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Abstract

This paper is concerned with the analysis of an immersed finite element method for two
dimensional elliptic interface problems. The main idea of the method is to use specifically
designed macro elements in the vicinity of the interface, such that the jump conditions
are well approximated. In general, the resulting immersed finite element space is non-
conforming. It is shown that the presented method is second order accurate in L? norm.
The provided numerical results agree with the theoretical estimates.

1 Introduction

Numerical solutions of second order elliptic interface problems are encountered in many
engineering and scientific applications, most commonly related to fluid dynamics or ma-
terial sciences. Such problems arise when two or more different fluids (or materials) with
discontinuous or even singular physical properties are involved. In the majority of cases,
the solution to these kind of problems is characterized by high degree of regularity in the
separate subregions occupied by different fluids (materials), but the global regularity of
the solution is usually very low.

In this article, we will analyze the error of an immersed finite element solution formed
by first degree polynomials to the following two dimensional elliptic interface problem.
Denote by © C R? a bounded domain with the boundary 0 that is sufficiently smooth
such that the divergence theorem applies and let Q= C €2 be an open domain with a smooth
closed double-point free boundary I' = 92~ C €. Then the problem reads:

-V - (fVu)=f in Q7 -V (BVu)=f in QF (1)
with Dirichlet boundary condition

u=0 on 0N



2 1 INTRODUCTION

and jump conditions across the interface I"

=0 [898] =y, ©)

Here, Ot = Q\Q and [v] is the jump of a quantity v across the interface I' and n is the
unit outward normal to I'. For definiteness, we take

[U] :’ll_(l’,y)—’ll+(l’,y), rel

with v~ and v* denoting the restrictions of v on Q= and QF, respectively. For the sake of
simplicity, we assume that the coefficient function 3 is positive and piecewise constant, i.e.

Bz,y)=p" for ze€Q, B(z,y)=pT for ze€Qf.

It is a well known fact ([2],[3]) that in order for the standard Galerkin method to achieve
an optimal order of accuracy its elements are required, in some way, to be aligned with
the interface. In the applications where the interface is moving and deforming with time
this constraint proves to be quite restrictive. In addition, in some applications it might
be advantageous to use uniform partitions, thus preventing the use of Galerkin methods
based on body-fitted grids.

In this paper we investigate an alternative approach, the immersed finite element
method. This approach, originally proposed by Li in [5] ,[10] and extended in [7], [8]
uses a triangulation that is independent of the interface. The interface itself is represented
by an additional structure (t.ex. Lagrangian markers with a parametric description ) that
is continuously updated using some information obtained from the uniform partition.

The elements of the partition are separated in two classes, the one that are intersected
by the interface and the rest. On the non-intersected elements we use the standard linear
polynomials. On the intersected elements we use a strategy similar to that of the Hsieh-
Clough-Tocher macro-element |1]|. That is, each intersected element is subdivided by the
interface in two subdomains. Then, we construct a C° function consisting of piecewise
linear polynomials such that the element has a total of 6 degrees of freedom. At the
vertices of the original element, we specify the function values. The additional degrees of
freedom are satisfied by the approximation of the jump conditions. Since this procedure
involves subpartion of the original triangle, we can regard the intersected elements as
macro-elements. The resulting immersed finite element space over the entire domain is, in
general, non-conforming. At this point, we should note, that the approximation capability
of the immersed finite element space in the case of ¢ = 0 has been earlier studied by Li
and coauthors in [6].

The main goal of this article is to investigate the error of an immersed finite element
solution to the two dimensional elliptic interface problem (1)-(2). This investigation should
be regarded as a critical step towards analyzing the error of the immersed finite element
method applied to the Stokes and Navier-Stokes equations. Numerical results are also
presented, showing good agreement with the theoretical results.



Let us now introduce some notation that is going to be used in this paper. The following
standard function spaces will be employed:

C*Q) ={u:Q —R| wuis k-times continuously differentiable},
LP(Q2) = {u: Q2 —R| wu is Lebesgue measurable, ||u||rrq) < oo},
L>(Q) ={u:Q — R| wuis Lebesgue measurable, ||u||f~@q) < oo}

where k is a non-negative integer, p > 1 is a real number and
1/p
||| Lo @) = €55 SUp ju| and Jul[re) = (/ \u\pdﬂﬁ) , (1<p<o0)
Q

The support of a function ¢ : 2 — R is denoted by
supp(¢) = {z € Q|¢(z) # 0}

where the overline denotes the closure. The functions with compact support that belong
to C*(Q) are denoted by CF(Q). In order to introduce the Sobolev spaces we also define

o ollu(z " "
D%u(z) = Ml—(é;xjd =0 - O u(x)

for a given a multi-index . Then, we define the standard Sobolev space of integer £ > 0
as follows

H*Q) ={u:Q—=R| VYa: |af <k D e L*Q)}

with the norm given by
1/2
lullva= (X [ 1D7uPds)
Q

o<k

and seminorm defined by

As usual, H}(Q) denotes the closure of Cg°(Q2) in H*(Q). Finally, we denote
Q) = {ufulg: € HHQ), i = +} (3)

with the corresponding norm defined by

1/2
lullg = (3 lhull? o) (4)
i—+
and seminorm given by

1/2
ulfo = (3 lufia) " (5)
1=+

We also use (-, -)q and (-, )1 to denote the scalar products in L?(Q) and L*(T'), respectively.

