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An immersed �nite element methodand its 
onvergen
e for ellipti
 interfa
e problemswith dis
ontinuous 
oe�
ients and singular sour
esMi
hael Hanke, Alexei LoubenetsSeptember 14, 2007Abstra
tThis paper is 
on
erned with the analysis of an immersed �nite element method for twodimensional ellipti
 interfa
e problems. The main idea of the method is to use spe
i�
allydesigned ma
ro elements in the vi
inity of the interfa
e, su
h that the jump 
onditionsare well approximated. In general, the resulting immersed �nite element spa
e is non-
onforming. It is shown that the presented method is se
ond order a

urate in L2 norm.The provided numeri
al results agree with the theoreti
al estimates.1 Introdu
tionNumeri
al solutions of se
ond order ellipti
 interfa
e problems are en
ountered in manyengineering and s
ienti�
 appli
ations, most 
ommonly related to �uid dynami
s or ma-terial s
ien
es. Su
h problems arise when two or more di�erent �uids (or materials) withdis
ontinuous or even singular physi
al properties are involved. In the majority of 
ases,the solution to these kind of problems is 
hara
terized by high degree of regularity in theseparate subregions o

upied by di�erent �uids (materials), but the global regularity ofthe solution is usually very low.In this arti
le, we will analyze the error of an immersed �nite element solution formedby �rst degree polynomials to the following two dimensional ellipti
 interfa
e problem.Denote by Ω ⊂ R
2 a bounded domain with the boundary ∂Ω that is su�
iently smoothsu
h that the divergen
e theorem applies and let Ω− ⊂ Ω be an open domain with a smooth
losed double-point free boundary Γ = ∂Ω− ⊂ Ω. Then the problem reads:

−∇ · (β∇u) = f in Ω−, −∇ · (β∇u) = f in Ω+ (1)with Diri
hlet boundary 
ondition
u = 0 on ∂Ω1



2 1 INTRODUCTIONand jump 
onditions a
ross the interfa
e Γ

[u] = 0,
[

β
∂u

∂n

]

= q, (2)Here, Ω+ = Ω\Ω
− and [v] is the jump of a quantity v a
ross the interfa
e Γ and n is theunit outward normal to Γ. For de�niteness, we take

[v] = v−(x, y) − v+(x, y), x ∈ Γwith v− and v+ denoting the restri
tions of v on Ω− and Ω+, respe
tively. For the sake ofsimpli
ity, we assume that the 
oe�
ient fun
tion β is positive and pie
ewise 
onstant, i.e.
β(x, y) = β− for x ∈ Ω−, β(x, y) = β+ for x ∈ Ω+.It is a well known fa
t ([2℄,[3℄) that in order for the standard Galerkin method to a
hievean optimal order of a

ura
y its elements are required, in some way, to be aligned withthe interfa
e. In the appli
ations where the interfa
e is moving and deforming with timethis 
onstraint proves to be quite restri
tive. In addition, in some appli
ations it mightbe advantageous to use uniform partitions, thus preventing the use of Galerkin methodsbased on body-�tted grids.In this paper we investigate an alternative approa
h, the immersed �nite elementmethod. This approa
h, originally proposed by Li in [5℄ ,[10℄ and extended in [7℄, [8℄uses a triangulation that is independent of the interfa
e. The interfa
e itself is representedby an additional stru
ture (t.ex. Lagrangian markers with a parametri
 des
ription ) thatis 
ontinuously updated using some information obtained from the uniform partition.The elements of the partition are separated in two 
lasses, the one that are interse
tedby the interfa
e and the rest. On the non-interse
ted elements we use the standard linearpolynomials. On the interse
ted elements we use a strategy similar to that of the Hsieh-Clough-To
her ma
ro-element [1℄. That is, ea
h interse
ted element is subdivided by theinterfa
e in two subdomains. Then, we 
onstru
t a C0 fun
tion 
onsisting of pie
ewiselinear polynomials su
h that the element has a total of 6 degrees of freedom. At theverti
es of the original element, we spe
ify the fun
tion values. The additional degrees offreedom are satis�ed by the approximation of the jump 
onditions. Sin
e this pro
edureinvolves subpartion of the original triangle, we 
an regard the interse
ted elements asma
ro-elements. The resulting immersed �nite element spa
e over the entire domain is, ingeneral, non-
onforming. At this point, we should note, that the approximation 
apabilityof the immersed �nite element spa
e in the 
ase of q = 0 has been earlier studied by Liand 
oauthors in [6℄.The main goal of this arti
le is to investigate the error of an immersed �nite elementsolution to the two dimensional ellipti
 interfa
e problem (1)-(2). This investigation shouldbe regarded as a 
riti
al step towards analyzing the error of the immersed �nite elementmethod applied to the Stokes and Navier-Stokes equations. Numeri
al results are alsopresented, showing good agreement with the theoreti
al results.



3Let us now introdu
e some notation that is going to be used in this paper. The followingstandard fun
tion spa
es will be employed:
Ck(Ω) = {u : Ω → R| u is k-times 
ontinuously di�erentiable},
Lp(Ω) = {u : Ω → R| u is Lebesgue measurable, ||u||Lp(Ω) <∞},

L∞(Ω) = {u : Ω → R| u is Lebesgue measurable, ||u||L∞(Ω) <∞}where k is a non-negative integer, p ≥ 1 is a real number and
||u||L∞(Ω) = ess sup

Ω
|u| and ||u||Lp(Ω) =

(

∫

Ω

|u|pdx
)1/p

, (1 ≤ p <∞).The support of a fun
tion φ : Ω → R is denoted bysupp(φ) := {x ∈ Ω|φ(x) 6= 0}where the overline denotes the 
losure. The fun
tions with 
ompa
t support that belongto Ck(Ω) are denoted by Ck
0 (Ω). In order to introdu
e the Sobolev spa
es we also de�ne

Dαu(x) =
∂|α|u(x)

∂xα1

1 · · · ∂xαd

d

= ∂α1

x1
· · · ∂αd

xd
u(x)for a given a multi-index α. Then, we de�ne the standard Sobolev spa
e of integer k ≥ 0as follows

Hk(Ω) = {u : Ω → R| ∀α : |α| ≤ k,Dαu ∈ L2(Ω)}with the norm given by
||u||k,Ω =

(

∑

|α|≤k

∫

Ω

|Dαu|2dx
)1/2and seminorm de�ned by

|u|k,Ω =
(

∑

|α|=k

∫

Ω

|Dαu|2dx
)1/2

.As usual, Hk
0 (Ω) denotes the 
losure of C∞

0 (Ω) in Hk(Ω). Finally, we denote
H̃k(Ω) = {u|u|Ωi ∈ Hk(Ωi), i = ±} (3)with the 
orresponding norm de�ned by

||u||2k,Ω =
(

∑

i=±

||u||2k,Ωi

)1/2 (4)and seminorm given by
|u|2k,Ω =

(

∑

i=±

|u|2k,Ωi

)1/2

. (5)We also use (·, ·)Ω and 〈·, ·〉Γ to denote the s
alar produ
ts in L2(Ω) and L2(Γ), respe
tively.The rest of the paper is organized in the following way. The weak formulation and theapproximate problem are presented in Se
tion 2. The main result of the arti
le and itsproof is given in Se
tion 3. This is followed by some numeri
al examples and 
on
lusions.



