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Abstract

The software package FEMLAB is an environment for modelling and solving multi-
physics applications which are described in terms of partial differential differential equa-
tions. In this project we tested the performance of the structural mechanics toolbox version
3.1. This version of the toolbox represents a considerable enhancement over previous re-
leases with respect to modelling capabilities. We compare the performance of version 3.1 to
that of the older version 2.3 and a state-of-the-art finite element package for solving struc-
tural mechanics problems, namely, ANSYS 9.0.
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1 Introduction

Partial differential equations form the mathematical foundation for a host of important areas in
engineering and physics. FEMLAB provides a powerful interactive environment for modelling
and solving scientific and engineering problems which base on partial differential equations. Us-
ing FEMLAB one can model strongly nonlinear coupled multiphysics applications with ease.
There is no inherent limitation on the simultaneous simulation of many physical phenomena.
FEMLAB can handle (systems of) second and first order partial differential equations in one,
two and three space dimensions. They are discretised by the finite element method. The (ex-
tensible) element library uses mostly polynomial elements on triangles (in 2D) and tetrahedra
(in 3D), respectively. Some elements are available which are adapted to be applied for special
applications.

From the point of view of applicability, it is the multiphysics feature and the extensibility
which distinguish FEMLAB. A host of models from different areas of applications are prepared
in an easily accessible manner (the so-called applications modes) which can be combined by
simple drag-and-drop techniques into complex multiphysics models.

A graphical user interface allows for an efficient graphical design of rather complex geome-
tries in one, two and three dimensions.

The powerful capabilities of FEMLAB give immediately rise to the question whether the user
has to pay in order to use such a convenient tool. There are a number of very advanced software
packages on the market competing with FEMLAB. Often, they have some emphasis on certain
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applications areas. This allows for the use of numerical algorithms being more adapted to the
application at hand. Compared to that, the algorithms in FEMLAB must be of a more general
nature in order to cover the broad spectrum of applications FEMLAB is intended for.

The latest version of FEMLAB is 3.1i.1 It distinguishes itself from all previous major releases
in that all computational kernels have been reimplemented in C++. The previous versions are
implemented in MATLAB. While opening all the features of MATLAB to be used in FEMLAB
it has the drawback of slowing down the numerics and increasing the memory requirements.
Even if FEMLAB 3.1i can be run standalone, an interface to MATLAB is available such that
the numerical kernel of FEMLAB can be used as a computing server. We used this possibility
extensively in the following benchmark tests.

In the present report, we compare the recent version of the structural mechanics toolbox of
FEMLAB against an older one and ANSYS. The latter one has its strength in structural mechan-
ics modelling. Therefore, we will use benchmark problems for the computation of structural
mechanics problems. There are already some comparisons of FEMLAB 3.0a with ANSYS and
Fluent for two-dimensional models [5, 6]. Here we will concentrate on three-dimensional prob-
lems.

We have three aims:

1. Compare different discretisations in FEMLAB 3.1i. Does it pay to use higher order ele-
ments? FEMLAB includes the feature of an automatic mesh adaption. Does it pay to use
those automatically adapted grids?

2. Compare the performance of FEMLAB 3.1i and the previous MATLAB-based FEMLAB
version. We expect shorter computation times and a more memory-economic behaviour.
Can we quantify it?

3. Compare FEMLAB 3.1i with ANSYS. How is the performance of the new version com-
pared to a well-established finite element software tool?

2 Benchmark Methodology

2.1 Benchmark Examples

The NAFEMS Benchmark LE10

NAFEMS (National Agency for Finite Element Methods and Standards) developed a number of
benchmark problems for allowing the assessment and comparison of codes for the finite element
analysis. One of these problems is the linear elasticity analysis of a thick plate under normal
pressure. In the reference [3], it carries the label LE10.

The solid consist of a thick elliptical plate with an elliptical hole under normal pressure.
Because of the symmetry, the actual computational domain is a quarter of this plate. A sketch of

1While preparing this report a new version 3.2 was released. The trade mark of this product has now changed
from FEMLAB to Comsol Multiphysics.
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Figure 1: Domain for problem LE10

this domain is given in Figure 1. The equation for the two ellipses are given by
( x

3.25

)2
+
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and
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2

)2
+

( y
2

)2
= 1, (2)

respectively. The thickness of the plate is 0.6 (m). The plate is loaded by a uniform normal
pressure of 106 (Pa).

There are symmetry boundary conditions along the vertical planes. The outer elliptical
boundary is fixed in x- and y-directions. In order to remove the rigid body movement, the z-
deformation is restricted on the midline of the outer elliptic boundary.

The material is an isotropic elastic material with

E = 210×109(Pa), ν = 0.3. (3)

The value to be computed is the normal stress σy at the point (x,y,z) = (2,0,0.6),

σy = −5.38×106(Pa). (4)

For comparison purposes, the other stresses are given below

σx = 0.0(Pa),σz = −1.0×106(Pa). (5)

Besides a general test of the performance of the linear 3D-solvers in the codes in question,
this benchmark problem tests the abilities of the geometry and mesh generators as well as the
quality of the interpolation operators. Since the target point is on the boundary of the domain it
will definitely not be an integration node. A detailed discussion can be found in the reference
[3].
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Figure 2: Cantilever beam

A Cantilever Beam Under Large Deformations

The present example is intended to test the robustness especially of the nonlinear solver. The
solid is a simple block with the dimensions 0.5×0.1×0.1 (m3). For definiteness, let the coordi-
nates be given by, Figure 2,

D = [0,0.5]× [−0.05,0.05]× [−0.05,0.05]. (6)

The body is fixed at the plane x = 0. On the opposite side x = 0.5, a tangential force is applied
which twists the body:

Fx = 0, Fy = −Fr sinϕ, Fz = Fr cosϕ, (7)

where r and ϕ are the polar coordinates of (y,z),

y = r cosϕ, z = r sinϕ. (8)

The material is elastic isotropic with

E = 2.1×1011, ν = 0.3. (9)

There are two cases for the constant F , F = 1010 and F = 1011. The latter one is especially hard
to solve.

Target values are the deformations at (x,y,z) = (0.5,0.05,0.05). The following table contains
the target values (in mm). They have been computed with high order elements on very fine grids.
Their accuracy is believed to be ±2 units of the least significant digits given.

F u v w
10−10 −0.0232 −3.842 3.589
10−11 −1.74 38.14 20.98
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Natural Frequencies of a Piezoelectric Transducer

This example is taken from [2]. It is also part of the ANSYS verification suite (test case VM175).
The piezoelectric transducer consists of a cube of PZT4 material with its polarisation aligned

along the z-axis. Electrodes are placed on the two surfaces orthogonal to the polarisation axis.
The task consists of determining the first two coupled-mode natural frequencies for the short
circuit and the open circuit case.

Because of symmetry considerations, only one quarter of the cube is used as the computa-
tional domain. It is defined as being the block

D = [0, l/2]× [0, l/2]× [0, l]. (10)

The electrodes are located at the bottom (z = 0) and top (z = l) surfaces. The surfaces x = 0 and
y = 0 are subject to symmetry boundary conditions.

