issue in all peer-to-peer networks is to keep the overhead
cost of the overlay at a minimum. A potential problem in
Gnutella-like systems in particular is the overhead incurred
by searches in the peer-to-peer network.

Clients periodically report the total number of bytes received
on peer-to-peer TCP sockets as well as the total number of
bytes of useful song data they have downloaded over the peer-
to-peer network. Song data is considered useful if the request
had not been cancelled before the data arrived, and if it is not
duplicate to data the client has received from other peers or
the server. Our measurements do not include overhead caused
by lower-layer protocols such as TCP and IP.

Over our measurement period, 5.20% of the traffic received
from the peer-to-peer network was not useful song data. In Ta-
ble II we break down the overhead into three categories. Most
of the overhead, 2.38% of received traffic, comes form song
data downloaded which was not useful to the client. Closely
following is the overhead coming from searching for peers.
The measurements on protocol overhead can be compared
with experimental measurements on the BitTorrent protocol
by Legout et al. [7] where they found the BitTorrent protocol



overhead to be, in most of their measurements, below 2%. We
remark that the two protocols are quite different in nature, and
there is a difference in the measurement methodology.

H. Properties of the Overlay Network

As discussed in Section III-D, each peer has a limit to the
number of neighbors it retains connections to in the overlay
network. In Figure 6(a), we show what the distribution of
node degrees in the overlay looks like. A surprisingly large
fraction (between 30%-50%) of clients are disconnected from
the overlay. While we have not fully investigated the reasons
for this, we believe a partial explanation may be that the
neighbor selection and tracker mechanisms cause idle users
to become disconnected from the overlay.

In Section III-F, we discussed the absence of NAT traversal
techniques in the Spotify clients. Intuitively, one would expect
that this would constitute a problem as users are likely to
be situated behind various NAT devices. Our data shows that
it indeed is a problem and that the fraction of successful
connection attempts was 35% during our measurement period.

An important factor for how well a peer-to-peer network
can function is the amount of churn. While we do not have
any direct measurements of churn, we do have access to data
showing the fraction of currently connected clients connecting
to and disconnecting from servers, shown in Figure 6(b). It
can happen that a client reconnects to a new Spotify server
while still being active in the peer-to-peer network, e.g. in case
the server is overloaded. This should be sufficiently rare that
Figure 6(b) gives a realistic measurement of the churn in the
overlay.

We note that the total churn rate is roughly even throughout
the day with a sharp decrease during nighttime. During the
morning it is dominated by logins while it is dominated by
logouts towards the evening. Comparing the churn to Figure 2
we observe that, seemingly, the efficiency of the overlay in
data delivery is not severely impacted by clients logging out.
On the other hand, there is a daily dip in the fraction of data
delivered by the overlay during the morning when many new
users are logging on.

V. CONCLUSION

We have given an overview of the protocol and structure
of the Spotify on-demand music streaming service, together
with many measurements of the performance of the system.
In particular, we note that the approach that Spotify uses to
combine server-based and peer-to-peer streaming gives very
good results, both with respect to user-relevant performance
measures, and in reducing server costs. Furthermore, this
is done using TCP as a transport protocol, indicating that
streaming over TCP is a very viable option. The data collected
shows also shows that a simplified tracker coupled with
overlay broadcasts can be an efficient design for locating peers.

We believe on-demand streaming will continue to grow
rapidly in the coming years, and that many interesting prob-
lems remain in further developing such services. Among these

are (1) development of user satisfaction measures for on-
demand streaming; (2) improved playout strategies, adapted to
peer-to-peer data delivery; (3) efficient peer-to-peer overlays
exploiting the overlap in interests between users.
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network. In Figure 6(a), we show what the distribution of
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fraction (between 30%-50%) of clients are disconnected from
the overlay. While we have not fully investigated the reasons
for this, we believe a partial explanation may be that the
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to become disconnected from the overlay.

In Section III-F, we discussed the absence of NAT traversal
techniques in the Spotify clients. Intuitively, one would expect
that this would constitute a problem as users are likely to
be situated behind various NAT devices. Our data shows that
it indeed is a problem and that the fraction of successful
connection attempts was 35% during our measurement period.

An important factor for how well a peer-to-peer network
can function is the amount of churn. While we do not have
any direct measurements of churn, we do have access to data
showing the fraction of currently connected clients connecting
to and disconnecting from servers, shown in Figure 6(b). It
can happen that a client reconnects to a new Spotify server
while still being active in the peer-to-peer network, e.g. in case
the server is overloaded. This should be sufficiently rare that
Figure 6(b) gives a realistic measurement of the churn in the
overlay.

We note that the total churn rate is roughly even throughout
the day with a sharp decrease during nighttime. During the
morning it is dominated by logins while it is dominated by
logouts towards the evening. Comparing the churn to Figure 2
we observe that, seemingly, the efficiency of the overlay in
data delivery is not severely impacted by clients logging out.
On the other hand, there is a daily dip in the fraction of data
delivered by the overlay during the morning when many new
users are logging on.

V. CONCLUSION

We have given an overview of the protocol and structure
of the Spotify on-demand music streaming service, together
with many measurements of the performance of the system.
In particular, we note that the approach that Spotify uses to
combine server-based and peer-to-peer streaming gives very
good results, both with respect to user-relevant performance
measures, and in reducing server costs. Furthermore, this
is done using TCP as a transport protocol, indicating that
streaming over TCP is a very viable option. The data collected
shows also shows that a simplified tracker coupled with
overlay broadcasts can be an efficient design for locating peers.

We believe on-demand streaming will continue to grow
rapidly in the coming years, and that many interesting prob-
lems remain in further developing such services. Among these

are (1) development of user satisfaction measures for on-
demand streaming; (2) improved playout strategies, adapted to
peer-to-peer data delivery; (3) efficient peer-to-peer overlays
exploiting the overlap in interests between users.
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H. Properties of the Overlay Network
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number of neighbors it retains connections to in the overlay
network. In Figure 6(a), we show what the distribution of
node degrees in the overlay looks like. A surprisingly large
fraction (between 30%-50%) of clients are disconnected from
the overlay. While we have not fully investigated the reasons
for this, we believe a partial explanation may be that the
neighbor selection and tracker mechanisms cause idle users
to become disconnected from the overlay.

In Section III-F, we discussed the absence of NAT traversal
techniques in the Spotify clients. Intuitively, one would expect
that this would constitute a problem as users are likely to
be situated behind various NAT devices. Our data shows that
it indeed is a problem and that the fraction of successful
connection attempts was 35% during our measurement period.

An important factor for how well a peer-to-peer network
can function is the amount of churn. While we do not have
any direct measurements of churn, we do have access to data
showing the fraction of currently connected clients connecting
to and disconnecting from servers, shown in Figure 6(b). It
can happen that a client reconnects to a new Spotify server
while still being active in the peer-to-peer network, e.g. in case
the server is overloaded. This should be sufficiently rare that
Figure 6(b) gives a realistic measurement of the churn in the
overlay.

We note that the total churn rate is roughly even throughout
the day with a sharp decrease during nighttime. During the
morning it is dominated by logins while it is dominated by
logouts towards the evening. Comparing the churn to Figure 2
we observe that, seemingly, the efficiency of the overlay in
data delivery is not severely impacted by clients logging out.
On the other hand, there is a daily dip in the fraction of data
delivered by the overlay during the morning when many new
users are logging on.

V. CONCLUSION

We have given an overview of the protocol and structure
of the Spotify on-demand music streaming service, together
with many measurements of the performance of the system.
In particular, we note that the approach that Spotify uses to
combine server-based and peer-to-peer streaming gives very
good results, both with respect to user-relevant performance
measures, and in reducing server costs. Furthermore, this
is done using TCP as a transport protocol, indicating that
streaming over TCP is a very viable option. The data collected
shows also shows that a simplified tracker coupled with
overlay broadcasts can be an efficient design for locating peers.

We believe on-demand streaming will continue to grow
rapidly in the coming years, and that many interesting prob-
lems remain in further developing such services. Among these

are (1) development of user satisfaction measures for on-
demand streaming; (2) improved playout strategies, adapted to
peer-to-peer data delivery; (3) efficient peer-to-peer overlays
exploiting the overlap in interests between users.
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fraction (between 30%-50%) of clients are disconnected from
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for this, we believe a partial explanation may be that the
neighbor selection and tracker mechanisms cause idle users
to become disconnected from the overlay.

In Section III-F, we discussed the absence of NAT traversal
techniques in the Spotify clients. Intuitively, one would expect
that this would constitute a problem as users are likely to
be situated behind various NAT devices. Our data shows that
it indeed is a problem and that the fraction of successful
connection attempts was 35% during our measurement period.

An important factor for how well a peer-to-peer network
can function is the amount of churn. While we do not have
any direct measurements of churn, we do have access to data
showing the fraction of currently connected clients connecting
to and disconnecting from servers, shown in Figure 6(b). It
can happen that a client reconnects to a new Spotify server
while still being active in the peer-to-peer network, e.g. in case
the server is overloaded. This should be sufficiently rare that
Figure 6(b) gives a realistic measurement of the churn in the
overlay.

We note that the total churn rate is roughly even throughout
the day with a sharp decrease during nighttime. During the
morning it is dominated by logins while it is dominated by
logouts towards the evening. Comparing the churn to Figure 2
we observe that, seemingly, the efficiency of the overlay in
data delivery is not severely impacted by clients logging out.
On the other hand, there is a daily dip in the fraction of data
delivered by the overlay during the morning when many new
users are logging on.

V. CONCLUSION

We have given an overview of the protocol and structure
of the Spotify on-demand music streaming service, together
with many measurements of the performance of the system.
In particular, we note that the approach that Spotify uses to
combine server-based and peer-to-peer streaming gives very
good results, both with respect to user-relevant performance
measures, and in reducing server costs. Furthermore, this
is done using TCP as a transport protocol, indicating that
streaming over TCP is a very viable option. The data collected
shows also shows that a simplified tracker coupled with
overlay broadcasts can be an efficient design for locating peers.

We believe on-demand streaming will continue to grow
rapidly in the coming years, and that many interesting prob-
lems remain in further developing such services. Among these

are (1) development of user satisfaction measures for on-
demand streaming; (2) improved playout strategies, adapted to
peer-to-peer data delivery; (3) efficient peer-to-peer overlays
exploiting the overlap in interests between users.
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Abstract. There are protocols to privately evaluate any function in
the passive (honest-but-curious) setting assuming that the honest nodes
are in majority. For some specific functions, protocols are known which
remain secure even without an honest majority. The seminal work by
Chor and Kushilevitz [7] gave a complete characterization of Boolean
functions, showing that each Boolean function either requires an honest
majority, or is such that it can be privately evaluated regardless of the
number of colluding nodes.
The problem of discovering the threshold for secure evaluation of more
general functions remains an open problem. Towards a resolution, we pro-
vide a complete characterization of the security threshold for functions
with three different outputs. Surprisingly, the zero-one law for Boolean
functions extends to Z3, meaning that each function with range Z3 either
requires honest majority or tolerates up to n colluding nodes.

1 Introduction

Multi-party secure function evaluation (SFE) is a cornerstone of modern cryp-
tography, and has been extensively studied since it was introduced by Yao [14].
In this work we consider the joint evaluation by n parties of a public n-ary func-
tion f in such a way that no collusion of parties learns anything more than what
they do by knowing their own inputs and seeing the output. We consider the
symmetric case where all participants receive the same output.

Several models of adversaries occur in the SFE literature. A first distinction
is whether the adversary has limited computational power (computational se-
curity) or not (information-theoretic security). A second important distinction
is whether the parties corrupted by the adversary must still follow the protocol
(passive) or not (active). In the present work, we are concerned with information-
theoretic security and all adversaries considered are passive. We assume that the
parties communicate over a complete network with private channels, meaning
that the adversary cannot see messages sent between two honest parties.

Another important limitation put upon the adversary is which parties she
can corrupt. The most common adversary is allowed to corrupt up to a threshold
t ≤ n participants for some t which is typically a function of n. We say that a
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function for which there is a protocol tolerating up to t corruptions is t-private. In
this paper, we will only consider threshold adversaries. More general adversarial
models have also been studied, both in terms of a more general specification of
the parties the adversary can corrupt by Hirt and Maurer [10] and considering a
mix active and passive adversarial corruptions by Beerliová-Trubíniová et al. [2].

There exist protocols to securely evaluate any function b(n− 1)/2c-privately
in our setting by Ben-Or, Goldwasser, and Wigderson [3], and Chaum, Crépeau,
and Damgård [4]. For some functions, in particular Boolean disjunction, this
has been proved to be an upper bound meaning that there are no protocols
to evaluate them which remain secure against more than b(n − 1)/2c colluding
parties. For other functions, in particular summation over a finite Abelian group,
there are n-private protocols. This raises the question of determining the privacy
threshold of functions.

Chor and Kushilevitz [7] completely answered the question for Boolean func-
tions. They proved a zero-one law showing that each Boolean function is either
b(n− 1)/2c-private (and not dn/2e-private) or n-private. Their work presents a
proof that a function containing an OR-like substructure (an embedded OR) is
b(n− 1)/2c-private and that all Boolean functions without such a substructure
can be computed by a single Boolean summation.

Proving that a function f cannot be t-privately computed is often done by a
partition argument, reducing to the two-party case. In these proofs, the parties
are partitioned into two parts of size ≤ t and we think of f as a two-party
function with each party supplying all inputs for one set of the partition. If the
two-party function is not 1-private, then f is not t-private. Chor and Ishai [6]
analyzed partition arguments and gave a generalization partitioning the parties
into k > 2 sets which increases the power of the framework. However, in this
paper, we will only need partitioning arguments with two sets.

Chor, Geréb-Graus, and Kushilevitz [5] showed that for every t, dn/2e ≤ t ≤
n− 2 there exists a function such that it is t-private but not (t+ 1)-private. We
remark that the functions they construct in their proofs have very large ranges
which grow exponentially with t.

The privacy of symmetric1 functions with Boolean arguments has been stud-
ied by Chor and Shani [9]. For such functions, they prove a necessary condition
on the preimages of outputs for the function to be dn/2e-private. They also
define a class called dense symmetric functions where this necessary condition
is also sufficient for n-privacy. Thus, they also prove a zero-one law where for
a class of functions, where each function in the class is either n-private or not
dn/2e-private.

For two-party computation, a complete characterization of the 1-private func-
tions was made independently by Beaver [1] and Kushilevitz [13]. They both
show that a function f is 1-private if and only if it is decomposable, and for
decomposable functions, there is a straightforward 1-private protocol. One of

1 Here, symmetric means the standard notion of a symmetric function, not the SFE-
specific notion that all parties receive the same output.
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our protocols, Protocol 3, can be viewed as a generalization of the protocol for
decomposable functions to the multi-party case.

Künzler, Müller-Quade, and Raub [12] give a combinatorial classification
of functions computable in several different adversarial models, including the
information-theoretic passive model which we work with in this paper. However,
in this setting, they consider the broadcast model of communication which gives
different results from private channels. For instance, summation is not n-private
in the broadcast channel model.

1.1 Our Contribution

In this work, we extend the zero-one law of Boolean privacy to functions with
three outputs. For notational convenience, we talk about functions with range
Z3, but we would like to emphasize our results do not depend on any algebraic
structure over the range of the function. More formally, we prove the following
statement:

Theorem 1 (Main theorem). For every n-argument function f : A1 × . . . ×
An → Z3, f is either n-private, or it is b(n−1)/2c-private and not dn/2e-private.

The core part of our proof is a structure lemma (Lemma 8) showing that
every function f with range Z3 must have at least one of three properties (which
we define more formally later):

– f has an embedded OR
– f is a permuted sum
– f is collapsible.

We provide protocols for n-privately evaluating those functions of the two latter
types which do not contain an embedded OR.

Our definition of an embedded OR is a generalization of the one commonly
found in the literature, but the presence of one implies that there is no protocol
which can securely evaluate f and tolerate more than t colluding parties for some
t (but potentially for a t > dn/2e).

Finally, we prove (Theorem 22) that the existence of an embedded OR (in our
generalized sense) also implies the existence of a “small” embedded OR, giving
t = dn/2e. By combining this result with our structure lemma and the result
from [7] that a function with an embedded OR of size at most dn/2e cannot be
dn/2e-privately computed, our main theorem follows. We state the proof more
formally in Section 6.

We remark that while our statements are true for n = 2, there are complete
classifications [1,13] for the 2-party case which are simpler than ours (for n = 2,
our protocols reduce to decomposition) and not limited to functions with range
Z3. Our contribution lies in the case when n ≥ 3.

The proof of our theorems are significantly more involved than the analogous
proofs for Boolean functions. In several of our proofs we need to apply a fairly
extensive case analysis.
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Our result answers in part a question raised by Chor and Ishai [6] by showing
that partition reductions (with only two sets) are universal for proving non-
privacy of functions mapping to Z3.

2 Notation and Preliminary Theorems

We use boldface letters to refer to vectors, like: x, y. We work with functions
with range Z3, and use the three Greek letters α, β, and γ to denote the three
different outputs of the function. We take as convention that the three represent
distinct outputs (so α 6= β 6= γ). Sometimes we need to discuss an output as
being not α, which we denote by 6 α.

In the proceeding discussion, we often need to discuss the behavior of a
subfunction when keeping some subset of its arguments fixed. To simplify this
discussion, we introduce some notation. For disjoint S1, S2, S3 ⊆ [n] we define

fa
{S1}(x) def= f({xi}i∈S1 , {ai}i∈SC

1
)

fa
{S1,S2}(x,y) def= f({xi}i∈S1 , {yi}i∈S2 , {ai}i∈(S1∪S2)C )

fa
{S1,S2,S3}(x,y, z) def= f({xi}i∈S1 , {yi}i∈S2 , {zi}i∈S3 , {ai}i∈(S1∪S2∪S3)C ) .

We sometimes consider singleton sets S1, S2, S3 and then denote them simply by
their only element, with some abuse of notation. That is,

fa
{i}(x)

def= f(a1, . . . , ai−1, x, ai+1, . . . , an)

fa
{i,j}(x, y)

def= f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an) ,

and analogously for fa
{i,j,k}(x, y, z) and fa

{i,j,k,l}(x, y, z, w).
We need to describe details of functions’ behaviors, and adopt a geometric

viewpoint. In the proofs, we speak of inputs as being neighbors and of rows, diag-
onals, and rectangles and induced rectangles in the function table. By neighbors
we mean points at Hamming distance 1. By a row, we mean the values taken
by the function fixing all but one values, i.e. the values fa

{i}(x) for all x ∈ A1

with a fixed i and a which are clear from the context. By a rectangle, we mean
the values fe

{S1,S2}(a, c), fe
{S1,S2}(a,d), fe

{S1,S2}(b, c), fe
{S1,S2}(b,d). Note that a

rectangle by this definition is a high-dimensional structure. By induced rect-
angle, we mean a rectangle as before but where |S1| = |S2| = 1, thus looking
like a rectangle in the function table. We only use the concept of a diagonal of
a 2 × 2 induced rectangle. For fixed inputs a and dimensions i, j we say that
fa
{i,j}(x1, y1), fa

{i,j}(x2, y2) is a diagonal for x1 6= x2 and y1 6= y2.

Definition 1 (Redundant inputs). For an n-argument function f , we say
that inputs x, y, x 6= y are redundant for player k if for all a it holds that
fa
{k}(x) = fa

{k}(y).
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Definition 2 (Normalized function). An n-argument function f with no re-
dundant inputs for any player is said to be normalized.

We take as convention that all functions are normalized. This assumption is
without loss of generality as a function can easily be normalized by for each set of
redundant inputs removing all but one. A protocol for evaluating the normalized
function can be used to evaluate the original function as well by performing the
same procedure.

To prove Theorem 1, we make use of a theorem by Chor and Kushilevitz [7]
which states that there is no 1-private protocol for a 2-party computation of
disjunction. Through standard simulation techniques, this gives impossibility
results for multi-party protocols of functions containing an OR-like substructure.
This is commonly referred to as an embedded OR, or a corner. We formally
define an embedded OR and then restate their result. For a two-party function,
the definition is straightforward:

Definition 3 (Embedded OR (2 parties)). We say that a two-argument
function f contains an embedded OR if there exists inputs x1, x2, y1, y2 (x1 6=
x2, y1 6= y2) such that f(x1, y1) = f(x1, y2) = f(x2, y1) 6= f(x2, y2).

However, when considering the n-party case, the definition of an embedded
OR becomes slightly more complex. In particular, we need our definition to
capture the size of the collusion required to realize an embedded OR, as that
size also limits the impossibility result that follows from the existence of such an
embedded OR. To this end, we define an embedded OR as having a degree k. We
remark that Kilian et al. [11] define an embedded OR as one of degree 1. Much of
the previous literature has mostly been concerned with Boolean functions, and
then, the existence of an embedded OR (of any degree) implies the existence of
one of degree 1, as proved in [11]. However, for functions with larger ranges, the
situation is more complex, as shown by our Theorem 22.

Definition 4 (Embedded OR (n parties, induced, generalized), corner-
free).We say that an n-argument function f contains an embedded OR of degree
k if there exists disjoint subsets S1, S2 ⊂ [n] where |S1|, |S2| ≤ k, and values
a such that the two-argument function f ′(x,y) = fa

{S1,S2}(x,y) contains an
embedded OR. We refer to an embedded OR of degree 1 as an induced embedded
OR, and one of degree greater than 1 as a generalized embedded OR. A function
without an embedded OR (of any degree) is said to be corner-free.

With the definitions in place, we are ready to restate a result by Chor and
Kushilevitz [7]. The result we need was not presented as a separate lemma in
their paper, but instead follows as a corollary from two of their lemmas which
we restate in simplified form.

Lemma 2 (Partition lemma, [7]). Let f : A1×. . .×An → R be dn/2e-private.
Then for every subset S1 of size dn/2e, the two-argument function f ′(x,y) =
f{S1,SC

1 }
(x,y) is 1-private.
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Lemma 3 (Corners lemma, [7]). A two-argument function is not 1-private
if it contains an embedded OR.

Corollary 4. A function containing an embedded OR of degree at most dn/2e
is not dn/2e-private.

We also make use of [7, Theorem 4] which states that a corner-free Boolean
function can be expressed as a Boolean sum:

Theorem 5 ([7]). For a corner-free Boolean function f there are functions fi
such that f(x1, . . . , xn) =

∑n
i=1 fi(xi) where the sum is computed modulo 2.

We formally restate the theorem from [11] showing that a generalized em-
bedded OR in a Boolean function implies an induced embedded OR. In our
terminology:

Theorem 6 ([11]). A Boolean function f containing an embedded OR contains
an embedded OR of degree 1.

We show functions and subfunctions which depend on up to 4 arguments.
To be able to draw them, we show 2-dimensional projections separated by lines
with vertical lines indicating a 3rd dimension and horizontal lines indicating a
4th dimension. We present sample function in Figure 1, showing a function which
contains an embedded OR of degree 2 but does not contain an embedded OR of
degree 1. The highlighted embedded OR occurs with the subsets S1 = {P1, P3}
and S2 = {P2, P4} with inputs (2, 1) and (1, 2) for S1 and (1, 1) and (2, 2) for
S2. As the function is drawn, the coalition S1 in the embedded OR controls the
horizontal position, and S2 controls the vertical position.

0 1 1 2
1 0 2 1

2 0 0 1
0 2 1 0

Fig. 1. An example function containing an embedded OR of degree 2 (highlighted).

We use the following lemma which we believe is well-known. For complete-
ness, we include a proof in the appendix.

Lemma 7. If an n-argument function f : A1 × . . . × An → G, where G is an
Abelian group, has the property that for every pair of dimensions j, k and inputs
x1, x2, y1, y2,a the following equality holds:

fa
{j,k}(x1, y1) + fa

{j,k}(x2, y2) = fa
{j,k}(x1, y2) + fa

{j,k}(x2, y1), (1)

then f can be rewritten as f(x1, . . . , xn) =
∑n
i=1 fi(xi).
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3 A Structure Lemma

The main step towards proving Theorem 1 is the establishment of a structure
lemma for functions with range Z3. Thus, we turn toward some global properties
of functions (as opposed to the comparatively local property of the existence
of an embedded OR). The first such property captures the case when we can
split the range of a function into two parts, and compute a Boolean sum to
discover which part the output lies in. If we can then proceed with further
such subdivisions until we arrive at a single possible output, this immediately
gives a protocol to compute f . We prove that this further subdivision is always
possible for corner-free f with range Z3 in Lemma 21. We remark that this is a
further generalization of the multi-party decomposability defined in [12], which
in turn was a generalization of 2-party decomposability defined in [13]. We show
a collapsible function and the generalized decomposition of it in Figure 2.

Definition 5 (Collapsible). We say that a function f : A1 × . . . An → R is
collapsible if there is a subset R′, ∅ ⊂ R′ ⊂ R such that the Boolean function

f ′(x) =
{

1 if f(x) ∈ R′
0 otherwise

does not contain an embedded OR and can thus be n-privately computed. We
refer to f ′ as being collapsed.

For a collapsible function f with range Z3 if f is collapsible we can choose
R′ with two elements α, β and say that f is collapsible by collapsing α and β.

0 1 2 2 2 0
1 0 2 2 2 1
2 2 0 1 0 2

(a) Collapsible f

1 1 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0

(b) f collapsed

Fig. 2. An example collapsible function and the collapsed function.

Summation in a finite Abelian group is a function which is known to be n-
private [8]. In a summation, the effect of one party’s input can be thought of as
applying a permutation to the sum of the other parties’ inputs. We generalize
this by defining a permuted sum where we give one of the parties a special role
and let her input select an arbitrary permutation to be applied to the sum of
the other parties’ inputs. All functions which are sums, i.e. can be rewritten as∑n
i=1 fi(xi), are also permuted sums. In our applications, the sum may be a

Boolean sum or over Z3. We show two example functions which are permuted
sums in Figure 3

Definition 6 (Permuted sum). We say that a function is a permuted sum
if it can be written as πxi

(
∑
j 6=i fj(xj)) where πx is a permutation. We refer to

party i as the permuter.
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0 0 1 1 2 2
1 2 0 2 0 1

(a) f

0 1 2 0 2 1 1 0 2
1 2 0 2 1 0 0 2 1
2 0 1 1 0 2 2 1 0

(b) g

Fig. 3. Two example permuted sums. In f , party 2 (selecting column) is the permuter
selecting one of the 6 permutations. The function g = πx3(x1 + x2) where π1 is the
identity permutation, π2 = (12) and π3 = (01).

With these definitions, we are now ready to state and prove our structure
lemma:

Lemma 8 (Structure lemma). For every normalized n-argument function
f : A1 × . . .×An → Z3, at least one of the following holds:

– f has an embedded OR
– f is a permuted sum
– f is collapsible

We present protocols for n-privately evaluating permuted sums (Protocol 2)
and collapsible functions (Protocol 3) which do not contain an embedded OR.
In Theorem 22 we show that if f contains an embedded OR, it also contains a
small embedded OR. This, together with Corollary 4 concludes the proof of our
Theorem 1.

To prove the structure lemma, we perform a case-analysis based on a property
of f we call a link:

Definition 7 (Link, link-free). We say that an n-argument function has a
link ( over output α) in dimension k if there exists inputs x, y, x 6= y, and a
such that α = fa

{k}(x) = fa
{k}(y). We say that f has links in c dimensions if

there are precisely c distinct k such that f has a link in dimension k. We say
that a function is link-free if it has no links.

Lemma 9. In a corner-free n-argument function f : A1 × . . . × An → Z3, if
there are links between inputs x and y in dimension k over two distinct outputs,
then x and y are redundant for player k.

Proof. Let f have links over α and β between inputs x and y in dimension k.
That is, there exists values a, b such that fa

{k}(x) = fa
{k}(y) = α, and fb

{k}(x) =
fb
{k}(y) = β. Suppose that for some c we have fc

{k}(x) 6= fc
{k}(y) . Then one of

fc
{k}(x) and fc

{k}(y) equals α or β. If one of them is α then f has an embedded
OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (a, c). If one is β then f
has an embedded OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (b, c).

ut

Looking at the proof of Lemma 9 we begin to see the importance of the small
range of the function to the analysis. It also highlights the added complexities
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compared to the Boolean case, as for a Boolean function any link implies that
two inputs are redundant. From the lemma and its proof follow two corollaries
about normalized functions with range Z3:

Corollary 10. For a normalized n-argument function f : A1 × . . . × An →
Z3 with a link over α in dimension k for inputs x, y, for all a, we have that
fa
{k}(x) uniquely determines fa

{k}(y). More specifically, the possible combinations
of values are (α, α); (β, γ); (γ, β).

Proof. Follows from the proof of Lemma 9. ut

Corollary 11. A normalized n-argument function f : A1 × . . . × An → Z3

cannot have links over α in dimension k for inputs x, y, and x, z.

Proof. By Corollary 10 the value at x determines the value at both y and z and
hence inputs y and z are redundant. ut

Analogously to an embedded OR, we introduce notation for the various 2×2
substructures in a function. Apart from the embedded OR, two of them feature
prominently in our proofs. Firstly, a 2×2 substructure with one output occurring
on the diagonal, and the two other values occurring once each on the opposite
diagonal is called Aff3. Secondly, a 2 × 2 substructure where one output is on
one diagonal, and another is on the other is referred to as an XOR. For the XOR,
we also define the type of an XOR as the pair (without order) of outputs in the
XOR. All the substructures which can occur (up to symmetries) are depicted in
Figure 4. A 2× 2 substructure where only one output occurs is called constant,
and if we want to emphasize that it is the output α which occurs, we write
(α)-constant.

α α
α α

(a) Constant

α α
α β

(b) OR

α α
β β

(c) 2-link

α α
β γ

(d) Link

α β
β α

(e) XOR

α β
γ α

(f) Aff3

Fig. 4. The six 2× 2 substructures.

Definition 8 (Type of an XOR). If an XOR consists of outputs α and β we
say that it is an XOR of type (α, β), denoted (α, β)-XOR. The order of elements
is not important, so for functions to Z3 there are three possible types of XOR:
(α, β), (α, γ), (β, γ).

Our name Aff3 comes from the fact that it can be expressed as an affine
function modulo 3, analogously to the fact that XOR can be expressed as a sum
modulo 2. We do not need that it is affine, but we make use of the fact that a
function where all subfunctions are of the form Aff3 can be written as a sum on
the form

∑n
i=1 fi(xi) with summation in Z3.
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Analogously to an embedded OR, we introduce notation for the various 2×2
substructures in a function. Apart from the embedded OR, two of them feature
prominently in our proofs. Firstly, a 2×2 substructure with one output occurring
on the diagonal, and the two other values occurring once each on the opposite
diagonal is called Aff3. Secondly, a 2 × 2 substructure where one output is on
one diagonal, and another is on the other is referred to as an XOR. For the XOR,
we also define the type of an XOR as the pair (without order) of outputs in the
XOR. All the substructures which can occur (up to symmetries) are depicted in
Figure 4. A 2× 2 substructure where only one output occurs is called constant,
and if we want to emphasize that it is the output α which occurs, we write
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Definition 8 (Type of an XOR). If an XOR consists of outputs α and β we
say that it is an XOR of type (α, β), denoted (α, β)-XOR. The order of elements
is not important, so for functions to Z3 there are three possible types of XOR:
(α, β), (α, γ), (β, γ).

Our name Aff3 comes from the fact that it can be expressed as an affine
function modulo 3, analogously to the fact that XOR can be expressed as a sum
modulo 2. We do not need that it is affine, but we make use of the fact that a
function where all subfunctions are of the form Aff3 can be written as a sum on
the form

∑n
i=1 fi(xi) with summation in Z3.
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Lemma 12. An n-argument corner-free function f : A1 × . . .× An → Z3 such
that all 2× 2 subfunctions are of the form Aff3 can be expressed as

∑n
i=1 fi(xi)

with summation in Z3.

Proof. By Lemma 7 we need to verify that (1) holds for all 2× 2 subfunctions,
which are all of the form Aff3. For all ways of assigning 0, 1 and 2 (distinctly) to
α, β, γ we have that 2α ≡ β+ γ (mod 3). As 2 ≡ −1 (mod 3) this is equivalent
to α+ β + γ ≡ 0 (mod 3). ut

In our proof of Lemma 8 we consider the substructures occurring in f . We
begin by establishing three preliminary lemmas. The lemmas come into play
primarily in cases when f contains links in few dimensions (none or one), and if
f has an XOR spanned by dimensions i, j and f is link-free in those dimensions,
then |Ai| = |Aj | = 2, giving some intuition for the condition on the size of the
two inputs in the lemmas. We highlight the proof idea for each of the lemmas
and give full proofs in the appendix.