4 2 WEAK FORMULATION AND APPROXIMATE PROBLEM2 Weak formulation and approximate problemAs Γ and ∂Ω is of 
lass C2, there exists a fun
tion (
f. [9℄) ũ ∈ H1
0 (Ω) ∩ H̃2(Ω) su
h that

−∇ · (β∇ũ) = 0 in Ω, ũ = 0 on ∂Ω (6)together with the following jump 
onditions a
ross the interfa
e Γ

[ũ] = 0,
[

β
∂ũ

∂n

]

= qwhere q ∈ H2(Γ). The fun
tion ũ is 
hara
terized by the following variational formulation
a(ũ, v) = 〈q, v〉Γ, ∀v ∈ H1

0(Ω)where a(·, ·) : H1(Ω) ×H1(Ω) → R is the bilinear form de�ned as
a(u, v) =

∫

Ω

β(x, y)∇u · ∇vdxdy, ∀u, v ∈ H1(Ω).Let û = u−ũ, then the weak formulation to the interfa
e problem (1) reads : For f ∈ L2(Ω)�nd û ∈ H1
0 (Ω) su
h that

a(û, v) = (f, v)Ω + 〈q, v〉Γ − a(ũ, v), v ∈ H1
0 (Ω). (7)Obviously, û ful�lls the following jump 
onditions

[û] = 0,
[

β
∂û

∂n

]

= 0a
ross the interfa
e Γ. Note, that the last two terms in (7) are kept only for the sake ofthe dis
rete formulation of the problem. In addition, for the purposes of this arti
le, the
C2 regularity of the the domain boundary ∂Ω is unimportant and thus we will 
onsider apolygonial domain Ω.We introdu
e the triangulation Th = {T} of the domain Ω where h denotes the diameterfor its elements. This triangulation satis�es the following standard 
onditions:� Ω̄ = ∪T∈Th

T ,� If T1, T2 ∈ Th and T1 6= T2, then either T1 ∩ T2 = ∅ or T1 ∩ T2 is a 
ommon vertex oredge of both triangles,� The triangulation is assumed to be uniform i.e. there are two positive 
onstantsindependent of h su
h that
C0ρT ≤ h ≤ C1ρ̄Twhere ρT and ρ̄T stands for the diameters of ins
ribed and 
ir
ums
ribed 
ir
les,respe
tively,
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Γ h

r
Γ r

A

B

Z

3Z

Z21Figure 1: The ar
 segment Γr and its linear approximation Γr
h.together with the following 
ompatibility 
onditions with the interfa
e Γ:� If Γ meets a triangle T at two points, then these points must be on di�erent edgesof this triangle,� If Γ meets one edge of a triangle at more than two points, then this edge is a part of

Γ.Denote by T ′
h the set of all elements in the triangulation Th that are interse
ted bythe interfa
e Γ. By the 
onstru
tion, the interfa
e Γ 
an meet the triangle T at most attwo edges. Denote these interse
tion points by A = (xA, yA) and B = (xB, yB) and use

Z1 = (x1, y1), Z2 = (x2, y2) and Z3 = (x3, y3) to denote the verti
es of the triangle. Let
mh denote the total number of the interse
ted triangles. Then, we represent the interfa
e
Γ and its pie
ewise linear approximation Γh as

Γ = ∪mh

r=1Γ
r and Γh = ∪mh

r=1Γ
r
hwhere the ar
 segment Γr = Γ ∩ T r for some T r ∈ T ′

h and Γr
h = AB is the linear approxi-mation of Γr, see Fig. 1.Ea
h T ∈ T ′

h is subdivided by the 
orresponding ar
 segment into two subdomains
T̂+ = T ∩ Ω+ and T̂− = T ∩ Ω−see Fig. 2(a). In addition, denote by T− and T+ the subdomains that are formed by thepartition of T by the line approximation of the 
orresponding ar
 segment see Fig. 2(b).For the future 
onvenien
e, we also introdu
e the following domains

T−∗ = T− ∩ T̂+ and T+∗ = T+ ∩ T̂−and 
urve segments
Γr,− = Γr ∩ T− and Γr,+ = Γr ∩ T+see Figures 2 and 3, 
orrespondingly.Introdu
e a lo
al 
oordinates xr

1, x
r
2 for ea
h Γr. We take the xr

2-axis along Γr
h and

xr
1-axis in the normal dire
tion to Γr

h, see Fig. 3. Then the ar
 Γr 
an be expressed in theparametri
 form
Γr = {(xr

1, x
r
2); xr

1 = ψr(xr
2), xr

2 ∈ [0, sr
h]}



6 2 WEAK FORMULATION AND APPROXIMATE PROBLEM
T

T

Τ
 ^ + T

 ^ −

+*

−*(a) Subdomains T̂
+ and

T̂
− are formed by Γ

r.
T

T

Τ+ T−

+*

−*(b) Subdomains T
+ and

T
− are formed by Γ

r

h
.Figure 2: The partition of the interfa
e element T by the ar
 segment Γr and the linesegment Γr

h. The shaded domains 
orrespond to T+∗ and T−∗, respe
tively.
Γ

Γ r,+

r,−X

X

1

2

r

r

Figure 3: Lo
al 
oordinates for ar
 segment Γr.where sr
h is the length of Γr

h. Due to the fa
t that the interfa
e Γ is of 
lass C2, we have
ψr ∈ C2([0, sr

h]) for r = 1, .., mh. It was shown in [4℄ that
|ψr(xr

2)| ≤ C(sr
h)

2 ≤ Ch2, ∀xr
2 ∈ [0, sr

h], (8)
∣

∣

∣

∂

∂xr
2

ψr(xr
2)

∣

∣

∣
≤ Ch, ∀xr

2 ∈ [0, sr
h]. (9)Similar to (3) denote by H̃2(T ) = {u|u|T̂ i ∈ Hk(T̂ i), i = ±} and let M(T ) =

C(T ) ∩ H̃2(T ). Note, that on ea
h interfa
e triangle the solution u = û+ ũ to (7) forms aset of fun
tions that belong to M(T ) and satis�es










ui = u|T i ∈ H2(T̂ i), i = ±,

u+(A) = u−(A), u+(B) = u−(B),

QΓr(u) :=
∫

Γr(β
−∇u− − β+∇u+) · nΓrds =

∫

Γr qdswhere nΓr is the unit normal ve
tor to the ar
 segment Γr. We are now ready to 
onsiderthe 
onstru
tion of the �nite element fun
tions on an interfa
e triangle. The strategy is touse the partition of T ∈ T ′
h generated by the approximation of the interfa
e Γh in order to