The rest of the paper is organized in the following way. The weak formulation and the
approximate problem are presented in Section 2. The main result of the article and its
proof is given in Section 3. This is followed by some numerical examples and conclusions.
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2  Weak formulation and approximate problem
As T and 99 is of class C?, there exists a function (cf. [9]) @ € HL(Q) N H?(Q) such that
-V (Vi) =0 in €, u=0 on 00 (6)

together with the following jump conditions across the interface I'
ou
o %)
[a] Bon] =1
where ¢ € H*(T"). The function  is characterized by the following variational formulation
a(i,v) = (g,v)r, Vv & H)(Q)

where a(-,-) : HY(Q) x H'(Q) — R is the bilinear form defined as
a(u,v) = / B(z,y)Vu - Vodedy, Yu,v € H'Y(Q).
Q

Let & = u—1, then the weak formulation to the interface problem (1) reads : For f € L*(Q)
find @ € H} () such that

a(t,v) = (f,v)q + (g, v)r — a(@,v), ve Hj(Q). (7)

Obviously, u fulfills the following jump conditions

. ou

[ =0, [ﬁﬁn} =0
across the interface I'. Note, that the last two terms in (7) are kept only for the sake of
the discrete formulation of the problem. In addition, for the purposes of this article, the
C? regularity of the the domain boundary 9 is unimportant and thus we will consider a
polygonial domain (2.

We introduce the triangulation 7, = {T'} of the domain Q where h denotes the diameter

for its elements. This triangulation satisfies the following standard conditions:

L4 Q = UTEThTa

o If 71, T, € T, and Ty # Ty, then either 71 NTy, = @ or T} N'T; is a common vertex or
edge of both triangles,

e The triangulation is assumed to be uniform i.e. there are two positive constants
independent of A such that
Copr < h < Cipr

where pr and pr stands for the diameters of inscribed and circumscribed circles,
respectively,



Figure 1: The arc segment I'" and its linear approximation I';.

together with the following compatibility conditions with the interface I":

e If " meets a triangle T" at two points, then these points must be on different edges
of this triangle,

e [f [ meets one edge of a triangle at more than two points, then this edge is a part of
r.

Denote by 7, the set of all elements in the triangulation 7, that are intersected by
the interface I'. By the construction, the interface I' can meet the triangle 7" at most at
two edges. Denote these intersection points by A = (z4,y4) and B = (zp,yp) and use
Z, = (z1,11), Zo = (x2,y2) and Zs = (z3,y3) to denote the vertices of the triangle. Let
my, denote the total number of the intersected triangles. Then, we represent the interface
I' and its piecewise linear approximation I';, as

where the arc segment I'" = ' N T" for some 7" € 7, and '} = AB is the linear approxi-
mation of I'", see Fig. 1.
Each T € 7, is subdivided by the corresponding arc segment into two subdomains

TH=TNQ" and T =TNQ"

see Fig. 2(a). In addition, denote by T~ and T the subdomains that are formed by the
partition of T' by the line approximation of the corresponding arc segment see Fig. 2(b).
For the future convenience, we also introduce the following domains

T*=T"NTt and T™=TtNT"

and curve segments
" =0"NnT- and I"*=0"NT"
see Figures 2 and 3, correspondingly.
Introduce a local coordinates 7, x5 for each I'". We take the xj-axis along I'} and

x-axis in the normal direction to I';, see Fig. 3. Then the arc I'" can be expressed in the
parametric form

" =A{(a,25); 27 =¢"(a3), 25 € [0, s3]}
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—% T_*
(a) Subdomains T* and (b) Subdomains TF and
T~ are formed by I'". T~ are formed by I'}.

Figure 2: The partition of the interface element T by the arc segment I and the line
segment I'}. The shaded domains correspond to T7* and T~*, respectively.