Lemma 13. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 such that for all a, fa
{i,j} is an XOR. If all

three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof (Idea). We show that if no such k exists then f contains an embedded
OR. Full proof in Section A.2. ut

Lemma 14. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof (Idea). If f is not collapsible then the collapsed function contains an em-
bedded OR. We show that this implies an embedded OR in f as well. Full proof
in Section A.3. ut

Lemma 15. An n-argument corner-free function f : A1 × . . . × An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof (Idea). We prove that f fulfills the conditions of Lemma 14. Full proof in
Section A.4. ut

Our proof of Lemma 8 proceeds in three separate lemmas, depending on
whether the function f is link-free (Lemma 16), has links in one dimension
(Lemma 17), or if it has links in two or more dimensions (Lemma 18). As the
proofs are long and consist mainly of case analysis, we give them in the appendix
and simply state the lemmas here.

Lemma 16. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.
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Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Full proof in Section A.5 ut

Lemma 17. Every n-argument function f : A1× . . .×An → Z3 with links in 1
dimension and without an embedded OR is collapsible or a permuted sum.

Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Full proof in Section A.6. ut

Lemma 18. Every n-argument function f : A1× . . .×An → Z3 with links in 2
or more dimensions and without an embedded OR is collapsible.

Proof (Idea). We show that all links must be over the same output. This gives
some implications for the substructures of f which we use to show f must be
collapsible. Full proof in Section A.7. ut

4 Protocols

With the structure lemma established, we can now turn to the question of n-
private protocols for collapsible functions and permuted sums. From the defi-
nitions of the two classes, we have two natural and easy protocols. The main
problem we need to address in this section is proving the existence of a protocol
for collapsible functions. For a function which is collapsible by collapsing β and
γ it is clear from the definition that we can n-privately evaluate if the output is
α or if it is one of β and γ. The key issue is to prove that we can then proceed
with a second step where we can n-privately evaluate whether the output is β
or if it is γ.

The construction of this second step relies on the passive model of adversaries
and the knowledge that the output of the function is not α. Thus, in our second
step we compute a sum which may have different outputs at points where the
original function had α’s. Such a construction is inherently insecure with active
adversaries, as they may switch inputs between the first step of the decompo-
sition and the second and would then learn some information about the other
parties’ inputs.

In both of our protocols we use a subprotocol by Chor and Kushilevitz [8]
for n-private summation over any finite Abelian group. For completeness, we
include a description of their protocol as Protocol 1. When used in our protocol
for a permuted sum, the summation is either Boolean or in Z3 depending on the
function f (but not on the inputs).

Protocol 1 (Summation [8]). The protocol for summation where party Pi
participates with input xi proceeds as follows:

1. In round 1 ≤ i ≤ n − 2, party Pi sums all its received messages, wi =∑i−1
j=1 zj,i. Then, it chooses random group elements zi,i+1, zi,i+2, . . . , zi,n−1.

Finally, it computes zi,n such that xi + wi =
∑n
j=i+1 zi,j and sends zi,j to

Pj (j > i).

11
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2. In round n−1, party Pn−1 computes zn−1,n = xn−1+
∑n−2
j=1 zj,n−1 and sends

zn−1,n to Pn.
3. In round n, party Pn computes the sum s as s = xn +

∑n−1
j=1 zj,n.

All sums are computed over some fixed finite Abelian group.

Protocol 2 (Permuted sum). The protocol for evaluating a permuted sum
f , where party Pi (without loss of generality we assume the permuter is party
n) participates with input xi proceeds as follows:

1. Use Protocol 1 to privately compute s =
∑n−1
j=1 fj(xj) such that only the

permuter learns s.
2. The permuter computes the output as πxn

(s) and sends it to the other
parties.

The sum is computed modulo 2, or 3, depending on f .

Protocol 3 (Collapsible). The protocol for evaluating a function f collapsible
with partition R′ = {γ}, where party Pi participates with input xi proceeds as
follows:

1. Use Protocol 1 to compute s =
∑n
i=1 fi(xi) (mod 2), with fi such that s = 1

iff f(x) = γ
2. If s = 0, compute s′ =

∑n
i=1 gi(xi) (mod 4), with gi such that f(x) = α

implies s′ = 0, and f(x) = β implies s′ = 2.

The correctness of Protocol 2 follows immediately from the definition of a
permuted sum. In Protocol 3, since f is collapsible, the functions fi exist by
the definition of a collapsible function. However, the existence of appropriate
gi is not as straightforward. We prove, constructively, in Lemma 21 that they
always exist for corner-free collapsible functions with range Z3. We stress that
the choice of gi does not depend on the input x, but only on the function f .

The privacy of both these protocols is straightforward, and we only sketch
the arguments.

Theorem 19. Protocol 2 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
Due to the structure of the function, we see that the permuter, Pn, learns the
sum s from f(x) and xn, since s = π−1

xn
(f(x)). ut

Theorem 20. Protocol 3 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
When the output is γ then, by the privacy of the summation sub-protocol,
the protocol is private. Furthermore, when the output is one of α, β, then the
privacy of the composed protocol also follow directly from the privacy of the
subprotocols. The first sum only reveals that the output is one of α, β, and then,
the condition on gi is sufficient to guarantee that the sum s′ reveals nothing but
whether the output is α or β, as with a passive adversary we are guaranteed
that s′ is either 0 or 2. ut
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While the privacy is straightforward, the proof that there are functions gi as
required by Protocol 3 is rather involved and we simply state the lemma here and
give the proof in the appendix. One may intuitively expect that such functions
could simply be Boolean, but it turns out that for some f we do need the full
range of Z4.

Lemma 21. Protocol 3 can evaluate all corner-free, collapsible functions with
range Z3.

Proof (Idea). We construct a function g such that f(x) = α =⇒ g(x) = 0
and f(x) = β =⇒ g(x) = 2. By case analysis on the induced rectangles in g,
we show that g satisfies the conditions of Lemma 7 and hence there are gi as
required by Protocol 3. Full proof in Section A.8. ut

5 An Embedded OR Implies a Small Embedded OR

Previously, we have often assumed that functions are free of embedded OR’s
of any degree (i.e., that they are corner-free). However, to be able to apply
Corollary 4 we need to show that a sufficiently small embedded OR exists.

For Boolean functions f , if f has an embedded OR of any degree, then it
also has an embedded OR of degree 1, as proved in [11], explaining the zero-one
nature of Boolean privacy.

It turns out that for functions with range Z3, similarly to the Boolean case,
the presence of a large embedded OR implies that the function also contains a
small one. We state the theorem here and give the proof in the appendix.

Theorem 22. Every n-argument function f : A1× . . . An → Z3 that has an em-
bedded OR of any degree has an embedded OR of degree at most 3. Furthermore,
every 4-argument function f : A1 × A2 × A3 × A4 → Z3 that has an embedded
OR, also has one of degree at most 2.

Proof (Idea). The basic idea is similar to that used in the proof of Theorem 6.
However, while the boolean case is fairly straightforward, our proof results in a
fairly extensive case analysis. Full proof in Section A.9. ut

6 Proof of the Main Theorem

We now conclude by re-stating our main theorem and presenting the proof.

Theorem 1 (Main theorem). For every n-argument function f : A1 × . . . ×
An → Z3, f is either n-private, or it is b(n−1)/2c-private and not dn/2e-private.

Proof. If f is corner-free, then by Lemma 8 it is a permuted sum, collapsible, or
both. Thus, it can be n-privately computed by Protocol 2 or Protocol 3.

If f is not corner-free, then by Theorem 22 it contains an embedded OR of
degree at most dn/2e. Thus, by Corollary 4, f is not dn/2e-private. ut
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x1, x2, y1, y2,a the following equivalence holds:

fa
{j,k}(x1, y1) + fa

{j,k}(x2, y2) = fa
{j,k}(x1, y2) + fa

{j,k}(x2, y1), (1)

then f can be rewritten as f(x1, . . . , xn) =
∑n
i=1 fi(xi).

Proof. Induction on n. Rewrite (1) as

fa
{j,k}(x1, y1)− fa

{j,k}(x1, y2) = fa
{j,k}(x2, y1)− fa

{j,k}(x2, y2)

with k = n. This says that the function

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, y1)− f(x1, . . . , xn−1, y2)

does not change value when you change one arbitrary input in an arbitrary way.
This implies that g is a constant function. The lemma now follows by induction
on n.

ut

A.2 Proof of Lemma 13

Lemma 13. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 such that for all a, fa
{i,j} is an XOR. If all

three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof. We assume that there is an (α, β)-XOR and an (α, γ)-XOR at Hamming
distance 1. We denote the dimension by which they differ by k and relabel the
inputs in dimension k such that fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR and fa
{i,j,k}(·, ·, 2)

is an (α, γ)-XOR.
We proceed to show that there is no b such that fb

{i,j,k}(·, ·, 1) or fb
{i,j,k}(·, ·, 2)

is a (β, γ)-XOR. Assume to the contrary that there is a b such that fb
{i,j,k}(·, ·, 1)

is a (β, γ)-OR (the case if it occurs at input 2 in dimension k is analogous). We
illustrate this case in Figure 5 where we for simplicity show b as differing from
a in only one dimension, which is not something we assume in the proof.

α β α γ
β α γ α

γ β
β γ

Fig. 5. Illustration of a contradiction in the proof of Lemma 13.

What values can the function take at fb
{i,j,k}(1, 1, 2)? We claim that any

output at that position would violate the assumption that f is corner-free. In
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Figure 5 we can see why this is true for a simple function (writing α, β or γ any-
where in the missing 2×2 field can be verified to result in an embedded OR). We
proceed with three almost identical cases (differing only in the interdependency
of the coordinates, the core idea is captured by Figure 5):

Case 1: fb
{i,j,k}(1, 1, 2) = α. We can find y (equal to 1 or 2) such that

fa
{i,j,k}(1, y, 2) = α as fa

{i,j,k}(·, ·, 2) is an (α, γ)-XOR. We can also find x such that
fa
{i,j,k}(x, y, 1) = α as fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR. However, as fb
{i,j,k}(·, ·, 1)

is a (β, γ)-XOR we are guaranteed that fb
{i,j,k}(x, 1, 1) 6= α. Thus, f contains an

embedded OR with S1 = {i, k} and S2 = SC1 using (1, 2); (x, 1) on S1 and y; 1
or j and a; b on the rest of S2.

Case 2: fb
{i,j,k}(1, 1, 2) = β. We can find x (equal to 1 or 2) such that

fb
{i,j,k}(x, 1, 1) = β as fb

{i,j,k}(·, ·, 1) is an (β, γ)-XOR. We can also find y such that
fa
{i,j,k}(x, y, 1) = β as fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR. However, as fa
{i,j,k}(·, ·, 2)

is a (α, γ)-XOR we are guaranteed that fa
{i,j,k}(1, y, 2) 6= β. Thus, f contains an

embedded OR with S1 = {i, k} and S2 = SC1 using (1, 2); (x, 1) on S1 and y; 1
or j and a; b on the rest of S2.

Case 3: fb
{i,j,k}(1, 1, 2) = γ. We can find x (equal to 1 or 2) such that

fb
{i,j,k}(x, 1, 1) = γ as fb

{i,j,k}(·, ·, 1) is an (β, γ)-XOR. We can also find y such that
fa
{i,j,k}(1, y, 2) = γ as fa

{i,j,k}(·, ·, 2) is an (α, γ)-XOR. However, as fa
{i,j,k}(·, ·, 1)

is a (α, β)-XOR we are guaranteed that fa
{i,j,k}(x, y, 1) 6= γ. Thus, f contains an

embedded OR with S1 = {i, k} and S2 = SC1 using (1, 2); (x, 1) on S1 and y; 1
or j and a; b on the rest of S2.

We now conclude that there is no b such that fb
{i,j,k}(·, ·, 1) or fb

{i,j,k}(·, ·, 2)
is a (β, γ)-XOR. As f has all types of XOR’s, there must still be a (β, γ)-XOR in
the function. Thus, we see that |Ak| ≥ 3, and we can assume there is a b such
that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR.
We claim that fa

{i,j,k}(·, ·, 3) must be a (β, γ)-XOR. To see this we observe
that if it was another type of XOR, then by the same proof that showed that there
is no (β, γ)-XOR for k = 1, 2 we could have shown that there was not (β, γ)-XOR
for k = 3, but we know that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR. We now see that for
a given xk, all XOR’s must be of the same type as that at fa

{i,j,xk}(·, ·, k) which
concludes our proof. ut

A.3 Proof of Lemma 14

Lemma 14. Let f be an n-argument corner-free function f : A1×. . .×An → Z3

with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof. We claim that f is collapsible by collapsing β and γ. To prove this we
show that the collapsed function

g(x) =
{

1 if f(x) ∈ {β, γ}
0 if f(x) = α
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does not contain an embedded OR of degree 1. Then by Theorem 6 we have
that g is corner-free and Theorem 5 implies that the collapsed function can be
written as a Boolean sum.

We begin by observing that as each 2 × 2 plane spanned by dimensions i, j
contains exactly one diagonal with α’s, each such 2× 2 plane contains two α’s,
as if it had three α’s it would be an embedded OR and if it had four α’s both
diagonals would have two α’s. We further make the observation that a pair of
neighboring outputs in dimension i (and analogously in j) are such that exactly
one of them is α. More formally, for all c if fc

{i}(1) = α then fc
{i}(2) 6= α and if

fc
{i}(1) 6= α then fc

{i}(2) = α.
As g is Boolean, by Theorem 6 we know that if g has an embedded OR (of any

degree), it also has an embedded OR of degree 1. We assume by contradiction that
there is an embedded OR of degree 1 in g. We reorder inputs and dimensions such
that the embedded OR is spanned by dimensions 1, 2 using inputs (1, 2); (1, 2),
with other inputs as a. We say that ga

{1,2} is an embedded OR with slight abuse
of notation (as |A1| or |A2| could be greater than 2). We see that the embedded
OR cannot have three 1’s as g takes the value 0 where f takes the value α, so
an embedded OR with three 0’s corresponds to an embedded OR with three α
in f , which is corner-free. Thus, the embedded OR must have three 1’s.

From our observation we know that each 2× 2 plane in g spanned by i, j has
two 0’s, so there cannot be an OR in g with three 1’s spanned by dimensions i, j.
Thus, at least one of i and j must be different from both 1 and 2. We assume
i 6= 1, 2 and reorder inputs such that the embedded OR occurs when xi = 1. Let
b be a with the value at xi removed.

We now consider what values occur at fb
{1,2,i}(·, ·, 2). We know that of the

four outputs of fb
{1,2,i}(·, ·, 1) one is α and three are different from α. But by our

observation, this implies that of the four outputs of fb
{1,2,i}(·, ·, 2) three are α and

one is different from α. This concludes our proof as it shows that an embedded
OR in g implies an embedded OR in f which we assumed to be corner-free. ut

A.4 Proof of Lemma 15

Lemma 15. An n-argument corner-free function f : A1 × . . . × An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof. Let the output that appears twice in fa
{i,j} be α, and reorder inputs such

that fa
{i,j}(1, 1) = fa

{i,j}(2, 2) = α.
We now claim that fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α. As fb

{i,j} is an XOR we know
that fb

{i,j}(1, 2) = fb
{i,j}(2, 1). If fb

{i,j}(1, 2) = fb
{i,j}(2, 1) ∈ {β, γ} then there is

an embedded OR with S1 = {i, j} and S2 = SC1 as using inputs (1, 2); (2, 1) on
S1 and a; b on S2. We assume the other diagonal of the XOR consists of β’s,
i.e. fb

{i,j}(1, 1) = fb
{i,j}(2, 2) = β, and that fa

{i,j}(1, 2) = β, fa
{i,j}(2, 1) = γ. This

is without loss of generality as we can relabel outputs and switch the roles of
parties 1 and 2.
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α β
γ α

(a) fa
{i,j}

β α
α β

(b) fb
{i,j}

Fig. 6. An XOR and Aff3 in f . The outputs involved in proving that f has no links in
dimension i are highlighted.

We claim that the function f cannot have any links in dimensions i or j. To
see this for dimension i, we see that fa

{i,j}(1, 1) = α and fa
{i,j}(2, 1) = γ but also

fb
{i,j}(1, 2) = α and fb

{i,j}(2, 2) = β. Thus, the value of fc
{i}(2) is not a function

of the value of fc
{i}(1) for all c and the contrapositive form of Corollary 10 gives

that f cannot have a link between inputs 1 and 2 in dimension i. Similarly
for dimension j, we have that fa

{i,j}(2, 2) = α and fa
{i,j}(2, 1) = γ, but also

fb
{i,j}(1, 2) = α and fb

{i,j}(1, 1) = β. This demonstrates that fc
{j}(1) is not a

function of fc
{j}(2) for all c, and by the contrapositive form of Corollary 10,

there is no link between inputs 2 and 1 in dimension j.
We proceed by proving that for all c precisely one of the two diagonals of

fc
{i,j} contains two α’s. What are the possible values for (fc

{i,j}(1, 2), fc
{i,j}(2, 1))?

We proved (when c = b but we made no use of any properties of b) that they
cannot be (β, β) or (γ, γ). Furthermore, as fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α it cannot

be that precisely one of the values is α, as then f would have an embedded OR
with S1 = {i, j} and S2 = SC1 using inputs (1, 2); (2, 1) on S1 and b; c on S2.
Thus the only remaining possibilities are (α, α); (β, γ); (γ, β). As f has no links in
dimension i or j we see that in the first case neither fc

{i,j}(1, 1) nor fc
{i,j}(2, 2) can

equal α. In the two latter cases we have again by the link-freeness in dimensions
i and j that fc

{i,j}(1, 1) = fc
{i,j}(2, 2) = α. By Lemma 14 we have that f is

collapsible as claimed. ut

A.5 Proof of Lemma 16

Lemma 16. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.

Proof. For a link-free and corner-free function, only two possibilities remain for
the structure of an induced rectangle: it can either be an XOR or an Aff3. If f
contains an XOR spanned by dimensions i and j, then |Ai| = |Aj | = 2 since f is
link-free.

We proceed with a case analysis. If f does not contain an XOR, then we select
the first case. Otherwise, we pick an arbitrary XOR occurring in f and fix the
dimensions i and j spanning it, and denote by a a set of inputs such that fa

{i,j}
is an (α, β)-XOR (if f has an XOR, we can relabel outputs such that there is an
(α, β)-XOR). When we have fixed dimensions i, j we select one of the four last
cases of our proof based only on the 2× 2-planes spanned by dimensions i and
j.

18
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dimension i are highlighted.
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Case 1: Only Aff3 (all dimensions). If all induced rectangles of f are of the
form Aff3, then f satisfies the condition of Lemma 12 and is a sum, and thus
also a permuted sum.

Case 2: Both XOR and Aff3 (spanned by i, j). By Lemma 15 we have thatf is
collapsible.

Case 3: Only XOR, one type of XOR (spanned by i, j). If only one type of XOR’s
occur, then f is a Boolean corner-free function and by Theorem 5 we have that
f is a sum, and thus also a permuted sum.

Case 4: Only XOR, two types of XOR (spanned by i, j). We assume that f
contains XOR’s of types (α, β) and (α, γ). Then α occurs on exactly one diagonal
of all 2× 2 planes spanned by dimensions i, j and by Lemma 14 f is collapsible
by collapsing β and γ.

Case 5: Only XOR, three types of XOR (spanned by i, j). By Lemma 13 we see
that there must be a dimension k such that the input in dimension k determines
the type of the XOR. Reorder inputs such that for input 1 in dimension k the
2×2-planes spanned by i and j are (α, β)-XOR’s. We let a = (1) and S1 = {k}C
and see that fa

{S1} is a Boolean corner-free function. Thus, Theorem 5 implies
that fa

{S1}(x1, . . . , xk−1, xk+1, . . . , xn) =
∑
i6=k fi(xi) with the sum computed

modulo 2.
We claim that f is a permuted sum with Pk as the permuter and the sum

computed modulo 2. To see this, we prove that for all xk ∈ Ak and for all inputs
b we have fb

{k}(xk) = πxk
{fb
{k}(1)}. As f is link-free, we have that fb

{k}(xk) 6=
fb
{k}(1). If xk is such that the 2× 2-planes spanned by dimensions 1 and 2 when
the input in dimension k is xk are (α, β)-XOR then this means that fb

{k}(1) =
α =⇒ fb

{k}(xk) = β and fb
{k}(1) = β =⇒ fb

{k}(xk) = α. Similarly if the XOR’s
are (α, γ)-XOR’s fb

{k}(1) = α =⇒ fb
{k}(xk) = γ, and as the 2 × 2-planes are

XOR’s we have fb
{k}(1) 6= α =⇒ fb

{k}(xk) = α. The case for xk with (β, γ)-
XOR’s is analogous, concluding the proof. ut

A.6 Proof of Lemma 17

Lemma 17. Every n-argument function f : A1× . . .×An → Z3 with links in 1
dimension and without an embedded OR is collapsible or a permuted sum.

Proof. For convenience of notation, we reorder parties and inputs such that there
is a link between inputs 1 and 2 in dimension 1 over output α. We consider the
functions gm(x2 . . . , xn) = f(m,x2, . . . , xn). As f has links only in 1 dimension,
each gm is link-free. From Corollary 10, we have that g2 = π2 ◦ g1 where π2 is a
permutation (transposing β and γ). If there is a link between inputs m and m′
in dimension 1 we say there is a link between gm and gm′ , with slight abuse of
notation.

As g1 is corner-free and link-free, there are only two possible 2×2 structures
which can occur: Aff3 and XOR. If an XOR occurs as a substructure spanned
by dimensions i, j, then since g1 is link-free we must have |Ai| = |Aj | = 2. Our
proof proceeds in five cases depending on the structures in g1 (but not on f as
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a whole). As in the proof of Lemma 16, in the four cases when g1 has an XOR
we fix dimensions i, j spanning an XOR and then select case based only on the
2× 2 substructures spanned by dimensions i and j. Our cases are:

1. g1 without XOR (all dimensions)
2. g1 with both XOR and Aff3 (spanned by i, j)
3. g1 with only XOR’s, one type of XOR (spanned by i, j)
4. g1 with only XOR’s, two types of XOR (spanned by i, j)
5. g1 with only XOR’s, three types of XOR (spanned by i, j)

Case 1: g1 without XOR (all dimensions). We begin with the case that g1 does
not contain an XOR, and thus only consists of Aff3. As g2 = π2 ◦ g1 the same
is true for g2. As all substructures of g1 are of the form Aff3, we can apply
Lemma 12 to see that g1 =

∑n
k=2 fk(xk) where the sum is over Z3. Thus, if

gm = πm ◦ g1 for all m, then f is a permuted sum with P1 as the permuter. By
Corollary 10 we know that if there is a link between g1 and gm or g2 and gm then
gm = πm ◦ g1 as desired. This will be the case for all but a special case (when
f is collapsible). The remainder of this proof assumes f is not a permuted sum
and, after proving many restrictions on such f , shows that it is then collapsible
by collapsing β and γ.

If f is not a permuted sum then there is anm such that gm cannot be written
on the form gm = πm ◦ g1. We claim that in this case, all Aff3 in g1 must have
two α (the output linking g1 and g2). To see this, consider an Aff3 in g1 with
only one α. Let it be spanned by some dimensions i, j and occur at inputs a. We
say that g1a

{i,j} is an Aff3 (with slight abuse of notation as |Ai| or |Aj | may be
greater than 2). As π2 transposes β and γ, g2a

{i,j} is also an Aff3 with one α. But
this implies that for gm not to have a link to either g1 or g2 then gma

{i,j} would
have to take the value α at precisely three points, giving an embedded OR. We
illustrate this case in Figure 7. We claim that this also means that in this case
there can be no m′ > 2 such that gm′ has a link to g1 or g2. By Corollary 11
the link would have to be over an output different from α which results in a
situation analogous to an Aff3 with only one α.

β α γ α · ·
γ β β γ · ·

Fig. 7. A contradiction in the proof of Lemma 17, showing (a part of) g1 to the left,
g2 in the middle, and gm to the right.

Fix two distinct dimensions i, j different from 1. We now show that |Ai| =
|Aj | = 2. For some inputs a we know that g1a

{i,j} is an Aff3 with two α (again,
with slight abuse of notation as we have not yet shown |Ai| = |Aj | = 2). Reorder
inputs such that g1a

{i,j}(1, 1) = g1
a
{i,j}(2, 2) = α and consider g1a

{i,j}(3, 1). As
the 2× 2-plane spanned by inputs 2 and 3 in dimension i and inputs 1 and 2 in
dimension j is an Aff3 we must have g1a

{i,j}(3, 1) = α. But then g1 would have a
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the link would have to be over an output different from α which results in a
situation analogous to an Aff3 with only one α.
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dimension j is an Aff3 we must have g1a

{i,j}(3, 1) = α. But then g1 would have a
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link over α in dimension i between inputs 1 and 3 violating that g1 is link-free.
Thus, |Ai| = 2, and by an analogous argument |Aj | = 2.

We are now ready to apply Lemma 14. As the 2 × 2-planes spanned by
dimensions i and j in g1 and g2 are Aff3 with two α’s, they have exactly one
diagonal with two α’s. For gm with m > 2 we see that each 2 × 2-plane has at
least a diagonal with two α’s since gm must have an α where g1 has a β or a
γ as to not have a link to g1 or g2 and each 2 × 2-plane in g1 has exactly one
diagonal with a β and a γ. As gm is link-free each 2× 2-plane cannot have more
than one diagonal with two α’s. Thus, the conditions of Lemma 14 are fulfilled
and we conclude f is collapsible by collapsing β and γ. We conclude the proof
of this case by displaying a function f of this form in Figure 8.

α β α γ β α γ α
γ α β α α γ α β

Fig. 8. A function f where all induced rectangles in g1 are Aff3 with two α’s and where
for i > 2, gi does not have links to g1 or g2.

Case 2: g1 with both XOR and Aff3 (spanned by i, j). By Lemma 15 we have
that f is collapsible.

Case 3: g1 with only XOR’s, one type of XOR’s (spanned by i, j). We now
consider the case when all 2×2-planes in g1 spanned by dimensions i, j are XOR’s,
all of the same type. We assume the type is (α, β)-XOR’s, which is without loss
of generality as we can reorder dimensions and we know α must occur in g1 as
there is a link between g1 and g2 over α. As |Ai| = |Aj | = 2, we know from
Lemma 15 that if any 2 × 2 plane spanned by dimensions i, j (in any gm) is of
the form Aff3, then f is collapsible.

What remains is to analyze the situation when all 2× 2-planes in f spanned
by dimensions i, j in all gm are XOR’s. If none of the planes contain (β, γ)-XOR’s
then each plane has a diagonal with two α’s and by Lemma 14 f is collapsible.
As g2 = π2 ◦g1 we know that all XOR’s in g2 are (α, γ)-XOR’s. If for some m, gm
has an (β, γ)-XOR spanned by dimensions i, j then by Lemma 13 we know that
there is a dimension k such that the input in k determines the type of XOR. As
there are (α, β)-XOR’s when x1 = 1 and (α, γ)-XOR’s when x1 = 2 we see that
k = 1 and f is a permuted sum with party 1 as the permuter.

Case 4: g1 with only XOR’s, two types of XOR’s (spanned by i, j). We now
proceed to the case where all 2 × 2-planes spanned by dimensions i, j in g1 are
XOR’s, and there are two types of XOR’s among them. We assume that g1 has
an (α, β)-XOR which is without loss of generality as we know that g1 has at least
one α.

We now claim that there is no (β, γ)-XOR in f spanned by dimensions i, j.
Assume to the contrary that there is a (β, γ)-XOR in f . Then Lemma 13 applies
and we know there is a dimension k such that the input in dimension k determines
the type of XOR. Let a be inputs such that fa

{1,i,j}(1, ·, ·) is an (α, β)-XOR. Then

21

link over α in dimension i between inputs 1 and 3 violating that g1 is link-free.
Thus, |Ai| = 2, and by an analogous argument |Aj | = 2.

We are now ready to apply Lemma 14. As the 2 × 2-planes spanned by
dimensions i and j in g1 and g2 are Aff3 with two α’s, they have exactly one
diagonal with two α’s. For gm with m > 2 we see that each 2 × 2-plane has at
least a diagonal with two α’s since gm must have an α where g1 has a β or a
γ as to not have a link to g1 or g2 and each 2 × 2-plane in g1 has exactly one
diagonal with a β and a γ. As gm is link-free each 2× 2-plane cannot have more
than one diagonal with two α’s. Thus, the conditions of Lemma 14 are fulfilled
and we conclude f is collapsible by collapsing β and γ. We conclude the proof
of this case by displaying a function f of this form in Figure 8.

α β α γ β α γ α
γ α β α α γ α β

Fig. 8. A function f where all induced rectangles in g1 are Aff3 with two α’s and where
for i > 2, gi does not have links to g1 or g2.

Case 2: g1 with both XOR and Aff3 (spanned by i, j). By Lemma 15 we have
that f is collapsible.

Case 3: g1 with only XOR’s, one type of XOR’s (spanned by i, j). We now
consider the case when all 2×2-planes in g1 spanned by dimensions i, j are XOR’s,
all of the same type. We assume the type is (α, β)-XOR’s, which is without loss
of generality as we can reorder dimensions and we know α must occur in g1 as
there is a link between g1 and g2 over α. As |Ai| = |Aj | = 2, we know from
Lemma 15 that if any 2 × 2 plane spanned by dimensions i, j (in any gm) is of
the form Aff3, then f is collapsible.

What remains is to analyze the situation when all 2× 2-planes in f spanned
by dimensions i, j in all gm are XOR’s. If none of the planes contain (β, γ)-XOR’s
then each plane has a diagonal with two α’s and by Lemma 14 f is collapsible.
As g2 = π2 ◦g1 we know that all XOR’s in g2 are (α, γ)-XOR’s. If for some m, gm
has an (β, γ)-XOR spanned by dimensions i, j then by Lemma 13 we know that
there is a dimension k such that the input in k determines the type of XOR. As
there are (α, β)-XOR’s when x1 = 1 and (α, γ)-XOR’s when x1 = 2 we see that
k = 1 and f is a permuted sum with party 1 as the permuter.

Case 4: g1 with only XOR’s, two types of XOR’s (spanned by i, j). We now
proceed to the case where all 2 × 2-planes spanned by dimensions i, j in g1 are
XOR’s, and there are two types of XOR’s among them. We assume that g1 has
an (α, β)-XOR which is without loss of generality as we know that g1 has at least
one α.

We now claim that there is no (β, γ)-XOR in f spanned by dimensions i, j.
Assume to the contrary that there is a (β, γ)-XOR in f . Then Lemma 13 applies
and we know there is a dimension k such that the input in dimension k determines
the type of XOR. Let a be inputs such that fa

{1,i,j}(1, ·, ·) is an (α, β)-XOR. Then

21

link over α in dimension i between inputs 1 and 3 violating that g1 is link-free.
Thus, |Ai| = 2, and by an analogous argument |Aj | = 2.

We are now ready to apply Lemma 14. As the 2 × 2-planes spanned by
dimensions i and j in g1 and g2 are Aff3 with two α’s, they have exactly one
diagonal with two α’s. For gm with m > 2 we see that each 2 × 2-plane has at
least a diagonal with two α’s since gm must have an α where g1 has a β or a
γ as to not have a link to g1 or g2 and each 2 × 2-plane in g1 has exactly one
diagonal with a β and a γ. As gm is link-free each 2× 2-plane cannot have more
than one diagonal with two α’s. Thus, the conditions of Lemma 14 are fulfilled
and we conclude f is collapsible by collapsing β and γ. We conclude the proof
of this case by displaying a function f of this form in Figure 8.

α β α γ β α γ α
γ α β α α γ α β

Fig. 8. A function f where all induced rectangles in g1 are Aff3 with two α’s and where
for i > 2, gi does not have links to g1 or g2.

Case 2: g1 with both XOR and Aff3 (spanned by i, j). By Lemma 15 we have
that f is collapsible.

Case 3: g1 with only XOR’s, one type of XOR’s (spanned by i, j). We now
consider the case when all 2×2-planes in g1 spanned by dimensions i, j are XOR’s,
all of the same type. We assume the type is (α, β)-XOR’s, which is without loss
of generality as we can reorder dimensions and we know α must occur in g1 as
there is a link between g1 and g2 over α. As |Ai| = |Aj | = 2, we know from
Lemma 15 that if any 2 × 2 plane spanned by dimensions i, j (in any gm) is of
the form Aff3, then f is collapsible.