7approximate the set M(T ). That is, for ea
h interfa
e triangle we form a �nite elementfun
tion by two polynomials de�ned separately on T− and T+

φ(x, y) =

{

φ−(x, y) = a1x+ a2y + a3, (x, y) ∈ T−,

φ+(x, y) = b1x+ b2y + b3, (x, y) ∈ T+.
(10)Then for all T ∈ T ′

h de�ne a linear spa
e
Sh(T ) =

{

φ is de�ned by (10),

φ−(A) = φ+(A), φ−(B) = φ+(B),that 
onsists of the the pie
ewise linear fun
tions satisfying the regularity 
onditions along
Γh. De�ne

QΓr
h
(φ) :=

∫

Γr
h

(β−
h ∇φ

− − β+
h ∇φ

+) · nΓr
h
dswhere nΓr

h
is the unit normal ve
tor to line segment Γr

h and βh stands for the approximationof the 
oe�
ient fun
tion β(x, y) that is equal to β on the non-interfa
e elements and isde�ned as follows
βh(x, y) =

{

β−, ∀ (x, y) ∈ T−,

β+, ∀ (x, y) ∈ T+,for any T ∈ T ′
h . Note, that βh is just a restri
tion of the pie
ewise 
onstant fun
tion. Wenow denote by S0

h(T ) the following linear spa
e
S0

h(T ) = {φ ∈ Sh(T )|, QΓr
h
(φ) = 0}and refer to it as an immersed interfa
e spa
es on the interfa
e triangle T . Then, for all

u ∈ M(T ), we denote by Ihu ∈ Sh(T ) its interpolant as follows
Ih : M(T ) → Sh(T )that satis�es the standard interpolation 
onditions

Ihu(Zi) = u(Zi), 1 ≤ i ≤ 3, (11)and the interpolation 
ondition on QΓr
h
(φ)

QΓr
h
(Ihu) = QΓr(u). (12)We now use the partition Th to de�ne an immersed �nite element spa
e Sh(Ω) and S0

h(Ω)on the whole of Ω. Namely,
Sh(Ω) =

{

φ ∈ Sh(T ), ∀T ∈ T ′
h ,

φ standard linear fun
tion , ∀T ∈ Th\T
′

h ,

S0
h(Ω) =

{

φ ∈ S0
h(T ), ∀T ∈ T ′

h ,

φ standard linear fun
tion , ∀T ∈ Th\T
′

h .



8 2 WEAK FORMULATION AND APPROXIMATE PROBLEMSin
e neither Sh(Ω) nor S0
h(Ω) are subspa
es of H1

0 (Ω), the resulting �nite element methodis non-
onforming. The possible dis
ontinuities of the fun
tions in ∈ Sh(Ω) and ∈ S0
h(Ω)are lo
ated along the edges of T ∈ T ′

h and the a
ross the interfa
e Γ. However, note thata
ross the pie
ewise linear approximation Γh these fun
tions are 
ontinuous. We use S0
h,0to denote the subspa
e of S0

h with its fun
tions vanishing on the boundary ∂Ω. For thelater analysis, we also introdu
e the following spa
e
X = H1

0 (Ω) + Sh(Ω).Corresponding to the bilinear form a(·, ·) de�ned previously, we introdu
e its dis
reteform ah(·, ·) : X× X → R

ah(u, v) =
∑

T∈Th

∫

T

βh∇u · ∇vdxdy, ∀u, v ∈ X. (13)Obviously, if u, v ∈ H1
0 (Ω), ah(u, v) = a(u, v). Furthermore, with a given partition Th and

m ≥ 1 we de�ne the dis
rete energy norm
||u||h :=

√

ah(u, u),together with the following dis
rete norms
||u||m,T := ||u||m,T+∩T̂+ + ||u||m,T−∩T̂− + ||u||m,T+∗ + ||u||m,T−∗,

||u||m,h :=

√

∑

T∈Th

||u||2m,T .with the seminorm | · |m,T de�ned in the similar way. These norms are a 
ommon quantitiesused in the error estimation of non-
onforming �nite element methods. It is obvious that
||u||h ≤ C

√

∑

T∈Th

|u|21,T ≤ C||u||1,h (14)together with
|ah(u, v)| ≤ C||u||h||v||h and ah(u, u) ≥ C||u||2h.We are now in a position to de�ne the �nite element approximation to the interfa
e problem(1): Find ûh ∈ S0

h,0(Ω) su
h that
ah(ûh, vh) = (f, vh)Ω + 〈qh, vh〉Γh

− ah(ũh, vh), ∀vh ∈ S0
h,0(Ω) (15)where ũh ∈ Sh(Ω) is an appropriately 
hosen approximation of ũ and qh is the linearrestri
tion of the interfa
e fun
tion q on Γh, su
h that on ea
h segment Γr

h of length sr
h, qhis given by

qh(0, x
r
2) =

xr
2

sr
h

q(0, sr
h) +

sr
h − xr

2

sr
h

q(0, 0), ∀xr
2 ∈ [0, sr

h]. (16)



93 Theoreti
al AnalysisIn this se
tion we prove that the solution obtained from the immersed interfa
e �niteelement method with the linear basis fun
tions is se
ond order a

urate in L2 norm. Thestrategy of the proof resembles the idea behind the proof in the 
ase of smooth solutions[1℄: � determine the order of approximation of the interpolant of the solution in the given�nite element spa
e;� use Strang's lemma for the non-
onforming �nite element methods to �nd the orderof the 
onvergen
e in the dis
rete energy norm;� apply generalized Aubin-Nits
he's lemma to gain an L2(Ω) error estimate.The 
riti
al point is that, in the present 
ase, the solution does not ful�ll the ne
essaryregularity assumptions. Therefore, it will be 
ru
ial to use the details of the 
onstru
tion ofour �nite element spa
e. Note, that throughout the paper C denotes some generi
 
onstantthat is independent of the �nite element mesh parameter h.3.1 An interpolation resultWe now dis
uss the approximation 
apability of the linear spa
e Sh(T ) when T ∈ T ′
h . Let

Mext(T ) = M(T ) + Sh(T ) and endow this spa
e the norm
|||u|||2,T = |u|2,T +

3
∑

i=1

|u(Zi)| +

{

|QΓr(u)|, u ∈ M(T )

|QΓr
h
(u)|, u ∈ Sh(T )

, ∀u ∈ Mext(T )where Zi = (xi, yi) are the vertex 
oordinates of the interfa
e triangle.Lemma 3.1. The norms ||| · |||2,T and || · ||2,T are equivalent on Mext(T ).Proof. By the imbedding and the tra
e theorems of Sobolev spa
es
|||u|||2,T ≤ C||u||2,T .Suppose now that the 
onverse statement

||u||2,T ≤ C|||u|||2,T , for ∀u ∈ Mext(T )fails for every positive number C. Then there exists a sequen
e {uk} ∈ Mext(T ) su
h that
||uk||2,T = 1, |||uk|||2,T ≤

