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Abstract

In a previous paper, we developed a new algorithm for the consistent initialization of
general index-2 differential-algebraic equations arising within the method of lines for solving
partial differential equations. In the case of Hessenberg systems, the structural information
allows for a lot of simplifications thus allowing for much larger systems to be solved. The
crucial point consists of providing sparse projections by the use of sparse approximations
to the inverse of the mass matrix. We obtain almost linear computational complexity with
respect to the number of degrees of freedom.
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1 Introduction

In the present paper we are interested in the computation of consistent initial values for differential-
algebraic equations in Hessenberg form which arise within the method of lines:

M
�
x1 � t � x �1 � b1

�
x1 � x2 � t ��� 0 �

b2
�
x1 � t � � 0 � (1)

Since the unknown x2 appears only in non-differentiated form, it is clear that initial conditions
are meaningful for x1, only,

x1
�
t0 �	� x0

1 � (2)
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Because of the algebraic constraint (1) the initial condition must fulfill the condition b2
�
x0

1 � t0 � �
0. Although necessary, this condition is not sufficient to guarantee the solvability of the initial
value problem (1), (2). An initial value x0

1 is called consistent if there exist a solution for the prob-
lem (1), (2). Assuming that the mass matrix M

�
x0

1 � t0 � is invertible, we obtain by differentiating
the algebraic constraint in (1) the additional constraint

� b2 � x1

�
x0

1 � t0 � M � 1 � x0
1 � t0 � b1

�
x0

1 � x0
2 � t � � b2 � t

�
x0

1 � t0 �	� 0 �

If x0
1 is a consistent initial value, this equation must have a solution x0

2. The latter constraint is
called a hidden one because it does not explicitely appear in (1). The real number of degrees
of freedom for the initial value (2) can be determined only if all constraints (explicit as well as
hidden ones) are known. Therefore, it is a good idea to replace (2) by a requirement

Q
�
x1
�
t0 � � α � � 0 (3)

where Q is chosen to fix the degrees of freedom that are not already determined by the constraints.
The consistent initialization problem for (1) consists of computing

�
x0

1 � x0
2 � such that (1) possesses

a solution with x1
�
t0 � � x0

1, x2
�
t0 � � x0

2, and Q
�
x0

1
� α � � 0. For practical reasons, e.g. when

initializing an ode solver, it is often a good idea to have y1 � x �1
�
t0 � available, too.

There are a number of different approaches for solving the consistent initialization problem.
For an overview see, e.g. [2, 5]. In the present note, we will adapt the algorithm of [5] to the
present situation. In that paper, an algorithm for the consistent initialization of index-2 quasilin-
ear differential algebraic equations

A
�
x � t � x � � b

�
x � t � � 0

was developed. We will obtain a considerable speedup compared with [5]. Moreover, the com-
putational complexity of the resulting algorithm is almost linear with respect to the number of
degrees of freedom.

The paper is organized as follows. In Section 2, the algorithm is developed. We will derive
the necessary equations as well as algorithms for the sparse approximation of certain projectors.
The most often used canonical projection leads to a full matrix such that its use is impossible.
Another problem consists of providing sparse approximations to the inverse of the mass matrix. It
is symmetric and positive definite with a full inverse. It turns out that Chebychev approximations
can be used efficiently. In Section 3, we provide an example which illustrates the performance
of the method.

2 The Initialization Algorithm

In this note, we restrict ourselves to index-2 Hessenberg systems. That is, we require the matrices

M
�
x1 � t � and B21

�
x1 � t � M � 1 � x1 � t � B12

�
x1 � x2 � t � (4)
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to be nonsingular for all arguments
�
x1 � x2 � t � in a neighborhood of a solution (see [6, 4]). Here,

we used the notation Bi j : � ∂
∂x j

bi with i � j � 1 � 2. If there is no fear of ambiguity, we will omit
the arguments. If the condition (4) is fulfilled, the explicit and hidden constraints are given by

b2
�
x1 � t � � 0 �

B21
�
x1 � t � M � 1 � x1 � t � b1

�
x1 � x2 � t � � b2 � t

�
x1 � t � � 0 � (5)

In order to characterize the remaining degrees of freedom it is convenient to use a projection Q11.
Let Q11 be a projection onto im