What remains is to analyze the situation when all 2× 2-planes in f spanned
by dimensions i, j in all gm are XOR’s. If none of the planes contain (β, γ)-XOR’s
then each plane has a diagonal with two α’s and by Lemma 14 f is collapsible.
As g2 = π2 ◦g1 we know that all XOR’s in g2 are (α, γ)-XOR’s. If for some m, gm
has an (β, γ)-XOR spanned by dimensions i, j then by Lemma 13 we know that
there is a dimension k such that the input in k determines the type of XOR. As
there are (α, β)-XOR’s when x1 = 1 and (α, γ)-XOR’s when x1 = 2 we see that
k = 1 and f is a permuted sum with party 1 as the permuter.

Case 4: g1 with only XOR’s, two types of XOR’s (spanned by i, j). We now
proceed to the case where all 2 × 2-planes spanned by dimensions i, j in g1 are
XOR’s, and there are two types of XOR’s among them. We assume that g1 has
an (α, β)-XOR which is without loss of generality as we know that g1 has at least
one α.

We now claim that there is no (β, γ)-XOR in f spanned by dimensions i, j.
Assume to the contrary that there is a (β, γ)-XOR in f . Then Lemma 13 applies
and we know there is a dimension k such that the input in dimension k determines
the type of XOR. Let a be inputs such that fa

{1,i,j}(1, ·, ·) is an (α, β)-XOR. Then

21

link over α in dimension i between inputs 1 and 3 violating that g1 is link-free.
Thus, |Ai| = 2, and by an analogous argument |Aj | = 2.

We are now ready to apply Lemma 14. As the 2 × 2-planes spanned by
dimensions i and j in g1 and g2 are Aff3 with two α’s, they have exactly one
diagonal with two α’s. For gm with m > 2 we see that each 2 × 2-plane has at
least a diagonal with two α’s since gm must have an α where g1 has a β or a
γ as to not have a link to g1 or g2 and each 2 × 2-plane in g1 has exactly one
diagonal with a β and a γ. As gm is link-free each 2× 2-plane cannot have more
than one diagonal with two α’s. Thus, the conditions of Lemma 14 are fulfilled
and we conclude f is collapsible by collapsing β and γ. We conclude the proof
of this case by displaying a function f of this form in Figure 8.

α β α γ β α γ α
γ α β α α γ α β

Fig. 8. A function f where all induced rectangles in g1 are Aff3 with two α’s and where
for i > 2, gi does not have links to g1 or g2.

Case 2: g1 with both XOR and Aff3 (spanned by i, j). By Lemma 15 we have
that f is collapsible.

Case 3: g1 with only XOR’s, one type of XOR’s (spanned by i, j). We now
consider the case when all 2×2-planes in g1 spanned by dimensions i, j are XOR’s,
all of the same type. We assume the type is (α, β)-XOR’s, which is without loss
of generality as we can reorder dimensions and we know α must occur in g1 as
there is a link between g1 and g2 over α. As |Ai| = |Aj | = 2, we know from
Lemma 15 that if any 2 × 2 plane spanned by dimensions i, j (in any gm) is of
the form Aff3, then f is collapsible.

What remains is to analyze the situation when all 2× 2-planes in f spanned
by dimensions i, j in all gm are XOR’s. If none of the planes contain (β, γ)-XOR’s
then each plane has a diagonal with two α’s and by Lemma 14 f is collapsible.
As g2 = π2 ◦g1 we know that all XOR’s in g2 are (α, γ)-XOR’s. If for some m, gm
has an (β, γ)-XOR spanned by dimensions i, j then by Lemma 13 we know that
there is a dimension k such that the input in k determines the type of XOR. As
there are (α, β)-XOR’s when x1 = 1 and (α, γ)-XOR’s when x1 = 2 we see that
k = 1 and f is a permuted sum with party 1 as the permuter.

Case 4: g1 with only XOR’s, two types of XOR’s (spanned by i, j). We now
proceed to the case where all 2 × 2-planes spanned by dimensions i, j in g1 are
XOR’s, and there are two types of XOR’s among them. We assume that g1 has
an (α, β)-XOR which is without loss of generality as we know that g1 has at least
one α.

We now claim that there is no (β, γ)-XOR in f spanned by dimensions i, j.
Assume to the contrary that there is a (β, γ)-XOR in f . Then Lemma 13 applies
and we know there is a dimension k such that the input in dimension k determines
the type of XOR. Let a be inputs such that fa

{1,i,j}(1, ·, ·) is an (α, β)-XOR. Then

21



as g1 = π2 ◦g2 we see that fa
{1,i,j}(2, ·, ·) is an (α, γ)-XOR. As changing the input

x1 (keeping all other inputs fixed) changes the type of XOR we must have k = 1.
But we have assumed that g1 contains two types of XOR, so k cannot be 1 and
we get a contradiction.

The only remaining possibility is that all the 2×2-planes spanned by dimen-
sions i, j in f are (α, β)-XOR’s and (α, γ)-XOR’s. Thus for each 2×2-plane there
is a diagonal with two α’s and by Lemma 14 we know that f is collapsible by
collapsing β and γ.

Case 5: g1 with only XOR’s, three types of XOR’s (spanned by i, j). We claim
that our final case is such that there are no functions to which it applies. In the
previous case with g1 with only XOR’s and two types of XOR’s we showed that
there could be no (β, γ)-XOR in f . Our proof made use of the fact that there
were at least two types of XOR’s in g1. Thus, there are no corner-free functions
with links in one dimension such that g1 consists of only XOR’s with all three
types of XOR’s. ut

A.7 Proof of Lemma 18

Lemma 18. Every n-argument function f : A1× . . .×An → Z3 with links in 2
or more dimensions and without an embedded OR is collapsible.

Proof. We reorder inputs and dimensions such that there are links between in-
puts 1 and 2 in both dimensions 1 and 2. We begin by showing that a normalized
f cannot have links over two different outputs in two different dimensions. As-
sume to the contrary that there is a link over output α in dimension 1 for inputs
x1, x2, and a link over output β in dimension 2 for inputs y1, y2.

Let πα be the permutation transposing β and γ, written (α γ β), and πβ
be the permutation transposing α and γ, written (γ β α). For each a by Corol-
lary 10 we have that fa

{1,2}(x2, y1) = πα{fa
{1,2}(x1, y1)} and fa

{1,2}(x2, y2) =
πβ{fa

{1,2}(x1, y2)}. Corollary 10 also gives that fa
{1,2}(x1, y2) = πβ{fa

{1,2}(x1, y1)}
and fa

{1,2}(x2, y2) = πα{fa
{2,1}(x1, y2)}. However, the permutation πα ◦ πβ =

(β γ α) and πβ ◦ πα = (γ α β), and hence for all x : πα{πβ(x)} 6= πβ{πα(x)}
giving a contradiction.

We relabel and reorder inputs of f such that all links in f are over output α
and that there are links in both dimensions 1 and 2 with inputs 1 and 2. This is
without loss of generality as the fact that the link in dimension 1 has the same
inputs as the link in dimension 2 does not affect anything. We illustrate two
functions with links in two dimensions with inputs 1 and 2 in Figure 9

What are the possible substructures spanned by inputs 1 and 2 in dimensions
1 and 2 in f? By Corollary 10 we see that an output in such a 2×2 substructure
uniquely determines the others and we either get an (α)-constant or a (β, γ)-
XOR. We illustrate the possibilities in Figure 10.

It follows from the fact that f cannot have links over outputs other than α,
together with Corollary 11 that all dimensions |Ai| ≤ 4 (in a row, there can be
at most two α’s, one β and one γ). We now consider the whole planes spanned
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there could be no (β, γ)-XOR in f . Our proof made use of the fact that there
were at least two types of XOR’s in g1. Thus, there are no corner-free functions
with links in one dimension such that g1 consists of only XOR’s with all three
types of XOR’s. ut

A.7 Proof of Lemma 18

Lemma 18. Every n-argument function f : A1× . . .×An → Z3 with links in 2
or more dimensions and without an embedded OR is collapsible.

Proof. We reorder inputs and dimensions such that there are links between in-
puts 1 and 2 in both dimensions 1 and 2. We begin by showing that a normalized
f cannot have links over two different outputs in two different dimensions. As-
sume to the contrary that there is a link over output α in dimension 1 for inputs
x1, x2, and a link over output β in dimension 2 for inputs y1, y2.

Let πα be the permutation transposing β and γ, written (α γ β), and πβ
be the permutation transposing α and γ, written (γ β α). For each a by Corol-
lary 10 we have that fa

{1,2}(x2, y1) = πα{fa
{1,2}(x1, y1)} and fa

{1,2}(x2, y2) =
πβ{fa

{1,2}(x1, y2)}. Corollary 10 also gives that fa
{1,2}(x1, y2) = πβ{fa

{1,2}(x1, y1)}
and fa

{1,2}(x2, y2) = πα{fa
{2,1}(x1, y2)}. However, the permutation πα ◦ πβ =

(β γ α) and πβ ◦ πα = (γ α β), and hence for all x : πα{πβ(x)} 6= πβ{πα(x)}
giving a contradiction.
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and that there are links in both dimensions 1 and 2 with inputs 1 and 2. This is
without loss of generality as the fact that the link in dimension 1 has the same
inputs as the link in dimension 2 does not affect anything. We illustrate two
functions with links in two dimensions with inputs 1 and 2 in Figure 9

What are the possible substructures spanned by inputs 1 and 2 in dimensions
1 and 2 in f? By Corollary 10 we see that an output in such a 2×2 substructure
uniquely determines the others and we either get an (α)-constant or a (β, γ)-
XOR. We illustrate the possibilities in Figure 10.

It follows from the fact that f cannot have links over outputs other than α,
together with Corollary 11 that all dimensions |Ai| ≤ 4 (in a row, there can be
at most two α’s, one β and one γ). We now consider the whole planes spanned
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β γ α
γ β α
α α β

(a) f1 with two
links

α α β
α α γ
γ β α

(b) f2 with two
links

Fig. 9. Two different functions with links in two dimensions.

α α
α α

(a) (α)-constant

β γ
γ β

(b) (β, γ)-XOR

γ β
β γ

(c) (β, γ)-XOR

Fig. 10. The three possibilities for the 2 × 2-plane spanned by inputs 1 and 2 in
dimensions 1 and 2.

by dimensions 1 and 2. For every plane, we know that there is a 2 × 2 square
of either the form (α)-constant or (β, γ)-XOR spanned by inputs 1 and 2. What
does this imply for the remainder of the plane?

We claim that there is no link in dimension 1 between inputs 1 and 3. This
follows since there are no links in f over β or γ and since there is a link between
inputs 1 and 2 in dimension α by Corollary 11 inputs 1 and 3 in dimension 1
cannot have a link over α. This means that fa

{1}(1) = α ⇐⇒ fa
{1}(3) 6= α for

all a. Analogously, fa
{1}(1) = α ⇐⇒ fa

{1}(4) 6= α for all a. Thus, we see that
fa
{1}(3) = α ⇐⇒ fa

{1}(4) = α for all a. Since f has a link over α in dimension
1 and 2, by Corollary 10 we have that fa

{1}(1) = α ⇐⇒ fa
{1}(4) = α for all a.

An identical argument applies for dimension 2.
Recalling the notation 6 α used to denote an output which is either β or γ,

we see that there are only two possibilities for the planes spanned by dimensions
1 and 2. We illustrate these for the maximal case when |A1| = |A2| = 4 in
Figure 11.

α α 6 α 6 α
α α 6 α 6 α
6 α 6 α α α
6 α 6 α α α

6 α 6 α α α
6 α 6 α α α
α α 6 α 6 α
α α 6 α 6 α

Fig. 11. The two possible structures for planes spanned by dimensions 1 and 2.

We claim that f is collapsible by collapsing β and γ and define the collapsed
function

g(x) =
{

1 if f(x) ∈ {β, γ}
0 if f(x) = α

.
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We show that g does not contain an embedded OR of degree 1. Then by The-
orem 6 g is corner-free and from Theorem 5 we can then conclude that the
collapsed function can be written as a Boolean sum.

Assume by contradiction that there is an embedded OR of degree 1 in g. We
then show that there is an embedded OR in f , which is a contradiction since f is
corner-free. If there is an embedded OR in g with three 0’s, then that corresponds
to an embedded OR in f with three α’s, so we assume g has an embedded OR
with three 1’s.

We begin by showing that the embedded OR is not over dimension 1 or 2.
By the structure of f we have that for a pair of inputs x1, x2 in dimension 1 we
either have fa

{1}(x1) = α ⇐⇒ fa
{1}(x2) = α or fa

{1}(x1) = α ⇐⇒ fa
{1}(x2) 6= α

for all a. From this it follows that a 2 × 2-plane spanned by dimension 1 must
have an even number of α’s, so in particular it cannot have one α. The case for
dimension 2 is analogous.

We assume there is an embedded OR in g with three 1’s in dimensions j and
k with inputs x1, x2 and y1, y2 and consider the planes spanned by dimensions
1 and 2. We let x1 and y1 be the inputs of the 0 in the embedded OR in g. We
consider the case when the embedded OR occurs at input 1 in both dimensions
1 and 2, the case for when it occurs at some other input in dimensions 1 and 2
is completely analogous. Let the inputs where the embedded OR occurs be a. If
|A1| > 2 (or |A2| > 2) then since fb

{1}(1) = α ⇐⇒ fb
{1}(3) 6= α for all b we

see that of the four outputs fa
{1,j,k}(3, x1, y1), fa

{1,j,k}(3, x1, y2), fa
{1,j,k}(3, x2, y1),

and fa
{1,j,k}(3, x2, y2) precisely three must be α’s, showing an embedded OR in

f .
Finally, we let |A1| = |A2| = 2. We know that of the considered 2× 2-planes

spanned by dimension 1 and 2, three are of the form (β, γ)-XOR and one is
(α)-constant. We claim that there is an embedded OR in f of degree 2 with
S1 = {1, j} and S2 = {2, k} using inputs (1, x1); (2, x2) on S1 and (1, y1); (2, y2)
on S2. We illustrate this in Figure 12, and then give a formal proof.

α α β γ
α α γ β

β γ γ β
γ β β γ

Fig. 12. An embedded OR in f with dimensions 1 and 2 spanning the 2 × 2 planes
with dimension j over the horizontal line and dimension k over the vertical.

We now verify that we have an embedded OR in f as claimed. We know that
fa
{1,2,j,k}(1, 1, x1, y1) = α and all of fa

{1,2,j,k}(1, 2, x1, y2), fa
{1,2,j,k}(2, 1, x2, y1),

and fa
{1,2,j,k}(2, 2, x2, y2) are different from α. As f has no links over outputs

β or γ fa
{1,2,j,k}(1, 2, x1, y2) 6= fa

{1,2,j,k}(2, 2, x1, y2) and fa
{1,2,j,k}(2, 2, x1, y2) 6=

fa
{1,2,j,k}(2, 2, x2, y2), which implies fa

{1,2,j,k}(1, 2, x1, y2) = fa
{1,2,j,k}(2, 2, x2, y2).

Analogously we see that fa
{1,2,j,k}(2, 2, x2, y2) = fa

{1,2,j,k}(2, 1, x2, y1) showing
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that we do have an embedded OR as claimed. Thus, we conclude the proof that
if f is not collapsible by collapsing β and γ, then f is not corner-free. ut

A.8 Proof of Lemma 21

Lemma 21. Protocol 3 can evaluate all corner-free, collapsible functions with
range Z3.

Proof. Let f be corner-free and collapsible by collapsing α and β. We prove that
there are functions gi such that f(x1, . . . , xn) = α =⇒

∑n
i=1 gi(xi) = 0 and

f(x1, . . . , xn) = β =⇒
∑n
i=1 gi(xi) = 2 where the sum is computed modulo 4.

One may wonder why the sum is not modulo 2. At the end of the proof, we show
that whether the sum must be modulo 4 or if it could be modulo 2 is a property
of the function f . In Figure 13 we show a function such that the sum must be
modulo 4.

One viewpoint is that we are given a partially filled function table for a
function g with g(x1, . . . , xn) = 0 where f(x1, . . . , xn) = α, g(x1, . . . , xn) = 2
where f(x1, . . . , xn) = β, and a blank where f(x1, . . . , xn) = γ. Our proof goes
by “filling in the blanks” such that the conditions of Lemma 7 are satisfied which
implies that there are gi with the desired properties. We illustrate the partially
filled function table in Figure 13.

α β γ γ γ α
β α γ γ γ β
γ γ α β α γ

(a) Collapsible f

0 2 · · · 0
2 0 · · · 2
· · 0 2 0 ·

(b) Partial g

0 2 1 3 1 0
2 0 3 1 3 2
3 1 0 2 0 3

(c) g
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and a completely defined g satisfying the conditions of Lemma 7.

We refer to the values defined in the partially filled g as given. The condition
for Lemma 7 to apply is that all induced rectangles of g satisfy (1). Our proof
strategy is to describe a procedure by which we fill in the blanks and then prove
that this results in (1) holding for all induced rectangles in g by case analysis.
We assign terms of the form x, x+ 2, −x, and −x+ 2 to the blanks and prove
that for at least one of x = 0 and x = 1 the conditions of Lemma 7 are satisfied.
The case x = 0 corresponds to when the gi could have been Boolean, and x = 1
to when we need the full range of Z4.

We begin by observing that if g is completely specified (i.e., the output γ
never occurs in f) then g is a boolean corner-free function and by Theorem 5
we can find g′i(xi) such that g(x1, . . . , xn) =

∑n
i=1 2gi(xi) where the computa-

tion is modulo 4. For the degenerate case when g is given as only blanks (i.e.,
f(x1, . . . , xn) = γ for all inputs) then we can simply let g be constant 0. Thus,
we proceed with the non-degenerate case when g contains both given values and
blanks.
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We claim that there is no link in f over output α or β, implying that there are
no links in the partially filled g over output 0 or 2. Assume to the contrary that
there is a link over α (the case with a link over β is analogous) in dimension k for
inputs x, y with other inputs as a. Consider the pair of values fb

{k}(x), f
b
{k}(y)

for some b 6= a. Since f is normalized it follows from Lemma 9 they cannot be
(β, β) or (γ, γ). Since f is corner-free, the pair cannot contain exactly one α.
Furthermore, as f is collapsible by collapsing α and β the pair cannot contain
exactly one β either, as then the collapsed function has an embedded OR. Thus,
the only remaining option is (α, α), and this must hold for all b 6= a, show-
ing inputs x and y are redundant in dimension k which contradicts that f is
normalized.

As f does not have any links over α or β and by Corollary 11 can have at
most one link over γ in a dimension, we see that for all i, |Ai| ≤ 4 (at most one
α, one β and two γ). This means that for each row in dimension 1 (a subfunction
on the form ga

{1} for fixed a) the function g can have at most one 0, one 2, and
two blanks.

Consider the “first” row, by which we mean g1{1} where 1 = (1, 1, . . . , 1).
Without loss of generality we reorder dimensions and inputs such that g1{1}(1)
is given and g1{1}(2) is blank. We let d1 = g1{1}(1). We fill in the blank at g1{1}(2)
with x, and the second blank (if there is one) with x+ 2.

We proceed to make an observation on the pattern of blank outputs in g. As
f is collapsible by collapsing α and β, by the definition of collapsible we have
that there exist functions fi(xi) such that

∑n
i=1 fi(xi) = 0 =⇒ f(x1, . . . , xn) =

γ =⇒ g(x1, . . . , xn) is blank. In particular, this implies that for all rows in
g, there are only two possible patterns for where the blanks are, and the two
patterns are complementary. For every dimension i (we already did this for
dimension 1) such that fi is not constant, we reorder the inputs such that fi(1) 6=
fi(2) (which means that the pattern of blanks changes between input 1 and 2).

We proceed to fill in g. For each row in dimension 1, we apply (1) as if it was
at Hamming distance 1 from the first row (even though most rows are not). In
more detail, for a row with the same pattern of blanks as the first row, denote
the given value at x1 = 1 by c1. A blank position for x1 = i is filled with the
value c1 − d1 + di where di is value we filled in at x1 = i on the first row (and
thus, either di = x or di = x + 2). On a row with a pattern opposite of that of
the first row, we fill in a blank at x1 = i with di + c2 − x, where c2 is the value
given at x1 = 2 of that row (recall that the value at x1 = 2 on the first row
is x). As all arithmetic is modulo 4, we make use of the equality 2 ≡ −2, and
thus the terms we fill in blanks with are: x, x+ 2,−x, and −x+ 2, as previously
claimed. We show how g from Figure 13 is filled in in Figure 14 (but we have
not reordered inputs such that the second value on the first row is a blank).

We now proceed to show that the conditions of Lemma 7 are fulfilled by
either x = 0 or x = 1. Following our observation on the pattern of blanks, we
see that every induced rectangle in g must have an even number of terms with
x’s. We now proceed with a case analysis for each induced rectangle in g, with
five cases. We prove that for the first four of the cases, no condition is imposed
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0 2 x −x (−x+ 2) 0
2 0 (x+ 2) (−x+ 2) −x 2
−x (−x+ 2) 0 2 0 (x+ 2)

Fig. 14. Filling in f from Figure 13.

upon x. The presence of rectangles in the final case determines if x = 0 or x = 1
fulfills the conditions of Lemma 7, and if no such rectangle is present in g, the
both choices for x work. We remark that our construction is such that if x = y
satisfies the conditions of Lemma 7, then so does x = y+ 2, however, we do not
formally prove this. We also remark that for x = 0 all blanks will be assigned
the value 0 or 2, and for x = 1 all blanks will be assigned the value 1 or 3.

Our five cases for an induced rectangle in g are:

1. Four given values
2. Four terms with x’s
3. Two terms with x’s which are neighbors
4. Two terms with x’s on a diagonal, opposite signs on the x terms
5. Two terms with x’s on a diagonal, same signs on the x terms

Case 1: Four given values. First, consider an induced rectangle consisting only
of values 0 and 2. The condition that f is corner-free implies that (1) is satisfied
for such a rectangle.

Case 2: Four terms with x’s. Next, consider an induced rectangle consisting
only of terms involving x’s. Due to how we assigned the terms, two terms with
x’s which are neighbors (Hamming distance 1) must have the same sign, and
precisely one of them must have a +2 term. Thus, in an induced rectangle, two
of the terms contain a +2 term, (1) becomes one of x + 2 + x + 2 ≡ x + x, or
−x+ 2− x+ 2 ≡ −x− x, both of which are tautologies.

Case 3: Two terms with x’s which are neighbors. As the third case, consider an
induced rectangle with two terms involving x’s, such that the two terms involving
x’s are neighbors. Then, by the fact that there are no links over outputs 0 and
2, and that neighboring x’s have the same sign and differ by 2, we see that the
equation must be one of x+2+2 ≡ x+0, x+2+0 ≡ x+2, −x+2+2 ≡ −x+0,
and −x+ 2 + 0 ≡ −x+ 2, which are all tautologies.

Case 4: Two terms with x’s on a diagonal, opposite signs on the x terms. In our
fourth case, we consider an induced rectangle with two non-neighboring terms
involving x where the two x’s have opposite signs. We note that, for a fixed input
to x1, all x’s have the same sign, so such a rectangle must involve the dimension
1. Let one of the rows contain the terms x+ c1 and c2, and the second contain
c3, and −x + c4, with c1, c2, c3, c4 being constants. Let x + d1 be the value in
the first row at the same position as the x+ c1 and c3 terms, and let d2 be the
value in the first row at the same position as the c2 and −x+ c4 terms. We now
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Case 5: Two terms with x’s on a diagonal, same signs on the x terms. Finally,
we proceed to the last, and most complicated, case, with an induced rectangle
with two non-neighboring terms involving x, such that both x’s have the same
sign. For this case, we’ll need the following observation:

For every dimension j, there is a pair of constants, pj,1 and pj,2 ∈ 0, 2 such
that, for every a such that ga

{1,j}(1, 1), ga
{1,j}(2, 2) ∈ {0, 2}:

ga
{1,j}(1, 1) = ga

{1,j}(2, 2) + pj,1 , (3)

and for every a such that ga
{1,j}(2, 1), ga

{1,j}(1, 2) ∈ {0, 2}:

ga
{1,j}(2, 1) = ga

{1,j}(1, 2) + pj,2 . (4)

The observation follows from the fact that f does not contain an embedded OR.
This, since, if there are two vectors of inputs a, b such that

ga
{1,j}(1, 1) − ga

{1,j}(2, 2) 6=
gb
{1,j}(1, 1) − gb

{1,j}(2, 2) ,

then an odd number of the above values must be 0, and the remaining must be
2. Thus, f has an embedded OR with partition S1 = {i, j} and S2 = SC1 using
inputs (1, 1); (2, 2) and a; b. The case for pj,2 is analogous.

Furthermore, we claim that for any pair of dimensions j, k, it must be the
case that pj,1 + pj,2 + pk,1 + pk,2 ≡ 0 (mod 4), and thus either for all j we have
pj,1 + pj,2 ≡ 0 , or for all j, pj,1 + pj,2 ≡ 2. Fix a pair of dimensions j, k and
inputs a. We begin by noting that if j is such that fj is a constant function,
and thus the pattern of blanks does not depend on xj , then pj,1 and pj,2 are
undefined, and analogously for k. We reordered inputs such that f1(1) 6= f1(2),
implying that exactly one of fa

{1,j,k}(1, 1, 1) and fa
{j,k}(2, 1, 1) is α or β and thus

that the value on one of those positions in g is given.
Consider the case when ga

{1,j,k}(1, 1, 1) is given (the case when fa
{1,j,k}(2, 1, 1)

is given is analogous) and let c = ga
{1,j,k}(1, 1, 1). Since f1(1) 6= f1(2) and

fj(1) 6= fj(2), we claim that ga
{1,j,k}(2, 2, 1) is given. This follows since f1(1) +

fj(1) + fk(1) ≡ f1(2) + fj(2) + fk(1) (mod 2). Then by (3) we see that c ≡
ga
{1,j,k}(2, 2, 1) + pj,1. Analogously in dimension k, (4) implies ga

{1,j,k}(2, 2, 1) ≡
ga
{1,j,k}(1, 2, 2) + pk,2 and thus c ≡ ga

{1,j,k}(1, 2, 2) + pk,2 + pj,1. Continuing, (4)
gives ga

{1,j,k}(2, 1, 2) ≡ ga
{1,j,k}(1, 2, 2) + pj,2 . As all values involved are 0 or 2

and we are working modulo 4, we can apply the equivalence y ≡ −y and rewrite
as ga

{1,j,k}(1, 2, 2) ≡ ga
{1,j,k}(2, 1, 2)+pj,2 so c ≡ ga

{1,j,k}(2, 1, 2)+pj,2 +pk,2 +pj,1.
And, finally, by (3) we have ga

{1,j,k}(1, 1, 1) ≡ ga
{1,j,k}(1, 2, 2) + pk,1 which after

rewriting results in c ≡ ga
{1,j,k}(1, 1, 1)+pj,1 +pj,2 +pk,1 +pk,2. Since we defined

c = ga
{1,j,k}(1, 1, 1) we see that pj,1 + pj,2 + pk,1 + pk,2 ≡ 0. We illustrate the

proof in Figure 15.
With these observations, we are ready to complete the discussion of the final

case of this proof. Recall that we reordered inputs such that the first two positions
of the first row are d1, and x.
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c · · (c+ pj,1)
· (c+ pj,1 + pj,2 + pk,2) (c+ pj,1 + pk,2) ·

Fig. 15. Proving that pj,1 + pj,2 + pk,1 + pk,2 ≡ 0. Dimensions 1 and k span the 2× 2
planes.

By our construction, a rectangle with two terms involving x’s with the same
sign on a diagonal occurs only when the input x1 is fixed. Furthermore, we see
that if the rectangle considered is spanned by dimensions i, j with inputs a1, a2

in dimension i and b1, b2 in dimension j then fi(a1) 6= fi(a2) and fj(b1) 6= fj(b2),
as otherwise the rectangle does not have a diagonal with terms involving x’s.

We further claim that we can restrict our attention to xi ∈ {1, 2} for all i.
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with our construction implies that for every dimension k, if a1, a2 are inputs such
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{k}(a1) ≡ gb
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A.9 Proof of Theorem 22

Theorem 22. Every n-argument function f : A1× . . . An → Z3 that has an em-
bedded OR of any degree has an embedded OR of degree at most 3. Furthermore,
every 4-argument function f : A1 × A2 × A3 × A4 → Z3 that has an embedded
OR, also has one of degree at most 2.

Proof. Let f have an embedded OR of degree k ≥ 3, corresponding to a partition
X1, X2, A, with |X1| ≥ |X2|. We reorder inputs such that X1 = {x1, x2, . . . , xk}.
We then show that we can find a new partition X ′1, X

′
2, A

′, either such that
|X ′1| < |X1| and X2 = X ′2, or such that |X ′1| ≤ 2, and |X ′2| ≤ |X2| + 1, also
corresponding to an embedded OR. From this, the theorem follows.

We relabel outputs such that the embedded OR contains three α’s and one β
and let a, b be inputs for X1, and c,d for X2 realizing the embedded OR. Thus,
there exists e such that fe

{X1,X2}(a, c) = fe
{X1,X2}(b, c) = fe

{X1,X2}(a,d) = α

and fe
{X1,X2}(b,d) = β. For i ≤ k, let ai be the element in a that is used for

input xi, and bi the corresponding element in b. We write a vector with a single
element x as (x).

We now consider what happens if we take a and replace some values with
the corresponding values from from b. To simplify the discussion, we define for
S ⊆ X1 the function g(S,x) = fe

{X1,X2}(aS=b,x) where aS=b denotes a with
values as indicated by the subset S replaced by the corresponding values from
b. We proceed with a case analysis depending on what values g(S, c) and g(S,d)
takes for nonempty S ⊂ X1. In each case, we assume the previously discussed
cases do not apply. For instance, in case 3 we assume that there is no S such
that g(S, c) = α. We proceed with the following cases:

1. g(S, c) = α or g(S,d) = α for some S
2. g(S, c) = β and g(S,d) = β for some S
3. g(S, c) = γ and g(S,d) = γ for some S
4. The pair g(S, c), g(S,d) ∈ {(β, γ), (γ, β)} for all S

Case 1: g(S, c) = α or g(S,d) = α for some S. If g(S, c) 6= g(S,d) then
we claim that there is an embedded OR with X ′1 = S and X ′2 = X2. Assume
g(S, c) = α and let e′ be e extended with the elements from a for arguments in
X ′1\X1, let a′ be the elements of a in X ′1 ∩X1, and let b′ be the elements of b
in X ′1 ∩X1. Then we can verify that

fe′

{X′
1,X

′
2}

(a′, c) = fe
{X1,X2}(a, c) = α

fe′

{X′
1,X

′
2}

(a′,d) = fe
{X1,X2}(a,d) = α

fe′

{X′
1,X

′
2}

(b′, c) = g(S, c) = α

fe′

{X′
1,X

′
2}

(b′,d) = g(S,d) 6= α .

If g(S, c) = g(S,d) = α then we claim there is an embedded OR with X ′1 =
X1\S andX ′2 = X2. Let e′ be e extended with the elements from b for arguments
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A.9 Proof of Theorem 22
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Case 2: g(S, c) = β and g(S,d) = β for some S. This case is analogous to the
case when g(S, c) = g(S,d) = α.

Case 3: g(S, c) = γ and g(S,d) = γ for some S. We assume the previous cases
did not apply to g, and thus that for all non-empty S′ ⊂ X1 we have that the
pair g(S′, c), g(S′,d) ∈ {(β, γ), (γ, β), (γ, γ)}. We begin with the case that for
all non-empty S′ ⊂ X1 we have that g(S′, c) = g(S′,d) = γ. Then we claim
there is an embedded OR with X ′1 = {x1} and X ′2 = X2 ∪ {x2}. Let e′ be e
extended with the elements from a for arguments in X1\{x1, x2}, let a′ = (a1)
and b′ = (b1), let c′ be c extended with aj , and let d′ be d extended with bj . Then
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fe′

{X′
1,X

′
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(b′,d′) = γ. We illustrate this case in Figure 16.

S = x = c x = d

∅ α α
{x1} γ γ
{x2} γ γ
{x1, x2} γ γ

Fig. 16. The function g(S,x) when for all S′ : g(S′, c) = g(S′,d) = γ with an embed-
ded OR marked by bold symbols.

