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Abstract

The simulation of the metabolism in mammalian cells becomesa severe problem if spa-
tial distributions must be taken into account. Especially the cytoplsma has a very complex
geometric structure which cannot be handled by standard discretization techniques. In the
present paper we propose a homogenization technique for computing effective diffusion con-
stants. This is accomplished by using a two-step strategy. The first step consists of an ana-
lytic homogenization from the smallest to an intermediate scale. The homogenization error
is estimated by comparing the analytic diffusion constant with a numerical estimate obtained
by using real cell geometries. The second step consists of a random homogenization. Since
no analytical solution is known to this homogenization problem, a numerical approxima-
tion algorithm is proposed. Although rather expensive thisalgorithm provides a reasonable
estimate of the homogenized diffusion constant.
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1 Introduction

When mammalian cells are exposed to foreign and potentiallyharmful compounds a series of
events takes place. Following uptake the substance is distributed in different intracellular com-
partments by diffusion, absorption and desorption. The majority of the compound is either dis-
solved in the aqueous phase, the cytoplasm, or in the lipophilic phase, the membranes. Parallel
to diffusion and absorption/desorption bioactivation/biotransformation by different soluble and
membrane bound enzymes takes place. The purpose of biotransformation is to render the sub-
stance suitable for excretion.

A human cell consists schematically of an outer cellular membrane, a cytoplasm containing
a large number of organelles (mitochondria, endoplasmaticreticulum etc.), a nuclear membrane
and finally the cellular nucleus containing DNA. Figure 1 shows a sketch of a cell while Figure 2
shows a microphotograph of a nucleus with part of the surrounding cytoplasm. The organelle
membranes create a complex and dense system of membranes or subdomains throughout the
cytoplasm. The mathematical description of the biotransformation leads to a system of reaction-
diffusion equations in a complex geometrical domain, dominated by thin membranous structures
with similar physical and chemical properties. If these structures are treated as separate sub-
domains, any model becomes computationally very expensive. Moreover, due to the natural
variations in the cell structures, every individual cell needs its own mathematical model.

In order to make the system numerically treatable while at the same time retaining the essen-
tial features of the metabolism under consideration, in [1]a way of homogenizing the cytoplasm
has been developed, aiming at a manageable system of reaction-diffusion equations for the vari-
ous species. In the present paper, we report about numericalexperiments which justify some of
the strategies in the cited paper. The general modelling assumptions are summarized below. We
will use them also in the present report.

Modelling assumptions:

• On a small scale in space, the volume between the outer cellular membrane and the nucleus
membrane consists of layered structures cytoplasm/membranes.

• In the large scale, this volume contains an unordered set ofthe small-scale substructures
which are uniformly distributed over the volume.
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Figure 1: Schematic picture of a cell. Picture copyright U.S. National
Cancer Institute’s Surveillance, Epidemiology and End Results Program,
http://training.seer.cancer.gov/module anatomy/unit2 1 cell functions 1.html

Figure 2: Ultrastructure of the cell, nucleus and cytoplasm. Picture copyright Histology Learning
System, Boston University,http://www.bu.edu/histology/m/index.htm
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• The physical and chemical properties of the cytoplasm and of the membranes are uniform.

• We adopt the continuum hypothesis, i.e., we assume that theset of molecules in the cell
can be modelled by considering a continuous representation(a concentration).

• The processes of absorption and desorption of the individual species into or out of the
membrane is much faster than the diffusion and reaction processes. In this case, the re-
lations of the concentrations of a species near a membrane/cytoplasm boundary can be
conveniently described with the help of a partition coefficient.

In Section 2, we introduce the mathematical model. The next section is devoted to a descrip-
tion of the general experimental set-up which is used to compute effective diffusion coefficients
numerically. For the solution of the arising boundary-value problems for partial differential
equations we used the Comsol Multiphysics1 [3] environment.

In [1], the diffusion coefficients in the membrane structures have been homogenized by as-
suming the membranes and the aqueous volumes to be ideal infinite plane layers. This allows
for an analytic computation of the effective diffusivity. In Section 4, we will compare effective
diffusivities obtained this way against numerically determined effective diffusivities by using
computational domains which have been discretized from microphotographs of cell membranes.

The result of the first homogenization step leads to anisotropic diffusion tensors valid locally.
Invoking the assumption about the random distribution of the orientation of the membranes, the
next step consists of a stochastic homogenization. In contrast to the one- and two-dimensional
case, no analytical solution in the general three-dimensional case is known. We will compute the
effective diffusion coefficient numerically by Monte Carlotechniques in Section 5.