�
M

� 1B12 � . Note that, in general, Q11 � Q11
�
x1 � x2 � t � . Then, for

a given α, a consistent initial value
�
x0

1 � x0
2 � is uniquely defined by [6, 2]

�
I � Q11

�
x0

1 � x0
2 � t0 � �

�
x0

1
� α � � 0 �

b2
�
x0

1 � t0 � � 0 �
B21

�
x0

1 � t � M
� 1 � x0

1 � t0 � b1
�
x0

1 � x0
2 � t0 � � b2 � t

�
x0

1 � t0 � � 0 �
(6)

The canonical projection of [6] amounts to using

Q11 � H � M
� 1B12

�
B21M

� 1B12 � � 1B21 �
Once a projection is available, it remains to solve the system (6). Taking into account the non-
linearity, some variant of Newton’s method must be used. The drawback is that second order
derivatives of b2 appear in the Jacobian. More severely, the projection Q11 has a complicated
dependence on the arguments and is expensive to compute such that its derivatives are hard to
provide. Therefore, we prefer to use a two-stage iteration according to the proposal in [3, 5]. In-
troduce y0

1 � M
� 1 � x0

1 � t0 � b1
�
x0

1 � x0
2 � t0 � . Then,

�
x1 � x2 � y1 � �

�
x0

1 � x0
2 � y0

1 � is a solution of the system

�
I � Q11

�
x0

1 � x0
2 � t0 � �

�
x1

� α � � 0 �
M
�
x0

1 � t0 � y1 � b1
�
x1 � x2 � t0 �	� 0 �

b2
�
x1 � t0 � � 0 �

B21
�
x0

1 � t0 � y1 � b2 � t
�
x1 � t0 � � 0 �

(7)

The Jacobian of (7) with respect to
�
x1 � x2 � y1 � is given by (omitting the arguments)

J �

���
�

I � Q11 0 0
B11 B12 M
B21 0 0
B21 � t 0 B21

����
�

The inverse of J is explicitely computable. More precisely, the solution of the linear system

J

�� x1

x2

y1

�� �

���
�

α
β
γ
δ

����
�
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is given by
x1 � α � M

� 1B12W
� 1 � γ � B21α � �

x2 � � W
� 1 � δ �

�
B21M

� 1B11
� B21 � t � x1

� B21M
� 1β � �

y1 � M
� 1 � β � B11x1

� B12x2 � �
W � B21M

� 1B12

(8)

provided that the system is solvable. Once LU decompositions of M and W are available, the
solutions in (8) can be easily evaluated. In order to compute the defect of an approximation
in (7), additionally a good representation for Q11 is necessary. The main problem consists in
computing sparse quantities. Since M

� 1 is a full matrix, so are W and the canonical projection.
Therefore, we will consider their sparse approximation in the following.

2.1 A Sparse Projection

We need to compute a projection Q11 onto im
�
M

� 1B12 � . Since W is nonsingular, T � M
� 1B12

has full rank. Assume that S is a generalized inverse of T . Then it is well-known that Q11 � T S
is a projection onto im

�
T � [7]. Therefore, we are looking for a generalized inverse S which is as

sparse as possible. There are certain possibilities available.� A straightforward approach consists in using the Moore-Penrose generalized inverse S �
T †. In that case, Q11 is the orthogonal projection onto im

�
T � . Because T has full rank,

it holds T † � �
T T T � � 1T T . This results nearly always in a fully occupied projection Q11

such that this alternative should not be used.� Assume that a QR decomposition of B12 is available: B12 � QR with an orthogonal matrix
Q and an upper triangular matrix R. Then it holds

T � M
� 1QR

� : M
� 1Q

�
R1

0 � �

Hence, a generalized inverse is given by S � �
R

� 1
1

...0 � QT M. This gives rise to the projection

Q11 � M
� 1Q

�
I 0
0 0 � QT M �

� Let us use an LU decomposition instead: PB12 � LU with a permutation matrix P, a lower
triangular factor L, and a square upper triangular matrix U . Then it holds

T � M
� 1PT LU

� : M
� 1PT

�
L1

L2 � U �
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A generalized inverse can be represented by S � U
� 1 � L � 1

1
...0 � PM. We obtain the projection

Q11 � M
� 1PT

�
I 0

L2L
� 1
1 0 � PM �

The projection Q11 is never used explicitely. It is only required that the projector-vector multi-
plication can be carried out. Therefore, it is sufficient to have a (sparse) LU decomposition of M.
Obviously, R

� 1 and L
� 1 need not be formed explicitly either.