1

k
.Invoking the 
ompa
tness of the imbedding of H̃2(T ) in H̃1(T ), we may further assumethat this sequen
e 
onverges in || · ||1,T . Sin
e

||ul − um||
2
2,T ≤ ||ul − um||

2
1,T + (|ul|2,T + |um|2,T )2,



10 3 THEORETICAL ANALYSISwe 
on
lude that {uk} is a Cau
hy sequen
e in Mext(T ) with respe
t to the || · ||2,T norm.Thus, there exists a u∗ ∈ Mext(T ) su
h that limk→∞ uk = u∗. By 
ontinuity 
onsiderationswe have
||u∗||2,T = 1, |||u∗|||2,T = 0whi
h is a 
ontradi
tion.Lemma 3.2. Let T be an interfa
e triangle and the interpolation operator Ih : M(T ) →

Sh(T ) de�ned by (11) and (12). Then we have
||u− Ihu||2,T ≤ C|u|2,T , ∀u ∈ Mext(T ).Proof. By Lemma 3.1

||u− Ihu||2,T ≤ C|||u− Iu|||2,T = C
(

|u− Iu|2,T

+
3

∑

i=1

|(u− Iu)(Zi)| + |QΓr(u) −QΓr
h
(Ihu)|

)

. (17)Due to the de�nition of QΓr(Ihu) and the linearity of the interpolant we get
||u− Iu||2,T ≤ C|u− Iu|2,T ≤ C|u|2,Twhere we have also used the fa
t that the interpolant Ihu 
oin
ides with u at the interpo-lation points Zi = (xi, yi).Lemma 3.3. Let Σ and Σ̂ be a�ne equivalent, i.e. there exists a bije
tive a�ne mapping

F : Σ̂ → Σ, F ξ̂ = ξ0 +Bξ̂with a nonsingular transformation matrix B. If v ∈ H̃m(Σ), then v̂ := v ◦ F ∈ H̃m(Σ̂),and there exists a 
onstant C su
h that
|v|k,Σ ≤ C||B||−k| detB|1/2|v̂|k,Σ̂, (18)
|v̂|k,Σ̂ ≤ C||B||k| detB|−1/2|v|k,Σ̂. (19)Proof. See [1℄ for the proof and further details on the a�ne transformations.Consider now a fun
tion u satisfying

u ∈ C(Ω), u|Ωi ∈ H2(Ωi), i = ±together with
(β−∇u− − β+∇u+) · n = qa
ross the interfa
e Γ. Then, the main approximation result of this 
hapter reads



3.2 Convergen
e in dis
rete energy norm 11Theorem 3.4. Under the assumptions of Lemma 3.2 and for the linear interpolation op-erator Ih : M(T ) → Sh(T ) we have
||u− Ihu||0,h + h||u− Ihu||1,h ≤ Ch2||u||2,Ω, ∀u ∈ M(T ).Proof. It su�
es to proof only the following inequality

||u− Ihu||l,T ≤ Ch2−l|u|2,T , l = 0, 1.Apply Lemma 3.2 on the referen
e element Tref and use the transformation formulas fromLemma 3.3 in both dire
tions to obtain
|u− Ihu|l,T ≤ C||B||−l| detB|1/2|uref − Ihuref |l,Tref

≤ C||B||−l| detB|1/2|uref |2,Tref
≤ C||B||−l| detB|1/2||B||2| detB|−1/2|u|2,T

≤ C(||B||||B−1||l)||B||2−l|u|2,T . (20)By the shape regularity we get
|u− Ihu|l,T ≤ Ch2−l|u|2,T .Finally, squaring and summing over l establishes the assertion.3.2 Convergen
e in dis
rete energy normThe main result of this se
tion is stated in the following theorem:Theorem 3.5. Assume that the solution û of the interfa
e problem (7) is in C(Ω)∩H̃2(Ω).Then the immersed �nite element solution ûh given by (15) has the following estimate fora 
onstant C > 0

||û− ûh||h ≤ C
[

h(|û|2,h + |ũ|2,h) + h3/2|q|2,Γ

]

.where ũ is the solution to (6).Before proving Theorem 3.5, we �rst show several additional results that we will require.For w in C(Ω) ∩ H̃2(Ω) and vh ∈ S0
h,0(Ω) we 
an write the bilinear form (13) as follows

ah(w, vh) =
∑

T∈Th\T
′

h

β∇w · ∇vhdxdy

+
∑

T∈T ′

h

(

∫

T−

β−∇w · ∇v−h dxdy +

∫

T+

β+∇w · ∇v+
h dxdy

) (21)where vi
h = vh|T i for i = ±. Note, that the se
ond sum represents the bilinear form on theinterfa
e triangles T ∈ T ′

h . Without loss of generality, 
onsider a typi
al interfa
e element,



12 3 THEORETICAL ANALYSISsee Figures 1 and 2. Then
ah(w, vh) =

∑

T∈Th\T
′

h

β∇w · ∇vhdxdy+

∑

T∈T ′

h

(

∫

T−\T−∗

β−∇w− · ∇v−h dxdy +

∫

T+\T+∗

β+∇w+ · ∇v+
h dxdy

+

∫

T−∗

β−∇w+ · ∇v−h dxdy +

∫

T+∗

β+∇w− · ∇v+
h dxdy

) (22)where wi = w|Ωi for i = ±. Add and subtra
t
∫

T−∗

β+∇w+ · ∇v+
h dxdy and ∫

T+∗

β−∇w− · ∇v−h dxdyto obtain
∫

T−

β−∇w · ∇v−h dxdy +

∫

T+

β+∇w · ∇v+
h dxdy

=

∫

T̂−

β−∇w− · ∇v−h dxdy +

∫

T̂+

β+∇w+ · ∇v+
h dxdy

+

∫

T−∗

∇w+ · (β−∇v−h − β+∇v+
h )dxdy +

∫

T+∗

∇w− · (β+∇v+
h − β−∇v−h )dxdy (23)for any T ∈ T ′

h . Note, that v+
h on T−∗ and v−h on T+∗ should be understood as generalextension of v+

h from T+ and v−h from T−, 
orrespondingly. Integrating by parts the termsover T̂+ and T̂− we get
∫

T−

β−
h ∇w · ∇v−h dxdy +

∫

T+

β+
h ∇w · ∇v+

h dxdy

= −

∫

T

∇ · (β∇w)vhdxdy +

∫

∂T̂+

β+
( ∂w

∂n+

)

v+
h ds+

∫

∂T̂−

β−
( ∂w

∂n−

)

v−h ds

+

∫

T−∗

∇w+ · (β−∇v−h − β+∇v+
h )dxdy +

∫

T+∗

∇w− · (β+∇v+
h − β−∇v−h )dxdy (24)where n− and n+ are the outward normal ve
tors to T−∗ and T+∗ 
orrespondingly. Insert