2 The Mathematical Model

2.1 The Governing Equations

We intend to derive a homogenized model of the reaction and diffusion processes inside the
cytoplasm. For that purpose, letG denote the volume between the outer cell membrane and the
nucleus membrane (excluding the membranes themselves). This volume is split into two disjoint
partsGl andGw which denote the lipophilic part and the aqueous part, respectively, of the cell.
Note that these subdomains are not necessarily connected. Assume that we are interested in the
contrationsc1, . . . ,cn of n species inside ofG. For thek-th species, it holds

∂
∂ t

ck = ∇ · (dk(x)ck)+Rk(c1, . . . ,cn,x), x∈ G, k = 1, . . . ,n. (1)

Here,dk denotes the diffusion tensor of thek-th species which is assumed to be constant in both
Gl andGw. Rk denotes the reaction term. It varies strongly withx. In the lipophilic part,Rk ≡ 0
because no reactions are taking place there. The concentrations of some of the species can be
assumed to be constant over time. As a consequence, many of the reaction terms will be linear.

1Comsol Multiphysics is a registered trade mark of Comsol AB,Stockholm, Sweden.
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The partition coefficient,Kp,k is the equilibrium ratio of the concentrations of speciesk be-
tween the aqueous compartment and its adjacent lipid compartment. This gives rise to boundary
conditions,

ck,w = Kp,kck,l x∈ Gw∩Gl , (2)

on the inner boundaries whereck,w andck,l denote the concentrations in the aqueous and lipid
parts, respectively.

The system (1) with inner boundary conditions (2) will be supplemented by (outer) boundary
conditions and initial conditions. For the purposes of thispaper the precise structure of these
conditions is not important.

2.2 The Model Problem

Let G ⊂ R
3 be a bounded domain which will be splitted into two (not necessarily connected)

subdomainsG1 andG2 such that

G1∩G2 = /0, G = G1∪G2.

The interior boundary will be denoted byΓ,

Γ = G1∩G2.

Consider the equations

∂
∂ t

vi −∇ · (di(x)∇vi)+ r i(x)vi = fi(x), x∈ Gi , i = 1,2. (3)

Assume additionally boundary conditions on∂G and initial conditions onG be given.
On the inner boundaryΓ the flux must be continuous. Letni denote the outer normal at the

boundary ofGi . The continuity conditions reads now

d1
∂v1

∂n1
+d2

∂v2

∂n2
= 0, x∈ Γ. (4)

The presence of a partion coefficient between the two phases gives rise to the boundary condition

v1 = Kpv2, x∈ Γ. (5)

This problem can be reduced to a problem in a more standard form by introducing

u(x) :=

{

v1(x), x∈ G1,

Kpv2(x), x∈ G2.
(6)

For this new functionu, the inner boundary conditions become

d1
∂u
∂n1

∣

∣

∣

∣

G1

+
1

Kp
d2

∂u
∂n2

∣

∣

∣

∣

G2

= 0,

u|G1
= u|G2

,











x∈ Γ.
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This motivates the definitions

d =

{

d1, x∈ G1,

d2/Kp, x∈ G2,
σ =

{

1, x∈ G1,

1/Kp, x∈ G2,

r =

{

r1, x∈ G1,

r2/Kp, x∈ G2,
f =

{

f1, x∈ G1,

f2, x∈ G2.

With these definitions, the problem (4), (5) becomes equivalent to

σ
∂
∂ t

u−∇ · (d∇u)+ ru = f , x∈ G (7)

subject to correspondingly modified initial and boundary conditions.
For later use, let

p1 =
|G1|

|G|
, p2 = 1− p1 =

|G2|

|G|
. (8)

2.3 Going From The Smallest to The Medium Scale: Homogenization of a
Periodic Structure

The homogenization procedure for an equation of the type (7)is proved in [6]. We cite the basic
facts. Consider the following problem,

σ ε ∂
∂ t

uε +Aεuε = f ε , uε(0) = u0

uε ∈ L2(0,T;H1
0(G)).

(9)

Here, the operatorAε is given by

Aεu := −
∂

∂xi

(

dε
i j

∂
∂x j

u

)

+ rεu.

For convenience, we use the Einstein summation convention:If an index appears twice in a
multiplicative expression, this expression is understoodto implicitly represent the sum over this
expression where the index varies between 1 and 3 (the dimension of G). Moreover, we assume
the following construction of the coefficients:

σ ε(x) = σ(x/ε), rε(x) = r(x/ε), dε
i j (x) = di j (x/ε), i, j = 1,2,3.

The functionsσ ε andrε are assumed to belong toL∞(G), and

σ ≥ σ0 > 0, r(x) ≥ 0 a.e. inG

for someσ0 ∈ R. The functionsdε
i j are assumed to be measurable and to satisfy the conditions

dε
i j = dε

ji and

α|ξ |2 ≤ dε
i j ξiξ j ≤ β |ξ |2, a.e. inG for all ξ ∈ R

3 and 0< α ≤ β < ∞.
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Finally, assumeu0 ∈ L2(G) and f ε ∈ L2(0,T;L2(G)).
In order to find the homogenized equation, assume

f ε −→ f weakly inL2(0,T;L2(G)).

Let Y be an axis parallel hexahedron inR
3, that is,

Y =
3
×
i=1

(ai ,bi).