X, r-

Figure 3: Local coordinates for arc segment I'".

where s7 is the length of I';. Due to the fact that the interface T is of class C?, we have
Y e C%([0, s]) for r =1,..,my. It was shown in [4] that

I@/)’"(Iz)l < C(s)* < CR?, Vay € [0, 5], (8)

€ [0, sk (9)

(z3)

Similar to (3) denote by f]Z(T) — {ululzs € H¥T), i = +} and let M(T) =
C(T)N H*(T). Note, that on each interface triangle the solution v = @ + @ to (7) forms a
set of functions that belong to M(T') and satisfies

u' = ulp € HX(TY), i=4,
u+(z4) = U‘(A), ut(B) = v (B),
Qr-(u) == [, (3~Vu™ — *Vu't) -nrds = [}, qds
where np- is the unit normal vector to the arc segment I'". We are now ready to consider

the construction of the finite element functions on an interface triangle. The strategy is to
use the partition of 7" € 7, generated by the approximation of the interface I';, in order to




approximate the set M(T'). That is, for each interface triangle we form a finite element
function by two polynomials defined separately on T~ and T'"

¢_(I,y):@1$+a2y+a3> (ZL’,y) GT_a

10
¢+(Iuy) :b1x+b2y+b37 (Iuy) €T+’ ( )

Pz, y) = {

Then for all 7" € 7, define a linear space

¢ is defined by (10),
¢~ (A) =9¢"(A), ¢ (B)=9¢"(B),

that consists of the the piecewise linear functions satisfying the regularity conditions along
I';,. Define

S(T) = {

@ (0) = [ (596" = 5V6%) nryds

where nrr is the unit normal vector to line segment I'; and 3, stands for the approximation
of the coefficient function 3(z,y) that is equal to 5 on the non-interface elements and is

defined as follows
=, ¥V (z,y)eT",
/6—"_7 \v/ (I7 y) E T+7

for any T € 7). Note, that 3, is just a restriction of the piecewise constant function. We
now denote by SP(T') the following linear space

Si(T) = {¢ € Su(T)|, Qr;(¢) = 0}

and refer to it as an immersed interface spaces on the interface triangle T'. Then, for all
u € M(T), we denote by Iu € S,(T) its interpolant as follows

]h . M(T) — Sh(T)

ﬁh(l’,y) = {

that satisfies the standard interpolation conditions
Lw(Z;) =u(Z;), 1<i<3, (11)
and the interpolation condition on Qrr (¢)
Qrr (Inu) = Qr-(u). (12)

We now use the partition 7j, to define an immersed finite element space Sy,(2) and S} ()
on the whole of 2. Namely,

M ¢ standard linear function , VT € T,\7},

¢ standard linear function , V7T € 7,\7,.
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Since neither S, () nor SY(Q) are subspaces of H}(f2), the resulting finite element method
is non-conforming. The possible discontinuities of the functions in € S,(Q) and € SP(Q)
are located along the edges of T" € 7, and the across the interface I'. However, note that
across the piecewise linear approximation I'j, these functions are continuous. We use 5270
to denote the subspace of S with its functions vanishing on the boundary 9Q. For the
later analysis, we also introduce the following space

X = Hy () + Si(Q).

Corresponding to the bilinear form a(-,-) defined previously, we introduce its discrete
form ap(-,-) : X x X —=R

ap(u,v) = Z BrVu - Vudxdy, Yu,v e X. (13)

TeT, T

Obviously, if u,v € H} (), an(u,v) = a(u,v). Furthermore, with a given partition 7}, and
m > 1 we define the discrete energy norm

ulln = Van(u, w),
together with the following discrete norms

e | | e e o L A e o | 2] P Sl L | A

llallmn =, | D Il r-
TeTy

with the seminorm |- |,, v defined in the similar way. These norms are a common quantities
used in the error estimation of non-conforming finite element methods. It is obvious that

lulln <C [ lul}r < Cllulli (14)
TeT,

Jan(u, )| < Cllullallvlln and  an(u,u) > Cllullj.

together with

We are now in a position to define the finite element approximation to the interface problem
(1): Find @y, € S, o(Q2) such that

an(@n, vn) = (fsvn)a + (qn, vn)r, — an(tn,v), Yo, € S)o(Q) (15)

where @, € S,(€2) is an appropriately chosen approximation of 4 and ¢, is the linear
restriction of the interface function ¢ on I'y,, such that on each segment I} of length s}, g5

is given by
T T '

X S e
qh(O,xg)zs—fq(O,SZ)—l— hs 24(0,0), ¥z €0, s%]. (16)

T

h h



3 Theoretical Analysis

In this section we prove that the solution obtained from the immersed interface finite
element method with the linear basis functions is second order accurate in L? norm. The
strategy of the proof resembles the idea behind the proof in the case of smooth solutions

[1]:
e determine the order of approximation of the interpolant of the solution in the given
finite element space;

e use Strang’s lemma for the non-conforming finite element methods to find the order
of the convergence in the discrete energy norm;

e apply generalized Aubin-Nitsche’s lemma to gain an L*(2) error estimate.

The critical point is that, in the present case, the solution does not fulfill the necessary
regularity assumptions. Therefore, it will be crucial to use the details of the construction of
our finite element space. Note, that throughout the paper C' denotes some generic constant
that is independent of the finite element mesh parameter h.