3.2 Convergen
e in dis
rete energy norm 13(24) in (21) and Take n = n− = −n+ and sum over T ∈ Th to obtain
−

∫

Ω

∇ · (β∇w)vhdxdy +
∑

ej∈E ′

h

(

∫

e−j

[[

β
∂w

∂n
vh

]]

ds+

∫

e+

j

[[

β
∂w

∂n
vh

]]

ds
)

+
∑

Γr∈Γ

∫

Γr

[

β
∂w

∂n
vh

]

ds+
∑

T−∗∈T ′

h

∫

T−∗

∇w+ · (β−∇v−h − β+∇v+
h )dxdy

+
∑

T+∗∈T ′

h

∫

T+∗

∇w− · (β+∇v+
h − β−∇v−h )dxdy

= −

∫

Ω

∇ · (β∇w)vhdxdy +
∑

ei∈E ′

h

((I)1 + (I)2)

+
∑

Γr∈Γ

(I)3 +
∑

T−∗∈T ′

h

(I)4 +
∑

T+∗∈T ′

h

(I)5. (25)Here E ′
h is the set of all edges ej that meet the interfa
e Γ between their verti
es and [[·]]denotes the jump between two neighboring elements along the 
ommon edge e.

T+

−

T

T

T

+

−

j

j+1

j+1

j

Γ

A

e+

e

j

j
−+Figure 4: An example of two adja
ent interfa
e triangles.Note, that the �rst sum in (25) represents the 
onsisten
y error a
ross the neighboringedges of the interfa
e triangles and the se
ond summation represents the error a
ross theinterfa
e itself, see the sket
h in Figure 4. The 
hoi
e of normal dire
tion in the �rstsummation does not a�e
t the results. The strategy now is to take w = ũ and addressea
h of the integral terms in (25) separately. Note, that in this 
ase , the �rst integral termvanishes due to (6).Lemma 3.6. Assume that the solution ũ of the interfa
e problem (6) is in C(Ω)∩ H̃2(Ω).Then there exists a 
onstant C su
h that for any vh ∈ S0

h,0(Ω) we have
|

∑

ej∈E ′

h

((I)1 + (I)2)| ≤ Ch|ũ|2,h||vh||h. (26)



14 3 THEORETICAL ANALYSISProof. Assume that e−j is the 
ommon edge between Tj and Tj+1 elements. Sin
e [β ∂ũ
∂n

] = 0in (Tj ∪ Tj+1) ∩ Ω− and (Tj ∪ Tj+1) ∩ Ω+ we have
(I)1 =

∫

e−j

β
∂ũ

∂n
[[vh]]ds.We also note that that for a 
ommon vertex A of T−

j and T−
j+1 (see Figure 4) we have

v−h,j(A) = v−h,j+1(A).Thus
∣

∣

∣

∫

e−j

β−∂ũ

∂n
[[vh]]ds

∣

∣

∣
≤

∣

∣

∣

∫

e−j

β−∂ũ

∂n
(v−h,j+1 − v−h,j+1(A))ds

∣

∣

∣
+

∣

∣

∣

∫

e−j

β−∂ũ

∂n
(v−h,j(A) − v−h,j)ds

∣

∣

∣
.Denote by Xs = (x(s), y(s)) some point on e−j , then the di�eren
e v−h,j+1(Xs) − v−h,j+1(A)
an be written in the following form

v−h,j+1(Xs) − v−h,j+1(A) =

∫

AXs

∂v−h,j+1

∂t
dηwhere ∂vh,j+1

∂t
is the tangential derivative along AXs. Then, by Cau
hy-S
hwartz inequalitytogether with the tra
e theorem we get

∣

∣

∣

∫

e−j

β−∂ũ

∂n
(v−h,j+1 − v−h,j+1(A))ds

∣

∣

∣
≤ β−h

(

∫

e−j

∣

∣

∣

∂v−h,j+1

∂t

∣

∣

∣

2

ds
)1/2(

∫

e−j

∣

∣

∣

∂ũ

∂n

∣

∣

∣

2

ds
)1/2

≤ Cβ−h||∇v−h,j+1||1,T−

j+1
||∇ũ||1,T−

j+1
.Finally, using the fa
t that v−h,j+1 is a linear polynomial we arrive at

∣

∣

∣

∫

e−j

β−∂ũ

∂n
(v−h,j+1 − v−h,j+1(A))ds

∣

∣

∣
≤ Cβ−h|v−h,j+1|1,T−

j+1
|ũ|2,T−

j+1
.Similarly, we obtain

∣

∣

∣

∫

e−j

β−∂ũ

∂n
(v−h,j(A) − v−h,j)ds

∣

∣

∣
≤ Cβ−h|v−h,j|1,T−

j
|ũ|2,T−

jthat 
ombined with the previous estimate gives us
∣

∣

∣
(I)1

∣

∣

∣
≤ Cβ−h

(

|vh,j+1|1,T−

j+1
|ũ|2,T−

j+1
+ |vh,j|1,T−

j
|ũ|2,T−

j

)

. (27)By the same argument, we arrive at
∣

∣

∣
(I)2

∣

∣

∣
≤ Cβ+h

(

|vh,j+1|1,T+

j+1
|ũ|2,T+

j+1
+ |vh,j|1,T+

j
|ũ|2,T+

j

)

. (28)Then, the result of the lemma is obtained by inserting (27) and (28) in the left hand sideof (26), using the triangular inequality and summing over the edges ej .



3.2 Convergen
e in dis
rete energy norm 15We now 
onsider the 
onsisten
y error a
ross the interfa
e.Lemma 3.7. Under the assumptions of Lemma 3.6 we have
∣