The constants are defined as follows:2

Quantity value
density ρ 7500
length l 0.02

permittivity matrix εrS





804.6 0 0
0 804.6 0
0 0 659.7





piezoelectric matrix e





0 0 0 0 10.5 0
0 0 0 10.5 0 0

−4.1 −4.1 14.1 0 0 0





elasticity matrix cE

















13.2 7.1 7.3 0 0 0
7.1 13.2 7.3 0 0 0
7.3 7.3 11.5 0 0 0
0 0 0 2.6 0 0
0 0 0 0 2.6 0
0 0 0 0 0 3.0

















×1010

The bottom electrode is always grounded, i.e., the voltage is set to 0. In the short circuit case,
the voltage at the top electrode is also 0. There is no prescribed voltage on the top electrode for
the open circuit case. The target values are measured results in [2]:

case f1 [kHz] f2 [kHz]
short circuit 66.56 88.01
open circuit 81.59 93.41

For the purposes of benchmark computations, these measured values are much to inaccurate.
Based on the material data given above we carried out computations with very high accuracy.
The eigenfrequencies of the coupled modes turned out to be

2In the reference [2], the values in the permittivity matrix are slightly different: 805 and 660, respectively.
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Figure 3: Computational domain for a whole-space problem

case f1 [kHz] f2 [kHz]
short circuit 65.1011 88.1364
open circuit 79.806 93.576

We believe that all digits are correct, that is, the error is below 0.5 units of the least significant
digit.

A Nearly Incompressible Material

The present example is intended to test the performance of the codes at a nearly incompress-
ible material. The maximal stress in a body stretching over the whole 3D space and having a
spherical hole under uniaxial forces can be computed analytically. We use an approximation to
this situation for testing the code. Let a hole with radius 1 be centred at the origin. The force
is applied parallel to the z-axis. Because of symmetry it is sufficient to consider only the half
space z ≥ 0. In order to make the solid finite consider only the cylinder with radius 10 and height
10. The problem has obviously cylindrical symmetry. It would, therefore, be possible to reduce
the problem to a two-dimensional one. Since we are interested in three-dimensional test cases, a
slice of the cylinder is taken instead. A sketch of the computational domain is given in Figure 3.

More exactly, the computational domain is given by

D = {(x,y,z)|x,y,z > 0,x2 + y2 < 10,z < 10,x2 + y2 + z2 > 1,6y < x}. (11)

The material constants are given as

ν = 0.49, E = 2×1011. (12)

The boundary conditions are chosen as follows:

• No constraints on the top, outer cylindrical sidewall, and the sphere near the origin;
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• Symmetry constraints on all other surfaces, that is deformation in normal direction is set
to zero;

• On the top surface, a force of 106 acting in the z-direction was applied.

The target values are the stresses at (x,y,z) = (1,0,0),

σz = 2.164, σx = 0. (13)

The target values have been determined in the following way: For the whole-space problem,
the analytical solution is given by [4]

σmax = σ∞
27−15ν
14−10ν

. (14)

The problem was then solved on a large two-dimensional computational domain using the cylin-
drical symmetry. The computational domain was chosen large as was the number of degrees of
freedom (> 200000) in FEMLAB 2.3. Moreover, the triangulation was adapted according to the
energy norm error indicator. This way, the accuracy of the computed stress value was below
0.1% compared to the theoretical value. The target value on the smaller domain D was then
determined by using the same procedure with a comparable number of degrees of freedom.

2.2 Test Criteria

With all of the cited software tools we computed the quantities mentioned above. The aim is
to compare the accuracy of this quantities and the amount of computing resources necessary.
Taking into account the very different architecture of the packages with respect to programming
principles and user interfaces we decided to benchmark only the pure numerical kernels. This
includes also the handling of geometry and grid generation. While this is an integral part of the
FEMLAB family it is split over different modules in ANSYS. Therfore, the tests are carried out
as follows:

FEMLAB The test cases were generated in the graphical user environment and saved as an
MATLAB m-file. Then the generated m-files were hand-edited in order to remove all
unnecessary commands. This includes all graphical output. The protocol output was re-
stricted to the standard value report = ’on’. This gives negligible overhead for FEM-
LAB 2.3. In case of FEMLAB 3.1i, a JAVA subprocess was started whose resources we
neglected. The only post-processing left is the computation of the benchmark target values.
Then, MATLAB was started without its JAVA virtual machine thus reducing its resource
requirements to a minimum. For FEMLAB 3.1i, the server was started in parallel such that
a connection to MATLAB was established.

ANSYS The test cases were constructed in the graphical user interface and exported as an AN-
SYS batch command file. The latter was again edited by hand in order to reduce the output
to a bare minimum on the console. In particular, no graphics output was generated. The
resulting command file was run in a batch queue without any user interaction.
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Our aim was to measure both execution time and memory needs.

Memory Especially in three dimensional calculations, we expect that the memory requirements
will become a restricting factor. Therefore, it would be worth to measure the memory
requirements. Unfortunately, these are not explicitely available in FEMLAB. Neither it
is possible to use indirect measurements via tools of the operating system because multi-
threading is used. So the only information available is when the FEMLAB started to swap.
A problem size was considered computable if the process did not start to swap.

The situation forANSYS is different. There is a tool available which estimated the amount
of space in main memory and on hard disk necessary for running the problem. It is only the
size of the so-called database which is important. Most of the time, a relative small value
was used here. For the adaptation runs, however, we had to increase the reserved memory
for the database to 512 MB. With the exception of that case, no swapping occurred for the
iterative solvers.

Time FEMLAB integrates geometry definition, mesh generation, initial value generation, nu-
merical solution, and post-processing into one module. Therefore, we considered one test
case as consisting of exactly these components. Similarly, the execution of one ANSYS
batch file having the same sub-tasks was considered as one test case. The cpu time of
the FEMLAB execution was measured using MATLAB’s cputime command. ANSYS
provides the cpu time explicitely in its output.

Another problem is concerned with FEMLAB 3.1i in 3D. The grid generator contains a
certain randomness. So it is not possible to run the same test case twice. The number of
degrees of freedom differs from run to run.

The resolution of the hardware clock is 0.01 s. In the tables below, we provided the cpu
time with this accuracy. According to different states of the operating system, such an
accuracy is not reproducible. For execution times below 100 s, the reproducible time
granularity is around 0.1 s. For longer runs, an accuracy of at least one second can be
guaranteed.

Another strategy was to mimic the average user. Both programmes have a lot of parameters
which can be used to tune their behaviour. We did not try to tailor these parameters for maximal
performance. Instead, the standard parameter settings were always used with the exceptions
of those indicated explicitely. There is one exception to this rule: The termination criteria for
the linear iterations use a scaled error estimation in FEMLAB and a scaled residual in ANSYS,
respectively. In order to obtain criteria on par, the tolerance in ANSYS was changed to a value
comparable to FEMLAB.
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2.3 Test Environment
Hardware Pentium 4, 2.4 GHz, 1 GB RAM (Dell Precision 340)
Operating system SuSE Linux 9.1, kernel 2.6.5-7.155.29-default
LINPACK 1000 gnu f77 3.2: 216 MFlops; ifc 7.0: 223 MFlops
MATLAB 6.5 build 180913a
MATLAB 7.0.1 build 24704
FEMLAB 2.3 build 145
FEMLAB 3.1i build 163
ANSYS 9.0 SP1, University Advanced

2.4 Some Comments on ANSYS

• The following elements were used in ANSYS:

element description FEMLAB equivalent
SOLID45 hexahedral trilinear element

(Q1); 3 dof per node
none

SOLID95 hexahedral triquadratic ele-
ment (Q2) of serendipity
class; 3 dof per node

none

SOLID72 tetrahedral linear element
(P1); 3 dof per node

Lag1

SOLID92 tetrahedral quadratic element
(P2); 3 dof per node

Lag2

SOLID5 hexahedral trilinear element
(Q1); 6 dof per node

none

SOLID98 tetrahedral quadratic element
(P2); 6 dof per node

Lag2

SOLID226 hexahedral triquadratic ele-
ment (Q2) of serendipity
class; 4 dof per node

none

SOLID227 tetrahedral quadratic element
(P2); 4 dof per node

Lag2

• The standard error tolerance in FEMLAB is 10−6. If the linear iterative solvers are used
as the primary solver in linear problems, the actual tolerance in the residual is set to that
value divided by 400. Therefore, we used 10−6/400 as tolerance for the linear iterative
solvers in ANSYS.