3.1 An interpolation result

We now discuss the approximation capability of the linear space Sj,(T") when T € 7,/. Let
M T) = M(T) + S,(T) and endow this space the norm

Qr-(w)],  uwe M(T)
|Qry (w)|,  w e Sp(T)

where Z; = (z;,y;) are the vertex coordinates of the interface triangle.

3
|||u|||2’T = |U|2,T + Z |U(Zz)| + { ., Yuc€ Mert(T)
i=1

Lemma 3.1. The norms ||| - |||lor and || - ||z are equivalent on M (T).

Proof. By the imbedding and the trace theorems of Sobolev spaces
ulllzr < Cllul|2,7-
Suppose now that the converse statement
lullor < Cll|ulller,  for Yu € M“(T)

fails for every positive number C. Then there exists a sequence {u;} € M (T') such that

1
urllor =1, |[Jurll|or < T

Invoking the compactness of the imbedding of H2(T) in H'(T), we may further assume
that this sequence converges in || - ||y 7. Since

U — Um|loT = ||UL — Um||1T Ur|2,T Um|2,T)
| 57 < . + (o + [l r)?
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we conclude that {u;} is a Cauchy sequence in M (T') with respect to the || - ||27 norm.
Thus, there exists a u* € M (T') such that limy_,, ux = u*. By continuity considerations
we have

l[wller =1, |[[|u*]|lzr =0

which is a contradiction.

0

Lemma 3.2. Let T be an interface triangle and the interpolation operator I, : M(T) —
Sp(T') defined by (11) and (12). Then we have

[u= Lullor < Clulyr, Yu € M(T).
Proof. By Lemma 3.1

lu = Inllazr < Cllu = Full iz = C(lu = Tulair

3

+ 3 1= Tu)(Z)| + 1@ () — Qry ()] ). (17)

i=1
Due to the definition of Qr-(I,u) and the linearity of the interpolant we get
llu — Tullor < Clu — Tulor < Clular

where we have also used the fact that the interpolant [,u coincides with u at the interpo-
lation points Z; = (x;, y;). O

Lemma 3.3. Let S and 3 be affine equivalent, i.e. there exists a bijective affine mapping
F:3 5y, Fé=¢&+ B¢

with a nonsingular transformation matriz B. If v € H™(X), then o := vo F € H™(3),
and there exists a constant C' such that

Vs < C’||B||_k|detB|l/2|fJ|k£, (18)
[0]5: < ClIBII* det B2l 5. (19)
Proof. See |1] for the proof and further details on the affine transformations. O

Consider now a function u satisfying

u€ C(Q), ulg € H* (), i=%

together with
(67Vu™ = f*Vut)-n=gq

across the interface I'. Then, the main approximation result of this chapter reads
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Theorem 3.4. Under the assumptions of Lemma 3.2 and for the linear interpolation op-

erator I, : M(T) — Sp(T) we have
llu — Iyullon + h||u — Iyul|in < C’h2||u||2,g, Yu € M(T).
Proof. 1t suffices to proof only the following inequality
llu — Iyul|,r < Chz_l|u|27T, [=0,1.

Apply Lemma 3.2 on the reference element 7,..; and use the transformation formulas from
Lemma 3.3 in both directions to obtain

lu— Iyulyr < C||B||7'| det BIY?|ures — Iytreslir,.,
< O||B||™"| det B|"*|uyeslar.,, < C||B||™" det B|'?||B||*| det B|~/*|ula.r
< C(|BIIB~HHIIBIP ular.  (20)

By the shape regularity we get
"UJ - Ihu|l7T S Ch2_1|u|2,T.

Finally, squaring and summing over [ establishes the assertion. U

3.2 Convergence in discrete energy norm

The main result of this section is stated in the following theorem:

Theorem 3.5. Assume that the solution @ of the interface problem (7) is in C(Q)NH?(Q).
Then the immersed finite element solution Gy, given by (15) has the following estimate for
a constant C' > 0

8= anlln < C[A(|lay + al2) + 5*lalar .

where @ is the solution to (6).

Before proving Theorem 3.5, we first show several additional results that we will require.
For w in C(Q) N H*(Q) and vy, € S} 4(Q) we can write the bilinear form (13) as follows

ap(w,vy) = Z BVw - Voupdxdy

TET\T,

+ ) ( /T V- Vugdedy+ | fTVw- va{d:rdy) (21)

TeT, r

where v = vy|7: for i = . Note, that the second sum represents the bilinear form on the
interface triangles 7' € 7,). Without loss of generality, consider a typical interface element,
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see Figures 1 and 2. Then

ah(w ’Uh Z 6Vw Vvhdxdy+

TETh\T/
> / =V, dzdy + / BYVwt - Vol dedy
fer T TH\T+*

+ [ BVt Vo, dedy + / ﬁ+Vw—-Vv;dxdy) (22)