∣

∣

∑

Γr∈Γ

(

∫

Γr

[

β
∂ũ

∂n
vh

]

ds− 〈q, vh〉Γr

)
∣

∣

∣
≤ Chmax(β+, β−)|ũ|2,h||vh||hwhere

〈q, vh〉Γr =

∫

Γr,+

qv+
h ds+

∫

Γr,−

qv−h ds.Proof. Consider
(I)3 =

∫

Γr

[

β
∂ũ

∂n
vh

]

ds =

∫

Γr,+

(

β−∂ũ
−

∂n
v−h ds− β+∂ũ

+

∂n
v+

h

)

ds

+

∫

Γr,−

(

β−∂ũ
−

∂n
v−h ds− β+∂ũ

+

∂n
v+

h

)

ds.Add and subtra
t
∫

Γr,−

β+∂ũ
+

∂n
v−h ds and ∫

Γr,+

β−∂ũ
−

∂n
v+

h dsto obtain
(I)3 =

∫

Γr,−

(

β−∂ũ
−

∂n
− β+∂ũ

+

∂n

)

v−h ds+

∫

Γr,+

(

β−∂ũ
−

∂n
− β+∂ũ

+

∂n

)

v+
h ds

+

∫

Γr,−

β+∂ũ
+

∂n
(v−h − v+

h )ds+

∫

Γr,+

β−∂ũ
−

∂n
(v−h − v+

h )ds

= 〈q, vh〉Γr +

∫

Γr,−

β+∂ũ
+

∂n
(v−h − v+

h )ds+

∫

Γr,+

β−∂ũ
−

∂n
(v−h − v+

h )ds.We now pro
eed in the similar fashion as we did in (27). That is, assume that the interfa
esegment Γr meets the edge of the interfa
e triangle T r at a point E. Then by 
onstru
tionof the fun
tions in S0
h,0 we have

v+
h (E) = v−h (E).Therefore

∫

Γr,−

β+∂ũ
+

∂n
(v−h − v+

h )ds =

∫

Γr,−

β+∂ũ
+

∂n

(

v−h − v−h (E)
)

ds+

∫

Γr,−

β+∂ũ
+

∂n

(

v+
h (E) − v+

h

)

ds

=

∫

Γr,−

β+∂ũ
+

∂n

(

∫

ÊXs

∂v+
h

∂t
dη

)

ds+

∫

Γr,−

β+∂ũ
+

∂n

(

∫

X̂sE

∂v−h
∂t

dη
)

ds



16 3 THEORETICAL ANALYSISfor some point Xs = (x(s), y(s)) on Γr,−. Repeating the arguments of (27) and (28) weobtain
∣

∣

∣

∫

Γr,−

β+∂ũ
+

∂n

(

∫

ÊXs

∂v+
h

∂t
dη

)

ds
∣

∣

∣
≤ Cβ+h|v+

h |1,T−∗|ũ+|2,T−∗and
∣

∣

∣

∫

Γr,−

β+∂ũ
+

∂n

(

∫

ÊXs

∂v−h
∂t

dη
)

ds
∣

∣

∣
≤ Cβ+h|v−h |1,T−∗|ũ+|2,T−∗Thus

∣

∣

∣

∫

Γr,−

β+∂ũ
+

∂n
(v−h − v+

h )ds
∣

∣

∣
≤ Cβ+h|ũ+|2,T−∗(|v−h |1,T−∗ + |v+

h |1,T−∗)

≤ Cβ+h|ũ+|2,T̂+ ||vh||h,T . (29)Similar, we obtain
∣

∣

∣

∫

Γr,+

β−∂ũ
−

∂n
(v−h − v+

h )ds
∣

∣

∣
≤ Cβ−h|ũ−|2,T+∗(|v−h |1,T+∗ + |v+

h |1,T+∗)

≤ Cβ−h|ũ−|2,T̂−||vh||h,T . (30)Finally, the result of the lemma is obtained by summing over the interfa
e ar
s Γr.Lemma 3.8. Under the assumptions of Lemma 3.6 we have
∣

∣

∣

∑

T∈T ′

h

(

∫

T−∗

∇ũ+ · (β−∇v−h − β+∇v+
h )dxdy +

∫

T+∗

∇ũ− · (β+∇v+
h − β−∇v−h )dxdy

)
∣

∣

∣

≤ Ch|ũ|2,h||vh||h.Proof. By Greens theorem we get
∫

T−∗

∇ũ+ · (β−∇v−h − β+∇v+
h )dxdy = −

∫

∂T−∗

ũ+(β−∂v
−
h

∂n
− β+∂v

+
h

∂n
)ds

= −
(

∫

Γr,−

ũ+(β−∂v
−
h

∂n
− β+∂v

+
h

∂n
)ds+

∫

Γr,−

h

ũ+(β−∂v
−
h

∂n
− β+∂v

+
h

∂n
)ds

)where Γr,−
h is a linear approximation of Γr,−. Following the same arguments as in (29) weobtain

∣

∣

∣

∫

T−∗

∇ũ+ · (β−∇v−h − β+∇v+
h )dxdy

∣

∣

∣

≤ Chmax(β−, β+)|ũ+|2,T−∗(|v−h |1,T+∗ + |v+
h |1,T+∗)

≤ Chmax(β−, β+)|ũ+|2,T̂−||vh||h,T .Similar
∣

∣

∣

∫

T+∗

∇ũ− · (β+∇v+
h − β−∇v−h )dxdy

∣

∣

∣
≤ Chmax(β−, β+)|ũ−|2,T̂+ ||vh||h,T .Summing over T ∈ T ′

h establishes the 
laim.



3.2 Convergen
e in dis
rete energy norm 17Theorem 3.9. Assume that the solution ũ of the interfa
e problem (6) is in C(Ω)∩H̃2(Ω).Then there exists a 
onstant C su
h that for any vh ∈ S0
h,0(Ω) we have

|ah(ũ, vh) − 〈q, vh〉Γ| ≤ Ch|ũ|2,h||vh||h.Proof. The result is obtained by representing the bilinear form as in (25) and using Lemmas3.6, 3.7 and 3.8.Theorem 3.10. Assume that the solution û of the interfa
e problem (7) is in H1
0 (Ω) ∩

H̃2(Ω). Then there exists a 
onstant C su
h that for any vh ∈ S0
h,0(Ω) we have

|ah(û, vh) − (f, vh)Ω| ≤ Ch|û|2,h||vh||h.Proof. Similar to Theorem 3.9 we use the representation (25) of the dis
rete bilinear form.Due to (1) the �rst integral terms in (25) will 
an
el out with (f, vh)Ω. Then the assertionof the theorem is established by applying Lemmas 3.6, 3.7 and 3.8.Lemma 3.11. Let q ∈ H2(Γ) and qh be its a pie
ewise-linear approximation given by (16).Then we have
|〈qh, vh〉Γh

− 〈q, vh〉Γ| ≤ Ch3/2|q|2,Γ||vh||h, ∀vh ∈ S0
h,0.Proof. For the sake of simpli
ity, we will prove the lemma for the transformed problem inthe lo
al (xr

1, x
r
2) 
oordinates. This slight abuse of notation will not a�e
t the results. Thearguments used in this proof are similar to those used in [3℄.For r = 1, .., mh we have

∫

Γr

qvhds−

∫

Γr
h

qhvhds =

∫ sr
h

0

q(ψr(xr
2), x

r
2)vh(ψ

r(xr
2), x

r
2)

√

1 + |
d

dxr
2

ψr(xr
2)|

2dxr
2 −

∫ sr
h

0

qh(0, x
r
2)vh(0, x

r
2)dx

r
2 (31)By adding and subtra
ting

∫ sr
h

0

q(ψ(xr
2), x

r
2)vh(0, x

r
2)