• ANSYS has a rather advanced memory management which tries to minimise the footprint
in main memory. Therefore, much of the intermediate data are written to the hard disk.
It is only the absolute minimum of information which is held in main memory. Besides
that, some linear solvers have the option of working out-of-core. In order to keep things
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comparable we did not use the out-of-core option. For the sparse solver, we explicitely
required to work in-core. Since the university option of ANSYS is limited to 128000
nodes, this was seldom a restriction.

3 Results in Detail

The results of the benchmark computations are presented in tables. Each run is characterised by
a certain parameter which is explained near the respective tables and used as a label in every row.
The next rows contain the number of degrees of freedom (unknowns), the computed values of
the targets, and the computation time (time). The last rows of every table contain these target
values.

Remark:

• Cases marked with (*) lead to swapping but could be run. The memory requirements were
less than 2GB in that case.

3.1 The NAFEMS Benchmark LE10

The Performance of FEMLAB 3.1i

The linear solver is cg with the preconditioner gmg. The equilibrium formulation (coefficient
form) is used. All other parameters are standard.

(0) Before really trying to solve the model for the target value we carried out some experi-
ments in order to find the best setting for the linear algebra routines, that is essentially the linear
solver. We ran all available (meaningful) solvers in FEMLAB 3.1i with second order Lagrangian
elements and the grid settings normal as well as

hmaxfact = 0.5, hcutoff = 0.001, hgrad = 1.5, hcurve = 0.2

denoted further on as private. The system was marked as being symmetric.
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solver parameter normal private
unknowns iter time unknowns iter time

umfpack 9090 5.28 (*)61050 82.70
spooles 9468 5.44 60630 138.99
taucs 9222 4.47 60540 44.94
cg/umfpack 10−4 9168 3 5.87

10−5 (*)60843 3 87.34
cg/spooles 10−2 9144 41 6.05 60933 94 116.54

10−3 9276 14 5.80 60210 32 110.87
10−4 9138 7 5.83 60357 10 136.15

cg/taucs 10−2 8907 42 4.70 60345 96 33.64
10−3 8904 14 5.46 60630 41 43.84
10−4 9138 6 8.14 60558 13 105.80

cg/luinc 10−3 9165 37 10.06 60921 88 277.08
10−4 8970 13 14.34 61209 43 656.27

cg/amg 1 9534 59 8.47 60630 105 95.10
2 9459 58 8.38 61029 106 97.79
3 9366 58 8.25 60753 105 95.63
4 9234 52 13.74 60489 99 181.18
5 9189 49 15.39 60822 96 250.46
6 9270 49 15.93
7 9288 44 17.42
8 9192 43 18.00
9 9096 42 28.27

10 9291 41 31.00
cg/gmg umfpack 9126 7 7.01 61011 8 30.62

spooles 9246 8 7.04 59316 7 28.36
taucs 9519 7 6.99 60189 7 27.85

cg/ssor 8793 106 7.43 62082 205 83.05
cg/jac 9378 8865 127.73

Remarks:

• The column solver denotes the solver according to the notation in FEMLAB. The sec-
ond part of the conjugate gradient solver denotes the preconditioner.

• The column parameter contains parameters which were given to the preconditioner:

umfpack, spooles, taucs drop tolerance;

amg amgauto;

gmg csolver.

• For larger drop tolerances than the one given, cg/umfpack converged only very slowly
or not at all.
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• the luinc preconditioner cannot use the symmetry of the problem.

• The multigrid based preconditioners used by far the lowest amount of memory.

As a consequence, the following tests were done using the conjugate gradient method together
with the geometric multigrid preconditioner. We did not change any default parameters.

(A) The first test is devoted to a test of different grids generated by the mesh generator.

grid unknowns σx σy σz time
normal 9087 −0.0972 −5.4593 −1.2176 10.95

normal (1) 64323 0.0089 −5.3213 −1.0489 32.52
fine 16170 −0.0560 −5.4753 −1.0680 10.98
finer 42321 0.0793 −5.2532 −0.9593 23.00

extra fine 167028 0.0610 −5.3780 −0.9889 90.02
private 60915 0.0097 −5.3590 −1.0110 32.58

0.00 −5.38 −1.00

Remarks:

• The mesh case normal (1) is generated by using the normal parameter set plus one
refinement with rmethod = ’regular’.

• The mesh case private was constructed in order to obtain a better approximation of
the curved surfaces. The chosen parameters are: hmaxfact = 0.5, hcutoff =
0.001, hgrad = 1.5, hcurve = 0.2.

• Finer grids did not fit into memory.

(B) The following test concerns the behaviour of different elements. The mesh case is fine.

elements unknowns σx σy σz time
Lag1 2439 −0.8164 −5.1222 −1.6222 9.01
Lag2 16356 −0.0559 −5.4801 −1.0669 10.82
Lag3 51621 0.0082 −5.3080 −0.9490 40.26

Lag4(*) 118695 0.0717 −5.3006 −0.9376 193.84
0.00 −5.38 −1.00

Remarks:

• Please keep in mind that the mesh differs slightly from run to run because FEMLAB’s
mesh generator uses some randomness for generating the initial triangulation.
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(C) Next we test pure mesh convergence by using the regular mesh refinement starting from a
relatively coarse mesh. In order to fit in memory, first order Lagrangian elements are used. So
the mesh case is normal and rmethod = ’regular’.

refinements unknowns σx σy σz time
0 1437 −0.6859 −4.4601 −0.9480 8.42
1 9408 −0.5041 −5.4390 −1.1439 8.83
2 66549 −0.3665 −5.3936 −1.1397 46.79

3(*) 478659 −0.2155 −5.3745 −1.0815 313.42
0.00 −5.38 −1.00

(D) This test concerns the quality of the automatic grid adaption procedure. We start with the
normal grid settings and use quadratic Lagrangian elements.

ngen unknowns σx σy σz time
0 9084 −0.0761 −5.3901 −1.1725 7.10
1 19065 −0.0791 −5.4517 −1.2000 19.17
2 42945 −0.2151 −5.4665 −1.3102 51.35
3 97983 −0.2761 −5.4002 −1.2878 126.36
4 248835 0.0227 −5.2919 −1.0329 353.97
5 445179 0.0716 −5.2395 −0.9008 690.84

0.00 −5.38 −1.00

Remarks

• The computation time for level ngen contain the times for all previous levels ngen-1
etc.

• The previous example with almost half a million unknowns fits completely into main mem-
ory.

• FEMLAB 3.1i provides only the mean square norm as an error functional. This amount
to using the deformations as adaption criterion. Opposed to that, we are interested in the
stresses which can be better controlled by using the energy functional.