T+ T+*
where w' = wl|q: for i = £. Add and subtract
/ BrVwt - Vol drdy and B~Vw™ - Vo, dzdy
—* T+
to obtain
B~Vuw - Vv, dedy + / BrVuw - Vol dady
T~ T+
B~Vw™ - Vu;, dzdy +/ prvwt - Vo dedy
- T+
—i—/ Vuwt - (8~Vv, — V) dady + /+ Vuw™ - (8TVo) — 37V, )dzdy (23)
T—* T+

for any T € 7;. Note, that v;” on T~* and v, on T+* should be understood as general
extension of vh from TJr and v, from T'~, correspondingly. Integrating by parts the terms
over T and T~ we get

By Vw - Vo, dedy + | B Vw - Vuy dady

T- T+

——/TV.(ﬁVw)vhda:dy+/aT+ﬁ+< ) *ds +/8T ﬁ‘(%ﬂ)v;ds

+ / Vuwt - (8~ Vov, — TV )dzdy —i—/ Vw™ - (8TVo — 87V, )dzdy (24)

T+

where n~ and n™ are the outward normal vectors to T~* and T correspondingly. Insert
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(24) in (21) and Take n =n~ = —n™ and sum over T € 7}, to obtain

7 e z, ([ [2eal)in [ [l

h

+Z/ d8+ > /*Vw (87 Vuy, = 87V )dxdy

FT‘EF *ET/
+ Z / Vw™ - (Vo — 7V )dzdy
T+*eT) L
/ V- (BVw)opdady + Y (1)1 + (I)s)
ei €&}
+> Ms+ > (Da+ > (D)5 (25)
rrer T—*€T, T+*eT)

Here &} is the set of all edges e; that meet the interface I' between their vertices and [[-]]
denotes the jump between two neighboring elements along the common edge e.

A

Figure 4: An example of two adjacent interface triangles.

Note, that the first sum in (25) represents the consistency error across the neighboring
edges of the interface triangles and the second summation represents the error across the
interface itself, see the sketch in Figure 4. The choice of normal direction in the first
summation does not affect the results. The strategy now is to take w = @ and address
each of the integral terms in (25) separately. Note, that in this case , the first integral term
vanishes due to (6).

Lemma 3.6. Assume that the solution i of the interface problem (6) is in C() N H?(Q).
Then there ezists a constant C' such that for any v, € SgO(Q) we have

DI )2)| < Chlalsn|[vnl[n (26)

e €&
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Proof. Assume that e; is the common edge between T} and T}, elements. Since (324 =0

on
in (T;UT;41) N Q™ and (7; UTj41) N QT we have
9
(1) = / G [nl)ds.

We also note that that for a common vertex A of T, and T}, (see Figure 4) we have

Uf:,j(A) = Ui:,j—i-l(A)'
Thus

[ S llias] <

_ou, _ _ _ou, _ _
/e. B %(Uh,j—l-l - Uh,j+1(A))dS’ + /e 5 %(Uh,j(A) = Uy 5)ds|.

Denote by X = (z(s), y(s)) some point on e;, then the difference v, ;. ,(Xs) — vy, ;1 (A)
can be written in the following form

v, .

- - _ J+1

Uh,j+1(Xs) - Uh,j+1(A) = /A_XS "ot dn

where % is the tangential derivative along AX,. Then, by Cauchy-Schwartz inequality

together with the trace theorem we get

/e ) ﬂ‘%@fljﬂ—vgmm))ds) < 5—h< / %giﬂ‘zdsy/z ( / % )st)l/z

< Cﬁ_hHVUFZ,jHHl,TJ%||Vﬁ||1va+1'

Finally, using the fact that v, ;, is a linear polynomial we arrive at

_ou, _ _ o N
/ B a_n(vh,jﬂ - 'Uh,j-i-l(A))ds’ <Cp h|vh,j+1|1,T]:Ll|u|2,Tjjrl‘
Similarly, we obtain

_ou, _ - “Blo- 7
/ p 8_n(vh,j(A) - Uh,j)ds) < OB~ Rl sl (@l

that combined with the previous estimate gives us

(D] < 8 h(longailir, Vb, + lonslr Ny, )- (27)
By the same argument, we arrive at

(D] < OB (longalyrs, lilo, + onglyg il ). (28)

Then, the result of the lemma is obtained by inserting (27) and (28) in the left hand side
of (26), using the triangular inequality and summing over the edges e;. O
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We now consider the consistency error across the interface.