√

1 + |
d

dxr
2

ψr(xr
2)|

2dxr
2and

∫ sr
h

0

qh(0, x
r
2)vh(0, x

r
2)

√

1 + |
d

dxr
2

ψr(xr
2)|

2dxr
2



18 3 THEORETICAL ANALYSISterms we 
an rewrite (31) as follows
∫

Γr

qvhds−

∫

Γr
h

qhvhds =

∫ sr
h

0

q(ψr(xr
2), x

r
2)

(

vh(ψ
r(xr

2), x
r
2) − vh(0, x

r
2)

)

√

1 + |
d

dxr
2

ψr(xr
2)|

2dxr
2

+

∫ sr
h

0

(

q(ψr(xr
2), x

r
2) − qh(0, x

r
2)

)

vh(0, x
r
2)

√

1 + |
d

dxr
2

ψr(xr
2)|

2dxr
2

+

∫ sr
h

0

qh(0, x
r
2)vh(0, x

r
2)

(

√

1 + |
d

dxr
2

ψr(xr
2)|

2 − 1
)

dxr
2

= (II)1 + (II)2 + (II)3. (32)The strategy now is to estimate ea
h of the integral terms separately. Taylor expanding
vh(ψ

r(xr
2), x

r
2) around vh(0, x

r
2) and re
alling (8) we obtain
(II)1 ≤ Ch3||q||L∞(Γr)||∇vh||L∞(T )and by the inverse inequality we get
(II)1 ≤ Ch2||q||L∞(Γr)||∇vh||0,T . (33)For the se
ond integral, the Cau
hy-S
hwartz inequality imply

(II)2 ≤ Ch1/2||vh||L∞(Γr
h
)||q(ψ

r(·), ·) − qh(0, ·)||0,Γr
h
≤ Ch5/2||vh||L∞(Γr

h
)||q||2,Γr

hwhere in the last inequality we used the standard one-dimensional interpolation results.By the inverse inequality we obtain
(II)2 ≤ Ch3/2||vh||0,T ||q||2,Γr

h
. (34)For the third term we note, that by binomial theorem and by (8)

∣

∣

∣

√

1 + |
d

dxr
2

ψr(xr
2)|

2 − 1
∣

∣

∣
≤

1

2

∣

∣

∣

d

dxr
2

ψr(xr
2)

∣

∣

∣

2

≤ Ch2.This result together with the inverse inequality yield
(II)3 ≤ Ch2||q||L∞(Γr

h
)||vh||0,T . (35)Inserting (33),(34) and (35) in (32) and summing over the interfa
e elements 
ompletes theproof.



3.3 Convergen
e in L2 norm 19Lemma 3.12. Assume that the solution ũ of the interfa
e problem (6) is in C(Ω)∩H̃2(Ω).In addition, denote by Ihũ ∈ Sh its interpolant. Then there exists a 
onstant C su
h thatfor any vh ∈ S0
h,0(Ω) we have

|ah(ũ, vh) − ah(Ihũ, vh)| ≤ Ch|ũ|2,h||vh||h.Proof. By 
ontinuity of the dis
rete bilinear form we get
|ah(ũ, vh) − ah(Ihũ, vh)| ≤ C||ũ− Ihũ||h||vh||h ≤ Ch||ũ||2,h||vh||hwhere in the last inequality we used (14) and the approximation result from Theorem3.4.We are now ready to proof Theorem 3.5. NamelyProof. By the se
ond Strang's lemma [1℄, we have

||û− ûh||h ≤ C
(

inf
vh∈S0

h,0

||û− vh||h + sup
wh∈S0

h,0

|Lû(wh)|

||wh||h

)

.where the 
onsisten
y error term is given by
Lû(vh) = (f, vh)Ω + 〈q, vh〉Γh

− ah(û, vh) − ah(Ihũ, vh).Using Theorem 3.9 we rewrite Lû(vh) as follows
|Lû(vh)| ≤ |(f, vh)Ω − ah(û, vh)| + |〈qh, vh〉Γh

− 〈q, vh〉Γ|

+ |ah(ũ, vh) − ah(Ihũ, vh)| + Ch|ũ|2,h||vh||h. (36)By (14) and Theorem 3.4 we also have
||û− vh||h ≤ Ch||û||2,h.Then the result the theorem follows Theorem 3.10 together with the results from Lemmas3.11 and 3.12.3.3 Convergen
e in L2 normWe now turn our attention to the L2 estimates. Note that for any g ∈ L2(Ω), the dualproblem

a(φ, v) = (g, v)Ω, ∀v ∈ H1(Ω)has a unique solution in C(Ω) ∩ H̃2(Ω) satisfying
||φg||2,h ≤ C||g||0,Ω.



20 4 NUMERICAL RESULTSLet φg,h denote the immersed �nite element solution of this dual problem. Then, fromTheorem 3.5 with q = 0 we have
||φg − φg,h||h ≤ Ch||φg||2,h ≤ Ch||g||0,Ω (37)In addition, we apply Theorem 3.10 to get

|ah(û− ûh, ψg) − (û− ûh, g)Ω| ≤ Ch|ψg|2,h||û− ûh||h

≤ Ch2||g||0,Ω|u|2,h. (38)
|ah(û, ψg − ψg,h) − (f, ψg − ψg,h)Ω| ≤ Ch|û|2,h||ψg − ψg,h||h

≤ Ch2||g||0,Ω|u|2,h. (39)These estimates leads us to the following resultTheorem 3.13. Assume that the 
onditions in the Theorem 3.10 are satis�ed. Then theerror of the immersed interfa
e �nite element solution ûh has the following estimate in the
L2 norm

||û− ûh||0 ≤ Ch2|û|2,h (40)for a 
onstant C > 0.Proof. By the generalized Aubin-Nits
he lemma [1℄, we have
||û− ûh||0 ≤ sup

g∈L2(Ω)

1

||g||0,Ω

(

||û− ûh||h||ψg − ψg,h||h

+
∣

∣

∣
ah(û− ûh, ψg) − (û− ûh, g)Ω

∣

∣

∣
+

∣

∣

∣
ah(û, ψg − ψg,h) − (f, ψg − ψg,h)Ω

∣

∣

∣

) (41)The estimate (40) is obtained by applying Theorem 3.5, (37),(38) and (39) to the above.4 Numeri
al resultsHere, we numeri
ally investigate the performan
e of our immersed �nite element methodfor two-dimensional ellipti
 problems. For the sake of simpli
ity, for all the test 
ases the
omputational domain Ω is the re
tangle −1 ≤ x, y ≤ 1 and the interfa
e Γ is representedby a 
ir
le with the 
enter at the origin and with some radius r0. For every problem thesour
e term and the Diri
hlet boundary 
onditions are determined from the exa
t solution.The main emphasis will be to investigate the performan
e of our approa
h and 
ompareit to the results obtained with the standard �nite element method, that is a standard
onforming Galerkin �nite element whose pie
ewise linear basis fun
tions has not beenmodi�ed using the jump 
onditions. In all the test problems, the solution is approximated