2.2 A Sparse Inverse For a Mass Matrix

The most inconvenient part in (8) is doubtlessly the multiplication by W
� 1. In order to form W

the inverse mass matrix M
� 1 is needed. This inverse is a full matrix unless M is diagonal. The

latter is the case if a lumped mass matrix is used. This is far from being practical in our case.
On the other hand, motivated by mass lumping, we could be tempted to replace M in W by the
lumped mass matrix. Practical experiments showed that this approximation does not lead to a
convergent iteration. Therefore, we are looking for better sparse approximation to M

� 1. Since
M by itself is a sparse matrix, we try to construct matrix polynomials to approximate the inverse,

M
� 1 �

k

∑
i � 0

γkiM
i �

Fortunately, the mass matrix has a nice property. Let D denote the diagonal matrix with diagonal
entries from M. Wathens [8] proved that there are very sharp bounds on the eigenvalues of
the diagonally preconditioned matrix D

� 1M. He could show that, for triangular elements, the
maximal and minimal eigenvalue are independent of the mesh! Moreover, the condition number
is in the order of magnitude of 10.

Using this result, one can easily construct Chebychev polynomials which approximate the
inverse of M rather well.

3 An Example

The example is taken from [5]. It consists of the initialization problem for an incompressible
Navier-Stokes problem in two dimensions, discretized by finite elements with respect to space.
The computational domain is sketched in Figure 1. The left-hand border is the inflow region
while the flow leaves the region through the right-hand boundary. The hole (in fact, a cylinder)
is placed slightly unsymmetric such that the flow becomes turbulent.

The governing equations are

∂u
∂t

� η∇2u � ρ
�
u � ∇ � u � ∇p � 0 �

∇ � u � 0
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Figure 1: Computational domain for the second example

where u � �
u � v � denotes the velocity and p the pressure. The boundary conditions are given by

u
�
x � y � � 23 � 8y

�
0 � 41 � y � � v

�
x � y ��� 0 � on 0 � � 0 � 0 � 41 �

p
�
x � y �	� 0 � on 1 � 5 � � 0 � 0 � 41 �

u
�
x � y �	� v

�
x � y �	� 0 � on all other boundary points.

The initial guess for all functions is zero such that even the Dirichlet boundary conditions are not
fulfilled.

The problem was discretized by P1-iso-P2 finite elements using FEMLAB R
�

[1]. For these
elements, the eigenvalue bounds for the diagonally preconditioned mass matrix are λmin � 1 � 2
an λmax � 2 [8]. The tolerance requested was 10

� 10. The discretization leads to an autonomous
Hessenberg system with linear constraints and a linearly appearing x2 (which represents the
discretized pressure). The nonlinearity is quadratic with respect to x1. As a consequence of
these properties, all equations in (7) except for the differential equation are linear. Moreover, the
projections are independent of x1, x2. So we have one outer iteration, only.

In order to estimate the computational complexity, we used a model

tCPU � O
�
N p �

where N denotes the number of degrees of freedom and tCPU the CPU time. The order p is
estimated by a least squares approximation. Optimal computational complexity is linear one,
p � 1.

The computations were done on an AMD K7 700 machine running Linux.
As it was expected, we can observe a huge improvement in the performance of the method.

The most important observation is that the method attains almost linear computational complex-
ity. Even for relatively low order approximating polynomials, a fast convergence is achieved.
The low order makes W in (8) sparse.