We now consider the case when for some S′, the pair g(S′, c), g(S′,d) ∈
{(β, γ), (γ, β)}. Then there is S1, S2 ⊂ X1 differing in exactly one element (which
we denote xi) such that g(S1, c) = g(S1,d) = γ and the pair g(S2, c), g(S2,d) ∈
{(β, γ), (γ, β)}. From this we see that there is an embedded OR with X ′1 = {xi}
and X ′2 = X2.

Case 4: The pair g(S, c), g(S,d) ∈ {(β, γ), (γ, β)} for all S.
This case is the most complicated, and we proceed with two sub-cases. In

our analysis, we define the function

h(y1, . . . , yk) =
{

0 if g(S,d) = β
1 if g(S,d) = γ

where S = {xi : yi = 1}. We remark that h(0, . . . , 0) is left undefined (we define
its value later) and h(1, . . . , 1) = 1 as g(X1,d) = β. We claim that if there is an
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in X1\X ′1, let a′ be the elements of a in X ′1 ∩X1, and let b′ be the elements of
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in X1\X ′1, let a′ be the elements of a in X ′1 ∩X1, and let b′ be the elements of
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We now consider the case when for some S′, the pair g(S′, c), g(S′,d) ∈
{(β, γ), (γ, β)}. Then there is S1, S2 ⊂ X1 differing in exactly one element (which
we denote xi) such that g(S1, c) = g(S1,d) = γ and the pair g(S2, c), g(S2,d) ∈
{(β, γ), (γ, β)}. From this we see that there is an embedded OR with X ′1 = {xi}
and X ′2 = X2.

Case 4: The pair g(S, c), g(S,d) ∈ {(β, γ), (γ, β)} for all S.
This case is the most complicated, and we proceed with two sub-cases. In

our analysis, we define the function

h(y1, . . . , yk) =
{

0 if g(S,d) = β
1 if g(S,d) = γ

where S = {xi : yi = 1}. We remark that h(0, . . . , 0) is left undefined (we define
its value later) and h(1, . . . , 1) = 1 as g(X1,d) = β. We claim that if there is an
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embedded OR in h, it corresponds to an embedded OR in f . As h is a Boolean
function, we know from Theorem 6 that if there is an embedded OR in h, then
there is one of degree 1.

Consider an embedded OR in h between inputs yi and yj . Then we know that
there is an embedded OR with β and γ with corners at fe′

{i,j}(ai, aj), f
e′

{i,j}(ai, bj),
fe′

{i,j}(bi, aj), and f
e′

{i,j}(bi, aj) where e′ is e extended with the values of d on S2,
the values of a for {xi : yi = 0} and the values of b for {xi : yi = 1} in the
embedded OR.

We now return to h(0, . . . , 0) and define it to either of 0 and 1 that results in f
remaining corner-free. We analyze the case when this fails and both h(0, . . . , 0) =
0 and h(0, . . . , 0) = 1 creates an embedded OR (but h was corner-free with
h(0, . . . , 0) undefined) and claim that there is then a small embedded OR in f .

To see this, we consider what values h takes when exactly one of its inputs
is non-zero, or, equivalently, the values of g(S,d) for singleton sets S which is
more notationally convenient to discuss. We proceed in two cases depending on
whether g(S,d) has the same output for all singleton sets or not. The embedded
OR prove exists turn out to be identical to those which we prove to exist in the
case when h is independent of one or more inputs.

Consider the case when there is xi, xj ∈ X1 such that g({xi},d) 6= g({xj},d).
Choose xi such that g({xi},d) = g({xi, xj},d). Then we claim there is an em-
bedded OR with X ′1 = {xi} and X ′2 = X2 ∪ {xj}. For a′ = (ai), b′ = (bi),
c′ as c extended with aj , d′ as d extended with bj and e′ as e extended
with values from a where X1\{xi, xj}. Then we have fe′

{X′
1,X

′
2}

(a′, c′) = α.

fe′

{X′
1,X

′
2}

(a′,d′) = fe′

{X′
1,X

′
2}

(b′, c′) = fe′

{X′
1,X

′
2}

(b′,d′) 6= α. We illustrate this
in Figure 17(a).

Consider the case when for all xi, xj ∈ X1 we have g({xi},d) = g({xj},d).
Then the fact that both assigning h(0, . . . , 0) = 0 and assigning h(0, . . . , 0) = 1
implies that there is a pair xi, xj such that g({xi, xj},d) = g({xi},d), and that
there is a pair xk, xl such that g({xk, xl},d) 6= g({xk},d). We claim that there
is an embedded OR with X ′1 = {xi} and X ′2 = {xj}. Let e be e extended
with all elements from d and elements from a where X1\{xi, xj}. We can verify
that fe′

{i,j}(ai, aj) = α and fe′

{i,j}(bi, aj) = fe′

{i,j}(ai, bj) = fe′

{i,j}(bi, bj) 6= α. We
illustrate this in Figure 17(b).

If h is corner-free, then Theorem 5 gives that h(y1, . . . , yk) =
∑k
i=1 fk(yk)

modulo 2. We proceed in two cases, depending on whether there is an i such
that h is independent of yi, or if h depends on all its inputs.

Case 4.1: There is an i such that h is independent of yi.
If h is independent of two variables yi, yj then we claim there is an embedded

OR with X ′1 = {xi} and X ′2 = {xj}. We can verify that fe′

{i,j}(ai, aj) = α and
fe′

{i,j}(ai, bj) = fe′

{i,j}(bi, aj) = fe′

{i,j}(bi, bj) 6= α for e′ as e extended with the
values from c on X2 and the values from a on X1\{xi, xj}.

If h is independent of one variable yi then we claim there is an embedded OR
with X ′1 = {xi} and X ′2 = X2 ∪ {xj}. We can verify that fe′

{i,X′
2}

(ai, c′) = α and
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Fig. 18. The three cases of Case 4.2. In f1, |X1| > 3. In f2, |X1| = 3 and g({x1}, c) = β,
and in f3, |X1| = 3 and g({x1}, c) = γ.
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Secure Multi-Party Sorting and Applications
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Abstract. Sorting is among the most fundamental and well-studied
problems within computer science and a core step of many algorithms. In
this article, we consider the problem of constructing a secure multi-party
computing (MPC) protocol for sorting. Our protocol builds on previous
work in the fields of MPC and sorting networks.
Apart from the immediate uses for sorting, our protocol can be used as
a building-block in more complex algorithms. We present a weighted set
intersection algorithm, where each party inputs a set of weighted ele-
ments and the output consists of the input elements with their weights
summed. As a practical example, we apply our protocols in a network
security setting for aggregation of security incident reports from multi-
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1.1 Our contribution

Our contributions presented in this paper are as follows: We first present a novel
secure MPC sorting algorithm. Based on secure sorting, we construct a protocol
for the weighted set intersection problem. We apply our MPC protocols to the
specific problem of secure cooperative processing of intrusion detection system
(IDS) incident logs. Our sorting algorithm was implemented on the Sharemind
MPC platform and tested on a three machine cluster run by the Sharemind team.
In this setting, we can sort 214 elements in under 4 minutes. Our performance
evaluation demonstrates that applying MPC to the problem of secure processing
of incidence reports is feasible, especially if we can assume small clustering of
targets, as suggested by the empirical findings of Katti et al. [17].

1.2 MPC protocols

We first present a novel secure sorting protocol, which uses established MPC
primitives along with techniques from the field of sorting networks [2]. Specifi-
cally, we implement a sorting network using a secure comparison protocol [12,22]
to construct comparison gates. Our core contribution in MPC sorting is a rela-
tively straightforward combination of these two existing lines of research. How-
ever, we believe our protocols and applications thereof to be novel. The fact
that multi-party protocols for sorting has been stated as an open problem [9,13]
supports this claim.

Apart from being of independent interest, sorting is an important building
block in algorithm design. We apply our MPC sorting protocol to develop a pro-
tocol for the weighted set intersection problem. Our protocol also solves related
problems, such as the top-k problem [9]. The protocol begins by sorting all in-
puts ordered by keys, proceeds to aggregate the counts, then sorts the records in
descending order by aggregated count. For the top-k problem, the top k records
are then revealed. Our algorithm is an approach to solving the generalized set
intersection problem, as discussed in the MPC context by Many [21].

1.3 Secure Processing of IDS Logs

We apply our MPC protocols to the problem of aggregating network anomaly
logs in a secure and privacy preserving manner. Specifically, we use our algo-
rithms to aggregate anomaly log records from multiple mutually distrustful par-
ties to aid in detection of malicious activity.

Example 1 (Joint intrusion detection). Many organizations run an Intrusion De-
tection System (IDS) to detect malicious traffic on their networks. Logs and
alerts from such systems are typically kept private, but much could be gained
by sharing such information if the privacy and security concerns could be solved
[25]. Another indication of the importance of sharing intrusion detection logs
is the www.dshield.org service operated by the Internet Storm Center, where
firewall logs can be submitted, albeit potentially revealing sensitive internal in-
formation. By using protocols for private aggregation, cooperative processing of
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logs can be done in a fully automated way, and in close to real-time, as discussed
by Burkhart and Dimitropoulos [9]. This can for example be used to detect an
attacker running a slow scan of multiple targets in the hope of avoiding detec-
tion, or to proactively block traffic from a source flagged as being malicious by
others’ IDS’s.

We have implemented MPC sorting protocols on the Sharemind [6] platform
for secure multi-party computation and present the results of our performance
evaluations on the project’s test cluster. The run-time of our weighted set in-
tersection protocol is dominated by sorting (twice), so its performance is closely
connected to that of sorting. However, the protocols are not specific to the Share-
mind platform. Rather, our protocols are described as a sequence of computa-
tions on secret shared data, taking input and producing output in secret shared
form. This allows our protocols to be easily re-used as parts of other protocols
and to be implemented on other common MPC platforms.

Our performance evaluations, presented in this paper, demonstrate the fea-
sibility of using MPC protocols for privately processing incident logs produced
by IDS systems. We reserve optimization and scaling issues with regard to our
protocols for future work.

1.4 Other Applications of Secure Sorting

MPC sorting has various other direct applications. For instance, a multi-party
sorting algorithm could be used as a part of a voting system by sorting all
votes, which would remove the possibility of re-identifying voters. However, se-
cure voting is a complex problem, and there is a rich literature on the sub-
ject. Other mechanisms, such as mix-nets can also be used to more efficiently
prevent de-anonymization of the cast votes. By sorting and selectively opening
key-value pairs of (bid, bidder)-pairs, different auction mechanisms can also be
implemented by sorting. For instance, second price (Vickrey) auctions can be
computed by sorting bids in descending order and then opening the bidder part
of the first pair and the bid part of the second pair.

The weighted set intersection protocol we develop has many different appli-
cation apart from Example 1, of which we note a few. Firstly, it can easily be
modified to solve the top-k problem where only the top k records are revealed.
It also solve set intersection, which has many real-life applications. One such
example is given in Example 2.

Example 2 (Disease detection). A blood bank and a diagnostic center could run
an intersection algorithm to determine if any person who has donated blood has
later been diagnosed with a disease which may spread through blood donations.
While donors are typically screened before blood donations are made, running a
protocol could assist in detecting if any errors or false negatives have occurred.
Health care providers often operate under very strict privacy restrictions which
may prevent computing the intersection without the strong privacy guarantees
provided by a secure multi-party protocol.
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1.5 Related Work

Protocols to securely evaluate any function are given by Ben-Or, Goldwasser,
and Wigderson [5], and Chaum, Crépeau, and Damgård [11]. Both these results
present protocols for computing addition and multiplication (XOR and AND)
on values in (verifiable) secret shared form, and with results remaining secret
shared. As these primitives are complete, any function can then be evaluated
gate by gate.

Adding to these primitives, Damgård et al. [12] presented a generic compar-
ison protocol which can be used with most common secret sharing mechanisms.
Later, a more efficient protocol for comparison was proposed by Nishide and
Ohta [22]. Bogdanov et al. [7] gave efficient protocols specialized for the case
when exactly 3 parties participate in the computation.

A line of research has focused on developing efficient MPC protocols for spe-
cific functions. Among these are more specific applications, such as auctions [8],
and comparing gene sequences [16], but also more generic primitives such as set
operations [14,18], top-k queries [9], and weighted set intersection [21]. Finding
efficient algorithms for private sorting has been stated as an open problem by
Du and Atallah [13], and more recently by Burkhart and Dimitropoulos [9].

A number of frameworks and specialized programming languages to imple-
ment and run secure multi-party computation protocols have been created. These
include FairplayMP [4], Sharemind [6], SEPIA [10], and VIFF. FairplayMP
builds on the idea of “garbled circuits” [28,3], Sharemind uses additive shar-
ing over a ring, and the latter two systems build on Shamir’s secret sharing [23].
Despite these three different approaches to implementing a generic MPC frame-
work, they all support a similar set of primitives, including addition, multipli-
cation, comparisons and equality testing. However, the performance properties
of FairplayMP are different from the others, and we will focus on the latter
three. Programming on these platforms either uses a specialized language, or a
standard programming language and library calls, depending on the platform.

One of our proposed applications is a protocol for cooperative, but private,
processing of security-relevant information, shared between mutually distrustful
organizations. Secure sharing of server logs and incidents reports is discussed by
Lincoln et al. [20], Slagell et al. [25] and Xu et al. [26]. The common thread is
that sharing of incident logs can aid in early detection of anomalies, but that
naive merging of logs is not a feasible solution, as this may reveal sensitive in-
ternal and customer information. The authors cited propose a variety of log
sanitization techniques to protect potentially sensitive information. In contrast,
we propose to use MPC protocols for privacy preserving cooperative log process-
ing. Katti et al. [17] perform empirical analysis on a large dataset obtained from
1700 IDS systems. They observe that coordinated attacks on multiple targets
are a large fraction of the total attacks observed. Further, such attacks are seen
to target small clusters of victims with relatively constant size and membership.
The clustering phenomenon is most likely due to the combination of software
run and services offered on the platforms under attack. The observations of
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A number of frameworks and specialized programming languages to imple-
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include FairplayMP [4], Sharemind [6], SEPIA [10], and VIFF. FairplayMP
builds on the idea of “garbled circuits” [28,3], Sharemind uses additive shar-
ing over a ring, and the latter two systems build on Shamir’s secret sharing [23].
Despite these three different approaches to implementing a generic MPC frame-
work, they all support a similar set of primitives, including addition, multipli-
cation, comparisons and equality testing. However, the performance properties
of FairplayMP are different from the others, and we will focus on the latter
three. Programming on these platforms either uses a specialized language, or a
standard programming language and library calls, depending on the platform.

One of our proposed applications is a protocol for cooperative, but private,
processing of security-relevant information, shared between mutually distrustful
organizations. Secure sharing of server logs and incidents reports is discussed by
Lincoln et al. [20], Slagell et al. [25] and Xu et al. [26]. The common thread is
that sharing of incident logs can aid in early detection of anomalies, but that
naive merging of logs is not a feasible solution, as this may reveal sensitive in-
ternal and customer information. The authors cited propose a variety of log
sanitization techniques to protect potentially sensitive information. In contrast,
we propose to use MPC protocols for privacy preserving cooperative log process-
ing. Katti et al. [17] perform empirical analysis on a large dataset obtained from
1700 IDS systems. They observe that coordinated attacks on multiple targets
are a large fraction of the total attacks observed. Further, such attacks are seen
to target small clusters of victims with relatively constant size and membership.
The clustering phenomenon is most likely due to the combination of software
run and services offered on the platforms under attack. The observations of
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Katti et al. support the feasibility of cooperative anomaly detection using MPC
protocols, such as is the focus of our work.

Building on their SEPIA platform, Burkhart and Dimitropoulos [9] have pro-
posed an algorithm for aggregation and top-k queries. In this paper, we present
an alternate algorithm for top-k queries based on sorting. We remark that their
solution computes an approximately correct value, while our proposed solution
computes exact results.

Also building on the SEPIA platform, Many [21] in his Master’s thesis studied
a problem called weighted set intersection. In this problem, each participant gives
as input a list of (value, weight)-pairs, and only keys reported by some number of
peers and which have weights with sum greater than some threshold are output.
For this problem, we propose an alternate solution based on sorting.

We apply techniques from sorting networks in our primary building block,
the MPC sorting protocol. A sorting network is a circuit which uses a fixed
number of comparison gates. A comparison gate is a gate with two inputs a,
b and two outputs, which output min(a, b) and max(a, b). Another perspective
is that a sorting network is a sorting algorithm with the property that which
elements it compares is independent of the input.

Two performance metrics are of importance in the sorting network litera-
ture, as well as in our application: the number of comparison gates, and the
depth of the circuit. Batcher [2] presented two famous sorting networks, odd-
even merge sort and bitonic sort. Both algorithms have depth O

(
log2 n

)
using

O
(
n log2 n

)
gates and are efficient in practice. The Shell sort [24] algorithm can

also be implemented as a sorting network with the same performance. Ajtai,
Komlós, and Szemerédi [1] constructed the AKS sorting network which achieves
the theoretically optimal O(log n) depth with O(n log n) gates, but the constant
hidden in the ordo notation makes the algorithm inefficient for practical input
sizes. Leighton and Plaxton [19] have proposed a sorting network with optimal
asymptotic performance and practical constants, but which do not sort correctly
for a small fraction of inputs.

2 Preliminaries and Notation

We denote a sequence of elements by a bold letter, like a, and use the same letter
with an index to denote the elements in the sequence, so ai is the ith element
of the sequence a. When we treat sequences of pairs, we explicitly associate
two new letters with the first and second item of the pair. Thus, for a vector b
consisting of pairs (xi, yi) the element bj = (xj , yj).

2.1 Secure Multi-Party Computation

The most common paradigm for MPC is that of computing on shared secrets
[5,11]. In this paradigm, parties use secret sharing to share their private inputs
among all participants in the computation. They then execute protocols which
operate on secret shared inputs and return the output in secret shared form.
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Finally, the shares of the output are combined to recover the output of the
function.

Our protocols are based on a small number of primitives, which we assume to
be securely implemented. These operations are addition, multiplication, compar-
ison and equality testing, operating on values under secret sharing. The values
operated on are in a finite ring or field, which is known to all parties. We denote
the ring or field by Zk. In Table 1, we list the primitives and the notation we
use. All arithmetic operations are in Zk.

Notation Operation
[x] The value x shared between the parties
[a] The sequence a shared element-wise between the parties
[x] + [y] Computation of the value x + y shared by the parties
c · [x] Computation of x multiplied by a public constant
[x] · [y] Computation of the product of two secret shared values
[x < y] The value 1 if x is strictly smaller than y, 0 otherwise
[x = y] The value 1 if x is equal to y, 0 otherwise

Table 1. List of MPC primitives used

Several of our algorithms operate on sequences. When sharing a sequence,
it is shared element-wise. Thus, the notation [a] for a of length m means that
the parties have shares [a1], [a2], . . . , [am]. We remark that sharing a sequence
reveals the length of the sequence to all parties. Similarly, when sharing pairs we
share them element-wise. Thus, for a sequence b of length m consisting of pairs
(xi, yi), [b] means that parties have shares [x1], [y1], [x2], [y2], . . . , [xm], [ym].

The computational and communication cost of the different primitives varies
significantly. Addition of two shares, as well as multiplication by a constant,
can be performed locally by all participants in the protocol. Computing the less-
than function or equality is done by computing a large number of multiplications,
the exact number depending on the protocol used and on the bit length of the
elements. For instance, the protocol by Nishide and Ohta [22] uses 15 rounds
and 279`+ 5 multiplications to compare two elements where ` is the number of
bits needed to represent an element in Zk, i.e. dlog2 ke. All operations in Table 1
use a constant number of rounds. For fixed k, the communication is also O(1).

As in other areas of computer science, MPC protocols benefit from paralleliza-
tion. Therefore, when designing and implementing a protocol, it is important to
keep not only the number of operations, but also the number of rounds as low
as possible. In Section 5, we demonstrate the importance of parallelization by
comparing the run time of a parallelized and non-parallelized version of bubble
sort.

In the context of MPC, different notions of what a party is has been dis-
cussed. Traditionally, the model has been that all parties contributing input also
participate in the secure computation. However, as performance of MPC proto-
cols does not scale well to a large number n of participants, a different model
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has been proposed [6,10]. In this model, a large number of peers collect data
and send it in secret shared form to a relatively small number of privacy peers.
The privacy peers then run the protocol to perform the secure computation on
the inputs. Most often when designing protocols, the distinction between the
two models is not important. However, as we discuss in Section 3, for one of our
sorting protocols, it does make a difference.

The exact security guarantees achieved, as well as the constraints on the
execution environment depends on the MPC framework on which our protocol
is implemented. The frameworks based on Shamir’s secret sharing are secure
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A comparison gate can be implemented as a multi-party computation by using
the following construction:

[h] = [a < b] · [b] + (1− [a < b]) · [a]
[l] = [a < b] · [a] + (1− [a < b]) · [b]

We define the function Compare-exchange(ai, aj) and assume sequences
are sorted in-place. This function compares the two elements ai, aj and swaps
them if needed such that after its execution, ai ≤ aj . The Compare-exchange
operation is implemented using the construction given above. We present the
algorithm later in Algorithm 3.

Sorting networks are comparison based, so the general Ω(m logm) lower
bound on the number of comparisons applies. The AKS sorting network [1]
matches this bound, but with such large constants that it is inefficient for prac-
tical input sizes. There are several sorting networks [2,24] with slightly worse
asymptotic performance, O

(
m log2m

)
comparisons and depth O

(
log2m

)
, but

with good constants. Of these, we will focus on the odd-even merge sort al-
gorithm by Batcher [2]. There is a also fast sorting network by Leighton and
Plaxton [19] with O(m logm) comparisons, but which does not correctly sort
the output for a very small fraction of the possible inputs. In the context of
MPC, we feel that correctness outweighs performance. As we show in Section 5,
an MPC implementation of odd-even merge sort achieves good performance even
on reasonably large data sets.

As the name implies, odd-even merge sort is based on the well-known merge
sort algorithm. The overall structure is the same, splitting the input in two
halves, recursively sorting each half, and then merging. The difference compared
to the standard merge sort algorithm lies in the merge step, which we describe in
Algorithm 1. For completeness, we give a full description of the whole algorithm
in Algorithm 2. With some abuse of notation, we write Function(a1, a2, . . . , am)
to call Function with the sequence a = a1, a2, . . . , am when Function takes
a single sequence as argument. We describe the algorithms as operating on a
sequence, the length of which is a power of 2, but it is easy to modify to ar-
bitrary input lengths by omitting some comparisons. We conclude this section
by restating the correctness and performance analysis from [2] of the odd-even
merge sort algorithm as a theorem.

Theorem 1 ([2]). The Odd-even merge algorithm uses O(m logm) com-
parisons with depth O(logm). Odd-even merge sort correctly sorts using
O
(
m log2m

)
comparisons with depth O

(
log2m

)
.

3 Secure Multi-Party Sorting

We construct a secure sorting network on secret shares by using a MPC protocol
for Compare-exchange. This allows us to leverage the long line of research in
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Algorithm 1 Odd-even merge [2]
Input: Sequence a whose two halves a1, a2, . . . am/2 and am/2+1, am/2+2, . . . , am are
sorted. Length m is a power of 2.
Output: Sequence a is modified in-place to be sorted.
if m > 2 then

Odd-even merge(a1, a3, a5, . . . , am−1)
Odd-even merge(a2, a4, a6, . . . , am)
for i ∈ {2, 4, . . . , m− 2} do

Compare-exchange(ai, ai+1)
end for

else
Compare-exchange(a1, a2)

end if

Algorithm 2 Odd-even merge sort [2]
Input: Sequence a of length m (a power of 2).
Output: Sequence a is modified in-place to be sorted.
if m > 1 then

Odd-even merge sort(a1, a2, . . . , am/2)
Odd-even merge sort(am/2+1, am/2+2, . . . , am)
Odd-even merge(a)

end if

sorting networks to construct efficient MPC sorting protocols. However, there
are a number of details which remain in constructing an MPC sorting algorithm
related to the input to the protocol which we proceed to discuss.

3.1 Problem Definition

When we discuss MPC sorting, there are actually two slightly different problems
which we tackle. The first is sorting as a stand-alone functionality, or as the first
step of an algorithm. In this usage, we may need to hide the number of items
which are contributed by each party. The second is using sorting as a step within
an algorithm, where the number of elements to be sorted is known. We give a
definition to capture this distinction.

Definition 1 (Multi-party sorting, composable, public input lengths).
A multi-party sorting protocol is run between n parties. Each party Pi gives as
input a sequence ai of length mi. After the protocol has executed, the parties learn
the sorted sequence a, whose elements are the concatenations of the sequences
ai. We say that a sorting protocol is composable if the parties learn the sorted
output a in secret shared form and the total length |a| =

∑n
i=1mi openly. If

the parties learn the input lengths contributed by other parties, we say that the
protocol has public input lengths, otherwise we say it has private input lengths.

All of our protocols are given as standard MPC operations on secret shares,
and are thus composable. The intuition for the notion of public input lengths
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comes from the fact that it is difficult to hide the size of inputs in the context
of MPC protocols. For sorting, we give a general, but somewhat costly, trans-
formation which transforms a protocol with public input lengths into a protocol
with private input lengths. We stress that even with public input lengths, which
party contributed what element of the sorted output remains secret.

3.2 Public and Private Input Lengths

Our transformation from public to private input lengths begins by the parties
computing the length of the output. This is easily done by each party secret
sharing the length of their input. The lengths are summed, and the result is
opened and revealed to all parties. Let the sum be m. Let 0 be the smallest
possible input. Each party then locally appends 0’s to their input until their
input is of length m. They then participate in sorting using this new, longer
input. The cost is that the sorting algorithm must be run on a sequence of
length mn (where n is the number of parties) instead of length m.

Here, we would like to tie back into the discussion on the roles of different
parties in the MPC context. This transformation is slightly at odds with the
privacy-peer view of MPC, as it requires one round of interaction between the
data reporting peers and the privacy-peers executing the MPC protocol, as the
peers must first contribute their number of shares, wait to receive the sum of
these numbers, and then contribute their actual input (appropriately padded).
However, we believe this limited interaction is acceptable in most applications
of MPC in a privacy-peer setting as the interaction is quick, very limited and
not computationally demanding for the data reporting peers.

A similar issue arises with regard to the domain in which the elements lie.
For our MPC protocol, we require the elements to be in Zk for some public
k. But how large is k? In most applications, an upper bound on k is known a
priori, for instance when operating on IP addresses which are of fixed length.
If no such bound is known from the applications, the parties can precede the
sorting protocol with a protocol computing the maximum element in the input
to some suitable degree of precision (e.g., the number of bits required to store
it) and then instantiate the MPC framework with a ring or field of appropriate
size. In the remainder of this paper, we assume that the parties know a suitable
size a priori to present the main ideas more clearly.

3.3 Multi-party Sorting

We are now ready to present our protocol for MPC sorting. We begin by de-
scribing a comparison gate, Compare-exchange. We present the algorithm as
operating on key-value pairs in Algorithm 3. With some abuse of notation, we
call this function both when sorting key-value pairs and when sorting singleton
elements. In the algorithm, we use [s] and [t] as temporary variables for the
values that will go into outputs [x1] and [y1].
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Algorithm 3 Compare-exchange
Input: Two key-value pairs ([x1], [y1]), ([x2], [y2]) in secret shared form
Output: The pairs are swapped in-place such that the pair with the smallest key is
in the first position.
Compute [c]← [x1 < x2]
Let [s]← [c] · [x1] + (1− [c]) · [x2]
Let [t]← [c] · [y1] + (1− [c]) · [y2]
Let [x2]← (1− [c]) · [x1] + [c] · [x2]
Let [y2]← (1− [c]) · [y1] + [c] · [y2]
Let [x1]← [s]
Let [y1]← [t]

We include a full description of the protocol as Algorithm 4. The construction
used for private input lengths is general and can be used for any MPC sorting
protocol.

We remark that the users could sort their own contributed inputs locally.
Some sorting networks, in particular the odd-even merge sort network that we
presented as Algorithm 2 could be modified to make use of this to increase the
performance. However, we omit the details of such modifications.

Algorithm 4 Multi-party sorting
Input: Each party Pi inputs sequence ai of length mi

Output: Sorted sequence a in secret shared form
if Private input lengths then

Each party Pi shares [mi]
Compute [m] =

Pn
i=1[mi]

Open [m] to all parties
Each party Pi forms bi by padding ai with m−mi 0 elements

else
Each party Pi sets bi ← ai

end if
Each party Pi shares bi element-wise
Let [b] be the concatenation of all [bi]
Sort [b] in-place using a sorting network
if Private input lengths then

return the last m elements of b
else

return b
end if

Theorem 2. Algorithm 4 is correct and secure.

Proof (Sketch). Correctness of the algorithm follows directly from the correct-
ness of the sorting network implemented.
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The security of the protocol relies on the security of the implementation
of the underlying MPC primitives for all MPC operations. In the case with
private input lengths, each party performs the same sequence of MPC operations
independent of their inputs. Without private input sizes, the only difference
between parties in the protocol is how many elements are shared by each party.
The only value opened to the parties is the size of the output, which is part of
the output in Definition 1. ut

4 Weighted Set Intersection and Aggregation

We now return to our motivating example of a joint IDS, Example 1. We claim
that a useful tool for IDS cooperation is one where each party contributes a list of
suspected attackers, and a weight indicating their confidence that it is the source
of an attack. The weights may naturally come from simple counting, such as the
number of TCP SYN packets seen from a host to more complex combinations
of multiple criteria. When multiple IDS’s report the same suspected attacker,
their weights need to be aggregated. We constrain our discussion to the simplest
aggregation: summing the weights. Depending on the exact application, one may
then wish to reveal to all parties the suspects over some fixed threshold, the top-
k suspects, or some other function of the list. We think of an entry with weight
0 as empty and do not include such entries in the output.

As motivation for selecting this problem, Many [21] contains an in-depth
discussion on primitives which may be of use in joint intrusion detection. They
develop a protocol for generalized set intersection, a problem which is closely
related to the problem we solve. They give a good motivation for its applica-
bility in the IDS context. Further motivation is given by the observation by
Katti et al. [17] that a large fraction of attackers attack targets within a few
minutes of each other, indicating that if entities could collaborate on intrusion
detection and prevention in near real time, attacks could be proactively blocked.

4.1 Problem Definition

We formally define our problem and refer to it as weighted set intersection. We
remark that this name was also used by Many [21] for their problem, which is
closely related but not exactly the same. In light of the application, we will refer
to the weighted set intersection or the top-k problem as aggregation.

Definition 2 (Weighted Set Intersection, Top-k). In the Weighted Set In-
tersection problem, each party Pi gives as input a sequence ai of length mi con-
sisting of value-weight pairs, ai

j = (vi
j , w

i
j), with positive weights. The output is

a sequence of value-weight pairs such that element vj is in the output if it was
in the input of any party. Elements in the output have as weight the sum of
weights it occurred with in the input of all parties. If the output is truncated to
only include the top k values, sorted by their aggregate weights, we say that it
solves the top-k problem.

12
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In Section 3, we defined and discussed the notion of public or private input
lengths. A similar concern exists in our current setting. However, this time,
the padding idea we used in sorting does not work. The key difference between
sorting and aggregation is that with aggregation, it is difficult to compute the
length of the output without performing the actual aggregation. By applying
the same transformation as we did for sorting, we would get a protocol hiding
the number of items submitted by each party, but where the difference between
the length of the inputs and the output reveals how many key-value pairs were
reported by more than one party. Thus, we propose a protocol for aggregation
with public input lengths.

4.2 The Core Aggregation Step

In our algorithm, we sort the complete list of item-weight pairs, ordered on item.
Then an aggregation step is run, which for all items aggregates their weights.
After the aggregation step, we want a single entry in the list for each distinct
item, its weight being the sum of its weights in the original input. This means
that some item-weight pairs need to be removed; “removal” of an item-weight
pair is performed by setting its weight to 0 which ensures its exclusion from
the output later in the algorithm. We begin our description by presenting in
Algorithm 5 an MPC algorithm, Aggregate-if-equal, for comparing two key-
value pairs and merging them if they have the same key, analogous in function
to Compare-exchange.