Lemma 3.7. Under the assumptions of Lemma 3.6 we have

’Z (/ [ —Uh]ds - <q,vh>rr)

< Chmax(87", 87)|a|anl|vnlln

where

(q,vp)rr = / qu;-ds +/ quy, ds.
T+ T, —

Proof. Consider

= [ [l [ (-t

Add and subtract

+
ﬁ+aivh ds and ﬂ_— Fds
Tr— Tr+ 877/

to obtain

~ + - TR
O G %wwL,xw%g -0 oas

9
- ﬁ+ (—vh)ds+ ﬁ—;—n(v;-v;)ds

= Tr+

= <q7vh>rr + ﬂ+ ( — Uy, )ds + ﬂ_ 8 ( — U;)ds,

= 1"7‘+ n

We now proceed in the similar fashion as we did in (27). That is, assume that the interface
segment ['" meets the edge of the interface triangle 7" at a point £. Then by construction
of the functions in S} , we have

vh (E) = v, (E).

Therefore

570 oy — o )ds =

rm=

6+

Irm=

8“+(— v (B))ds + 6+aU+<

Irm=

out v+ ou™ ov;.
_ + vy, + h
B Frfﬂ on </E/X\s ot dn>d3+ Frfﬂ on (/XE 8td)d

v (E) —vh>ds
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for some point Xy = (z(s),y(s)) on I'"~. Repeating the arguments of (27) and (28) we

obtain . -
+9% IV < O Bt i o
‘/r,ﬁ on (/E/X\s ot dn>d3‘ < CBThloy lvr—+1a" o r
and 8 . .
u v .
‘/ / 0—:dn> ds‘ < Cﬁ+h|v}:|17T,* u+|2,T**
r,— EX.
Thus

50 g — | < OO M - -)

SCﬁ+h\ﬂ+\2,T‘+||UhHh,T- (29)

‘ Tr—

Similar, we obtain

_ou i _
‘ 6 o (vy, —Uﬁr)ds‘ < CB™ R~ o= vy [t + | L)
o+

< CBhla” [y 3 |lvallnz- (30)
Finally, the result of the lemma is obtained by summing over the interface arcs I'". O

Lemma 3.8. Under the assumptions of Lemma 3.6 we have

‘Z(/ (B Vo — 5+w;)dxdy+/

+
TeT, T

Vi - (FHVef — 6‘Vv;)dxdy>‘

< Chlfg,nl|vn][n-
Proof. By Greens theorem we get

8vh vy

/ vat - (87 Vu, — V) dady = —/ at (8- ﬁ+ )
- oT—~

——([ w G- +>ds+/ﬂu (5~ ‘%h - 52 )

h

where '}’ is a linear approximation of I'"~. Following the same arguments as in (29) we
obtain

| i (57Vey — BTV )dudy|
T—x*
< Chmax(3~,8%)|a"ar—+ vy, |10+ + |0 |17+4)

< Chmax(67, 85)a" |y 5[ [val n7-

Similar
‘ Vi~ - (Vo — ﬁ_va)dxdy‘ < Chmax(87, B |y 7| [on]|n7-
T++

Summing over T € 7,/ establishes the claim. O
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Theorem 3.9. Assume that the solution @ of the interface problem (6) is in C(Q)NH?(Q).
Then there exists a constant C' such that for any v, € S,%(Q) we have

lan (@, vn) — (g, vn)r| < Chlt|an||vn||n.

Proof. The result is obtained by representing the bilinear form as in (25) and using Lemmas
3.6, 3.7 and 3.8. 0

Theorem 3.10. Assume that the solution  of the interface problem (7) is in Hg(2) N
H?(Q). Then there exists a constant C' such that for any vy, € Sy, o(Q) we have

lan (@, v) — (f,vn)al < Chli|an||vnln.

Proof. Similar to Theorem 3.9 we use the representation (25) of the discrete bilinear form.
Due to (1) the first integral terms in (25) will cancel out with (f, vs)q. Then the assertion
of the theorem is established by applying Lemmas 3.6, 3.7 and 3.8.

O

Lemma 3.11. Let ¢ € H*(T') and q, be its a piecewise-linear approzimation given by (16).
Then we have

[{an, vn)r, — (@, vn)r| < CRY2|qlor||onlln,  Voi, € Shy.

Proof. For the sake of simplicity, we will prove the lemma for the transformed problem in
the local (27, %) coordinates. This slight abuse of notation will not affect the results. The
arguments used in this proof are similar to those used in [3].

For r =1, .., m; we have

/qvhds—/
v r

‘s

Guvnds = / A7 (25), 8o (4" (23), 23)

s
h

d Sh
\/ Lt gty = [ a0, 0,55)ds; (31
2

By adding and subtracting

sy d
/ qw(xa),:cg)vh(o,xg)\/ 1+ | (o) o
0 i

2

and

sp d
/ qh<o,zg>vh<o,x;>\/1+ | (a2
0 X

2
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terms we can rewrite (31) as follows

/qvhds—/ qnupds =
v r

s
h

sh d
| v (om0 5), ) = wn(0. ) \/ ot |V )

sh d
[ (st @) — a0, x;"))vh(o,a:;)\/ Lt |y (a2

T
2

+ [T, x;>vh<o,z;>(\/ Lt et = 1) s
=)+ ([I)2+ (I11)s. (32)