A Comparison of FEMLAB 2.3, FEMLAB 3.1i, and ANSYS

(0) Before really trying to solve the model for the target value we carried out some experiments
in order to find the best setting for the linear algebra routines, that is essentially the linear solver
in ANSYS. We ran all available (meaningful) solvers with second order Lagrangian elements
(SOLID92) using the grid settings default and

edgmx=0.121225
DESIZE,,,9999,,,,edgmx,,
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denoted further on as moderate.

solver default moderate
unknowns iter time unknowns iter time

front 12143 3.58 (*)60107 94.41
sparse 12143 3.36 60107 43.10
jcg 12143 ? 4.31 60107 ? 30.26
iccg 12143 147 4.06 60107 247 26.72
pcg 12143 65 2.32 60107 83 11.61

Remarks:

• The value of edgmx was chosen such that the number of degrees of freedom is roughly
comparable to the FEMLAB runs.

• In the ANSYS university option there are no other solvers available.

As a consequence, the following tests of ANSYS were run using the pcg solver whenever possi-
ble.

(A) We start with comparing standard grid generations.

FEMLAB 3.1i

grid unknowns σx σy σz time
normal 9087 −0.0972 −5.4593 −1.2176 10.95

normal (1) 64323 0.0089 −5.3213 −1.0489 32.52
fine 16170 −0.0560 −5.4753 −1.0680 10.98
finer 42321 0.0793 −5.2532 −0.9593 23.00

extra fine 167028 0.0610 −5.3780 −0.9889 90.02
private 60915 0.0097 −5.3590 −1.0110 32.58

0.00 −5.38 −1.00

FEMLAB 2.3

grid unknowns σx σy σz time
normal 9234 −0.4017 −5.2353 −1.0742 11.42

normal (1) 65541 −0.1645 −5.3016 −1.0270 65.77
fine 19086 0.0419 −5.4023 −0.9677 19.80
finer 43620 0.00793 −5.4243 −1.0828 45.94

extra fine (*) 168867 0.1014 −5.3535 −0.9771 242.00
private 67917 −0.0259 −5.3961 −0.9996 76.45

0.00 −5.38 −1.00
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(B) This test is devoted to test different element types. Besides that, the mesh generated is
implicitely tested by these experiments.

FEMLAB 3.1i The mesh case is fine.

elements unknowns σx σy σz time
Lag1 2439 −0.8164 −5.1222 −1.6222 9.01
Lag2 16356 −0.0559 −5.4801 −1.0669 10.82
Lag3 51621 0.0082 −5.3080 −0.9490 40.26

Lag4(*) 118695 0.0717 −5.3006 −0.9376 193.84
0.00 −5.38 −1.00

ANSYS The two following experiments use both VMESH as well as VSWEEP for mesh genera-
tion. In case of hexahedral elements and VMESH, is was required to generate hexahedrons
by using the option

MSHAPE,0,3

The first table contains results without adapting any parameters.

elements meshing unknowns σx σy σz time
s72 VMESH 4568 −1.0838 −6.6629 −1.7659 3.46
s92 VMESH 12143 −0.2143 −5.4542 −1.0587 2.32
s45 VMESH 1114 0.0727 −5.2959 −0.8638 0.59
s95 VMESH 1514 −0.7220 −5.2919 −1.1531 0.78
s45 VSWEEP 4604 −0.3146 −5.4944 −1.1390 1.53
s92 VSWEEP 8878 −0.1281 −5.4727 −1.0906 2.38

0.00 −5.38 −1.00

Next we tried to adapt the maximal element size such that roughly the same number of
degrees of freedom was used for linear elements.

elements meshing ESIZE unknowns σx σy σz time
s72 VMESH 0.11375 22924 −0.8790 −5.4556 −1.3487 19.89
s92 VMESH 0.11375 85000 −0.1481 −5.3762 −1.0290 16.51
s45 VMESH 0.0975 24376 −0.2744 −5.5450 −1.1418 6.53
s95 VMESH 0.0975 94270 −0.0780 −5.4036 −1.0181 24.55
s45 VSWEEP 0.08125 21540 −0.2684 −5.5424 −1.1433 6.02
s92 VSWEEP 0.08125 83289 −0.0659 −5.4085 −1.0151 21.32

0.00 −5.38 −1.00
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(C) It would be interesting to compare the mesh adaption procedure if the energy functional in
FEMLAB 2.3 is used. Note that ANSYS uses always the energy norm in error estimates.

FEMLAB 2.3 We started with the normal mesh and second order Lagrange elements.

ngen unknowns σx σy σz time
0 9234 −0.4017 −5.2353 −1.0742 12.57
1 40395 −0.3698 −5.4692 −1.0178 55.84

2 (*) 183780 −0.3675 −5.4179 −1.0202 275.65
0.00 −5.38 −1.00

Remarks:

• Because of memory restrictions, it was not possible to test the other error indicators
in FEMLAB 2.3.

ANSYS The ANSYS elements SOLID45, SOLID92, and SOLID95 allow for grid adaption.
In the following experiments, there are no restriction on the grid given with the only ex-
ception of requiring hexahedrons for hexahedral elements.

elem target nsoln unknowns σx σy σz time
s92 15% 1 2489 −0.2143 −5.4542 −1.0587 2

2 69829 −0.4101 −5.3285 −1.1556 19
3 136739 −0.2902 −5.3358 −1.0714 60

5% 1 2489 −0.2143 −5.4542 −1.0587 2
2 197182 −0.2711 −5.4345 −1.2084 49

s95 22% 1 1514 −0.7220 −5.2919 −1.1531 1
2 21134 −0.3294 −5.4380 −1.1307 7
3 273782 −0.0570 −5.4108 −1.0171 118

5% 1 1514 −0.7220 −5.2919 −1.1531 1
2 310468 −0.1039 −5.3693 −1.0153 138

s45 25% 1 1114 0.0727 −5.2925 −0.8638 1
2 26780 −0.3029 −5.5009 −1.1026 9

(*) 3 335217 −0.1486 −5.4761 −1.0712 164
15% 1 1114 0.0727 −5.2925 −0.8638 1

2 78310 −0.2640 −5.4872 −1.0860 25
0.00 −5.38 −1.00

Remarks:

• The error control was restricted to the structural variables. The target value was
selected such that at least some refinements could be carried out without exceeding
the limit on the number of nodes.

• The regridding strategy is very aggressive compared to FEMLAB such that the num-
ber of elements grows rapidly in every refinement step.
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3.2 A Cantilever Beam Under Large Deformations

The aim of this test is essentially to estimate the performance of the nonlinear solver. The geom-
etry of the problem is so simple that the mesh generators are not expected to have any problems.
While in the linear examples the performance of the solver for linear algebraic systems of equa-
tions dominate the runtime we expect a much stronger influence of the assembly process as well
as of the control strategies of the nonlinear solver.

The Performance of FEMLAB 3.1i

In accordance with the experiences with the NAFEMS benchmark problem we chose the conju-
gate gradient iterative solver together with the geometric multigrid preconditioner as the linear
solver. With the exception of first order Lagrangian elements, order reduction was used in order
to obtain the “coarse grid” operators. In the case of first order elements, grid coarsening was
used. As in the linear case, the nonlinear tolerance was set to 10−6.