Algorithm 5 Aggregate-if-equal
Input: Two key-value pairs ([x1], [y1]), ([x2], [y2]) in secret shared form
Output: If the keys are equal, the values are merged in-place
Compute [c]← [x1 = x2]
Let [y1]← [y1] + [c] · [y2]
Let [y2]← (1− [c]) · [y2]

Returning to the original question: given a sorted list, how to aggregate
the weights for an item? A naive solution would be to use O

(
m2
)
calls to

Aggregate-if-equal, comparing each pair of items and summing weights ap-
propriately. However, we can do better. We present an algorithm which aggre-
gates m items using O(m logm) equality tests with a construction similar to
Batcher’s Odd-even merge algorithm. We call this algorithm Odd-even ag-
gregation and give the pseudo-code in Algorithm 6 and proof of correctness
in Theorem 3. As with sorting, we describe the algorithm for an input lengths
which is a power of 2, and the algorithm can easily be adapted to arbitrary input
lengths.

Theorem 3. Algorithm 6 correctly aggregates its input using O(m logm) equal-
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Algorithm 6 Odd-even aggregation
Input: Sequence a of key-value pairs (xi, yi) which are sorted by the key values.
The length m of a is a power of 2.
Output: Sequence a is modified in-place to contain one key-value pair with non-zero
weight for each unique key. “Removed” entries have weight set to 0.
if m > 2 then

Odd-even aggregation(a1, a3, a5, . . . , am−1)
Odd-even aggregation(a2, a4, a6, . . . , am)
for i ∈ {1, 2, 3, . . . , m− 1} do

Aggregate-if-equal(ai, ai+1)
end for

else
Aggregate-if-equal(a1, a2)

end if

Proof (Sketch). We observe that on inputs of the same length, Odd-even ag-
gregation runs Aggregate-if-equal twice as many times as Odd-even
merge runs Compare-exchange. From Theorem 1, the performance follows.

The proof of correctness is by induction on the input length. We claim that
the aggregated entry for a key x that occurs in the input with non-zero weight
will be stored at the first position where x occurred in the input, i.e. the smallest
i such that xi = x. The base case of input length 2 is easily verified.

We observe that since Aggregate-if-equal compares the keys of elements,
calling it on items with different keys does not cause problems. As it overwrites
the weight with 0 when merging, calling it on a position which has already been
aggregated is also harmless. Thus, our main concern is proving that all entries
with the same key will indeed be aggregated into the first entry with that key.

The two recursive calls (on the odd and even sub-sequences) are on sorted
sequences, so by induction the two sub-sequences are correctly aggregated. For
a key x occurring in the input, let i be the least even i such that xi = x, and
let j be the least odd j such that xj = x in the input. By induction, the weights
for x are aggregated into positions i and j. As the input was sorted by key, we
have |i − j| = 1, and thus the two entries are merged by the for-loop calling
Aggregate-if-equal. As this holds for any x, it concludes the proof. ut

4.3 Algorithm for Weighted Set Intersection

Given the algorithm for the aggregation step on a sorted list, the key building
blocks for the weighted set intersection algorithm are in place. To handle the “re-
moved” elements in the output after the aggregation step, we sort the aggregated
list and count the number of non-zero items in the list, which is the number of
elements to keep as output. We present the full algorithm in Algorithm 7.

Theorem 4. Algorithm 7 correctly and privately (with public input lengths)
solves the weighted set intersection problem using O

(
m log2m

)
comparisons and

O(m logm) equality tests in O
(
log2m

)
rounds.
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Algorithm 7 MPC Weighted Set Intersection
Input: Party Pi contributes a list ai of item-weight pairs (xj , yj) of length mi.
Output: Sequence of item-weight pairs, sorted by value
Each party Pi shares its input element-wise, [ai] = [xi

1], [y
i
1], [x

i
2], [y

i
2], . . . [x

i
mi

], [yi
mi

]
Let a be the concatenation of the sequences ai

Odd-even merge sort(a), sorting on xj

Odd-even aggregation(a)
Odd-even merge sort(a), sorting on yj

[m]← 0
for i = 1 to |a| do

[m] = [m] + (1− [xi = 0])
end for
Open [m] to all parties
return The m last elements of a

Proof (Sketch). Correctness of the algorithm follows from Theorem 1 and The-
orem 3 (correctness of sorting and aggregation).

The security of the protocol relies on the security of the implementation of
the underlying MPC primitives for all MPC operations. The number of elements
shared by each party reveals the length of their input. After contributing their
input, all parties perform the same operations. The only value opened to the
parties is the size of the output, which is part of the output. ut

5 Performance Evaluation

To demonstrate the practical applicability of our protocols, we have made a
proof-of-concept implementation of our proposed sorting algorithm on the Share-
mind MPC platform. The implementation is not highly optimized, but our results
show that it can sort 214 32-bit values in just above 3.5 minutes. We believe that
this speed could be further improved by future work either on the implemen-
tation of the sorting algorithm or on the Sharemind platform itself. As the run
time of our aggregation algorithm is dominated by sorting, the performance of
sorting is highly indicative of the performance of aggregation.

For comparison purposes, we have also implemented sorting based on bubble
sort and evaluated its performance on the same cluster. In our bubble sort im-
plementation, we implemented both a vectorized version and a serialized version,
demonstrating the large performance gains from running operations in parallel.

All of our experiments were executed on a cluster operated by the Sharemind
team. As the platform only supports 3-party computations, all tests are run using
3 computers running version 2.0 of the Sharemind framework. The computers
were equipped with dual Intel X5670 CPUs 2.93GHz CPUs and 48GB RAM,
and were interconnected by gigabit links.

The Sharemind framework has its own programming language, SecreC, that
is used to specify the algorithms run on the platform. Our implementation of all
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measured algorithms are fully unrolled, meaning that the SecreC code contains
the full program sequence without iteration or recursive calls.

In Figure 1, we show how the total execution time of the three algorithms
varies as a function of the total number of items sorted, n. For technical reasons,
we were not able to run experiments sorting more than 214 elements.
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Fig. 1. Execution time (wall time) of the three compared sorting implementations.
Number of elements on x-axis on log-scale.

As can be seen from Figure 1, our baseline non-vectorized bubble sort al-
gorithm can sort 26 elements in a few minutes. By performing operations in
parallel, bubble sort’s performance increases considerably and it sorts 210 el-
ements within minutes, demonstrating the importance of parallelism in MPC
computations. Not surprisingly, by using the better algorithm, we further in-
crease practical input sizes, and with our implementation of odd-even merge
sort one can sort 214 elements in the same amount of time. This means that
joint IDS’s generating a few thousand alerts per minute can be practically im-
plemented with near real-time performance.

6 Conclusion

We have given a description of a MPC sorting algorithm and an aggregation
algorithm based on sorting. Implementing and evaluating the algorithms on an
MPC programming platform, we have shown that the performance of MPC
sorting is practical for reasonably large data sets.

In the context of intrusion detection, there is much to be gained by collab-
orating. However, the sensitive nature of alerts from an IDS makes it difficult
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By using our construction, any sorting network can be implemented as an
MPC program. However, it may be possible to construct MPC sorting algorithms
which do not correspond to a sorting network. We leave as an open problem
the question of whether there is an MPC sorting algorithm using o(n log2 n)
comparisons, which is also fast for practical input sizes.
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Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security re-
lated statistics on huge, partial mesh networks. The aggregation process
often involves security or business-critical information which network
providers are generally unwilling to share without strong privacy protec-
tion. We present efficient and scalable protocols for privately comput-
ing a large range of aggregation functions based on addition, disjunc-
tion, and max/min. For addition, we give a protocol that is information-
theoretically secure against a passive adversary, and which requires only
one additional round compared to non-private protocols for computing
sums. For disjunctions, we present both a computationally secure, and an
information-theoretically secure solution. The latter uses a general com-
position approach which executes the sum protocol together with a stan-
dard multi-party protocol for a complete subgraph of “trusted servers”.
This can be used, for instance, when a large network can be partitioned
into a smaller number of provider domains.
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1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The

Practical Private Information Aggregation in
Large Networks

Gunnar Kreitz, Mads Dam, and Douglas Wikström

KTH—Royal Institute of Technology
Stockholm
Sweden

Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security re-
lated statistics on huge, partial mesh networks. The aggregation process
often involves security or business-critical information which network
providers are generally unwilling to share without strong privacy protec-
tion. We present efficient and scalable protocols for privately comput-
ing a large range of aggregation functions based on addition, disjunc-
tion, and max/min. For addition, we give a protocol that is information-
theoretically secure against a passive adversary, and which requires only
one additional round compared to non-private protocols for computing
sums. For disjunctions, we present both a computationally secure, and an
information-theoretically secure solution. The latter uses a general com-
position approach which executes the sum protocol together with a stan-
dard multi-party protocol for a complete subgraph of “trusted servers”.
This can be used, for instance, when a large network can be partitioned
into a smaller number of provider domains.

Keywords. Multi-party computation; Private aggregation; Partial mesh
network

1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The

Practical Private Information Aggregation in
Large Networks

Gunnar Kreitz, Mads Dam, and Douglas Wikström

KTH—Royal Institute of Technology
Stockholm
Sweden

Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security re-
lated statistics on huge, partial mesh networks. The aggregation process
often involves security or business-critical information which network
providers are generally unwilling to share without strong privacy protec-
tion. We present efficient and scalable protocols for privately comput-
ing a large range of aggregation functions based on addition, disjunc-
tion, and max/min. For addition, we give a protocol that is information-
theoretically secure against a passive adversary, and which requires only
one additional round compared to non-private protocols for computing
sums. For disjunctions, we present both a computationally secure, and an
information-theoretically secure solution. The latter uses a general com-
position approach which executes the sum protocol together with a stan-
dard multi-party protocol for a complete subgraph of “trusted servers”.
This can be used, for instance, when a large network can be partitioned
into a smaller number of provider domains.

Keywords. Multi-party computation; Private aggregation; Partial mesh
network

1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The

Practical Private Information Aggregation in
Large Networks

Gunnar Kreitz, Mads Dam, and Douglas Wikström

KTH—Royal Institute of Technology
Stockholm
Sweden

Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security re-
lated statistics on huge, partial mesh networks. The aggregation process
often involves security or business-critical information which network
providers are generally unwilling to share without strong privacy protec-
tion. We present efficient and scalable protocols for privately comput-
ing a large range of aggregation functions based on addition, disjunc-
tion, and max/min. For addition, we give a protocol that is information-
theoretically secure against a passive adversary, and which requires only
one additional round compared to non-private protocols for computing
sums. For disjunctions, we present both a computationally secure, and an
information-theoretically secure solution. The latter uses a general com-
position approach which executes the sum protocol together with a stan-
dard multi-party protocol for a complete subgraph of “trusted servers”.
This can be used, for instance, when a large network can be partitioned
into a smaller number of provider domains.

Keywords. Multi-party computation; Private aggregation; Partial mesh
network

1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The



goal of MPC is to allow a group of mutually distrusting parties to jointly eval-
uate a function of their private inputs, while leaking nothing but what can be
deduced from the output of the function. Furthermore, protocols built on MPC
techniques are generally secure, even if several parties (up to a fraction of the
parties involved in the computation) collude to break the privacy of the other
participants.

The traditional setting of MPC is one where the number of parties is relatively
small and the network is assumed to be full mesh. Sadly, this precludes the
immediate application of such techniques in the large, partial mesh networks
which are prevalent today.

Recent approaches to monitoring in large networks employ an in-network
paradigm [1] whereby monitoring is performed collaboratively by the network
nodes themselves, using algorithms based on spanning trees [26,11] or gossip-
ing [24,22]. For these applications, scalability is often taken to mean sub-linear
growth in resource consumption growth in the size of the network.

Towards a general solution to the problem of collaborative network and secu-
rity monitoring we present in this paper efficient protocols for computing sum,
max, disjunction, and thresholds in partial mesh networks. These operations are
sufficient to implement many of the aggregates of interest in monitoring. Our
protocols are efficient, both in terms of message and computational overhead.

We focus in this paper on passive, “honest-but-curious” adversaries whereby
attackers are bound to follow the protocol but may collude to learn information
about the honest parties’ inputs. This is much simpler than the active attack
model also considered in multi-party computation and often leads to more effi-
cient protocols. However, it is also a reasonable and attractive model in many
practical situations where e.g. side conditions related to traffic observations and
arguments of utility can be appealed to to ensure protocol behavior is adhered
to.

The security of MPC protocols is commonly characterized by the size of
collusions they remain secure against. Such thresholds become less meaningful
for protocols, such as ours, which can be used on arbitrary networks. Thus,
we analyze security in terms of tolerable adversary structures in the sense of
Hirt and Maurer [20], and describe the tolerable structures in terms of graph
theoretical properties of the network on which the protocol is executed.

As the need for monitoring is common to many areas, and our protocols are
efficient, we believe there is a wide range of applications. We give a few examples
of possible applications to set some context for the work.

Example 1 (Collaborative Security Monitoring). The need to aggregate security
log information as part of general intelligence gathering is widely acknowledged,
cf. [29]. The importance of collaboration is further emphasized by services such
as Internet Storm Centre’s www.dshield.org, where firewall logs can be shared,
and aggregate statistics are collected.

Network providers and supervisors have strong interest in accurate security
log aggregates, as this will allow more precise estimations of the global secu-
rity situation, in order to take countermeasures and improve operations. There
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are, however, important privacy concerns, as log data, even in sanitized form,
can reveal significant amounts of critical information concerning internal busi-
ness and network operations. Previous work has explored techniques such as log
anonymization and randomized alert routing to deal with this problem [29,25].
We argue that private aggregation techniques can be used in this scenario to pro-
duce practical security aggregates with strong privacy guarantees in near real
time.

One application would be to collect aggregate packet- or flow counts to vari-
ous destination ports. Due to the computational efficiency of our protocols, they
could be run directly on network devices such as routers, and without the need
to trust a third party.

Example 2 (Anonymous and robust peer-to-peer networks). Consider a peer-to-
peer network for anonymous publication and retrieval of files where the network
acts as a distributed storage. In this scenario, it could be of interest to compute
the number of copies of a file to discover if further duplication of that file is
needed, something that could be done by a private computation of a sum. It
may also be useful to be able to query for availability of a file without learning
any other information than if the file exists in the network or not, which would
correspond to a private computation of disjunction.

Another application within the realm of peer-to-peer networking would be
to implement monitoring of the overlay to enhance quality and research. This
could be useful both for overlays with strict anonymity requirements, but also
for more traditional file-sharing applications where individual users may still be
hesitant to share information on e.g. the amount of data they’ve uploaded.

Example 3 (Joint control of SCADA systems). A research topic of growing im-
portance is the security of Supervisory Control and Data Acquisition (SCADA)
systems, e.g. systems controlling criticial infrastructure such as the electrical
grid. Many different entities are involved in running the electrical grid, and they
must co-operate to ensure production and consumption is balanced throughout
the grid. However, many of the entities are direct competitors, which can prevent
collaboration that would involve sharing of business-sensitive data.

Our protocols could be applied to monitor aggregate power flows over various
areas of the grid, which is a summation. They could also be applied to compute
the disjunction of alert statuses at operators. Then, if one operator has some
form of disruptions, other operators would automatically be put on alert and be
prepared in case the failure condition affects other parts of the grid. This would
decrease the risk of cascading failures by giving early warnings to other operators,
without sharing detailed information on the reliability of any individial operator.

We believe that in the scenarios presented above, the assumption of a pas-
sive adversary could be reasonable. For network monitoring, there is little to
be gained for the participants in disrupting the computation of the aggregated
information. In the P2P scenario, attacking monitoring is likely to be uninterest-
ing, but searches and functions ensuring replication may be suitable candidates
for protocols with stronger security properties, depending on the nature of the
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network. In the SCADA scenario, in addition to the small gains from actively
manipulating the computations, it’s possible that legislation would demand that
data was retained for auditing, thus increasing the risk involved in cheating.

1.1 Our Contributions

Firstly, we give a protocol for summation, where we perform a single round of
communication to achieve privacy, and then reduce the problem to non-private
summation. A single group element is sent in each direction over every link in this
extra round. The protocol is similar to a protocol by Chor and Kushilevitz [10],
but adapted to a partial mesh network, and with a precise characterization of
tolerable adversary structures. It is also similar to the dining cryptographers
networks proposed by Chaum [9] which is essentially the same protocol but
applied to provide sender untraceability.

Secondly, we present a computationally secure protocol for computing dis-
junction, based on homomorphic cryptosystem, such as El Gamal [15]. The pro-
tocol requires two rounds of communication and then uses a non-private protocol
for summation. Computationally, it requires a small number of encryptions and
decryptions per neighbor.

We also give a composition structure where the information-theoretically
secure protocol for summation is composed with a standard protocol for com-
puting some other function. We show that this can be used for several standard
functions in network management, such as disjunction, min/max, or threshold
detection. For this composition, there needs to be a complete subgraph K of the
network such that no union of two sets from the adversary structure contains
K. This is a reasonable assumption in many network monitoring applications
where the members of K represent trusted servers appointed by a disjoint col-
lection of network providers. This is similar to the use of trusted aggregation
servers in [5,13,7]. The composition essentially performs an efficient and secure
“aggregation” of all inputs to some smaller subset of parties who can then run a
more expensive protocol with stricter connectivity requirements.

1.2 Related Work

There are general results [18,3] showing that every computable function can be
privately evaluated in a multi-party setting, but the protocols involved require
a full mesh network between the parties and can be prohibitively expensive to
execute.

There are many specialized protocols for computing specific functions in the
literature, that are more efficient than the general constructions. Examples of
such protocols include an information-theoretically secure protocol for summa-
tion by Chor and Kushilevitz [10], and computationally secure protocols for dis-
junction and maximum by Brandt [6], which uses the homomorphic El Gamal
cryptosystem as a building block. While such protocols are more efficient than
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the general solutions, they are still not scalable in the sense of the previous sec-
tion. Just sending one message between every pair of parties forces each party
to process too many messages.

In most of the works on multi-party computation, the parties are connected
in a full mesh network. An article by Franklin and Yung [14] describes how
to emulate the missing private channels between parties, and using their con-
struction, protocols built for full mesh networks may also be run on arbitrary
networks. However, this emulation can be very expensive, and may not always
be possible, depending on what parties an adversary can corrupt.

There has also been research exploring how the network connectivity affects
what functions can be computed with information-theoretical privacy. There are
results due to Bläser et al. [4] and Beimel [2] categorizing the functions that can
be computed on 1-connected networks.

The Dining Cryptographers problem, and its solution were discussed by
Chaum [9]. They study the problem of creating a channel such that the sender
of messages is untraceable and their suggested protocol is similar to our protocol
for summation.

A technique that can be applied to sidestep the connectivity and performance
issues of traditional MPC solutions is to aggregate data to a small set of semi-
trusted nodes, who can then perform the computation. As these servers are few,
it is more feasible to connect them with a full mesh network. Examples of such
schemes include Sharemind [5], SEPIA [7], and a system by Duan and Canny [13].
These are similar to the protocols we present in Section 5, with a difference
being that our protocols perform aggregation while collecting information from
the nodes, thus decreasing the load on the servers performing the computation,
but limiting what can be computed.

A number of authors propose additive secret sharing to secure information
aggregation in large networks or databases. Privacy schemes similar to the sum
protocol used here have been explored in the area of sensor networks and data
mining [28,19]. In fact, a very large range of algorithms used in data mining and
machine learning, including all algorithms in the statistical query framework
[23], can be expressed in a form compatible with additive secret sharing. Several
authors have investigated secure aggregation schemes for the case of a central-
ized aggregator node (cf. [21,27]). A solution with better scalability properties
is proposed by Chan et al. [8]. There, an additive tree-based aggregation frame-
work is augmented by hash signatures and authenticated broadcast to ensure
that, assuming the underlying aggregation tree is already secured, an attacker is
unable to induce an honest participant to accept an aggregate which could not
be obtained by direct injection of some private data value at the attacking node.
Other recent work with similar scope uses Flajolet-Martin sketches for secure
counting and random sampling [16].

1.3 Organization of This Paper

We begin by presenting the security and computational model and various def-
initions in Section 2. We then proceed to outline and prove properties of the
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protocol for computing sums in Section 3. Then, we give a computationally
secure protocol for computing disjunctions in Section 4. We then show a com-
position structure where the protocol for summation is composed with standard
protocols to compute for instance disjunction in Section 5.

2 Model and Definitions

We consider multi-party computation (MPC) protocols for n parties, P1, . . . , Pn,
and denote the set of all parties by P. Each party Pi holds a private input, xi, and
the vector of all inputs is denoted x. The network is modeled as an undirected
graph G = (P, E) where messages can only be sent between adjacent parties.

For a graph G = (P, E), we say that G is disconnected if there exists a pair of
vertices such that there is no path between them. For a set of vertices X ⊆ P,
we denote by G −X the subgraph of G induced by the set of vertices P\X. In
other words, G −X is the graph obtained by deleting all vertices in X and their
incident edges from G.

Definition 1 (Separator, set of vertices). Given a graph G = (P, E), a set
of vertices X ⊆ P is called a separator of G if the graph G −X is disconnected.

2.1 Adversary Structures

The most common adversary considered in the MPC literature is a threshold
adversary corrupting up to a threshold of the parties. More generally, we can
allow an adversary corrupting some subset of parties as specified by an adversary
structure [20].

An adversary structure Z over P is a subset of the power set of P, containing
all possible sets of parties which an adversary may corrupt. We require that an
adversary structure is monotone, i.e., it is closed under taking subsets.

Definition 2 (Separator, adversary structure). In a network G = (P, E),
an adversary structure Z is called a separator of G if some element in Z is a
separator of G.

From the monotonicity of Z, it follows that if Z is not a separator of G, then
no matter what subset in Z the adversary chooses to corrupt, every corrupted
party will have at least one honest neighbor. More precisely, for every set C ∈ Z
it must be the case that every party P ∈ C has at least one neighbor who is not in
C. This observation is important for the proof of security of the computationally
private protocol for disjunction given in Section 4.

2.2 Security Definition

The security definition of a multi-party computation says that the adversary
should not learn anything from the protocol execution except what it can deduce
from its inputs and the output of the function the protocol computes.
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In the security analysis of our protocols, we only consider passive (honest-
but-curious), static adversaries in a network with private and reliable channels.
The protocols in Sections 3 and 5 are information-theoretically private, and the
protocol in Section 4 is computationally private.

We consider information about the network the protocol is executed on to be
public knowledge. Our protocols do not depend on honest parties knowing the
network structure, but neither do anything to hide that information from the
adversary.

We refer to [3,17] for details on security definitions for information-theoretical
and computational security of multi-party computation.

2.3 Homomorphic Cryptosystems

A cryptosystem CS = (Gen,E,D) is said to be homomorphic if the following
holds.

– Each public key pk output by Gen defines groups of messages, randomness,
and ciphertexts, denoted Mpk , Rpk , Cpk respectively, for which the group
operations are efficiently computable.

– For every public key pk , every messages m1,m2 ∈ Mpk , and every r1, r2 ∈
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Protocol 1 (Sum). In the protocol for computing
∑n
i=1 xi over an Abelian

groupM, on the network G = (P, E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P, E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution. ut

Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n), and

two vectors of inputs x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x
′
i =

∑n
i=1 si =

∑n
i=1 s

′
i, and si = s′i, xi = x′i for all Pi ∈ C.

Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an
edge in G. Define s(x,R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x,R) is denoted by si(x,R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x,R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.

8

Protocol 1 (Sum). In the protocol for computing
∑n
i=1 xi over an Abelian

groupM, on the network G = (P, E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P, E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution. ut

Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n), and

two vectors of inputs x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x
′
i =

∑n
i=1 si =

∑n
i=1 s

′
i, and si = s′i, xi = x′i for all Pi ∈ C.

Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an
edge in G. Define s(x,R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x,R) is denoted by si(x,R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x,R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.

8

Protocol 1 (Sum). In the protocol for computing
∑n
i=1 xi over an Abelian

groupM, on the network G = (P, E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P, E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution. ut

Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n), and

two vectors of inputs x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x
′
i =

∑n
i=1 si =

∑n
i=1 s

′
i, and si = s′i, xi = x′i for all Pi ∈ C.

Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an
edge in G. Define s(x,R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x,R) is denoted by si(x,R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x,R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.

8

Protocol 1 (Sum). In the protocol for computing
∑n
i=1 xi over an Abelian

groupM, on the network G = (P, E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P, E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution. ut

Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n), and

two vectors of inputs x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x
′
i =

∑n
i=1 si =

∑n
i=1 s

′
i, and si = s′i, xi = x′i for all Pi ∈ C.

Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an
edge in G. Define s(x,R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x,R) is denoted by si(x,R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x,R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.

8



We note that s = s(x,R) holds iff R is such that for each Pi we have si−xi =∑n
j=1 rj,i − ri,j . Thus, for R′ we need precisely that for each Pi we have

n∑
j=1

(r′j,i − r′i,j) = (s′i − x′i)− (si − xi) . (1)

Since C is not a separator, there exists a directed spanning tree T that spans
the honest parties, P\C. Let r′i,j = 0 if (Pi, Pj) is not an edge in T . We can now
fill in R′ iteratively during a postorder traversal of T . When a non-root Pi is
visited, only r′j,i for its parent Pj is still undefined on the ith row and column of
R′, and its value is determined by Equation 1.

When the root is visited, R′ is completely filled in and we know that Equa-
tion 1 holds for all other parties. Consider the sum of Equation 1 over all parties.
The left hand side satisfies

∑n
i=1

∑n
j=1(r

′
j,i − r′i,j) = 0. The right hand side also

satisfies
∑n
i=1(s

′
i − x′i) − (si − xi) = 0 since

∑n
i=1 xi =

∑n
i=1 x

′
i =

∑n
i=1 si =∑n

i=1 s
′
i. Since Equation 1 holds for all parties except for the root, it must also

hold for the root. ut

We would like to remark that the proof of Lemma 1 does not make use of
the monotonicity of the adversary structure Z. Thus, if we allow non-monotone
adversary structures (for instance, if parties 1 and 2 must always be corrupted
jointly), the protocol is still private given that Z does not separate the network
G.

It is intuitively clear that sums cannot be privately computed if Z separates
the network, and this is indeed the case. In [2], Beimel gives a characterization
of the functions that can be privately computed in non-2-connected networks,
with an adversary structure consisting of all singleton sets, and shows that sums
cannot be computed in that setting. Any information-theoretically private pro-
tocol computing sums tolerating Z separating the network can be turned into
a protocol violating the bounds given in [2] by standard simulation techniques,
and cannot exist.

4 A Computationally Secure Protocol For Disjunction

We now consider the problem of computing the disjunction of all parties’ in-
puts, and present a computationally secure protocol, requiring two rounds of
communication and an execution of non-private protocol for summation.

As a building block, we need a cryptosystem CS = (Gen,E,D) that is homo-
morphic. We further need that the group of messagesMpk is the same group for
all keys generated with the same security parameter, κ. For notational conve-
nience, we denote this groupM. We require the cryptosystem to have IND-CPA
security, i.e., resistance to chosen-plaintext attacks. We relax the correctness
requirements slightly, and allow our protocol to incorrectly output false with
negligible probability 2−κ.

In this protocol, we construct a linear secret sharing of a group element which
is zero if all the parties’ inputs are false, and a uniformly random group element
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the monotonicity of the adversary structure Z. Thus, if we allow non-monotone
adversary structures (for instance, if parties 1 and 2 must always be corrupted
jointly), the protocol is still private given that Z does not separate the network
G.

It is intuitively clear that sums cannot be privately computed if Z separates
the network, and this is indeed the case. In [2], Beimel gives a characterization
of the functions that can be privately computed in non-2-connected networks,
with an adversary structure consisting of all singleton sets, and shows that sums
cannot be computed in that setting. Any information-theoretically private pro-
tocol computing sums tolerating Z separating the network can be turned into
a protocol violating the bounds given in [2] by standard simulation techniques,
and cannot exist.

4 A Computationally Secure Protocol For Disjunction

We now consider the problem of computing the disjunction of all parties’ in-
puts, and present a computationally secure protocol, requiring two rounds of
communication and an execution of non-private protocol for summation.

As a building block, we need a cryptosystem CS = (Gen,E,D) that is homo-
morphic. We further need that the group of messagesMpk is the same group for
all keys generated with the same security parameter, κ. For notational conve-
nience, we denote this groupM. We require the cryptosystem to have IND-CPA
security, i.e., resistance to chosen-plaintext attacks. We relax the correctness
requirements slightly, and allow our protocol to incorrectly output false with
negligible probability 2−κ.

In this protocol, we construct a linear secret sharing of a group element which
is zero if all the parties’ inputs are false, and a uniformly random group element
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otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the
description of the protocol, we abuse notation slightly and multiply a value by
a party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P, E), based on a homomorphic cryp-
tosystem CS = (Gen,E,D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i)← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈M, and send pk i, ci,j =

Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈ M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute
si =

∑
(Pi,Pj)∈E(Dski

(c′j,i)− ri,j)
5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-

tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P, E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑
i=1

si =
n∑
i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E

xjai,j .

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero. ut

10

otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the
description of the protocol, we abuse notation slightly and multiply a value by
a party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P, E), based on a homomorphic cryp-
tosystem CS = (Gen,E,D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i)← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈M, and send pk i, ci,j =

Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈ M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute
si =

∑
(Pi,Pj)∈E(Dski

(c′j,i)− ri,j)
5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-

tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P, E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑
i=1

si =
n∑
i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E

xjai,j .

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero. ut

10

otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the
description of the protocol, we abuse notation slightly and multiply a value by
a party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P, E), based on a homomorphic cryp-
tosystem CS = (Gen,E,D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i)← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈M, and send pk i, ci,j =

Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈ M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute
si =

∑
(Pi,Pj)∈E(Dski

(c′j,i)− ri,j)
5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-

tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P, E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑
i=1

si =
n∑
i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E

xjai,j .

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero. ut

10

otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the
description of the protocol, we abuse notation slightly and multiply a value by
a party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P, E), based on a homomorphic cryp-
tosystem CS = (Gen,E,D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i)← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈M, and send pk i, ci,j =

Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈ M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute
si =

∑
(Pi,Pj)∈E(Dski

(c′j,i)− ri,j)
5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-

tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P, E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑
i=1

si =
n∑
i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E

xjai,j .

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero. ut

10



4.1 Privacy

Theorem 3. If the cryptosystem CS is (t, ε)-IND-CPA secure, then no adver-
sary running in time t− t′, for a small t′, can violate the privacy of Protocol 2
with advantage more than n2

4 ε.

The proof of Theorem 3 begins like the proof of Theorem 1 with a combina-
torial lemma similar to Lemma 1, essentially saying that unless the adversary
learns something about the values ai,j from seeing them encrypted, it cannot
violate the privacy of Protocol 2. Given the lemma, we apply a hybrid argument
to prove the security of the protocol.

Lemma 2. Consider executions of Protocol 2 on a connected network G =
(P, E) with input x such that xi = true for at least one Pi, and where a col-
lusion C ∈ Z from a non-separating adversary structure Z, and communication
ai,j , ri,j , rj,i, si for Pi ∈ C is fixed. For such executions, the values si for Pi ∈ P\C
have a uniform and independent distribution.

Proof (Theorem 3). We begin with the observation that if all the parties have
input false, then the protocol behaves exactly as Protocol 1 with zeroes as
inputs and by Lemma 1, then the honest parties’ si will be uniformly random
conditioned on

∑n
i=1 si = 0.

First, consider the case where the inputs of all corrupted parties are false.
In this case, a simulator that independently samples the pk i, ci,j , ri,j and si
included in the adversary’s view, conditioned only on

∑n
i=1 si = 0 if the output

is false, or
∑n
i=1 si 6= 0 otherwise perfectly simulates the protocol to the adver-

sary, by the previous observation and Lemma 2. Thus, in this case, the adversary
cannot violate the privacy of the protocol.

Now, consider the case when at least one of the corrupted parties has input
true. We begin by constructing a simulator S0 that randomly selects inputs
and ai,j for all honest parties, conditioned on the output matching the output
it should simulate. It then follows the protocol to simulate the adversary’s view.

We now construct hybrid simulators, Sk, working like S0 but replacing the
first k ciphertexts ci,j in the adversary’s view by random ciphertexts. It follows
from the (t, ε)-IND-CPA security of Epki

(x) that no adversary running in time
t−t′, for some small t′ required to run the simulator Sk, can distinguish between
the views simulated by Sk and Sk−1.

Assume that the adversary’s view includes T ciphertexts ci,j , so the view
simulated by ST contains no information on the ai,j sent by honest nodes to
corrupted nodes. There can be at most (n/2)2 edges between honest and cor-
rupted nodes, so T ≤ n2/4. By Lemma 2, the distribution of simulated ri,j and
si values is exactly the same as in a real execution, so the view simulated by ST
contains no information on the honest parties inputs. ut

Proof (Lemma 2). Consider the following mental experiment, where we modify
an execution of the protocol in two steps.
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Modification 1. For each neighbor Pj of Pi we subtract xicj,i from c′i,j in Step
3 of the protocol and add xiaj,i to si in Step 4 of the protocol. It is easy to
see that this does not change the distribution of either si or Dski(c

′
i,j) for any

neighbor Pj .