The strategy now is to estimate each of the integral terms separately. Taylor expanding
vp (Y7 (xh), 25) around vp,(0, 2%) and recalling (8) we obtain

(IT)1 < CR?||g|[zorr) [ Von] | oo )
and by the inverse inequality we get
(1)1 < CR?[|g||zoorr)|[Von lor- (33)
For the second integral, the Cauchy-Schwartz inequality imply
(1) < ChY2||op] | oo lla (" (), ) = an(0, Moy, < CH¥2[onl oy llallzr

where in the last inequality we used the standard one-dimensional interpolation results.
By the inverse inequality we obtain

(I1)2 < CE*P||valo.rllal |2,ry - (34)

For the third term we note, that by binomial theorem and by (8)

2
< Ch2.

\\/m Lol = 1| < 5l

dz},
This result together with the inverse inequality yield

(I1)3 < Ch?||q||zoo(rrlvnllor- (35)

Inserting (33),(34) and (35) in (32) and summing over the interface elements completes the
proof. O
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Lemma 3.12. Assume that the solution i of the interface problem (6) is in C(Q)NH?(Q).
In addition, denote by Iyu € S, its interpolant. Then there exists a constant C' such that
for any v, € S} ((Q) we have

|CLh(1~L, Uh) — ah(Ihﬂ, Uh)| S Ch|ﬂ|2,h||vh||h.
Proof. By continuity of the discrete bilinear form we get
lan (@, vi) — an (I, vp)| < Clla — Lyal|p||vn|[n < Chl|i]|2m]|vslln

where in the last inequality we used (14) and the approximation result from Theorem
3.4. U

We are now ready to proof Theorem 3.5. Namely

Proof. By the second Strang’s lemma [1|, we have

0 — 1 ; - Li(w
= anlly < C(_int fli—uplly+ sup Loy,
UREZh0 wnesyy ||wnlln

where the consistency error term is given by

Lﬁ('Uh) = (f, Uh)Q —+ <q, Uh>1“h — ah(ﬂ, Uh) — ah(Ihﬂ, Uh).

Using Theorem 3.9 we rewrite L;(v,) as follows

‘Lﬁ(vh” < |(f7 Uh)Q - ah(ﬁavh)‘ + ‘<Qhavh>1"h - (q,Uh>1“|
+ [an (@, vn) — an(Int, vp)| + Chlt|op||vn][n (36)
By (14) and Theorem 3.4 we also have

@ = vnl[n < Chla]|2.n-

Then the result the theorem follows Theorem 3.10 together with the results from Lemmas
3.11 and 3.12. O

3.3 Convergence in L? norm

We now turn our attention to the L? estimates. Note that for any g € L*(Q2), the dual
problem
a(¢av) = (gav)fb Vo € HI(Q)

has a unique solution in C'(Q) N H2(Q) satisfying

[|gll2.n < Cllgllo.0-
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Let ¢4, denote the immersed finite element solution of this dual problem. Then, from
Theorem 3.5 with ¢ = 0 we have

l¢g = @g.nlln < Chl[dgllan < Chllgllog (37)

In addition, we apply Theorem 3.10 to get

lan (@ — G, g) — (4 — Up, 9)a| < Chlglaopl|t — s
< Ch*|glloglulon-  (38)

lan (@, Vg — gn) — (f, g — Ygn)al < Chltlan|[tbg — Ygnlln
< CR*|gllolulon- (39)

These estimates leads us to the following result

Theorem 3.13. Assume that the conditions in the Theorem 3.10 are satisfied. Then the
error of the immersed interface finite element solution Uy, has the following estimate in the
L? norm

i — dn||o < CR?|d|a, (40)

for a constant C' > 0.

Proof. By the generalized Aubin-Nitsche lemma [1], we have

||t —dpllo < sup ———
ger2@) 119lloe

+ [an (@ — dp, pg) — (4 — ﬁhag)ﬂ) + )&h(ﬁ, Vg — Ygn) — (f, g — @Dg,h)ﬂ)) (41)

(&= anllnllezg = wyulln

The estimate (40) is obtained by applying Theorem 3.5, (37),(38) and (39) to the above. [

4 Numerical results

Here, we numerically investigate the performance of our immersed finite element method
for two-dimensional elliptic problems. For the sake of simplicity, for all the test cases the
computational domain €2 is the rectangle —1 < x,y < 1 and the interface I' is represented
by a circle with the center at the origin and with some radius ry. For every problem the
source term and the Dirichlet boundary conditions are determined from the exact solution.
The main emphasis will be to investigate the performance of our approach and compare
it to the results obtained with the standard finite element method, that is a standard
conforming Galerkin finite element whose piecewise linear basis functions has not been
modified using the jump conditions. In all the test problems, the solution is approximated
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on a uniform n x n. For the performance analysis we employ the discrete L? norm defined

by
1Eullz2 =h [ e,
ij

where e;; = u(x;,y;) — w;; is the error in the grid point (z;,y;) between the exact solution
u(x;, y;) and the approximate solution u;;. We also display the ratios between the successive
errors

ratio = || Ep||r2/|| Eon || L2-

A ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second order
of accuracy.