(A) Here we test the easier case F = 1010. Although the full Newton method converges very
fast (usually within 4 to 5 steps), it is often possible to save a considerable amount of computation
time if a two-step strategy is used: First, an approximation of the solution on a very coarse grid
is computed. Interpolating this approximation to a finer grid, a good initial guess for that grid
is obtained. Such a strategy is suggested by FEMLAB 3.1i. In the following table, the column
iter provides informations about the number of iterations in this strategy: “a/b” means that a
iterations on the coarsest mesh (using the direct linear solver spooles and quadratic Lagrangian
elements independent of the final element order) are performed. The number of degrees of
freedom on the coarse grid is about 3600, varying a little bit because of the randomness in the
mesh generator. The number of iterations on the finer grid is b. Note that, for linear elements,
such a strategy did not work. The computation time indicated is the overall time used. The
column iter indicates the cumulative number of linear conjugate gradient steps.
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element unknowns u v w iter lin time
Lag1 570 −0.007852 −2.2191 2.0966 −/4 31 14.50

3594 −0.007878 −3.1775 2.9790 −/4 27 20.96
24807 −0.016041 −3.6261 3.3899 −/4 21 89.83

185691 −0.021128 −3.7797 3.5343 −/4 17 716.92
(*) 520329 −0.023129 −3.8065 3.5577 −/4 18 1848.38

Lag2 3432 −0.017537 −3.7407 3.4980 −/4 28 18.53
22515 −0.021036 −3.8210 3.5695 5/3 19 60.77

176727 −0.022398 −3.8366 3.5842 5/3 20 431.30
(*) 518757 −0.022729 −3.8392 3.5867 5/3 24 1281.36

Lag3 10476 −0.021275 −3.8266 3.5748 5/3 17 46.26
79521 −0.022372 −3.8370 3.5846 5/3 19 282.38

(*) 239907 −0.022704 −3.8391 3.5867 5/3 20 872.87
Lag4 24879 −0.022146 −3.8350 3.5827 5/3 19 117.86

77271 −0.022290 −3.8381 3.5848 5/3 20 400.76
Lag5 46473 −0.022663 −3.8382 3.5858 5/3 23 285.80
(*) 111783 −0.022975 −3.8402 3.5878 4/3 20 990.21

−0.0232 −3.842 3.589

Remarks:

• We used the standard strategy for the geometric multigrid preconditioner: Effectively, it is
the p-version of the two-grid method (with the exception of first order Lagrangian elements
where the h-version is used). On the coarse approximation, a direct solver is used. This
strategy requires relatively large amounts of memory. Similarly, the low number of linear
iterations indicates that the preconditioner is “too good”. The assembly process dominates
the computation time.

• FEMLAB 3.1i has the option of using a Broyden method. In the present example, the
number of undamped Newton steps is rather low such that the gain in computing time
is only marginal. The following table is illustrating (F = 1010). It corresponds to linear
Lagrangian elements.

unknowns iter Broyden steps time
570 4 14.50
594 5 3 9.38

3594 4 20.96
3597 5 2 17.27

24807 4 89.83
25517 5 2 79.57

185691 4 716.92
174159 6 2 597.33
520329 4 1848.38
551739 5 2 1794.19
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(B) The case of F = 1011 is much harder to solve. Although FEMLAB 3.1i is very robust
and can solve this problem without any imbedding or similar strategies the number of damped
Newton iteration is rather large. Therefore, we decided to use the same strategy as in the case of
F = 1011.

element unknowns u v w iter lin time
Lag1 558 −0.51162 −22.935 16.046 −/10 75 29.45

3399 −1.00933 −32.375 19.294 −/12 68 52.08
23403 −1.35814 −36.315 20.424 −/13 53 263.68

171063 −1.56273 −37.627 20.791 −/14 39 2196.23
(*) 520803 −1.65606 −37.849 20.880 −/13 31 5854.03

Lag2 3633 −1.37813 −37.408 20.663 −/13 77 54.10
24909 −1.58953 −37.988 20.883 13/3 20 86.21

173907 −1.68432 −38.101 20.952 13/3 19 443.92
(*) 545979 −1.70860 −38.121 20.970 13/3 20 1366.83

Lag3 11007 −1.59424 −38.018 20.893 13/3 15 70.09
71878 −1.68538 −38.102 20.954 13/3 15 272.40

(*) 238785 −1.70651 −38.120 20.971 13/3 19 901.30
Lag4 24807 −1.66321 −38.086 20.941 13/3 16 133.29

80187 −1.69271 −38.108 20.952 13/3 19 426.85
Lag5 42498 −1.70210 −38.111 20.960 13/3 19 259.23
(*) 79683 −1.70767 −38.115 20.966 13/3 19 582.93

−1.74 −38.14 20.98

A Comparison of FEMLAB 3.1i and ANSYS

(A) Besides the solid elements given below, the torsion force was applied via a surface element
surf154.

The following comparisons are only made with ANSYS because the structural mechanics
toolbox of FEMLAB 2.3 does not allow for nonlinear effects. The first table concerns the simple
problem with F = 1010.
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element esize unknowns u v w iter time
s45 0.018 3970 −0.009667 −3.7540 3.5101 5 4.58

0.009 23760 −0.017202 −3.7989 3.5801 6 33.67
0.00435 180918 −0.013856 −3.8342 3.5803 6 298.83
0.0035 358266 −0.014517 −3.8359 3.5841 6 618.52

s72 0.1 180 −0.15557 −7.3234 8.6074 6 0.77
0.023 3282 −0.17814 −3.4961 4.7506 5 8.50
0.012 25170 0.003599 −3.8557 3.8485 5 89.51
0.007 126834 0.002750 −3.7872 3.7802 5 636.54

s92 0.1 462 −0.007837 −4.0064 3.7270 5 0.73
0.038 4128 0.082689 −3.6244 2.7571 6 3.95
0.02 26529 −0.014219 −3.8415 3.5914 6 27.81
0.01 162306 −0.014149 −3.8480 3.5915 6 195.59
0.008 318138 −0.013464 3.8569 3.5925 6 417.42

s95 0.1 180 −6.4293 −4.8667 3.6783 6 0.51
0.03 2688 −0.016743 −4.0063 3.7743 6 3.44
0.028 4590 −0.14565 −3.5058 4.1357 6 6.35
0.015 23760 −0.0072307 −3.8980 3.5923 6 36.55
0.0071 182700 −0.014842 −3.8506 3.5962 6 335.14
0.0055 379620 −0.015091 −3.8476 3.5943 6 753.98

−0.0232 −3.842 3.589

Remarks:

• The grid is generated by either the VSWEEP or VMESH commands depending on the type
of element.

• The parameter ESIZE is chosen in such a way that the number of degrees of freedom
is comparable to those in the FEMLAB runs. The ANSYS version used is restricted to
handle at most 128000 nodes. For the largest number of degrees of freedom, the maximal
number of nodes is almost reached.

• Even for the largest number of unknowns, the memory consumption was below 1 GB. But
ANSYS wrote up to 0.5 GB of data to the hard disk during the run such that, for a larger
number of degrees of freedom, the wall clock time is much larger than the pure cpu time.