Modification 2. Remove all encryptions and decryptions. This transforms
Steps 3-5 of the protocol into an execution of Protocol 1, where Pi holds the
input

∑n
j=1 xiaj,i.

From Lemma 1 we conclude that with the two modifications, the si are
independently distributed conditioned on

∑n
i=1 si =

∑n
i=1

∑n
j=1 xiaj,i, but the

right side of this equation is randomly distributed when some xi = 1 and ai,j for
some neighbor Pj is randomly distributed. From the conditions of the lemma, we
know there is at least one Pi such that xi = 1, and from the monotonicity of Z
and that it is non-separating, we know that every party has an honest neighbor.
Thus, the si are uniformly and independently distributed. This concludes the
proof. ut

4.2 Computing the Maximum

In the setting with passive adversaries, it is easy to construct a protocol for
computing the maximum by repetition and parallel composition of a protocol
for disjunctions.

Assume the inputs are integers of ` bits. We can then compute the disjunction
of the most significant bits of all parties’ inputs, which is also the most significant
bit of the maximum of the inputs. We then proceed to the next most significant
bit. When a party learns that its input is smaller than the maximum (its input
was 0 and the output was 1), it participates with input 0 in the remaining
protocol executions.

Several bits can be handled in parallel to reduce the number of rounds at
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efficiency. Another approach would have been to simulate the missing edges (e.g.,
with the techniques from [14]) and then immediately using standard protocol,
but this approach is generally more expensive in terms of communication.

By this composition, we essentially run a cheap protocol to “accumulate” the
inputs of most parties and then let some small subset of parties run a more
expensive protocol and jointly act as a trusted party. This can be useful when
performing computations with a large number of parties where some subset can
be trusted not to collude with each other. This can be compared to the trusted
servers in [5,13,7].

Executing the standard protocol requires a complete network, so this con-
struction is only applicable when G contains a subgraph K that is complete.
Furthermore, tolerable adversary structures Z are those that do not separate
the graph, and which, restricted to K, are tolerable by the standard protocol
being used. For most protocols, the requirement will be that no two subsets in
Z cover K, or using notation from [20], the predicate Q(2)(Z|K ,K) must hold.

Protocol 1 constructs a secret sharing of the sum of the parties inputs and
then opens it. When we adapt the protocol for composition, we only construct
the secret sharing, and accumulate the sum (still shared) in the nodes in K.

As an example, we give an information-theoretically secure protocol for dis-
junction. Here, we let each party input 0 or 1 (for false and true) and then
use a protocol by Damgård et al. [12] for comparison.

Protocol 3 (Disjunction). In the protocol for computing Or(x1, . . . , xn)
where xi ∈ {0, 1} on the network G = (P, E) with a set K ⊆ P of designated
parties, Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈ Zp randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Compute s =
∑
Pj 6∈K sj using NonPrivateSum.

5. If in K, execute comparison protocol from [12] to test if s+
∑
Pj∈K sj = 0.

Theorem 4. Protocol 3 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E) and there is a complete subgraph K ⊆ G such that no two sets in Z cover
K.

Proof. The values ri,j are independent of the input. By the restriction on Z there
must be at least one party in K not corrupted by the adversary. By Lemma 1 we
know that the si values input to NonPrivateSum are uniform and independent.
Thus, the adversary gains no information from these, and by the composition
theorem [17, Theorem 7.5.7], we conclude that the protocol is private. ut
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6 Conclusion

In this paper we have given efficient protocols for privately evaluating summation
and disjunction on any network topology. The ability to privately evaluate these
two basic primitives have applications in several widely varying contexts. As
the most expensive part of our protocols is the task of non-private summation,
privacy comes very cheaply.

We believe that the question of which functions can be efficiently privately
evaluated in arbitrary network topologies is an interesting topic for further study.
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Timing is Everything — the Importance of
History Detection

Gunnar Kreitz

KTH – Royal Institute of Technology
gkreitz@kth.se

Abstract. Browsers have long admitted an attack allowing a malicious
web page to detect whether the browser has visited a target web site by
using CSS to style visited links and read out the style applied to a link.
For a long time, this CSS history detection attack was perceived as having
small impact. Lately, highly efficient implementations of the attack has
enabled malicious web sites to extract large amounts of information.
Following this, browser developers have begun to deploy measures to
protect against the attack.
In this work, we demonstrate that the impact of history detection is not
limited to attacks on a user’s privacy. We demonstrate an attack where
history detection is used to time the execution of a Flow Stealing attack,
redirecting the victim’s browser at a particularly vulnerable times in
transaction flows. This chaining together of two attacks highlights the
importance of finally closing the long-standing history detection security
hole.
We also show that our Flow Stealing attack can be applied without using
the CSS history stealing attack if the attacker can intercept the victim’s
network traffic. Noting that different browsers place different restrictions
on cross-frame navigation through JavaScript window handles, we sug-
gest a stricter policy based on pop-up blockers to prevent Flow Stealing
attacks.

Keywords. CSS History Detection, Flow Stealing, Cross-site Request
Forgery

1 Introduction

Cross-site request forgery (CSRF) and Session fixation are two large classes of
attacks against web pages, with both attacks meriting high placement on the
OWASP Top 10 list 2010 [1]. Both types of attacks are well documented, and
there are many proposed counter-measures.

One special form of CSRF is the login CSRF attack, as highlighted by
Barth et al. [2]. In a login CSRF attack, the attacker logs the victim on to
a legitimate site using an account controlled by the attacker. The purpose of
this is for the attacker to extract or use information stored by the victim’s activ-
ity on the site. Examples of such abuse includes stealing the search history of the
victim, or using stored credit card details to transfer money or make purchases.
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As discussed in [2], the login CSRF attack is an example of vulnerabilities
in session initialization. Another type of vulnerability in the same class is that
of session fixation, where the attacker tricks the victim into logging in on a
legitimate site with a session identifier known to the attacker. The attacker can
then visit the legitimate site using the same session identifier and then be logged
in as the victim.

To protect against this class of session initialization attacks, a number of
different methods have been proposed. These include employing a validation
token, looking at the Referer [sic] header, using custom HTTP headers, looking
at the Origin header, and generating a new session identifier at critical points
such as login.
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Fig. 1. Basic attack flow overview

Most of the protection mechanisms are primarily concerned with protecting
the user’s flow on a single site. What happens when we consider state transfer
that occurs between two different domains? In particular, we look at the han-
dover from a store to a payment provider. A typical integration mechanism is
that the retailer sends information about the purchase to the payment provider
(at least the total amount to be paid) and gets a transaction identifier. The store
then sends the user to the payment provider with the transaction identifier, ei-
ther by a GET or POST request1. In this paper, we will outline an attack where
the adversary at this point redirects the victim’s browser to the same payment
provider, but with a different transaction id. We illustrate the flow in Figure 1.
We refer to this as Flow Stealing.

Two questions arise: firstly, how does the attacker know when to redirect
the victim’s browser, and secondly, how does the attacker redirect the browser?

1 Several payment provider also provide lightweight integration where the store di-
rectly redirects the customer with information about the purchase instead of a
transaction identifier. This does not materially affect the attack, so we consider
this equivalent to sending a transaction identifier.
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1 Several payment provider also provide lightweight integration where the store di-
rectly redirects the customer with information about the purchase instead of a
transaction identifier. This does not materially affect the attack, so we consider
this equivalent to sending a transaction identifier.
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Our attacker can make use of an old and well-known security hole, CSS history
detection [3], in order to time her attack. To be able to redirect the victim’s
browser, the attacker needs JavaScript running in the browser and a window
handle to the window which is to be redirected. This can be achieved for instance
if the visitor visits the attacker’s web page and clicks on a link opening in a new
tab.

While the CSS history detection attack is well-known, to the best of our
knowledge it has not previously been used to time another attack. The security
hole has been regarded mostly as a privacy leak, and despite the fact that it has
been publicly documented since at least 2000, mainstream browsers started to
deploy protections only in 2009. Firefox’s stable version is still vulnerable, but
the upcoming version 4 closes the hole. Internet Explorer only just closed the
hole in version 9, a version not available on Windows XP.

1.1 Attacker and Victim Model

In this work we consider two forms of attackers: an attacker running a web page,
and an attacker who can perform network attacks against the victim’s network
connection to other, legitimate sites.

Our primary focus will be on an attacker operating a web site, evil.com,
and through various means entices victims to visit her page. We furthermore
assume that the attacker can convince victims to click on a link from evil.com,
and use the opened tab to buy something. Our envisioned attacker could make
some money (legally) by hosting advertisements or participating in an affiliate
program. Thus, a potential attacker is an affiliate site gone rogue. We remark
that our attacker is weaker compared to the traditional attacker model in many
CSRF and XSS attacks, as the attacker only needs the user to follow a legitimate
link to a well-known site.

We consider a potential victim of our attack who follows the guidelines taught
by the security community. She will only give sensitive information over https,
but not before verifying that the certificate is authentic. Her machine does not
have any malware or spyware installed on it, and her browser is fully patched.
In addition to a security-conscious victim, we assume that the attacked flow is
on domains served only over https.

We also consider a network attacker who can intercept and modify the vic-
tim’s network traffic. There are several ways in which an attacker could get this
ability. For an attacker on the same local network as the victim, the attacker
can utilize standard tools such as ARP or DHCP spoofing to get access to the
victim’s traffic. An attacker more interested in large-scale attacks could set up a
Tor exit node and thereby become a man-in-the-middle against anonymous vic-
tims. Given man-in-the-middle access to the user’s network communication, all
information sent and received over http can trivially be attacked, but our focus
is on pages protected by https, which is intended to protect also against network
attacks. We do not assume that the network attacker can trick the victim into
visiting her web site and clicking a link there, so the network attacker is not
strictly stronger than our normal attacker.
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1.2 Our Contribution

In this paper, we describe a new type of attack which we call Flow Stealing.
Our attack makes new use of a well-known security issue in the CSS specifi-
cation to time the execution of a redirection attack. By timing the redirection
precisely, the attacker can give the user a false sense of security by having her
browse well-known sites before the attack is executed. This new use of an old
attack emphasizes the importance of closing also minor security holes where the
impact is not fully understood. While it seems that most major browsers have
closed, or will close, the CSS history detection hole our attack makes use of in
upcoming releases, we also consider a network-based attacker which can make
use of encrypted network traffic from the victim instead of the CSS hole.

Our attack furthermore highlights a part of typical web flows which is difficult
to protect using current protection mechanisms, namely legitimate cross-domain
redirects.

We identify several scenarios in which the attack can be mounted, and we
suggest new protection mechanisms which can be used to prevent our attack,
as well as similar attacks. In particular, we point out the dangers of allowing
JavaScript to navigate and close windows to which it holds a window handle
and propose a new policy based on pop-up blocking.

1.3 Outline and Running Example

As a running example, we will consider an attacker attacking the flow from
store.com to pay.com. The following is the outline of the basic attack:

1. User visits evil.com, and follows link to store.com
2. User interacts with store.com, eventually reaching checkout
3. store.com creates transaction on pay.com, which assigns transaction iden-

tifier iu
4. store.com redirects user to pay.com with transaction identifier iu.
5. evil.com detects that user hits pay.com
6. evil.com creates transaction on pay.com, which assigns transaction identi-

fier ia
7. evil.com redirects the user’s tab to pay.com with transaction identifier ia

We remark that several variations on this attack are conceivable. For instance,
the attacker may choose to register a domain name which is visually similar to
that of the real payment provider and redirect the victim to her domain, tricking
her into giving up credit card information. Such attacks have been discussed in
the literature in conjunction with phishing, c.f. [4]. However, we believe that a
victim will be much less likely to notice minor differences in a domain name
when following a link from a well-known store than when following a link from
a phishing email.

From the description, we notice that the attacker requires both the ability to
detect when the user reaches pay.com, as well as the ability to redirect her tab
once she is there. We begin by discussing how the redirect is accomplished in
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Section 2. We then proceed to discuss the issue of timing the redirect in Section 3.
After this, we discuss which browsers are currently affected in Section 4 and
report on our experiences with a proof-of-concept implementation. Then, we
discuss some counter-measures and recommendations in Section 5. Finally, we
conclude and briefly discuss future work in Section 6.

2 Redirecting the User Tab

How can the attacker redirect the victim’s browser? Firstly, this requires the
attacker to get the victim’s browser to run some malicious JavaScript. This is
easily accomplished for an attacker who convinces the victim to visit evil.com,
as the page can contain the JavaScript required for the attack. A network at-
tacker using a man-in-the-middle attack can insert malicious JavaScript into
any page or script content served over unprotected http. For more details, see
Section 2.2

Apart from having JavaScript running in the victim’s browser, the script
needs to have a window handle to the tab in which the user is visiting store.com,
and later pay.com. If the victim opened the tab by clicking a link on evil.com,
the attacker’s JavaScript can store a window handle to the tab. We defer dis-
cussion of the man-in-the-middle case to Section 2.2.

Many browsers permit JavaScript to freely navigate any top-level window
handles it holds. Browsers also used to be liberal with navigation of frames,
something which posed a security hole as discussed by Barth et al. [5]. However,
when switching to a stricter window navigation policy for frames and iframes,
the new policy was not applied to top-level frame navigation. A motivation for
this may have been that the impact of allowing an attacker to navigate top-level
frames is smaller, as the user can look at, and verify the address bar. However,
as our attack demonstrates, this does not always help, for instance when the
attacker only changes an opaque transaction id in the URL.

One notable exception is Opera which does not allow a window w1 to navigate
a window w2 to which it has a handle if w2 is currently browsed to a https page
at a domain different from w1. There is a simple way for our attack to get around
this restriction in Opera, but it does make the attack easier to detect for the
victim. We discuss the circumvention in Section 2.1.

As Opera has had this restriction for a long time, we believe that few sites in
practice perform this site of navigation windows that they have opened. Thus,
it is unlikely that making the window navigation policy via JavaScript handles
more restrictive would incur any huge compatibility penalties. However, doing so
would make our flow stealing attack more difficult, so there are security benefits
from adopting a restrictive window navigation policy also of top-level frames.
We propose a new policy in Section 5.2.

We remark that once an attacker’s JavaScript has a window handle to a
window, it retains its rights over that window regardless of what happens. In
particular, a user manually typing in a different address in the navigation bar
does not revoke any of the opener’s privileges.
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2.1 Working Around Opera’s Navigation Restrictions

Opera prevents a window from navigating another window via a window handle
in some scenarios. In our flow stealing attack, we need to change the address of
the victim’s window when it goes to pay.com, which we assume is served over
https. Thus, we propose a slightly different variation when attacking the Opera
browser.

If a window w1 wants to navigate the window w2 to some address, it can
accomplish a similar effect which may not be noticed if it closes window w2 and
navigates itself to the address it wanted window w2 to go to. We are not aware
of any browser placing restrictions on closing windows via a JavaScript handle.
Depending on the user configuration and how many tabs the user typically has
open, this “navigation” may be more or less noticeable.

If the attacker can close window w2, why not simply open another window
with the right address in its place? The answer is that such an attempt will likely
be prevented by a pop-up blocker. All mainstream browsers today prevent sites
from arbitrarily opening new tabs, unless the action is initiated by a user action
such as a mouse click.

2.2 Page Modification by a Network Attacker

In our attacker model, we consider a network attacker who is not assumed to
be able to entice victims to visit her web site and click on links. This way, the
web attacker needs some other way to get JavaScript running in the victim’s
handle, as well as a window handle to a window where the victim then makes a
purchase.

Most web browsing today is done over http, instead of https. However, we
assume that both store.com and pay.com have invested in security and are
served only over https. Thus, the network attacker cannot perform man-in-the-
middle attacks against these domains directly.

Our network attacker can easily modify any other page the victim visits over
http. Thus, an attacker could write a proxy inserting malicious JavaScript into
all pages the victim visits over http. To make this attack efficient, we assume
that the attacker wants to adapt the JavaScript as little as possible to the page
the attack is inserted into.

We begin with a discussion on what the JavaScript should do. We assume that
the network attacker wants to avoid detection, and thus not modify any user-
visible behavior of web sites. This means that she will want to insert JavaScript
on the page such that it captures a window reference to any window opened
by the page. A page can be opened for one of two reasons, either by the user
clicking on a link with the target attribute set to “_blank”, or by JavaScript
on the page calling window.open.

Thus, the attack flow for our network attacker is as follows:

1. Victim visits http://example.com
2. Attacker’s proxy inserts JavaScript into returned example.com page
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3. Victim clicks on link to example2.com opening in new window
4. Attacker’s JavaScript captures a reference to the opened window

in which situation the network attacker is almost in the same position as when
the victim visits evil.com and follows a link from there.

We start with links using the target attribute to open a new window. The
attacker can insert JavaScript which executes when the page is loaded, and which
loops through all anchor tags on the web page. When it reaches an anchor tag
with target set to _blank, it modifies the tag to call a JavaScript function
opening the window and storing the window handle when clicked. We remark
that as these tags are easily detectable if the attacker parses the page, it would
be easy to make this modification statically as part of a man-in-the middle attack
as well. We illustrate a simplified JavaScript example in Figure 2.

Handling windows opened by JavaScript on the original web site at first
appears more difficult. To detect when windows may be opened could involve
dynamic analysis of JavaScript code. However, there is an easy way to capture
references opened by JavaScript on the original page.

window . real_open = window . open ;
window . open = func t i on (URL, name , specs , r ep l a c e ) {

var openedWindow = real_open . apply ( th i s , arguments ) ;
storeReferenceAndStartTiming ( openedWindow ) ;
re turn openedWindow ;

}

func t i on modifyLinks ( ) {
var l i n k s = document . getElementsByTagName (" a " ) ;
f o r ( i =0; i<l i n k s . l ength ; i++) {

i f ( l i n k s [ i ] . g e tAt t r ibute (" t a r g e t ") == "_blank ") {
l i n k s [ i ] . s e tAt t r i bu t e (" onCl ick " , "window . open (\"" +

l i n k s [ i ] . g e tAt t r ibute (" h r e f ") + "\" ) ; r e turn f a l s e ; " ) ;
}

}
}
window . onload = modifyLinks ;

Fig. 2. Simplified JavaScript code to capture window references from non-malicious
pages

To do this, we use a technique which has been used by Phung et al. [6] to
construct a security mechanism for policy enforcement in JavaScript. The tech-
nique is based on the observation that even built-in functions can be aliased by
user-defined functions in JavaScript. Thus, the malicious JavaScript can replace
the window.open method with a JavaScript function which calls the original
window.open method and stores a copy of the returned window handle before
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returning it to the caller. Slightly simplified JavaScript code illustrating the
principle is shown in Figure 2.

3 Timing the attack

We now turn to the question of how the attacker can learn when the user is
redirected to pay.com. We present two mechanisms for accomplishing this. The
first, and easiest method builds on the well-known CSS history detection attack
to periodically poll whether the pay.com URL has become visited. Secondly, we
also propose a method for the network attacker where she by monitoring the
network traffic can time her attack.

3.1 CSS History Detection

An early feature in web browsers is the distinction between a visited and an
unvisited link. With the advent of Cascading Style Sheets (CSS), the creator
of a web site gained the ability to decide how the two types of links would be
rendered. It was soon realized [7] that this feature could be abused by a web
site to determine of its visitor had also visited some other site. The CSS 2.1
specification [8, Section 5.11.2] notes the vulnerability and states that browsers
may treat all links as unvisited or implement other counter-measures.

We remark that while an attacker can test if a visitor has visited a specific
URL, she cannot extract the full browsing history of the visitor. In particular,
she does not learn anything about URLs she cannot guess. The rate at which
the attacker can test URLs is also an issue as it limits the privacy exposure
of the attack. Here, the increasing prevalence of Web 2.0 applications and the
accompanying optimization in general JavaScript performance has benefited an
attacker. Speeds of 30000 tested URLs/second have been reported by Janc and
Olejnik [3] with their optimized version of the attack.

Recall that the integration with a payment provider is typically done by set-
ting up a transaction and then redirecting the user to the payment provider with
a unique transaction identifier assigned by the payment provider. The attacker
is not able to predict the transaction identifier, so if it had been a part of the
URL, the attacker would not be able to use the CSS history detection attack to
learn when the user visited the payment provider. However, common practice is
to send the transaction identifier to the payment provider as a POST parameter
to a static URL, which allows our attack to work.

History detection attacks have been studied in the academic literature, and
several demonstration web sites [9,10] have been created to raise awareness of
the issue. Wondracek et al. [11] showed that stolen history data can also be used
for a de-anonymization attack against users of social network sites. Jakobsson
and Stamm [12] discussed the potential of using history detection in phishing
attacks. Benevolent uses of the history detection attack have also been discussed.
One example is to guess at which OpenID provider a user has to ease OpenID-
logins [13], and another is to detect if a user has visited malicious sites and may
have had malware installed [14].
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The threat to user privacy is the most well-known implication of history
detection. When coupled with fast testing, a non-trivial part of the user’s visiting
patterns can be extracted. This allows for testing of URLs containing location
information such as zip codes entered on e.g., weather sites. In their real-world
experiment Janc and Olejnik [3] noted that they could detect the US zip code
for 9.2% of tested users.

3.2 Using History Detection to Learn When the User Reaches a
Page

In our application of the history detection attack, we are not interested in the
user’s browsing history but rather in what the user is currently doing. In partic-
ular, we want to know when the user’s current browsing session reaches a target
page (e.g., the landing page of a payment provider). To accomplish this, we can
use the history detection attack to frequently poll and thus determining when
the status of the target page changes from unvisited to visited.

This use of history detection requires that the target page is marked as
unvisited in the browser when the attack is started. Thus, the attack is easier to
perform the quicker the browser forgets about visited links, in total contrast to
privacy attacks which typically benefit from longer history retention. The CSS
specification leaves it up to the implementor to select for how long a link will be
treated as visited, and the large browsers have selected different periods. Internet
Explorer and Safari stores history for 20 days, and Firefox for 90 days. Opera
does not limit the time, but rather limits the number of stored entries to 1000.
Chrome does not remove visited status, except when explicitly requested by the
user.

Thus, our flow stealing attack is best suited to attacking pages which users
trust, but which they visit rarely. We believe that payment providers, such as
Paypal, fall in this category for many users.

3.3 Limitations of CSS History Detection

There are several ways in which the victim can be protected from the way we use
CSS history detection in this attack. Firstly, Baron [15] has proposed a mecha-
nism to close the CSS history detection security hole. The most basic mechanism
involved is that the data returned by the JavaScript getComputedStyle method
always return data as if the link had been unvisited. Furthermore, it prevents
visited status of link from affecting which pictures are loaded, the layout of the
page, and the time it takes to render a page to prevent a number of side-channel
attacks. This proposal (or similar defenses) has been implemented in Firefox
42, Internet Explorer 9, as well as in browsers based on the WebKit rendering
engine, such as Chrome and Safari. This means that in the upcoming versions,
most mainstream browsers will have closed the CSS history stealing hole. Users
2 At the time of this writing, Firefox 4 is still in beta, and the latest stable version is
still vulnerable
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may not always be able to upgrade to the latest version, for various reasons.
For instance, Internet Explorer 9 is not supported on Windows XP, which will
prevent many users from upgrading. Also, even if they can, some users simply
refuse to upgrade their browsers.

There are some mechanism a user can deploy to protect herself, apart from
switching or upgrading their browser. A user may choose to configure their
browser not to store any browsing history. However, this comes at a usabil-
ity price. Firefox users may also choose to install the SafeHistory extension [16]
which essentially applies the same-origin policy to visited status on links, only
treating a link as visited if it has been visited by a link from the current domain.

CSS history detection is not the only history detection attack that has been
proposed against web browsers. In [17], Felten and Schneider discuss timing
attacks to determine if cacheable elements of pages are present in the victim’s
cache. However, such attacks are less suitable to our history detection usage
where we are not interested if the victim has historically visited a site, but rather
in detecting the moment in time when a specific page is visited. To the best of
our knowledge, cache timing attacks cause the tested object to be cached, and
thus the same object cannot be tested twice, making the attack unsuitable for
repeated polling. We remark that there is a companion extension to SafeHistory
called SafeCache [16] to protect against cache timing attacks.

3.4 Network Based Timing

In the case of a network attacker who has access to the user’s network traffic,
there are alternative timing mechanism for the cases when the CSS history de-
tection timing mechanism does not work. As we assume that all the victim’s
browsing of store.com and pay.com is via https, making the attacker unable
to directly observe what the victim browses at the target domains. However,
https does not attempt to protect against an attacker learning that the victim
is visiting a certain domain, or the sizes of the request and response.

There are several ways for the network attacker to learn when the victim
visits pay.com. The first is by simply observing the victim’s DNS traffic. When
the attacker sees the victim’s computer performing a DNS lookup for the IP
address of pay.com, she can assume that the victim’s browser is going to request
something from that domain. However, if the victim frequently visits pay.com,
she may already have the IP address cached in her browser, and thus not issue a
DNS lookup when visiting the domain again. Another mechanism for the attacker
is to look up the IP addresses of servers for pay.com and then trigger the attack
when she sees the victim’s computer connecting to one of those IP addresses
over the https port. We refer to Section 3.4 for a discussion on how the attacker
communicates that the attack is to trigger to the JavaScript running in the
victim’s browser.

Both these mechanisms may trigger the attack too early if other pages include
elements from the pay.com domain, for instance if store.com includes a pay.com
logo on their payment page. While this type of logo inclusion does occur, we
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remark that it is common practice for stores to host payment logos on their own
servers, or for static content such as logos to be hosted on separate domains.

The attacker can learn if the store features pay.com logos served directly by
pay.com servers by simply visiting the store herself before beginning the attack.
If this is the case, she can perform a more thorough flow inspection and instead
of just looking for a connection establishment to the right IP and port, analyze
the number of bytes sent in each direction and the number of connections made
to distinguish between the victim fetching a logo and visiting the landing page
at the payment provider.

Communicating Back to Victim’s Browser When discussing the alternate
timing mechanism available to the network attacker, we stated that the attacker
“triggers the attack”. However, the attacker is located as a man-in-the-middle
to the victim’s network traffic, and to trigger the attack, she must activate
code running as JavaScript in a tab in the victim’s browser. How is the trigger
information communicated back to the victim’s browser?

We first remark that in our network attacker scenario, the malicious JavaScript
has been inserted by the attacker on a web page not controlled by the attacker.
Thus, the malicious JavaScript is prevented by the same-origin policy from di-
rectly communicating with the attacker-controlled server at evil.com via con-
venient mechanisms such as XMLHttpRequest.

However, as the attacker is mounting a man-in-the-middle attack on the
victim’s network traffic, this problem can be circumvented by the attacker in-
tercepting and responding to requests to some specific path, regardless of what
host the path is supposed to be located at. This allows the JavaScript inserted
by the attacker to use XMLHttpRequest to periodically send a request to a long
path which the attacker will intercept. The attacker will not forward such re-
quests, but instead respond with a boolean value indicating if the flow stealing
redirect should be activated. There are also other options available, such as peri-
odically loading images from evil.com and using the size of the returned images
as a one-way communication channel to the JavaScript running in the victim’s
browser.

4 Impact and Feasibility of Flow Stealing

We have now described our proposed flow stealing attack, showing how it can
be performed both by an attacker operating a web site as well as by a network
attacker who can intercept the user’s network traffic. Apart from the conditions
imposed by the type of attacker, the feasibility of the attack also depends on
the victim’s browser. In particular, some browsers have implemented a proposed
protection [15] against the CSS history detection attack that we propose as a
timing mechanism in flow stealing.
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attacker who can intercept the user’s network traffic. Apart from the conditions
imposed by the type of attacker, the feasibility of the attack also depends on
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4.1 Browser Features

Our flow stealing attack combines two different vulnerabilities. Firstly, the at-
tacker must be able to monitor when the victim is directed to pay.com. The
primary mechanism for accomplishing this is by using a well-known history de-
tection hole. Secondly, the attacker must at that point in time redirect the victim
to pay.com with a new transaction id.

While the redirection part is crucial to the flow stealing attack, the CSS
history detection vulnerability is not needed for network attackers. As discussed
in Section 3.4, there is an alternate timing mechanism which can be utilized by
the network attacker.

All mainstream browsers allow the redirection part of our attack. However,
on the Opera browser, the attacker cannot simply redirect the victim’s tab, but
must instead close the tab and redirect another tab as discussed Section 2.1.
This makes the attack more noticeable, as an alert victim may notice that a tab
closed and become suspicious and abort the transaction.

Table 1. Summary of browser’s susceptibility to flow stealing.

Browser CSS History Detection Window Navigation
Firefox 3.6.15 Yes Permissive
Firefox 4RC No Permissive
IE 8.0.7600.16385 Yes Permissive
IE 9.0.8112.16421 No Permissive
Chrome 10.0.648.151 No Permissive
Safari 5.0.4 No Permissive
Opera 11.01 Yes Restricted

To explore the feasibility of our attack, we have tested the latest versions
of browsers to see if the classic CSS-based history detection attack works, and
what restriction they place on cross-domain window navigation through window
handles. We present our results in Table 1. In the table, “CSS History Detection”
indicates if the CSS history detection attack works. Redirection indicates if a
window handle can always be redirected via JavaScript (“Permissive”) or not
(“Restricted”). The browsers were tested on Windows 7. We do not believe any
of the results depend on the operating system the browser is run on.

4.2 Experiences with a Proof-of-Concept

In addition to testing the individual pieces of our flow stealing attack, we have
also developed a proof-of-concept implementation of the attack as performed by
a web-site hosting attacker. We consider the simplest version of attack which can
be performed with a static html containing JavaScript for the attack using the
CSS history detection timing mechanism. In our proof-of-concept, we replaced
store.com with the donation page of a charity, to simplify testing (the donation
page of the charity contains a link directly to the payment provider).
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In our proof-of-concept, the transaction set up by the attacker has the at-
tacker as the recipient instead of the charity. The recipient information is dis-
played by the payment provider, so an alert user could notice that their flow had
been hijacked by an attacker. To reduce the risk of this, an attacker could regis-
ter names with the payment provider which are similar to the stores or charities
that she will attack.

Guessing the Price To make the attack convincing to the victim, the attacker
needs to set up a transaction with the exact same cost that the user expected.
While we believe users may not always check security indicators on web pages,
we think that a large fraction of users would notice if the payment provider listed
a different price compared to the store. We have not implemented any techniques
for creating a transaction with the correct price in our proof-of-concept.

There are several ways for an attacker to guess the price. The easiest way
is to attack subscription services or stores which sell a specific item or service
for a fixed price, or a small number of different options so that the attacker can
simply guess at the most common price. One such example is online streaming
services such as Hulu, Napster, Netflix, and Spotify.

For stores with larger inventories, the attacker can use the CSS history de-
tection attack to determine what items the victim has browsed and/or put in
her shopping basket, depending on the URL scheme employed by the attacked
store.

5 Proposed Counter-Measures

In this section, we discuss a simple server-side defense against CSS history de-
tection that can be applied by payment providers for their landing page. We
proceed to discuss the problem of frame navigation as it applies to top-level
frames and propose a new policy based on pop-up blocking. Finally, we discuss
why traditional CSRF defenses do not protect against flow stealing.

We note that our attack uses JavaScript to perform the redirection attack,
so users can protect themselves against flow stealing by disabling JavaScript.
However, this does remove functionality from a large number of web sites, so
most users are unlikely to do so.

5.1 Closing the CSS History Detection Hole

We are happy that most of the mainstream browsers appear to be closing the
CSS history detection hole in upcoming versions. By closing this hole, attackers
are denied the easiest route for performing flow stealing attacks. However, for
various reasons, users are not always able to upgrade to the newest version of
software in a timely manner. To protect users which are not able to upgrade,
we propose that high-profile sites such as payment providers should consider
implementing a server-side defense.
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While landing pages of payment providers are external URLs in the nomen-
clature of [12], they could apply a protection technique by recommending sites
linking to them to insert a random number in the link, which is simply ignored
by the payment provider. As most payment providers want to help stores to very
easily integrate payments, standard practice seems to be to provide some static
HTML code to be included on the store’s web site. Such code could include
JavaScript code to generate a random number in the browser which is inserted
into the URL of the landing page in a way that is ignored by the payment
provider. This would prevent the link from being guessable, and thus detectable
via CSS history detection.