4.1 Test problem 1

In this example we compare the results from our method and the standard FEM for a
problem with the piecewise constant coefficient 3. The problem reads

V- (BVu) =9v/a2+y%, on
ﬁ(x,y)Z{ﬁ_’ or=r0

B+, otherwise ,

where 7 = /2% + y? is the radius, 70 = 7/6.28 and the Dirichlet boundary conditions are
given by the exact solution

( )_ 7’3/5_’ if TST()?
ulz,y) = /3T + (1/8~ —1/87)rd,  otherwise.

It is easy to check that in this case the solution and its flux are continuous ([u]lr = 0
and [$0u/On]|r = 0). In this test problem, the emphasis is to investigate how well the
modified and the standard schemes can handle the jump in the § coefficient. The solution
for the case when (3, = 1000, 5_ = 1 is presented in Figure 5. Note, that the jump in
the normal derivative of the solution caused by the large difference in the coefficients is
captured sharply. The convergence studies for the cases when $, = 1000,5_ = 1 and
(. = 1000, 5_ = 1 are presented in Tables 1 and 2, correspondingly.

Note, that the immersed finite element method exhibits second order convergence in
L?. The standard FEM is at most first order accurate.
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Figure 5: The inverse of the solution for the test problem 1 with piecewise constant coef-
ficients 4, = 1000 and S_ = 1 obtained by the immersed interface FEM.

n | Standard FEM | Modified FEM
||En||r2 | ratio | ||E,||r2 | ratio
20 | 3.94e-02 - 1.48e-03 -
40 | 2.00e-02 | 1.97 | 4.84e-04 | 3.06
80 | 9.71e-03 | 2.05 | 1.07e-04 | 4.49
160 | 4.31e-03 | 2.25 | 2.45e-05 | 4.40

Table 1: Grid refinement study for test problem 1 with 3, = 1000 and S_ = 1 using both
modified approach and standard FEM for n x n grids.

n | Standard FEM | Modified FEM
||Enl|zz | ratio | || Ey,||r2 | ratio
20 | 3.24e-02 - 1.63e-03 -
40 | 2.04e-02 | 1.58 | 4.38e-04 | 3.72
80 | 1.03e-02 | 1.97 | 1.04e-04 | 4.20
160 | 5.60e-03 | 1.84 | 2.49e-05 | 4.17

Table 2: Grid refinement study for test problem 2 with 3, =1 and f_ = 1000 using both
modified approach and standard FEM for n x n grids .

4.2 Test problem 2

Here, we consider more elaborate problem with both discontinuous coefficients and a sin-

gular source function
V- (ﬁVU) :f($>y)+05f‘> on Q>
flz,y) =8(a” +y°) +4,

2 +y?+1, if r<0.5,
Blx,y) = :
b, otherwise,
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with C'= 0.1, b = 10 and the boundary conditions given by the exact solution

D C L R
aey (1—1/(8b) —1/b)/4+ (r*/2 4+ 1?)/b+ C'log(2r)/b,  otherwise.

Here, or denotes the Dirac delta-functional with the support on the interface I'. Table 3
gives the convergence analysis for the modified FEM and the standard FEM. The computed
solution is presented in Figure 6. As expected, the solution is second order accurate in the
L? norm.

Figure 6: The inverse of the solution for the test problem 2 obtained by the immersed
interface FEM.

n | Standard FEM | Modified FEM
||Enl|r2 | ratio | ||E,||r2 | ratio
20 | 2.69e-02 - 1.56e-02 -
40 | 1.46e-02 | 1.84 | 4.28e-03 | 3.65
80 | 6.85e-03 | 2.12 | 1.13e-03 | 3.76
160 | 3.74e-03 | 1.83 | 2.69e-04 | 4.22

Table 3: Grid refinement study for the test problem 2 with 3 = 10 and C' = 0.1 using both
modified FEM and standard FEM for n x n.
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5 Conclusions

In this paper, we have analyzed a new second order accurate finite element based method
for the solution of the two-dimensional elliptic interface problems involving discontinuous
coefficients and singular source functions on the uniform Cartesian grid that is not aligned
with the interface. The interface jump conditions associated with the discontinuities in
the coefficients and singularities of the forces have been derived and used to appropriately
modify the basis functions such that the jump conditions are well approximated. The
approximation capabilities of the method has been studied both theoretically and numer-
ically. The numerical experiments also confirmed that, for the considered test problems,
the investigated approach is superior to the standard finite element method.
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