The next experiment consists of the same example but in 3 space dimensions. The compu-
tational domain is given by Ω � �

0 � 1 � 5 ���
�
0 � 0 � 4 ���

�
0 � 0 � 4 �����

�
x � y � z �	�

�
x � 0 � 2 � 2 �

�
y � 0 � 2 � 2 �
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k
1613

(1022+591)
2063

(1314+749)
2585

(1654+931)
3563

(2298+1265)
5029

(3262+1767)
Order

lumped 2 � 18

�

2 2 � 75

�

2 3 � 46

�

2 5 � 17

�

2 8 � 20

�

2 1 � 2
0 divergent divergent divergent divergent divergent
1 divergent divergent divergent divergent divergent
2 6 � 43

�

12 7 � 98

�

12 9 � 73

�

12 15 � 66

�

13 divergent
3 4 � 64

�

8 6 � 26

�

8 7 � 68

�

8 11 � 27

�

8 15 � 66
�

8 1 � 1
4 4 � 51

�

7 5 � 69

�

6 7 � 47

�

7 11 � 08

�

7 17 � 70
�

7 1 � 2
5 4 � 43

�

6 5 � 86

�

6 7 � 33

�

6 11 � 55

�

6 18 � 21
�

6 1 � 2
6 4 � 34

�

5 5 � 81

�

5 7 � 48

�

5 11 � 78

�

5 18 � 99

�

5 1 � 3
7 4 � 26

�

4 5 � 92

�

4 7 � 51

�

4 12 � 07

�

4 20 � 46

�

4 1 � 4
8 4 � 66

�

4 6 � 45

�

4 8 � 30

�

4 13 � 48

�

4 22 � 02

�

4 1 � 4
9 5 � 06

�

4 7 � 05

�

4 9 � 25

�

4 14 � 83
�

4 25 � 34

�

4 1 � 4
10 5 � 55

�

4 7 � 77

�

4 10 � 17

�

4 16 � 44
�

4 27 � 74

�

4 1 � 4
∞ 5 � 23

�

2 8 � 14

�

2 12 � 15

�

2 23 � 04

�

2 47 � 77

�

2 1 � 9
[5] 32 � 25

�

2 59 � 43

�

2 105 � 83

�

2 245 � 81

�

2 639 � 67

�

2 2 � 6

Table 1: Results for the 2-dimensional incompressible Navier-Stokes example. Every column head contains the number of equa-
tions. In parenthesis, the number of differential equations and constraints is indicated. k denotes the order of the approximating
polynomial for M

� 1. k � 0 represents a simple diagonal approximation. k � ∞ is equivalent to using the exact inverse. As a
special case, we give comparative figures if the lumped mass matrix is used instead of the full one. The number before the slash is
the computation time in seconds while the number after the slash is the number of iterations. The last column contains an estimate
of the computational complexity
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�
z � 0 � 2 � 2 � 0 � 052 � . The boundary conditions are given by

u
�
x � y �	� 625yz

�
0 � 4 � y � � 0 � 4 � z � � v

�
x � y � z � � 0 � on 0 � � 0 � 0 � 4 ���

�
0 � 0 � 4 �

p
�
x � y � � 0 � on 1 � 5 � � 0 � 0 � 4 ���

�
0 � 0 � 4 �

u
�
x � y �	� v

�
x � y �	� 0 � on all other boundary points.

The problem was discretized using Lagrangian P2-P1 elements. Using the results of [8], es-
timates for the smallest and the largest eigenvalues of the diagonally scaled mass matrix were
computed. The result is 0 � 24 � λmin and λmax

� 4 � 3475. In this example, the number of differ-
ential equations is one order of magnitude larger than that of the algebraic constraints.

The present computations were carried out on one node of an IBM SP2 under AIX (Table 2).
In this example, the behavior of the approximation is much worse. The reason is the huge

difference in the dimensions of the differential variables and the algebraic variables. This gives
rise to a large amount of computations for forming the polynomial approximation for the inverse
mass matrix. On the other hand, W is no longer a really sparse matrix. As a conclusion, it would
be better to try to find sparse approximations for W immediately and not by approximating only
M

� 1.

4 Conclusions

In the present paper, we analyzed the behavior of a general method for computing consistent
initial values for index-2 differential-algebraic equations if this method is applied to Hessenberg
systems. The special structure of these systems allowed for a considerable simplification of the
algorithm. By introducing sparse approximations to the inverse mass matrix we were able to
construct an algorithm which showed almost linear complexity for discretized incompressible
Navier-Stokes problems. On the other hand, the algorithm loses some of its efficiency if the
number of constraints is considerably less than the number of differential equations.

In a future work, other approximations to the inverse mass matrix as well to the matrix W
which decides over the overall efficiency of the method will be considered.
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