We hope that by demonstrating that the impact of the CSS history stealing
attack extends beyond previously documented privacy attacks, users, if made
aware of flow stealing attacks, may be more inclined to upgrade their browsers
or employ other protection measures. We believe that browser developers should
consider patching the security hole also in older versions of their browsers. In
particular, this applies to Internet Explorer, as the hole was patched in IE 9
which is not available for versions of Windows before Vista.

5.2 Limiting Window Manipulation via Window Handles

There is a difference in policy between browsers on what limits are applied to
how a page can change the URL of another window to which it has a JavaScript
window handle. Opera restricts such navigation based on the current location
of the frame, and protects frames navigated to https sites from being navigated
from another window. In Chrome, Firefox, Internet Explorer, and Safari, the
opener is allowed to freely navigate an opened window, and in some of them,
also other windows apart from the opener.

Frame navigation has previously been showed as being dangerously permis-
sive in the context of embedded frames and iframes by Barth et al. [5], which
influenced browser developers to implement a more restrictive policy. They note
that top-level frames are often exempt from the browser’s frame navigation pol-
icy, and that top-level frames are less vulnerable as their URL is shown in the
location bar.

While it is true that top-level frames are less vulnerable than embedded
frames, there is still a danger in permissive policies for navigation of top-level
frames. We cannot trust a user to, at every point in time in their browsing
session, validate that the location in the location bar is correct. For instance,
we cannot expect users to note if their location is changed to a similarly looking
URL, or identical looking URL via a homograph attack. Neither can we expect
users to notice if opaque identifiers in sessions are replaced.

The fact that different policies have been implemented in different browsers
indicates that it is unlikely that a large number of pages rely on the most permis-
sive policies for their functionality. The only policy restricting our flow stealing
attack is Opera’s. However, as we discussed in Section 2.1, Opera’s policy is still
sufficiently permissive that it allows flow stealing attacks by closing the window
and redirecting the window running the attacking JavaScript. Thus, we argue
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that a replacement policy should not only restrict navigation, but rather all ac-
tions affecting the window, including closing it and resizing it (an attacker could
emulate closing by resizing to a very small size).

We are not aware of any important applications where a window w1 needs
to modify another window w2 where the modification is not prompted by user
interaction with window w1. For what types of user interaction would a user
expect w1 to modify the state of another window w2? We argue that in any user
interaction that would not allow w1 to open a new window, w1 should not be
allowed to modify the state of another window either. In mainstream browsers
today, the situations in which w1 is allowed to open a window is restricted by a
pop-up blocker. We believe a user would not expect w1 to modify any windows
unrelated to it, a policy already implemented in the Firefox browser which limits
navigation to the opener window.

As far as we know, each mainstream browser implements their own algorithm
for pop-up blockers, and that the pop-up blocker is enabled by default. Thus,
most web sites have been adapted to page manipulations allowed by the pop-
up blocking policies of browsers. We are not aware of any detailed descriptions
of pop-up blocking algorithms, but they appear to work satisfactorily in major
browsers. According to Chen [18], browser developers are hesitant to specify the
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The most common class of CSRF defense consists of a secret validation token
that must be sent along with all state-modifying requests, and that is matched to
the user’s session. There are several different implementations of this technique,
and there are some subtleties in implementing the protection correctly, c.f. [2].
Such tokens are designed to protect flows internally on web-sites, and are not
immediately applicable to cross-site flows.

A second technique is based on inspecting either the Referer or the Origin
HTTP header. Typically, this is described as only allowing requests if the host in
the header matches the current host, but the policy could easily be extended to
allowing external requests from some specific set of domains. As an example, a
payment provider may require that users making payments to store.com come
to pay.com with an Origin header set to store.com. However, this does not
prevent flow stealing, as the attacker can register as a merchant with the payment
provider and redirect via the correct domain for that merchant. The attacker can
also redirect the victim to a fake payment site instead of the legitimate site, thus
bypassing any controls that could be implemented by a payment provider.

6 Conclusion and Future Work

In conclusion, we have demonstrated an attack on current web browser imple-
mentations. The attack uses the CSS history detection attack, which has been
publicly documented for about a decade, to time a redirection attack. By redi-
recting the tab the victim is using at a point where the victim legitimately
expects to perform some security critical action, the victim can be tricked into
doing something more sensitive than what can be achieved by e.g. phishing. We
hope that our attack further aids in demonstrating the importance of closing
the CSS history detection hole, and that all mainstream browsers will adopt
counter-measures.

Our core attack uses on two issues in the victim’s browser: history detection
and the ability for JavaScript opening a tab to later navigate the opened tab.
Many modern browsers today have closed at least one of these holes, but the
attack still works in the current stable version of Firefox. To prevent the attack
from re-appearing via alternative timing mechanisms or new history detection
holes, we propose a new policy for window manipulation based on pop-up block-
ers.

As future work, we propose developing a proof-of-concept version of the net-
work attack as well. The purpose of such a proof-of-concept prototype would be
to show that while closing the CSS history detection hole is an important step, it
is also important to further limit JavaScript cross-site frame navigation, as well
as deploying https as a default for a larger fraction of Internet sites. We note that
other proof-of-concept attacks such as Firesheep [19] have been able to quickly
raise public awareness of security issues and caused deployment improvements
at large sites.
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Abstract. In this paper, we prove lower bounds for a large class of
Subset Cover schemes (including all existing schemes based on pseudo-
random sequence generators). In particular, we show that
– For small r, bandwidth is Ω(r)
– For some r, bandwidth is Ω(n/ log(s))
– For large r, bandwidth is n − r

where n is the number of users, r is the number of revoked users, and s
is the space required per user.

These bounds are all tight in the sense that they match known con-
structions up to small constants.

Keywords: Broadcast Encryption, Subset Cover, key revocation, lower
bounds.

1 Introduction

A Broadcast Encryption scheme is a cryptographic construction allowing a
trusted sender to efficiently and securely broadcast information to a dynamically
changing group of users over an untrusted network. The area is well studied and
there are numerous applications, such as pay-per-view TV, CD/DVD content
protection, and secure group communication. For instance, the new Advanced
Access Content System (AACS) standard, which is used for content protection
with next-generation video disks, employs Broadcast Encryption.

A Broadcast Encryption scheme begins with an initialization phase where
every user is given a set of secrets. Depending on the application, a “user” in the
scheme could be an individual, a subscriber module for a cable TV receiver, or a
model of HD-DVD players. When the initialization is complete, the sender can
transmit messages. For each message it wants to transmit, it selects a subset of
users to receive the message. We will refer to this subset of intended recipients
as members (another common name is the privileged set). It then encrypts and
broadcasts the message, using the secrets of the members, in such a way that
only the members can decrypt the broadcast. Even if all the non-members (or
revoked users) collude, they should not be able to decrypt the broadcast. The
term key revocation scheme is also used for Broadcast Encryption schemes.
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The performance of a Broadcast Encryption scheme is generally measured
in three parameters: bandwidth, space and time. Bandwidth is the size of the
transmission overhead incurred by the scheme, space is the amount of storage
for each user, and time is a measurement of the computation time needed for
users to decrypt a message. In this paper, we will focus on the tradeoff between
bandwidth and space.

In general, Broadcast Encryption schemes work by distributing a fresh mes-
sage key, so that only the current members can recover the message key. The
actual message is then encrypted under the message key and broadcast. This con-
struction means that the bandwidth, i.e., the overhead incurred by the scheme,
does not depend on the sizes of the messages the sender wants to transmit.

The problem of Broadcast Encryption was first described by Berkovits in [5],
and later Fiat and Naor started a more formal study of the subject [7].

There are two naive schemes solving the broadcast encryption problem. In the
first naive scheme, we give each user her own secret key shared with the sender.
With this scheme, the space is 1 and the bandwidth is m, where m the number
of members. In the second naive scheme, we assign a key to every possible subset
of users, and give all users belonging to a subset access to the key for that subset.
In this case the space is 2n−1, where n is the number of users, and the bandwidth
is 1.

In 2001, the Subset Cover framework was introduced by Naor et al. [16],
along with two schemes, Complete Subtree and Subset Difference. In Subset
Cover based schemes, there is a family of subsets of users, where each subset is
associated with a key. When the sender wishes to make a broadcast, she finds
a cover of the members using the subsets and encrypts the message key with
each of the subset keys used in the cover. Both naive schemes can be seen as
Subset Cover schemes; in the scheme with constant space, the family consists
only of singleton subsets, and in the scheme with constant bandwidth, the family
consists of all subsets of users. The Subset Cover principle is very general, and
most published schemes are Subset Cover schemes.

In most Subset Cover schemes, each user is a member of a large number
of subsets, so storing the key for each subset would be expensive in terms of
memory. To solve this, the keys are chosen in such a way that users can compute
the keys they should have using some smaller set of secrets and a key derivation
algorithm. Schemes where keys are unrelated are called information-theoretic.

The most common key derivation algorithm is a straightforward application
of a Pseudo-Random Sequence Generator (PRSG). The first protocol of this
type was Subset Difference which has a bandwidth of min(2r − 1, n − r) with
a user space s = O

(
log2 n

)
where r is the number of revoked users. Many

more schemes [11,4,10,13,12] have been proposed using the same kind of key
derivation. They all have a bandwidth of O(r), the same as Subset Difference,
and their improvements lie in that some of them have a space of O(log n), some
offer increased flexibility, and some improve the bandwidth to c · r for c < 1 (as
opposed to c = 2 in the original scheme).
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Other forms of key derivation, such as RSA accumulators [2,3,8] and bilinear
pairings [6], have also been studied for Subset Cover based broadcast encryption.

There have been attempts to reduce bandwidth by modifying the problem,
for instance by allowing some free-riders (non-members who can still decrypt
the broadcast) [1] or relaxing the security requirements [14].

There has been some analysis of lower bounds for Broadcast Encryption

schemes. In 1998 Luby and Staddon [15] showed s ≥
(

(n
r)

1/b

b − 1
)

/r for Broad-

cast Encryption without key derivation, using the Sunflower lemma. This bound
was sharpened in 2006 by Gentry et al. [9] to s ≥ (

(
n
r

)1/b − 1)/r. We remark
that schemes using key derivation beat these bounds.

1.1 Our Contribution

Table 1. Upper and lower bounds for Subset Cover schemes

Key derivation Lower bound Assumption Upper bound Space
None r log(n/r)

log(rs)
— r log(n/r) s = O(log n)

PRSG, small r Ω(r) (our) s ≤ poly(n) O(r) s = O(log n)
PRSG, worst r Ω

�
n

log s

�
(our) — O

�
n

log s

�
—

PRSG, large r n − r (our) r ≥ n − n
6s

n − r s = O(1)

We present lower bounds for a large class of Subset Cover schemes, including
existing schemes based on PRSGs. These lower bounds match known construc-
tions up to a small constant, showing that current PRSG-based schemes are
essentially optimal. Table 1 gives a summary of our results.

Our bounds on the bandwidth usage are strong, and show that the early Sub-
set Difference scheme is in fact very close to being optimal. For instance, our
bound for small r shows that improving the bandwidth to o(r) would require
super-polynomial space, which is unreasonable. In fact, depending on the appli-
cation, space is generally considered reasonable if it is at most logarithmic (or
possibly polylogarithmic) in n.

Our second result implies that, in order to get constant bandwidth b, the
space required is exponential. It also implies that, using polylogarithmic space,
the worst case bandwidth will be almost linear, n/ log log n.

The third result says that, for a small number of members, the first naive
scheme is optimal. With polylogarithmic amount of space, this holds even if the
number of members is almost linear, n/ poly log n.

Also, in most current schemes, the decryption time for members is limited
to be polylogarithmic in n. Our proofs do not make use of any such restric-
tions, so allowing longer decryption time than current schemes cannot lower the
bandwidth requirements.
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Also, in most current schemes, the decryption time for members is limited
to be polylogarithmic in n. Our proofs do not make use of any such restric-
tions, so allowing longer decryption time than current schemes cannot lower the
bandwidth requirements.
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Other forms of key derivation, such as RSA accumulators [2,3,8] and bilinear
pairings [6], have also been studied for Subset Cover based broadcast encryption.

There have been attempts to reduce bandwidth by modifying the problem,
for instance by allowing some free-riders (non-members who can still decrypt
the broadcast) [1] or relaxing the security requirements [14].

There has been some analysis of lower bounds for Broadcast Encryption
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1.2 Organization of This Paper

In Section 2 we discuss the structure of Subset Cover based Broadcast Encryp-
tion schemes and define the class of schemes, Unique Predecessor schemes, for
which we prove lower bounds. In Section 3 we give a proof showing that with
polynomial memory in clients, the bandwidth consumption is Ω(r) for “small”
r. In Section 4, we prove a bound for generic r, and in particular show that
for r ≈ n

e , the bandwidth is at least n
1.89 log s . Section 5 shows that for a large

number of revoked users, the worst case bandwidth is n − r, i.e., the same as for
the naive scheme where every user has a single key.

2 Preliminiaries

In this section, we review some preliminaries. The concepts of Broadcast Encryp-
tion and Subset Cover schemes are described, and notation will be introduced.
We also define a class of Broadcast Encryption schemes called Unique Predeces-
sor (UP) schemes to which our lower bounds apply.

2.1 Broadcast Encryption

In Broadcast Encryption, we have a trusted sender, and a set of users. After
some initialization, the sender can securely broadcast messages to some subset
of the users in a way which is efficient for both the sender and users. We will
refer to the users who are targeted by a broadcast as members and the users who
are not as revoked users. As the name Broadcast Encryption implies, we assume
there is a single broadcast medium, so all users see the messages transmitted by
the sender.

When evaluating the efficiency, three parameters are measured: bandwidth,
space, and time (for decryption). Most Broadcast Encryption schemes transmit
encrypted keys, so we will measure the bandwidth in terms of the number of
encrypted keys to be transmitted. The sender uses the broadcast encryption to
distribute a message key Km and then encrypts the actual message under Km,
so the bandwidth overhead incurred does not depend on the size of the actual
message.

The bandwidth required for a scheme with n users out of which r are revoked
can, and generally will, vary, depending on which r users are revoked. We define
the bandwidth b = f(n, r) of the Subset Cover scheme as being that of the
maximum bandwidth over the choice of the set of revoked users R ⊆ [n] such
that |R| = r. Thus, when we say that the bandwidth is at least c1r for r ≤ nc2 ,
we mean that for every such r, there is at least one choice of r revoked users
which requires bandwidth at least c1r.

Similarly, we measure the space as the number of keys, seeds, or other secrets
that a user must store to be able to correctly decrypt transmissions she should
be able to decrypt. It need not be the case that all users have to store the same
amount of secrets, so we let the space of a scheme be the size of the largest
amount of secrets any one user must store.
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We remark that, in general, the keys and secrets may vary in length, so that
our convention of simply counting the number of keys may not measure the
exact bandwidth or space. However, such differences are generally small and not
taking them into account costs us at most a small constant factor.

In this paper, we will not concern ourselves with the computational time of the
clients. Our only assumption will be the very natural (and necessary) assumption
that users cannot derive keys which they should not have access to.

Broadcast Encryption schemes can be classified as either stateful or stateless.
In a stateful scheme, a transmission from the sender may update the set of secrets
a user uses to decrypt future broadcasts, whereas in the stateless case, the secrets
are given to the user at initialization and then remain constant. We focus on the
largest family of Broadcast Encryption schemes, Subset Cover schemes, and such
schemes are stateless.

2.2 Notation

Throughout the paper, we will use the following notation. We let n denote the
total number of users, and identify the set of users with [n] = {1, . . . , n}. We
let m denote the number of members and r the number of revoked users (so
n = r + m). The space of a scheme is denoted by s and the bandwidth by b.
Note that we are generally interested in the bandwidth as a function of r (or
equivalently, of m).

2.3 Subset Cover Schemes
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(b) Example of a Subset Cover
scheme S with indegree 1

Fig. 1. Illustration of Subset Cover schemes

In this paper, we consider a family of Broadcast Encryption schemes known as
Subset Cover schemes, introduced in [16]. In a Subset Cover scheme, the sender
starts by creating a family of subsets of users. Each such subset is associated
with a key. To make an encrypted broadcast, the sender first computes a cover
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of the current members. A cover is a choice of subsets from the family, so that
all members belong to at least one chosen subset, and no revoked user belong to
any chosen subset. The message broadcasted will then contain, for each subset
in the cover, the message key encrypted under that subset’s key.

Without key derivation, each user would have to store the key for each subset
of which she is a member. However, when using key derivation, keys of subsets
are related in a way that allows a user to derive keys of subsets by applying a
suitable function, typically a one way function, to her set of secrets. Thus the
space decreases, as one secret can be used to derive multiple keys.

Example 1. Figure 1(a) shows an example of a Subset Cover scheme on n = 4
users. In the example, the family of subsets consists of all four singleton subsets,
four subsets of size 2, and two subsets of size 3. An edge from Si to Sj indicates
that the secrets used to derive the key for Si can also be used to derive the key
for Sj . Thus, the secret used by user 2 to derive the key for her singleton set
{2} can also be used to derive the keys for nodes {1, 2}, {2, 3}, and {1, 2, 3}.
Without key derivation, she would have had to store four keys, but now she only
needs to store one secret.

More formally, a Subset Cover scheme consists of a family of subsets F = {S} ⊆
2[n] with the property that for every selection of members M ⊆ [n] there is a
cover T ⊆ F such that ∪S∈T S = M . There is a set of “secrets” K, and each
user i ∈ [n] is given a subset P (i) of these secrets. Additionally, there is, for
each S ∈ F , a set K(S) ⊆ K of secrets and a secret key k(S), with the following
properties:

– Any user with access to a secret in K(S) can compute k(S).
– For every S ∈ F and user i ∈ [n], P (i) ∩ K(S) 	= ∅ if and only if i ∈ S.
– An adversary with access to all secrets in K\K(S) cannot compute k(S)

To send a message key to the set M ⊆ [n] of members, the cover T ⊆ F of
subsets is chosen in such a way that ∪S∈T S = M . The server then broadcasts
the message key encrypted using k(S) for each S ∈ T . The bandwidth required
for this is |T |. We remark that a Subset Cover scheme is required to be able to
cover any member set M ⊆ [n].

Naturally, a Subset Cover scheme should also include efficient ways of comput-
ing k(S) and the cover T , but as we are interested in lower bounds on the tradeoff
between space and bandwidth, these computational issues are not relevant to us.

We denote by B(F) the partially ordered set on the elements of F in which
S1 ≤ S2 if K(S1) ⊆ K(S2), i.e., if any secret that can be used to deduce k(S1)
can also be used to deduce k(S2). Note that S1 ≤ S2 implies S1 ⊆ S2 (since any
user u ∈ S1 will be able to compute k(S2) and thus has to be an element of S2).
From now on, we will ignore the set of secrets and the keys, and only study the
poset B(F), since it captures all information that we need for our lower bounds.
In Figure 1 we show Hasse diagrams of B(F) for two toy example Subset Cover
schemes.
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The number of secrets a user u needs to store, i.e., the space s, is precisely
the number of elements S of B(F) such that u occurs in S, but not in any of
the predecessors of S.

Lemma 1. Any Subset Cover scheme will have at least one singleton node for
each user.

Proof. If there is a user which does not occur in a singleton node, the Broadcast
Encryption scheme would fail when the sender attempts to broadcast only to
that user. ��

2.4 Key Derivation Based on a PRSG

The most common type of key derivation uses a Pseudo-Random Sequence Gen-
erator (PRSG), or equivalently, a family of hash functions. This type of key
derivation was first used in the context of Broadcast Encryption in the Subset
Difference scheme [16]. In [4] it is called Sequential Key Derivation Pattern. The
key derivation described here is the intuitive way to do key derivation using a
PRSG, and all Subset Cover schemes that the authors are aware of that use a
PRSG (or a family of hash functions) do have this form of key derivation.

Let � be a security parameter and let H(x) be a pseudo-random sequence
generator taking as seed a string x of length �. Let H0(x) denote the first � bits
of output when running H(x), let H1(x) denote the next � bits, and so on.

Each subset S in the scheme will be assigned a seed p(S) and a key k(S). The
key k(S) will be computed as k(S) = H0(p(S)), so from the seed for a subset,
one can always compute the key for that subset. All secrets given to users will
be seeds, no user is ever given a key directly. The reason for this is that it gives
an almost immediate proof of the security of the scheme by giving the keys the
property of key indistinguishability, which was proved in [16] to be sufficient for
the scheme to be secure in a model also defined in [16].

Consider an edge e = (Si, Sj) in the Hasse diagram of B(F). The edge means
that someone with access to the secrets to deduce k(Si), i.e. p(Si) should also
be able to deduce p(Sj). If we let p(Sj) = Hc(p(Si)) for some c ≥ 1, anyone
with p(Si) can derive p(Sj). For a node Si with edges to Sj1 , Sj2 , . . . , Sjk

we let
p(Sj1) = H1(p(Si)), p(Sj2) = H2(p(Si)), . . . p(Sjk

) = Hk(p(Si)).
This construction cannot support nodes with indegree greater than 1, since

that would require p(Sj) = Hc1(p(Si1 )) = Hc2(p(Si2)), which, in general, we
cannot hope to achieve. This means that the Hasse diagram will be a forest,
since all nodes have an indegree of either 0 or 1.

2.5 UP-Schemes

When the Hasse diagram of B(F) is a forest, we say that the Subset Cover scheme
is a Unique Predecessor scheme (UP-scheme). Schemes using key derivation as
described in Subsection 2.4 will always be UP-schemes. Schemes not using any
key derivation (there are no edges in B(F)) are also UP-schemes, this class of
schemes is sometimes referred to as information-theoretic.
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Example 2. The scheme in Figure 1(a) is not a UP-scheme, since there are several
sets which have multiple incoming edges, for instance the set {1, 2}. However,
the scheme S in Figure 1(b) is a UP-scheme. In this case, user 1 would have to
store two secrets, one for her singleton node, and one for the node {1, 2, 3, 4}.
The keys for nodes {1, 2} and {1, 4} can be derived from the same secret used
to derive the key for her singleton node.

We view a UP-scheme as a rooted forest S, in which each node V ⊆ [n] is labelled
with the set of users which are in V , but are not in the parent node. The number
of node labels in which a user occurs is the same as the number of secrets that
a user will need to store. Thus, when we say that a scheme S has space s we
mean that every user can be used in a label at most s times.

Lemma 2. Any Unique Predecessor scheme will have at most ns distinct subsets.

Proof. Adding a new node to a Unique Predecessor scheme means increasing the
space for at least one member. Starting from an “empty” scheme, this can be
done at most ns times. ��

2.6 Normalized UP-Schemes

To simplify the proofs, we will work with normalized UP-schemes. We will show
that we can perform a simple normalization of a UP-scheme which gives a
new scheme with the same set of users, no more space, and at most the same
bandwidth. This normalization is similar to the construction of the Flexible SD
scheme in [4].

1 2

2 4

3 4

2 3

1

4

(a) Normalization S ′ of the UP-
scheme S in Figure 1(b)

1

4

3 4

3

(b) The subscheme S ′({1, 3, 4})

Fig. 2. Normalization of UP-schemes

Definition 1. A UP-scheme S is normalized when every node of S is labelled
with exactly one user and S has exactly n trees.
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Example 3. The scheme S from Figure 1(b) is a UP-scheme, but it is not normal-
ized. Two nodes violate the normalization criteria. First, the key for {1, 2, 3, 4}
can be directly derived from the secrets used for {2, 3}, which adds two new
users at the same time. Second, the node {2, 3} also adds two users at once. In
Figure 2(a) shows a normalized scheme S′ which is essentially equivalent with
S. The key for {2, 3} can now be derived from the secret for {3}, and an extra
node {1, 2, 3} was inserted between {2, 3} and {1, 2, 3, 4}.

Lemma 3. Let S be an arbitrary UP-scheme (on n users) with space s and
bandwidth b. Then there exists a normalized UP-scheme S′ (on n users) with
space s′ ≤ s and bandwidth b′ ≤ b.

Proof. The proof consists of two steps. First we ensure that each node is labelled
with exactly one user. Second, we merge identical nodes, which will ensure that
S′ has exactly n trees.

Consider a node labelled with a set U = {u1, . . . , uk} of users with k > 1. Now,
split this node into a chain of k nodes, adding one user at a time (in arbitrary
order) rather than all k at once. Call the resulting forest S0. Note that, strictly
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The user which was the label for v2 will now need to store one secret less, whereas
the space will be the same for all other users. Let S′ be the result of applying
this merging until every set is represented by at most one node.

It remains to show that S′ has exactly n trees. By Lemma 1, there must be at
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singleton set, and because of the second step every singleton set can be present
at most once, implying that there are at most n trees. ��

We will, without loss of generality, from now on assume UP-schemes we deal
with are normalized. See Figure 2(a) for an example of a normalized UP-scheme.
We would like to remark that while normalization can only improve bandwidth
and space, it does so at the cost of time. Thus, when applied to improve the
performance of practical schemes, one has to take into account the computation
time of users, as discussed in [4].

We remark that, in general, normalization will introduce key derivation, even
if the original UP-scheme had completely independent keys.
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Definition 2. Given a UP-scheme S and a set X ⊆ [n] of users, the subscheme
of S induced by X, denoted S(X), is defined as follows: for every user y 	∈ X,
we remove all nodes of S labelled with y, and their subtrees.

In other words, S(X) contains the nodes (and thus subsets) which are still usable
when [n] \ X have been revoked. See Figure 2(b) for an example.

3 Few Revoked Users

We prove that when the number of revoked users r is small, any UP-scheme
using at most polynomial space will require bandwidth Ω(r).

As noted in the introduction, the requirement that the space is polynomial
is very generous. Anything beyond polylogarithmic space per user is generally
considered impractical.

Theorem 1. Let c ≥ 0 and 0 ≤ δ < 1. Then, any UP-scheme with n users and
space s ≤ nc will, when the number of revoked users r ≤ nδ, require bandwidth

b ≥ 1 − δ

c + 1
· r (1)

Proof. Let S be an arbitrary UP-scheme with s ≤ nc and let r ≤ nδ. An upper
bound on the number t of sets of users that can be handled using bandwidth
at most b is given by the number of sets of nodes of S of cardinality at most b.
Since S contains at most ns nodes, this is upper-bounded by

b∑

i=1

(
ns

i

)
≤ (ns)b ≤ n(c+1)b (2)

In order for S to be able to handle every set of revoked users of size r, we
need t to be at least

(
n
r

)
, giving

n(c+1)b ≥
(

n

r

)
≥ (n/r)r ≥ n(1−δ)r (3)

and the theorem follows. ��

Theorem 1 comes very close to matching many of the previous works, for instance
Subset Difference [16] with s = O

(
log2 n

)
and b = min(2r−1, n−r). For r ≤

√
n,

our bound gives b ≥ r
2(1+c) which is within a factor 4 + o(1).

As mentioned in the introduction, [9] has shown a stronger bound, roughly
r log(n/r)

log(rs) , using the Sunflower lemma. However, their bound applies only to Sub-
set Cover schemes without key derivation, and is in fact stronger than existing
schemes using key derivation – e.g. the Subset Difference scheme mentioned
above for r < n1/3.
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4 Arbitrarily Many Revoked Users

In this section we show that, for a certain choice of r, any UP-scheme has to
use bandwidth at least n

1.89 log s . We start with Theorem 2, which gives a lower
bound on the bandwidth as a function of m/n. Plugging in a suitable value of
m/n in Corollary 1 will then give the desired result.

Theorem 2. Let δ ∈ (0, 1] and ε > 0. Then for every UP-scheme S with n >
2δ(1−δ)

ε2 there exists a set of users M of size δ−3ε ≤ |M |/n ≤ δ+ε which requires
bandwidth b ≥ |M | log(1/δ)

log(s/ε)

Proof. Pick M0 ⊆ [n] randomly where every element is chosen with probability
δ, independently.

Set d = logδ(ε/s) and let X be the set of users which occur at depth exactly
d in S(M0) (where the roots are considered to be at depth 1). Let M = M0 \ X .
Since each node can cover at most d users of M , the bandwidth required for M
is at least

|M |
d

= |M | log(1/δ)
log(s/ε)

It remains to show that there is a positive probability (over the random choice
of M0) that M ends up having the required size, as this implies that such an M
exists.

The probability that a node at depth d of S remains in S(M0) is δd = ε/s.
The total number of nodes at depth d in S is upper-bounded by ns, and thus,
the expected number of nodes at depth d in S(M0), i.e. the expected size of X ,
is at most δdns = εn. By Chebyshev’s inequality, we have Pr

[∣∣
∣ |M0|

n − δ
∣
∣
∣ ≥ ε

]
≤

δ(1−δ)
nε2 < 1/2. By Markov’s inequality, we have Pr

[
|X|
n ≥ 2ε

]
≤ 1/2. The union

bound then gives that Pr[δ − 3ε ≤ |M |/n ≤ δ + ε] > 0. Thus, there exists some
choice of M0 such that |M | falls within this range. ��

As a corollary, we have:

Corollary 1. For any ε > 0 there exist n0 and s0 such that any UP-scheme S
with n ≥ n0 and s ≥ s0 uses bandwidth at least

n

(e ln(2) + ε) log2(s)
≈ n

1.89 log2(s)
(4)

Proof. Let δ = 1/e. Invoking Theorem 2 with parameters δ and ε′ (the value of
which will be addressed momentarily), we get a set M of size at least (δ − 3ε′)n
requiring bandwidth at least

n
δ − 3ε′

ln(s/ε′)
= n

1 − 3eε′

e ln(2) log2(s) + e ln(1/ε′)
(5)

Pick ε′ small enough so that

e ln(2)
1 − 3eε′

≤ e ln(2) + ε/2.
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Then Equation (5) is lower-bounded by Equation (4) for any s satisfying

e ln(1/ε′)
1 − 3eε′

≤ ε

2
log2(s)

log2(s) ≥ 2e ln(1/ε′)
ε(1 − 3eε′)

,

and we are done. ��

We remark that Corollary 1 is tight up to the small constant 1.89, as seen by
the following theorem.

Theorem 3. There exists a UP-scheme S using bandwidth at most
⌈

n
log2(s)

⌉
.

Proof. Partition the users into �n/ log2(s)� blocks of size ≤ log2(s). Then, in
each block, use the naive scheme with exponential space and bandwidth 1, in-
dependently of the other blocks. ��

5 Bandwidth is n − r for Large r

We show that when the number of revoked users gets very large, all UP-schemes
will have a bandwith of n−r, e.g. one encryption per member. Exactly how large
r has to be for this bound to apply depends on s. This is the same bandwidth
as is achieved by the naive solution of just giving each user her own private key.

Theorem 4. For any UP-scheme S and m ≤ n
6s , there is a member set M of

size |M | = m requiring bandwidth b = |M |.

Proof. We will build a sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mm of sets of members
with the properties that |Mi| = i, and that the bandwidth required for Mi is i.

The initial set M0 is the empty set. To construct Mi+1 from Mi, we pick a
user u 	∈ Mi satisfying:

– There is no v ∈ Mi such that some node labelled with u occurs as the parent
of some node labelled with v

– There is no v ∈ Mi such that the root node labelled with v occurs as the
parent of some node labelled with u

– The root node labelled u has outdegree ≤ 2s

We then set Mi+1 = Mi ∪ {u}. Clearly |Mi| = i, so there are two claims which
remain to be proved. First, that the required bandwidth of Mi is i. Second, that
the process can be repeated at least m times.

To compute the bandwidth of Mi, we prove that the only way to cover Mi is
to pick the singleton sets of every u ∈ Mi. To see this, assume for contradiction
that there exists some set S with |S| > 1 that can be used when constructing a
cover. This corresponds to a node x at depth |S| of some tree, and S is given by
the labels of all nodes from x up to the root. In order for us to be able to use
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S when constructing a cover, all these nodes need to belong to Mi. However,
the first two criterions in the selection of u above guarantee that not all of these
nodes can belong to Mi. The first criterion states that, once we have added a
node, we can never add its parent. The second criterion states that, once we
have added a root, we can never add any of its children. This shows that there
can be no such S.

To see how many steps the process can be repeated, let ri be the total number
of nodes which are “disqualified” after having constructed Mi. Then, Mi+1 can
be constructed if and only if ri < n. First, r0 equals the number of roots which
have degree > 2s. Since the total number of nodes is at most ns, this number
is at most r0 ≤ n/2. When going from Mi to Mi+1, the total number of new
disqualified nodes can be at most 3s – the node added, the parents of the at
most s − 1 non-root occurrences of u, and the at most 2s children of the root
labelled with u. Thus, we have that ri ≤ n/2+3si, which is less then n if i < n

6s .
��

The lower bound of Theorem 4 is tight up to a small constant in the following
sense.