(B) This is the harder case F = 1011.
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element esize unknowns u v w iter time
s45 0.018 3970 −0.73849 −37.577 20.680 13 15.02

0.009 23760 −1.0027 −38.048 21.064 13 105.46
0.00435 180918 −1.0894 −38.448 21.016 14 980.22
0.0035 358266 −1.1160 −38.479 21.047 14 2066.23

s92 0.1 462 −0.46636 −39.489 20.936 12 1.26
0.038 4128 −0.55373 −36.121 12.231 13 10.55
0.02 26529 −0.99018 −38.362 20.703 13 78.43
0.01 162306 −1.1152 −38.550 21.002 14 609.95
0.008 318138 −1.1327 −38.670 21.034 14 1292.02

s95 0.1 180 −106.39 −42.364 234.92 15 0.92
0.03 2688 −0.98139 −39.418 21.320 13 9.07
0.028 4590 −2.0491 −35.219 25.314 13 17.23
0.015 23760 −1.0344 −38.970 20.853 13 102.04
0.0071 182700 −1.1505 −38.630 21.087 14 1029.41
0.0055 379620 −1.1647 −38.618 21.094 14 2304.92

−1.74 −38.14 20.98

Remarks:

• The same comments as in the case F = 1010 apply.

• In order to get Newton’s method to converge the line search option was set to on. Never-
theless, we were unable to obtain a converged solution for the element SOLID72.

3.3 Natural Frequencies of a Piezoelectric Transducer

3.3.1 The short circuit case

The Performance of FEMLAB 3.1i

This example was run using the eigenvalue analysis option of the piezoelectric application mode.
The implementation is straightforward. The model description does not prevent a rigid body
motion in z-direction. Therefore, there is always an eigenmode with frequency 0 [Hz] present.
In the following computations, 11 eigenvalues are computed. Similarly as in ANSYS, an shift of
50 [kHz] was used.

Especially when using higher-order elements, this examples requires a huge amount of mem-
ory. Therefore, the basic grid was chosen to be based on the extra coarse grid generation
parameters.

(A) The first test concerns the performance of different Lagrangian elements. The linear system
solver is umfpack.
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element unknowns f1 f2 time
Lag1 288 69.3314 108.0887 1.35
Lag2 1596 65.1126 88.5408 11.46
Lag3 4680 65.1012 88.1432 49.36
Lag4 10316 65.1011 88.1367 21.09
Lag5 19344 65.1011 88.1364 58.35

65.1011 88.1364

(B) Here, we are interested in investigating the grid convergence. Because of memory restric-
tions, this could only be done for lower order elements. Starting out with the coarsest grid, the
mesh is refined a number of times using the regular refinement method. This amounts to roughly
halving the step size.

In contrast to the previous test, one must use an iterative linear solver. The most efficient
combination (avoiding swapping) turned out to be gmres with the preconditioner gmg.

Lag1 elements

steps unknowns f1 f2 time
0 288 69.3314 108.0887 3.67
1 1592 65.3735 92.9170 7.21
2 10236 65.1895 89.3917 40.16
3 73956 65.1253 88.4931 451.02

65.1011 88.1364

Lag2 elements

steps unknowns f1 f2 time
0 1596 65.1126 88.5408 15.27
1 10316 65.1020 88.1679 73.85
2 73620 65.1012 88.1386 916.88

65.1011 88.1364

Lag3 elements

steps unknowns f1 f2 time
0 4680 65.1012 88.1432 56.06
1 32288 65.1011 88.1366 643.56

65.1011 88.1364

Remarks:

• It is tempting to use the eigenvalue/eigenvector approximations on a coarse grid as starting
values on a finer grid. Unfortunately, we did not find a way to do so.
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• The solution algorithm complains sometimes about the chosen preconditioner being bad.
The incomplete LU preconditioners are either too memory demanding (umfpack, spooles)
or very slow for the higher order Lagrangian elements (luinc).

• The problem at hand is very smooth such that Richardson extrapolation can be applied.

(C) In a last comparison, the grid is chosen such that the discretisation has roughly the same
amount of degrees of freedom. Again, the iterative solver was used.

element unknowns f1 f2 time
Lag1 73956 65.1253 88.4931 451.02
Lag2 73620 65.1012 88.1386 916.88
Lag3 73752 65.1011 88.1365 1760.61
Lag4 74964 65.1011 88.1364 10176.09
Lag5 60424 65.1011 88.1364 6348.34

65.1011 88.1364

A Comparison of FEMLAB 3.1i, and ANSYS

For the example at hand we did not test FEMLAB 2.3 for two reasons: There is no piezoelectric
application mode available such that its implementation is very cumbersome, and the expected
memory consumption seems to prevent any meaningful comparisons.

Since this benchmark example is present in the ANSYS validation suite (test case VM175), a
template for the ANSYS input file was available. This template was reduced to the bare minimum
in order to compute the target values. The eigenvalue analysis was done using the block Lanczos
solver (LANB). 10 eigenvalues in the range between 50 [kHz] and 150 [kHz] were required. The
solution of the linear systems is done by the frontal solution method. As in all of our tests, the
solution is requested to be performed completely in-core. ANSYS rejected other settings for the
linear equation solver.

The elements tested are SOLID5, SOLID226, SOLID98, and SOLID227. The two first
elements are hexahedral ones while the latter two are tetrahedral elements. All elements (with
the exception of SOLID5) are second order accurate.

(A) A comparison on relatively coarse grids using direct solvers is given below.

FEMLAB 3.1i

element unknowns f1 f2 time
Lag1 288 69.3314 108.0887 1.35
Lag2 1596 65.1126 88.5408 11.46
Lag3 4680 65.1012 88.1432 49.36
Lag4 10316 65.1011 88.1367 21.09
Lag5 19344 65.1011 88.1364 58.35

65.1011 88.1364
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ANSYS

element unknowns f1 f2 time
s5 132 66.4474 92.9997 0.26
s98 676 65.1458 89.3280 0.50
s226 448 65.1223 88.4182 0.39
s227 676 65.1458 89.3280 0.62

65.1011 88.1364

(B) The next comparison is devoted to estimate the performance of different elements types.
In ANSYS, the ESIZE parameter was selected such that roughly the same number of degrees of
freedom was achieved.

FEMLAB 3.1i

element unknowns f1 f2 time
Lag1 73956 65.1253 88.4931 451.02
Lag2 73620 65.1012 88.1386 916.88
Lag3 73752 65.1011 88.1365 1760.61
Lag4 74964 65.1011 88.1364 10176.09
Lag5 60424 65.1011 88.1364 6348.34

65.1011 88.1364

ANSYS

element unknowns f1 f2 time
s5 132 66.4474 92.9997 0.26

19264 65.1381 88.2744 34.68
(*) 69720 65.1161 88.1945 354.01
s98 676 65.1458 89.3280 0.50

13476 65.1019 88.1593 17.86
32780 65.1014 88.1430 89.02

(*) 59472 65.1013 88.1395 246.72
s226 448 65.1223 88.4182 0.39

5110 65.1017 88.1457 5.99
34536 65.1012 88.1372 154.26

(*) 58964 65.1012 88.1368 409.17
s227 676 65.1458 89.3280 0.62

13476 65.1019 88.1593 18.45
32780 65.1014 88.1430 88.87

(*) 59472 65.1013 88.1395 244.01
65.1011 88.1364
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3.3.2 The open circuit case

The Performance of FEMLAB 3.1i

This example was run using the eigenvalue analysis option of the piezoelectric application mode.
The implementation in this case is not straightforward. There is no simple way to model the top
electrode. In order to do so, the multiphysics feature must be used for modelling a floating
electrode. This method is described in a technical paper [1]. Since this idea amounts to use weak
constraints, there isn’t any good preconditioner available for the iterative solver. So we are bound
to use variants of the incomplete LU preconditioner.