4.1 Test problem 1 21on a uniform n× n. For the performan
e analysis we employ the dis
rete L2 norm de�nedby
||En||L2 = h

√

∑

i,j

e2ij ,where eij = u(xi, yj) − uij is the error in the grid point (xi, yj) between the exa
t solution
u(xi, yj) and the approximate solution uij. We also display the ratios between the su

essiveerrors

ratio = ||En||L2/||E2n||L2.A ratio of 2 
orresponds to �rst order a

ura
y, while a ratio of 4 indi
ates se
ond orderof a

ura
y.4.1 Test problem 1In this example we 
ompare the results from our method and the standard FEM for aproblem with the pie
ewise 
onstant 
oe�
ient β. The problem reads
∇ · (β∇u) = 9

√

x2 + y2, on Ω,

β(x, y) =

{

β−, if r ≤ r0,

β+, otherwise ,where r =
√

x2 + y2 is the radius, r0 = π/6.28 and the Diri
hlet boundary 
onditions aregiven by the exa
t solution
u(x, y) =

{

r3/β−, if r ≤ r0,

r3/β+ + (1/β− − 1/β+)r3
0, otherwise.It is easy to 
he
k that in this 
ase the solution and its �ux are 
ontinuous ([u]|Γ = 0and [β∂u/∂n]|Γ = 0). In this test problem, the emphasis is to investigate how well themodi�ed and the standard s
hemes 
an handle the jump in the β 
oe�
ient. The solutionfor the 
ase when β+ = 1000, β− = 1 is presented in Figure 5. Note, that the jump inthe normal derivative of the solution 
aused by the large di�eren
e in the 
oe�
ients is
aptured sharply. The 
onvergen
e studies for the 
ases when β+ = 1000, β− = 1 and

β+ = 1000, β− = 1 are presented in Tables 1 and 2, 
orrespondingly.Note, that the immersed �nite element method exhibits se
ond order 
onvergen
e in
L2. The standard FEM is at most �rst order a

urate.



22 4 NUMERICAL RESULTS

Figure 5: The inverse of the solution for the test problem 1 with pie
ewise 
onstant 
oef-�
ients β+ = 1000 and β− = 1 obtained by the immersed interfa
e FEM.
n Standard FEM Modi�ed FEM

||En||L2 ratio ||En||L2 ratio20 3.94e-02 - 1.48e-03 -40 2.00e-02 1.97 4.84e-04 3.0680 9.71e-03 2.05 1.07e-04 4.49160 4.31e-03 2.25 2.45e-05 4.40Table 1: Grid re�nement study for test problem 1 with β+ = 1000 and β− = 1 using bothmodi�ed approa
h and standard FEM for n× n grids.
n Standard FEM Modi�ed FEM

||En||L2 ratio ||En||L2 ratio20 3.24e-02 - 1.63e-03 -40 2.04e-02 1.58 4.38e-04 3.7280 1.03e-02 1.97 1.04e-04 4.20160 5.60e-03 1.84 2.49e-05 4.17Table 2: Grid re�nement study for test problem 2 with β+ = 1 and β− = 1000 using bothmodi�ed approa
h and standard FEM for n× n grids .4.2 Test problem 2Here, we 
onsider more elaborate problem with both dis
ontinuous 
oe�
ients and a sin-gular sour
e fun
tion
∇ · (β∇u) = f(x, y) + CδΓ, on Ω,

f(x, y) = 8(x2 + y2) + 4,

β(x, y) =

{

x2 + y2 + 1, if r ≤ 0.5,

b, otherwise,



4.2 Test problem 2 23with C = 0.1, b = 10 and the boundary 
onditions given by the exa
t solution
u(x, y) =

{

r2, if r ≤ 0.5,

(1 − 1/(8b) − 1/b)/4 + (r4/2 + r2)/b+ C log(2r)/b, otherwise.Here, δΓ denotes the Dira
 delta-fun
tional with the support on the interfa
e Γ. Table 3gives the 
onvergen
e analysis for the modi�ed FEM and the standard FEM. The 
omputedsolution is presented in Figure 6. As expe
ted, the solution is se
ond order a

urate in the
L2 norm.

Figure 6: The inverse of the solution for the test problem 2 obtained by the immersedinterfa
e FEM.
n Standard FEM Modi�ed FEM

||En||L2 ratio ||En||L2 ratio20 2.69e-02 - 1.56e-02 -40 1.46e-02 1.84 4.28e-03 3.6580 6.85e-03 2.12 1.13e-03 3.76160 3.74e-03 1.83 2.69e-04 4.22Table 3: Grid re�nement study for the test problem 2 with β = 10 and C = 0.1 using bothmodi�ed FEM and standard FEM for n× n.



24 5 CONCLUSIONS5 Con
lusionsIn this paper, we have analyzed a new se
ond order a

urate �nite element based methodfor the solution of the two-dimensional ellipti
 interfa
e problems involving dis
ontinuous
oe�
ients and singular sour
e fun
tions on the uniform Cartesian grid that is not alignedwith the interfa
e. The interfa
e jump 
onditions asso
iated with the dis
ontinuities inthe 
oe�
ients and singularities of the for
es have been derived and used to appropriatelymodify the basis fun
tions su
h that the jump 
onditions are well approximated. Theapproximation 
apabilities of the method has been studied both theoreti
ally and numer-i
ally. The numeri
al experiments also 
on�rmed that, for the 
onsidered test problems,the investigated approa
h is superior to the standard �nite element method.
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e problems. Numer. Math., 79:175�202, 1998.[4℄ M. Feistauer and A. Ženišek. Finite element solutions of nonlinear problems. Numer.Math., 50:451�475, 1987.[5℄ Z. Li. The immersed interfa
e method using a �nite element formulation. Appl. Num.Math., 27:253�267, 1998.[6℄ Z. Li, T. Lin, Y. Lin, and R.C. Rogers. An immersed �nite element spa
e and itsapproximation 
apability. Numeri
al Methods of PDEs, 20:338�367, 2004.[7℄ A. Loubenets. A new �nite element method for ellipti
 interfa
e problems. Li
en
iatethesis, Royal Institute of Te
hnology, NADA, 2006.[8℄ A. Loubenets, T. Ali, and M. Hanke. Highly a

urate �nite element method for one-dimensional ellipti
 interfa
e problems. submitted in Applied Numeri
al Mathemati
s,2006.[9℄ J.A. Roitberg and Z.G. Seftel. A theorem on homeomorphisms for ellipti
 systemsand its appli
ations. Math. USSR-Sb., 7:439�465, 1987.[10℄ T. Lin Z. Li and X. Wu. New 
artesian grid methods for interfa
e problems using�nite element formulation. NSCU CRSC-TR99-5, 1999.