Theorem 5. There exists a UP-scheme S such that for any set M of |M | >
⌈

n
s

⌉

members, the bandwidth is b < |M |.

Proof. Partition the set of users into B =
⌈

n
s

⌉
blocks of size ≤ s, and let each

user share a key with each of the s − 1 other users in her block. Then, given a
set M of size |M | > B, there must be two users i, j ∈ M belonging to the same
block. Using the key shared by i and j to cover both them both, we see that the
bandwidth of M is at most b ≤ |M | − 1. ��

6 Conclusion

In this paper, we have shown lower bounds for a large class of Subset Cover
based Broadcast Encryption schemes. This type of scheme is probably the most
explored class of schemes today, with many constructions. Our proofs are in a
model with very relaxed constraints compared to what is considered practical, so
it would not help to simply relax requirements slightly (e.g. allowing more space
or time). The lower bounds shown in this paper match known constructions very
well.

In particular, our bounds show that it will be impossible to get a bandwidth of
o(r) without increasing the space requirements to unreasonable levels or using
some new form of key derivation. We do not have any lower bounds on the
memory needed for O(r) bandwidth, an open question is thus if it is possible to
get O(r) bandwidth with space o(log n).

Acknowledgements. The authors are grateful to Johan H̊astad for many useful
comments and discussions.
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Abstract. This paper describes a method to convert stateless key revo-
cation schemes based on the subset cover principle into stateful schemes.
The main motivation is to reduce the bandwidth overhead to make broad-
cast encryption schemes more practical in network environments with
limited bandwidth resources, such as cellular networks. This modifica-
tion is not fully collusion-resistant.

A concrete new scheme based on the Subset Difference scheme [1] is
presented, accomplishing a bandwidth overhead of Δm + 2Δr + 1 com-
pared to e.g. Logical Key Hierarchy’s 2(Δm+Δr) log m, where Δm and
Δr is the number of members added and removed since the last stateful
update and m is the number of current members.

Keywords: Broadcast encryption, key revocation, subset cover, Subset
Difference, Logical Key Hierarchy, stateful, stateless.

1 Introduction

In this paper we show how a key server can establish a common group key Kg for
a dynamically changing group (i.e., members can join and leave). One possible
application area is the protection of broadcast streams (e.g., internet or mobile
broadcasting of movies, music, or news), and the topic is therefore generally
referred to as broadcast encryption. The group key which is to be distributed is
often referred to as the media key, or session key.

This problem is well studied and is usually solved by using a key revocation
scheme. One large class of key revocation schemes are the subset cover schemes,
introduced in [1]. In this paper we present a general method for adding state to
subset cover schemes, which reduces the bandwidth overhead greatly.

In the system setup stage, the key server gives each user u some key informa-
tion Ku. This information can be thought of as a set of keys; in general it will
be information from which keys can be derived. The size of Ku is called the user
storage. Schemes where Ku is never updated are called stateless, whereas those
where it is updated Ku are called stateful.

Every time a new group key is distributed, the key server will broadcast a
header, using which all legitimate group members can calculate the new group
key. The size of this header is called the bandwidth overhead, and the time it
takes for a member to compute the group key from the header and her set of
key information Ku is called the computational overhead.
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1.1 Preliminaries

Broadcast encryption was first introduced by Berkovits in [2], and later Fiat
and Naor started a more formal study of the subject [3]. The first practical
broadcast encryption scheme was the stateful Logical Key Hierarchy (LKH)
scheme proposed in [4, 5]. LKH accomplishes a worst case bandwidth overhead
of 2(Δm + Δr) log m, where Δm and Δr are the number of added and removed
members since the last stateful key update, and m is the number of current
members.

Later, the class of schemes known as subset cover schemes, and the Subset
Difference (SD) scheme were presented in [1]. Further variants of the SD scheme
have been developed in [6, 7]. Other subset cover schemes include the Hierarchical
Key Tree scheme [8], and the Punctured Interval scheme, π [9]. All of these
schemes have bandwidth overhead which is linear in r.

Stateful or Stateless. The advantage of a stateless scheme compared to a
stateful scheme is that a member does not have to receive all previous updates
in order to decrypt the current broadcast. In many settings, this advantage is
not as big as it first appears. Stateful schemes can be augmented with reliable
multicast techniques or can make missed broadcasts available on request. Also,
in e.g. a commercial settings where the group key is updated every five minutes,
a stateless scheme would also need to use similar techniques, since missing five
minutes of content due to a single packet lost would be unacceptable.

Notation. Let M be the set of members of the group, R be the set of revoked
users and U be the total set of users, or potential members (i.e. the union of M
and R). Let m, r and u be the sizes of these sets. Let Δm and Δr be the number
of users who have joined and left the group since the last stateful update. Let
EK(M) be the encryption of message M under key K. In a binary tree, let l(v)
and r(v) be the left and right child of node v. Let par(v) and sib(v) be the parent
and sibling of node v.

1.2 Our Contribution

Subset cover schemes define a family of subsets of U , where each subset is as-
sociated with a key. To distribute a new group key, the key server covers M
(and avoids R) with subsets from the family and encrypts the new group key
Kg using the key of each subset used in the cover. We present a technique where
a state key, KS is added, which is held by current members of the group.

When distributing a new group key, the state key is used to transform all
subset keys. Since only current members have access to the state key, the key
server does not need to avoid covering all of R, but only those who were recently
removed (and thus have a current state key).

This technique can be applied to any scheme based on the subset cover prin-
ciple. It is often beneficial to develop a new algorithm to calculate the cover, and
this has been done for the SD scheme.
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1.3 Organization of This Paper

In Section 2, a brief overview of subset cover schemes is given. In Section 3, our
idea, Stateful Subset Cover, is presented in detail. In Section 4, we show prac-
tical performance results on some simulated datasets. In Section 5, we discuss
the security of our proposed scheme. We give concluding remarks in Section 6.
Algorithms for Stateful Subset Cover are given in Appendix A.

2 Subset Cover Schemes

A general class of stateless schemes are called subset cover schemes and were first
introduced in [1]. In this class of revocation schemes, there is a preconfigured
family of sets, F = {f1, f2, . . .}, fi ⊆ U . Each set fi ∈ F has an associated key
Ki such that each user belonging to fi can compute Ki, but no user outside of
fi can compute Ki.

To distribute a new group key, the key server calculates an exact cover F ′ of
M, i.e. F ′ = {fi1 , fi2 , . . .} ⊆ F and

⋃
F ′ = fi1 ∪ fi2 ∪ . . . = M. The key server

then broadcasts the following message:

F ′, EKi1
(Kg), EKi2

(Kg), . . .

where F ′ here denotes some suitable representation of F ′ such that members
can compute what part of the message to decrypt using what key. Since the
sets F and the keys associated with the sets are fixed, this broadcast encryption
scheme is stateless.

2.1 Subset Difference

In the Subset Difference (SD) scheme, which is a subset cover scheme, every user
is associated with a leaf in a binary tree. For every node v in the tree, and every
node w below v, we have Sv,w ∈ F , where Sv,w is the set of all leaves in the
subtree rooted in v, except for those in the subtree rooted in w. In figure 1, two
such sets are shown, the set S2,10 and the set S6,12. The corresponding broadcast
from the key server would in this case be

{S2,10, S6,12}, EKS2,10
(Kg), EKS6,12

(Kg).

1
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Fig. 1. The sets S2,10 (light) and S6,12 (dark) in an SD tree
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A user is not given the keys KSv,w she is entitled to directly, since that would
consume too much user memory. Instead, she is given O(log2 u) values from
which the keys she should have access to can be derived by O(log u) applica-
tions of a pseudo-random number generator. For details on how the key deriva-
tion in SD works, see [1]. The SD scheme has a bandwidth overhead which is
min(2r + 1, m).

2.2 The Punctured Interval Scheme π

In the punctured interval (π) scheme, users can be thought of as being on a
line, each user indexed by an integer. The subsets used in the π scheme are of
the form Si,j;x1,...,xq = {x|i ≤ x ≤ j, x �= xk, 1 ≤ k ≤ q}, i.e. all users between
positions i and j (inclusive) except for the q users x1, . . . , xq.

The scheme has two parameters, p and c affecting the performance of the
system. The parameter c is the maximum length of the interval, e.g. 1 ≤ j −
i + 1 ≤ c, and the parameter p is how many users in the interval can at most
be excluded, e.g. 0 ≤ q ≤ p. Large p and c lower bandwidth requirements but
increase user storage and computational overhead. The bandwidth overhead is
about r

p+1 + u−r
c and the user storage is O(cp+1). For details on the π scheme,

see [9].

3 Stateful Subset Cover

In this section, a general technique for transforming a subset cover scheme into
a stateful scheme through the introduction of a state key is presented. This
makes the bandwidth performance linear in Δm + Δr instead of in r. As will be
discussed further in Section 5, this weakens the security of the system somewhat
in that it opens up the opportunity for collaboration. This risk can however be
mitigated by periodically using the normal update mechanism of the underlying
subset cover scheme, which is referred to as a hard update.

3.1 An Intuitive Description

Recall that, as presented in Section 2, a subset cover scheme by covering members
using a static family of subsets of users. The subsets are created at startup-time
and are constant throughout the life of the system. Each subset is associated
with a key that only users in that subset have access to. To distribute a new
group key, the key server broadcasts the new group key encrypted with the key
for each subset in the cover.

We introduce a general extension to a subset cover scheme by adding a state
key, which is distributed alongside with the group key to members. This state
key is then used for distributing the next group key and state key. When the
key server broadcasts a new group key (and state key) it will not encrypt the
new group key directly with the keys of the selected subsets, instead it will
use the key of the selected subset transformed by the current state key using
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some suitable function (e.g. xor). This means that to decrypt the new group
key, a user must not only be in a selected subset, but must also have the current
state key.

The key server, when it saves bandwidth doing so, is thus free to cover revoked
users too, as long as they do not have access to the current state key. So, the key
server need only avoid covering those who were revoked recently. To discourage
cheating (see Section 5) the aim is to cover as few revoked users as possible,
which is referred to as a cheap cover.

The alert reader may have noticed a problem with the system as described.
If the state key is needed to decrypt the new group key and state key, how are
recently joined members, who do not have the current state key, handled? The
answer is that the state key is not used when covering joiners, and thus all of
R must be avoided. However, the scheme is free to cover current members who
have a state key, and it is preferable for it to cover as many of these as it can,
since those covered here will not need to be covered in the cover using the state
key. This is called a generous cover.

A variation of the above extension is to run the system in a semi-stateless
mode. That means that the key server in each round is free to decide whether it
wishes to update the state key or not. As long as the state key is not updated,
the scheme will have the properties of a stateless scheme, but the bandwidth
usage will gradually increase since Δm and Δr (membership changes since last
stateful update, see Section 1.1) will increase. A group key update when the state
key is changed is called a stateful update and one where the state key remains
unchanged is called stateless update.

3.2 Generalized Stateful Subset Cover

For this type of scheme to work, a new cover function is needed. The traditional
subset cover has two types of users: members and revoked, or blue and red. The
new cover function has three types of users: must cover (MC), can cover (CC) and
must not cover (NC). The output is a cover covering all users marked MC and not
covering any NC users. Users marked as CC, can be either covered or not covered.

As discussed in Section 3.1, there are two versions of the cover algorithm
for each scheme, generous and cheap. Both versions will primarily minimize the
number of subsets used for the cover. The generous cover will attempt to cover
as many CC users as possible and the cheap cover will cover as few as possible.

More formally, we have a new decision problem, Optional-Set-Cover(F ,
M, R, k, n), where F is a family of subsets of some finite set U , M is subset of
the same U and k and n are integers. The problem is: is there a subset F ′ ⊆ F
such that

⋃
F ′ ⊇ M, |F ′| = n, |

⋃
F ′| = k, and (

⋃
F ′) ∩ R = ∅?

The two optimization problems, generous and cheap, both primarily want to
minimize n, and then on the second hand either want to maximize or minimize
k, respectively. The optimization problems are denoted Generous-Cover(F ,
M, R) and Cheap-Cover(F , M, R). The (optional) subset cover problem is
in the general case NP complete, but subset cover schemes are designed in such
a way that an efficient algorithm exists.
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have a state key, and it is preferable for it to cover as many of these as it can,
since those covered here will not need to be covered in the cover using the state
key. This is called a generous cover.

A variation of the above extension is to run the system in a semi-stateless
mode. That means that the key server in each round is free to decide whether it
wishes to update the state key or not. As long as the state key is not updated,
the scheme will have the properties of a stateless scheme, but the bandwidth
usage will gradually increase since Δm and Δr (membership changes since last
stateful update, see Section 1.1) will increase. A group key update when the state
key is changed is called a stateful update and one where the state key remains
unchanged is called stateless update.

3.2 Generalized Stateful Subset Cover

For this type of scheme to work, a new cover function is needed. The traditional
subset cover has two types of users: members and revoked, or blue and red. The
new cover function has three types of users: must cover (MC), can cover (CC) and
must not cover (NC). The output is a cover covering all users marked MC and not
covering any NC users. Users marked as CC, can be either covered or not covered.

As discussed in Section 3.1, there are two versions of the cover algorithm
for each scheme, generous and cheap. Both versions will primarily minimize the
number of subsets used for the cover. The generous cover will attempt to cover
as many CC users as possible and the cheap cover will cover as few as possible.

More formally, we have a new decision problem, Optional-Set-Cover(F ,
M, R, k, n), where F is a family of subsets of some finite set U , M is subset of
the same U and k and n are integers. The problem is: is there a subset F ′ ⊆ F
such that

⋃
F ′ ⊇ M, |F ′| = n, |

⋃
F ′| = k, and (

⋃
F ′) ∩ R = ∅?

The two optimization problems, generous and cheap, both primarily want to
minimize n, and then on the second hand either want to maximize or minimize
k, respectively. The optimization problems are denoted Generous-Cover(F ,
M, R) and Cheap-Cover(F , M, R). The (optional) subset cover problem is
in the general case NP complete, but subset cover schemes are designed in such
a way that an efficient algorithm exists.
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The Framework. The system is initialized exactly as the underlying subset
cover scheme, with one exception. A state key, KS, is generated by the key server
and given to all initial members of the system. The key server also keeps track
of the set of users to which it has given the current state key, the set S.

To update the group key, the key server first decides whether it is time to do
a hard update or not. If a hard update is done, it uses the underlying scheme to
distribute a new K ′

g and K ′
S and sets S ← M.

If it was not time to do a hard update, it begins by calculating a cover C1 as
C1 ← Generous-Cover(F , M\S, R). Note that this cover is empty if M\S is
empty, i.e. if no new members have been added since KS was last updated.

After this, it checks if R ∩ S = ∅. If this is the case, i.e. no one has been
removed since KS was last updated, no one besides members has KS , and thus
KS can be used to securely communicate with members. If R∩S �= ∅, it instead
calculates C2 ← Cheap-Cover(F , M\(

⋃
C1), R ∩ S).

The key server then first broadcasts a description of the covers C1, C2 in
some form, so that members know what part of the broadcast to decrypt. The
message will then consist of, firstly, for every c ∈ C1: EKc(KE), where Kc is the
key associated with subset c. Secondly, if R ∩ S �= ∅, the message will contain,
for every c ∈ C2: EKc(KF ), or if R∩S = ∅, EKS (KF ). We let KE = f(KF , KS),
where f is a suitable function, such as xor. Finally, the message will contain
EKE(K ′

g, KS) or EKE (K ′
g, K

′
S) depending on if it was a stateless or stateful

update, respectively. If the update was stateful, the key server sets S ← M,
otherwise S is left unchanged.

Generic Cover. A normal subset cover algorithm can be used to solve the
optional subset cover problem, but generally not optimally. Since most subset
cover schemes have bandwidth performance which linear in r, it is often beneficial
to minimize R.

So, for the optional subset cover problem, we can simply re-mark all CC users
as members and then run the normal subset cover algorithm on the resulting
set. Post-processing can be done to remove any sets covering only users who
were labelled CC before the re-marking. Post-processing can also, in the cheap
variant, attempt to narrow a set down (i.e. change the set so that fewer CC users
are covered).

For a specific underlying scheme, it is often possible to make better use of the
CC users than this rather naïve transformation. An optimal algorithm for the
SD scheme will be discussed in the next section.

3.3 Stateful Subset Difference

For SD (Section 2.1), which is one of the most important subset cover schemes,
a new cover algorithm has been developed. Pseudo-code for the algorithm can
be found in Appendix A, but we describe and discuss it here.

The complexity of the algorithm has the same asymptotic complexity as the
original. This algorithm could also be used in stateful variants of other subset
cover schemes which use the SD cover method, such as LSD and SSD ([6, 7]).
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Let each node v have three variables, two booleans, v.mc and v.nc and one
integer, v.cc. The variable v.cc counts the number of CC users which can be
excluded under v. If v.mc is true, it means that there are uncovered MC users
(i.e., users which must be covered) below v. If v.nc is true, it means that there
are NC users (i.e., users which must not be covered) below v.

A basic observation is that a node v where both the left (l(v)) and the right
child (r(v)) has a NC node below it cannot be used as a top node for a key. So,
if any MC nodes are below such a node, the top node to use for the set cannot
be higher up in the tree than l(v) or r(v).

For the algorithms given, we assume that the bottom nodes (i.e., the user
nodes) have already been colored in the input. That means that for a MC user
at node v, v.mc = true, v.nc = false and v.cc = 0. Analogously for a NC user.
For a CC user at node v, v.mc = v.nc = false and v.cc = 1.

The algorithm consists of three functions. Cover() is the top-level function
which is called to generate the entire cover, with a parameter telling it if a
generous or cheap cover is wanted. Cover() “adds up” the marks of the child
nodes, and call a helper-function to calculate the exact subset when it discovers
that a subset has to be placed. When subsets are placed, they are guaranteed to
cover all remaining MC users under the current node. This means that there is
nothing left to be covered below that node, so the parent will be marked with
only NC, instead of the usual “sum” of the child nodes.

The two functions, Generous-Find-Subset() and Cheap-Find-Subset()
calculate a single subset, given a top node which is the highest place for the
top node of the subset. Both versions use the markings placed by Cover() to
calculate the subset. The generous version will just ensure that no NC users are
covered, while the cheap version will both ensure that no NC users are covered
and will attempt to exclude as many CC users as possible.

As an example, consider the tree shown in Figure 2. Let the letter ’N’ denote
v.nc = true, ’M’ denote v.mc = true and ’C’ denote v.cc = 1. The bottom
nodes have all been colored in the input to the algorithm. Going through the
nodes in depth-first (left-to-right) order, in the first node, the NC and CC marks
from the child nodes are combined into the parent. In its sibling, the CC and
NC marks propagate up.

When we get to the left child of the root, then both children are marked with
NC and at least one child is marked with MC. This will cause Find-Subset() to
be called. In both cases, Find-Subset() will select the subset S4,8, which covers
the single MC node 9.

For the right subtree, marks will propagate upwards and the coloring will
reach the right child of the root without Find-Subset() being called. However,
both children of the root are marked NC, and node 3 is marked MC, so one of
the Find-Subset() functions will be called again. In this case, the subset S3,14

will be selected, which covers the two MC users 12 and 14 and the CC user 13.
This algorithm differs somewhat from the original cover algorithm for SD

given in [1]. The original algorithm begins by calculating the Steiner tree of
the revoked users and the root and then calculate the cover directly from the
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properties of the Steiner tree. The algorithm presented here also works as a cover
algorithm for the normal SD cover problem. Both algorithms have the same time
complexity.

3.4 Stateful Punctured Interval

A very simple greedy (and suboptimal) cover algorithm has been tested with
the π scheme. We do not present this algorithm here. Recall (Section 2.2) that
this scheme has two parameters which can be tuned. Tests have been performed
with four sets of parameters, (c, p) = (1000, 1), (100, 2), (33, 3), (16, 4). These
were selected such that user storage would be approximately 1 Mbyte, which we
deemed reasonable for many scenarios. We present the results parameters giving
the best results on our dataset, (c, p) = (1000, 1). Further tuning may give even
better performance.

3.5 Performance

The user storage will essentially be unchanged (a single extra key needs to be
stored by members and the key server) by the addition of state, so they will be
the same as those of the underlying scheme. Analogously for the computational
overhead. The scheme will take on the negative properties of a stateful scheme in
that packet loss becomes a more serious issue which will need to be handled, see
the discussion in Section 1.1, where we argue that this is not as big a drawback
as it first appears.

Bandwidth Impact. The bandwidth performance will in general improve.
The bandwidth usage for the first cover calculated (for joining members, where
the state key is not used) is at worst that of the underlying scheme with Δm
members and r revoked users. For the second cover, where the state key is used,
the performance is at worst that of the underlying scheme with m members and
Δr revoked users. Inserting the values for SD, we get a worst-case bandwidth
performance of min(2r+1, Δm)+min(2Δr+1, m), which will, in most situations,
be Δm + 2Δr + 1. This can be compared to for instance LKH, which has a
performance of 2(Δm + Δr) log m.
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The worst-case performance is better than previous protocols. A comparative
performance evaluation in several usage scenarios has also been performed, and
some of these results are presented in Section 4.

Computational Complexity for General Stateful Subset Cover. At most
u users can be undecided, so at worst, u nodes must be re-labeled. The output
of the cover will cover each undecided or cover node exactly once, so the cost of
going through the sets is at most the number of such nodes, which is u. Thus,
the added runtime for both the pre-processing and post-processing steps is O(u).

Computational Complexity for Stateful Subset Difference. The perfor-
mance of the cover algorithm is O(u). On the way up, each node will be vis-
ited exactly once and the tree has O(u) nodes. When Find-Subset() is called,
the top node will only be colored red. All downward traversal in the Find-
Subset() functions will always stop at a node colored only red. This means that
on the way down (i.e., in Find-Subset()) each node can be visited at most
twice.

3.6 Correctness

The framework is correct in that a member can recover the new key, as long as
she has not missed the last stateful update. For a member there are two cases.
Either, she is recently added and does not have the current state key, or she has
the current state key.

If a member m does not have the current state key, then M\S �= ∅ since it
must at least contain m. If so, the cover C1 = Generous-Cover(M\S, R) will
be calculated and the underlying scheme will be used to distribute the keys with
the resulting cover. If the underlying scheme is correct, the member will be able
to recover the key and the current state key.

If, on the other hand, m does have the current state key, there are three cases.
If m is covered by C1 then she can discover that fact by looking at the information
about the cover and recover the key, given that the underlying scheme was
correct.

If R ∩ S = ∅, then the new group key will be distributed as EKS(K ′
g) and

since m has KS, she can recover the new group key.
If R ∩ S �= ∅, then a second cover, C2 = Cheap-Cover(M\(

⋃
C1), S ∩ R)

will be calculated. Since m has the state key and was not covered by C1, she
will be covered by C2. Given that the underlying scheme is correct, she can then
recover KF , from which she can derive KE since KE = f(KF , KS). She can then
recover the new group key which is distributed as EKE(K ′

g).

4 Practical Results

For simulation purposes, two datasets have been used. In the first dataset, the
number of users currently in the group follow a sinus-shaped form, and in the
second dataset, the number of users go through (almost) the entire range of the
system, from all users being members to almost all users being revoked.
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Fig. 3. The sinus-shaped and full-ranged dataset with 220 users

Key updates occur only at discrete intervals (i.e., in batch mode), of which
there were 160 in the simulation. To increase the dynamic of the system, except
for the joins and leaves necessary to generate the proper form, a base change
rate was added. The base change is a value between 0 and 1 signifying how large
fraction of members that will be replaced by non-members during each round.
Given that the scheme we present performs worse in a highly dynamic system,
we have used simulations with a very high basechange of 2% to show that it still
performs well under difficult conditions. The datasets are displayed in Figure 3.
More simulation results are in [10].

The performance of the stateful subset cover schemes presented in this article
were evaluated and compared to the performance of the popular LKH scheme,
as well as the stateless subset schemes. Note that the stateless schemes do have
significantly different performance characteristics, and will e.g. behave poorly
when a majority of the population is revoked.

4.1 Performance in Stateful Subset Cover

The performance of the stateful SD and π schemes was evaluated using the
scenarios presented in the previous section. As will be shown, the performance
is significantly better than that of the LKH scheme, as could be expected from
the theoretical analysis.

Figure 4 shows a comparison between two variations of stateful subset cover
and LKH. The regular, stateless versions of the subset cover schemes were omit-
ted from this figure for clarity. They do, in fact, have better performance than
LKH in this scenario (due to the high base change rate), but the stateful varia-
tions still significantly outperform them.

Table 1 shows both the average number of sets used per key update and the
maximum number of sets used for a single update. Both these measurements
are important to minimize. Minimizing the average will keep total bandwidth
usage down and minimizing the maximum will keep the latency for key refresh
reasonably low. We show results without any hard updates in these tables. With
periodic hard updates, the maximum for the stateful versions will be (about)
the same as for the normal versions of the schemes.
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Table 1. Performance comparison between normal and stateful subset cover schemes
(without hard updates), and LKH

Sinus dataset Full-range dataset
Scheme Avg. sets used Max sets used Avg. sets used Max sets used
Stateful SD 45 136 55 983 43 214 59 798
Stateful π 30 549 39 067 28 153 33 980
LKH 218 046 269 284 241 362 393 758
Normal SD 222 409 295 778 170 175 305 225
Normal π 153 733 180 157 114 100 180 048

As the diagram and table shows, the stateful version acheives significantly
lower bandwidth requirements compared to previous schemes. The worst-case
performance (i.e., the maximum number of sets used) is reduced by a factor five
and the average case is reduced by a factor four.

5 Security of Stateful Subset Cover

The scheme as presented is not fully collusion-resistant. Users can collaborate by
one revoked user who has recently been removed sharing the current state key
with a user who is covered, but who does not have the state key. In this section,
techniques for mitigating this type of attacks will be discussed. Further, a model
for this type of cheating will be given and, the expectancy for how long cheaters
gain access will be analyzed using the same data as was used for performance
evaluations.
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5.1 Security Model

In a commercial setting, the concern is to make it cost-inefficient rather than
impossible to illegally decrypt the broadcast. In this model it is assumed, that it
is possible to make it expensive to extract state keys, by putting them in a pro-
tected area such as a smart card or other tamper resistant hardware. In addition,
by using periodic hard updates, cheaters will also periodically be removed from
the system. These two techniques can together be used to mitigate the effect of
a collaborative behavior by dishonest users.

The major threat in a commercial setting would be the extraction of legitimate
long-termkeys, since thatwould allow for pirate decoders to bemanufactured.This
can be made hard by placing the long-term keys in protected hardware, and by
using traitor tracing techniques, should the keys leak. Concerning this threat, the
stateful subset cover schemes presented here have the same security properties as
regular subset cover schemes, given that the long-term key structure is identical.

Another important threat would be redistribution of the group key by a mem-
ber, i.e. every time a new group key is distributed, the dishonest (but paying)
member sends the new group key to her friends. The group key is identical for
all users in the group, so traitor tracing techniques are not applicable.

In the stateful schemes, another option would be for a dishonest user to in-
stead redistribute the state key (along with the group key) to her friends. The
advantage to the cheaters would be that this would not have to be done as
frequently as the group key is to be distributed.

An important aspect to analyze is the expectancy of the time a user who
illegally gets a state key can recover the group key. In our model, every user who
is removed from the system is given the next round’s state key and group key,
so she can recover the group key for at least one more round. Then, as long as
she is covered using the state key, she can keep decrypting, but as soon as she
is not covered in a round, she will lose her ability to decrypt the broadcast. The
larger this expectancy, the more seldom a traitor would need to redistribute the
state key to keep enabling her friends to recover the group key.

This model of cheating simulates a user illegally receiving a state key. It is run
over the same simulation data as the performance tests to give a real-world like
cover. This also means that some users will be added again before they are success-
fully revoked by the system. These are ignored when calculating the average.

In the simulation, we measure the average number of rounds users who left in
round r could watch the show, given that they were given one key. In the simu-
lations, a hard update is always run immediately after the end of the simulation,
i.e. it is assumed that after the last round, all current cheaters were revoked.

5.2 Subset Difference

In Figure 5, the average numbers of rounds a revoked user can watch if she
receives that key is shown. The cheating model used is described in more detail
in the previous section. As can be seen, even with hard updates done every
160:th round, a cheater can still at best expect to see approximately 10 rounds.
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Fig. 5. Average free time for cheaters in stateful SD. 220 users, full-range dataset,
basechange 2%, hard updates every 10 (left) and 160 (right) rounds.

While this is worse than the normal schemes, where this number is constantly
1, it is still reasonably small.

At the cost of bandwidth, the frequency with which a traitor must redistribute
the state key can be increased by doing hard updates more frequently.

6 Summary

This paper introduces the idea of adding state to a certain class of key revo-
cation schemes, called subset cover schemes. Having state in a key revocation
scheme has some drawbacks, like an increased vulnerability to packet loss. These
drawbacks are not as bad as they first appear, as we argue for in Section 1.1.

The specific method used in this paper is not collusion-resistant by itself, but
may need additional mitigation techniques, such as tamper resistant modules for
acceptable security. This non-perfect security is however by practical examples
shown to have a limited effect on the overall security from a commercial point
of view, where the interest is more directed towards making illegal decryption
cost-inefficient rather than impossible.

As a benefit, it is shown that the conversion of a stateless subset cover scheme
may lead to greatly reduced bandwidth overhead. This is extremely important in
network environments where the available bandwidth is a limited resource, like
for example cellular networks. In particular, simulation results show a significant
reduction of bandwidth compared to previous schemes.

The transformation presented in this paper is not very complex, with the
addition of a global state key, common to all members. Could there be more ad-
vanced transformations of subset cover (or other broadcast encryption) schemes
which further reduce bandwidth overhead or give better security properties?
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A Algorithms

Cheap-Find-Subset(T , v)
Input: T is a stateful SD tree where all nodes up to v have been
marked by Find-Cover()
Output: A subset with top node in v or below, covering all uncovered
MC users below v, and as few CC users as possible.
(1) if not v.nc and not v.cc
(2) if v = root
(3) return S1,Φ //(all users)
(4) else
(5) return Spar(v),sib(v)

(6) if not l(v).mc
(7) return Cheap-Find-Subset(T , r(v))
(8) else if not r(v).mc
(9) return Cheap-Find-Subset(T , l(v))
(10) excl ← v
(11) while excl.mc
(12) if l(excl).nc
(13) excl ← l(excl)
(14) else if r(excl).nc
(15) excl ← r(excl)
(16) else if l(excl).cc > r(excl).cc
(17) excl ← l(excl)
(18) else
(19) excl ← r(excl)
(20) return Sv,excl

Generous-Find-Subset(T , v)
Input: T is a stateful SD tree where all nodes up to v have been marked by Find-
Cover()
Output: A subset with top node in v or below, covering all uncovered MC users below
v, and as many CC users as possible.
(1) if not v.nc
(2) if v = root
(3) return S1,Φ //(all users)
(4) else
(5) return Spar(v),sib(v)

(6) excl ← n
(7) while not l(excl).nc or not r(excl).nc
(8) if l(excl).nc
(9) excl ← l(excl)
(10) else
(11) excl ← r(excl)
(12) return Sv,excl
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Find-Subset(T , v, generous)
Input: T is a stateful SD tree where all nodes up to v have been marked by Find-
Cover()
Output: A generous or cheap subset with top node in v or below, covering all uncovered
MC users below v.
(1) if generous = true
(2) return Generous-Find-Subset(T , v)
(3) else
(4) return Cheap-Find-Subset(T , v)

Find-Cover(T , generous)
Input: T is a stateful SD tree where the nodes representing users have been marked.
generous is a boolean, true for generous cover, false for cheap
Output: A cover C
(1) C ← ∅
(2) foreach node v ∈ T in depth-first order
(3) if l(v).nc and r(v).nc and (l(v).mc or r(v).mc)
(4) if r(v).mc
(5) C ← C ∪ Find-Subset(T, r(v), generous)
(6) if l(v).mc
(7) C ← C ∪ Find-Subset(T, l(v), generous)
(8) v.nc ← true
(9) else
(10) v.nc ← l(v).nc | r(v).nc
(11) v.mc ← l(v).mc | r(v).mc
(12) if v.mc
(13) v.cc ← max(l(v).cc, r(v).cc)
(14) else
(15) v.cc ← l(v).cc + r(v).cc
(16) if root.mc
(17) C ← C ∪ Find-Subset(T, root, generous)
(18) return C
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