The model description does not prevent a rigid body motion in z-direction. Therefore, there
is always an eigenmode with frequency 0 [Hz] present. In the following computations, 11 eigen-
values are computed. Similarly as in ANSYS, an shift of 50 [kHz] was used.

Especially when using higher-order elements, this examples requires a huge amount of mem-
ory. Therefore, the basic grid was chosen to be based on the extra coarse grid generation
parameters.

(A) On the coarsest used grid, the different elements give the following results. The solver is a
direct one (umfpack).

element unknowns f1 f2 time
Lag1 302 86.161 112.266 1.77
Lag2 1634 79.931 93.898 2.91
Lag3 4830 79.808 93.584 12.33
Lag4 10622 79.807 93.577 24.93
Lag5 19566 79.806 93.576 71.50

79.806 93.576

(B) The second experiment concerns grid convergence. As mentioned above, an iterative linear
solver (gmres) with an incomplete LU preconditioner (we chose spooles) must be used. The
drop tolerance was set to 5 ·10−4.

Lag1 elements

step unknowns f1 f2 time
0 302 84.991 109.559 1.96
1 1654 81.658 96.883 4.78
2 10502 80.427 94.517 49.60
3 73830 79.959 93.797 1470.62

79.806 93.576

Lag2 elements
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step unknowns f1 f2 time
0 1650 79.947 93.927 4.86
1 10502 79.817 93.604 53.58
2 72822 79.807 93.579 1634.43

79.806 93.576

Lag3 elements

step unknowns f1 f2 time
0 4846 79.808 93.584 31.96
1 33162 79.806 93.577 747.20

79.806 93.576

(C) Compare now the approximation accuracy with different element types and a comparable
number of degrees of freedom.

element unknowns f1 f2 time
Lag1 73830 79.959 93.797 1470.62
Lag2 72822 79.807 93.579 1634.43
Lag3 74661 79.806 93.577 1789.21

79.806 93.576

Remarks:

• Higher order elements which a comparable number of degrees of freedom could not be run
because of memory limitations.

A Comparison of FEMLAB 3.1i, and ANSYS

The experimental setting is exactly as before in the short circuit case.

(A) A comparison on relatively coarse grids using direct solvers is given below.

FEMLAB 3.1i

element unknowns f1 f2 time
Lag1 302 86.161 112.266 1.77
Lag2 1634 79.931 93.898 2.91
Lag3 4830 79.808 93.584 12.33
Lag4 10622 79.807 93.577 24.93
Lag5 19566 79.806 93.576 71.50

79.806 93.576
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ANSYS

element unknowns f1 f2 time
s5 133 84.261 96.988 0.26
s98 677 80.185 94.417 0.56
s226 449 79.922 93.811 0.39
s227 677 80.185 94.417 0.50

79.806 93.576

(B) The next comparison is devoted to estimate the performance of different elements types.
In ANSYS, the ESIZE parameter was selected such that roughly the same number of degrees of
freedom was achieved.

FEMLAB 3.1i

element unknowns f1 f2 time
Lag1 73830 79.959 93.797 1470.62
Lag2 72822 79.807 93.579 1634.43
Lag3 74661 79.806 93.577 1789.21

79.806 93.576

ANSYS

element unknowns f1 f2 time
s5 133 84.261 96.988 0.26

19265 79.920 93.677 35.38
(*) 69721 79.853 93.619 349.16
s98 677 80.185 94.417 0.56

13477 79.814 93.596 17.99
32781 79.809 93.583 89.52

(*) 59473 79.808 93.580 265.47
s226 449 79.922 93.811 0.39

5111 79.810 93.585 5.94
34537 79.807 93.578 151.50

(*) 58965 79.807 93.577 405.82
s227 677 80.185 94.417 0.50

13477 79.814 93.596 19.10
32781 79.809 93.583 85.54

(*) 59473 79.808 93.580 269.76
79.806 93.576
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3.4 A Nearly Incompressible Material

The Performance of FEMLAB 3.1i

The linear solver is cg with the preconditioner gmg. The equilibrium formulation (coefficient
form) is used. All other parameters are standard.

(A) The first test is devoted to a test of different grids generated by the mesh generator.

grid unknowns σx σz time
normal 14163 −0.0080 2.1875 12.00

normal (1) 98865 −0.023 2.1609 61.27
fine 22344 −0.1261 2.0499 14.00
finer 49023 −0.1328 2.0338 39.53

extra fine 160512 −0.0563 2.1221 110.38
private 60939 0.0114 2.1762 40.11

0.000 2.164

(B) In a next step, consider different Lagrangian elements on (roughly) the same grid. The first
table uses the mesh settings fine.

elements unknowns σx σz time
Lag1 3447 0.2732 2.4971 5.6
Lag2 21879 −0.0994 2.0840 13.24
Lag3 64794 0.0030 2.1635 50.11

0.000 2.164

Here, we do the same test using the mesh settings normal.

elements unknowns σx σz time
Lag1 2331 2.3087 4.4052 7.52
Lag2 14037 −0.0411 2.1549 9.15
Lag3 41274 −0.0225 2.1417 31.19
Lag4 95085 −0.0075 2.1555 127.71

0.000 2.164

Remarks:

• An approximation with even higher order elements was not possible because of memory
restrictions. This is even more remarkable as the number of degrees of freedom was not
exceptional high.
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(C) The next two tables contain the results of the adaption procedure. The grids on refinement
level 0 are constructed according to the normal mesh generation setting.

The first test was done with second order Lagrangian elements.

ngen unknowns σx σz time
0 14958 −0.0603 2.1772 9.95
1 26541 −0.0050 2.1583 27.40
2 44961 0.0094 2.1712 70.24
3 66195 −0.0539 2.1195 160.69
4 98049 −0.0692 2.1027 246.49
5 153747 −0.0374 2.1311 824.25

0.000 2.164

Here, the same results are provided using third order Lagrangian elements.

ngen unknowns σx σz time
0 42744 0.0017 2.1654 32.19
1 97629 −0.0144 2.1480 231.69
2 233286 0.0012 2.1646 2112.60

0.000 2.164

Remarks:

• In the last case (third order Lagrangian elements and ngen = 2), the number of linear
iterations increased to 216 thus indicating a bad preconditioner. This is in contrast to all
other test cases where the number of linear iterations ranges between 8 and 15.

A Comparison of FEMLAB 2.3, FEMLAB 3.1i, and ANSYS

(A) We test the performance of different element types and different setting for the grid quality.

ANSYS The grids for the following test were generated by using different values for the pa-
rameter ESIZE. Since the domain has a very sharp edge, many warnings about elements
with small angles appeared. ANSYS provides the option of coarsening the mesh in or-
der to obtain better shaped elements. When trying meshes with and without coarsening
we found that without coarsening the target values were approximated more accurate than
with coarsening. Therefore, the following experiments were done without coarsening.

For the tetrahedral elements, the grid was generated using VMESHwith SMRTSIZE,1 and
different settings for ESIZE. For tetrahedral elements, VSWEEP was used instead.



3.4 A Nearly Incompressible Material 31

element ESIZE unknowns σx σz time
s72 0.68 2398 −0.9168 −2.4496 2.71

0.6 3398 −0.6926 −2.3044 3.56
s92 0.601 14023 −0.0248 −2.1755 6.78

0.52 21583 −0.0459 −2.1627 10.93
0.3856 49186 −0.0774 −2.1842 23.49
0.302 98697 −0.0625 −2.1815 50.68
0.25 172637 −0.0930 −2.2094 87.10
0.195 358188 −0.0717 −2.1548 206.99

s45 0.7 1234 −0.1915 −2.3280 0.96
s95 0.7 4276 −0.4318 −2.5433 3.18

0.000 2.164

Remarks:

• It was not possible to use smaller values of ESIZE for the hexahedral elements be-
cause the mesh generator crashed with “segmentation violation”.

• The ESIZE parameter of the second order Lagrangian element s92 was chosen such
that the number of degrees of freedom is comparable to the similar runs of FEMLAB
3.1i.

(B) This test tries to estimate the adaption procedure using the energy error indicator.

ANSYS For the present problem, it is only meaningful to test the tetrahedral element s92. The
hexahedral elements are not well-suited for the domain in question.
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target nsoln unknowns σx σz time
1% 1 3230 −0.1550 2.2002 1.90

2 2038 −0.0105 2.1614 3.21
0.1% 1 3230 −0.1550 2.2002 1.90

2 14379 −0.0026 2.1655 8.46
3 9041 0.0106 2.1614 13.55
4 11683 −0.0770 2.1640 19.87
5 7924 0.0626 2.1734 24.91
6 10223 −0.0175 2.1610 30.61
7 9473 −0.0047 2.1670 35.81
8 7957 −0.0083 2.1622 40.72
9 9117 −0.0029 2.1619 45.62

0.01% 1 3230 −0.1550 2.2002 1.90
2 17663 −0.0007 2.1661 10.13
3 128975 −0.0007 2.1646 99.26

0.02% 1 3230 −0.1550 2.2002 1.90
2 16331 −0.0007 2.1662 9.53
3 56949 −0.0007 2.1640 40.96
4 181849 −0.0037 2.1640 156.61

0.000 2.164

Remarks:

• For all tolerances, the required accuracy was not met. As can be seen in the case of a
tolerance of 0.1%, there is no convergence. For the smaller tolerances, we arrived at
the limit of 128000 nodes which our ANSYS version could handle.

FEMLAB 2.3 This test uses the mesh generation option normal and second order Lagrangian
elements

ngen unknowns σx σz time
0 59976 −0.2379 1.9708 68.73

1 (*) 179760 −0.1110 2.0593 282.61
0.000 2.164

Remarks:

• The grid generator seems to do a bad job. Even if the number of degrees of freedom
is relatively large, the results are not very accurate.

Let us try private mesh generation parameters:

hmaxfact = 1.5, hcutoff = 0.001, hgrad = 1.5, hcurve = 0.2
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ngen unknowns σx σz time
0 52134 −0.2103 1.9738 57.96
1 151992 −0.0999 2.0659 231.01

0.000 2.164

Higher order elements are impossible to use because of memory limitations.

4 Conclusions

General Observations

1. For structural mechanics problems, the geometric multigrid preconditioner is a very effi-
cient and robust preconditioner. This holds in both implementations (equilibrium equations
and principle of virtual work, respectively). If applicable, the equilibrium equations seem
to be slightly more robust.

2. With the standard settings, this preconditioner is “too good” in the sense that the number of
linear iterations (especially when used in the nonlinear problem) is very low. This wastes
both space (by having a too large coarse grid problem) and time (by requiring too many
reassembly steps).

3. Compared too ANSYS, the assembly process in FEMLAB 3.1i is rather slow.

4. The memory allocation strategies in FEMLAB 3.1i and ANSYS are very different. While
FEMLAB 3.1i allocates all its necessary data in random access memory (and thus relying
on a clever swap algorithm of the underlying operation system), ANSYS keeps a lot of
informations in external files on the hard disk thus trying to minimise the foot print in
random access memory. Consequently, FEMLAB 3.1i gains a lot in performance with
respect to wall clock time if plenty of memory is available.

5. Given the hardware used, the linear elements do not perform very well both in FEMLAB
3.1i and in ANSYS. The best compromise, in many cases, seems to be second order La-
grangian elements.

6. It is much more convenient and efficient to construct models in FEMLAB 3.1i than in
ANSYS.

7. The old MATLAB-based version of FEMLAB is clearly ruled out by the new version.
However, the adaption procedure in FEMLAB 2.3 is superior if memory restrictions allow
its usage. The main problem in FEMLAB 3.1i in this context is the lack of an energy error
estimator.
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The NAFEMS Benchmark LE10

1. This benchmark tests the approximation quality of the grid generator as well as the perfor-
mance of the linear solvers.

2. When using low order elements, mesh convergence can be observed.

3. It does not pay to used higher order elements. It seems to be more more important to
have a good resolution of the boundary. The best results were obtained using second order
Lagrangian elements.

4. The automatic mesh adaption procedure in FEMLAB 3.1i is misleading. It uses a criterion
including only displacements while the target values consists of normal stresses. Applica-
tion of the energy functional would be more adequate in this case.

5. In ANSYS, the automatic grid adaption bases on the energy error estimator. Convergence
can be observed. It must be noted, however, that the adaption procedure is restricted to
only a few elements and few analysis types.

6. For the same number of unknowns and comparable elements, ANSYS is often twice as
fast as FEMLAB 3.1i.

A Cantilever Beam Under Large Deformations

1. FEMLAB 3.1i could solve both the simple and the harder case without any problems.

2. In the present example it pays to use higher order elements.

3. Surprisingly,the use of the Broyden method did not decrease the computation time con-
siderably. Since there is no need to assemble the Jacobian of the system in that case, we
expected a much higher efficiency.

4. ANSYS provide rather large errors for the deformation u. The reason is unknown.

Natural Frequencies of a Piezoelectric Transducer

1. As expected in the case of eigenvalue problems, the use of higher order Lagrangian ele-
ments gives rise to very accurate and fast approximations. The geometry is so simple that
no errors arise from the geometry approximation.

2. The eigenvalue problem is the only one where the memory consumption of ANSYS is
larger than those of FEMLAB 3.1i.This may be due to the fact that is is not possible to use
an iterative solver together with the Lanczos algorithm.
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A Nearly Incompressible Material

1. This test case includes two challenges: approximation of the domain and the material
properties.

2. The behaviour of FEMLAB 3.1i does not differ essentially from that observed in the
NAFEMS LE10 benchmark problem. Therefore, the conclusions drawn there are valid
here, too.

3. It is not at all surprising that hexahedral elements are unusable for the present geometry.
We would have expected that ANSYS is more robust when handling such situations.

4. The adaption procedure of FEMLAB 3.1i gave satisfactory results at the cost of long com-
putation times. Surprisingly, the adaption procedure with the energy error estimator did a
bad job in FEMLAB 2.3. Contrary to that, ANSYS’ adaption procedure worked very well.

5 Summary

We have tested the structural mechanic toolbox version 3.1 and compared its performance to its
predecessor version 2.3 and a state-of-the-art tool ANSYS 9.0.

The structural mechanics toolbox has now reached a state that it is capable of solving even
three-dimensional problems on a machine with rather limited hardware ressources. It is definitely
far beyond its predecessor.

Especially for problems where higher order elements can be used efficiently, accurate ap-
proximations can be obtained.

A critical problem with our tests is the speed of the core numerics – with the exception of
the eigenvalue problems. The versatility, convenience of use, robustness, and generality of the
FEMLAB approach takes its toll.
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