For aY-periodic functionf , the mean value is given by

〈 f 〉 :=
1
|Y|

∫

Y

f (y)dy.

Assume now thatai j , σ , andr areY-periodic. Then it is possible to consider the problem

〈σ〉
∂
∂ t

u+Au= f , u(0) = u0

u∈ L2(0,T;H1
0(G)),

(10)

where the operatorA is given by

Au= −
∂

∂xi

(

deff,i j
∂

∂x j
u

)

+ 〈r〉u

deff,i j =

〈

di j −dik
∂ϕ j

∂yk

〉

,

andϕ j is theY-periodic solution of the following local elliptic problem:

∂
∂yi

(

dik(y)
∂ϕ j

∂yk

)

=
∂

∂yi
di j (y),

ϕ j ∈W(Y).

(11)

Here,W(Y) = {φ ∈ H1(Y)|ϕ isY-periodic and〈ϕ〉 = 0}.

Theorem 2.1. Under the conditions stated above, (9) and (10) have unique solutions uε ∈
L2(0,T;H1

0(G)) and u∈ L2(0,T;H1
0(G)), respectively, and it holds

uε −→ u in L2(0,T;H1
0(G)) weakly asε → 0.

This theorem is proved in [6, p. 56].2

In our model problem (7) the cell problems can be simplified considerably. We will assume
that, in the smallest scale, aqueous and lipid compartmentsare perfectly layered. It turns out

2In the reference, the proof is given for a problem without reaction term. But the proof can easily be generalized.
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that in this case the computation for the effective diffusion coefficients leads to a transmission
problem which can be solved analytically.

Consider the cell problem (11). The material consists of perfect layersω+ and ω− with
thicknessesa+ anda−, respectively. The diffusion coefficients in these layers are d+ andd−,
respectively. According to our assumptions,

a+

a−
=

p1

p2
.

Let us choose the following coordinate:x2 is normal to the interface betweenω+ andω− while
x1 andx3 span this interface. The diffusion coefficientd is given by

di j (x) =











0, if i 6= j,

d+
i , if i = j andx∈ ω+,

d−
i , if i = j andx∈ ω−.

The cell problem is posed on

Y = (0, l1)× (−a−,a+)× (0, l3).

Then the homogenized diffusivities become (see [7])

deff,11 = (a+d+
1 +a−d−

1 )/(a+ +a−), (12)

deff,22 = (a+ +a−)/
(

a+/d+
2 +a−/d−

2

)

, (13)

deff,33 = (a+d+
3 +a−d−

3 )/(a+ +a−), (14)

di j = 0 if i 6= j. (15)

Note thatdeff,11 anddeff,33 are the arithmetic means whiledeff,22 is the harmonic mean of both
diffusivitiesa+

i anda−i .

2.4 From The Medium to The Large Scale: Stochastic Homogenization

In global coordinates, we cannot assume that the coordinatesystem is oriented in the way that
we used above. Consider two Cartesian coordinate systems(x1,x2,x3) and(z1,z2,z3). Assume
that a given pointx has the representationz= Tx with respect to thez-coordinates. Note thatT
is an orthogonal matrix in that case. Denote the matrix of diffusion coefficients with respect to
thex-coordinates byQ∗ and that with respect to thez-coordinates byQ. Then a short calculation
yields

Q∗ = TQT−1 = TQTT .

This is the point to invoke the next critical assumption: We assume that the volume is tightly
packed with substructures of the type considered before, namely layered materials. The key
assumption is that all orientations are equally probable. This leads to a stochastic description of
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the diffusion coefficients. We need a homogenization of operators with random coefficients. A
theory for that is provided in [5].

Note that the mean values〈σ〉 and〈r〉 in (10) are independent of the orientation of the layers.
Therefore, it suffices to consider the stationary diffusionproblem

Aεuε = f , uε ∈ H1
0(G) (16)

with G⊂ R
m and

Aεu = −
∂

∂xi

(

dε
i j

∂
∂x j

u

)

which is the counterpart of (9). Assume as before that

dε
i j (x) = di j (x/ε), i, j = 1, . . . ,m.

The randomness of the orientation is modelled by assuming that the matrixA(y) =
(

di j (y)
)

is
statistically stationary with respect to the spatial variable y∈ R

m, or equivalently, thatA(y) is a
typical realization of a stationary random field.

Let (Ω,F ,P) be a probability space withσ -algebraF and probability measureP. Let for
eachx∈ R

m a random variableξ (x) over(Ω,F ,P) be given. The random fieldξ is stationary if
it can be represented in the form

ξ (x,ω) = a(T(x)ω)

wherea(·) is a fixed random variable,T = T(x) : Ω → Ω is a measurable transformation which
preserves the measurePon(Ω,F ). Therefore, for the definition of the coefficientsdi j in (16) it is
sufficient to consider a matrix(di j ) of random variablesdi j : Ω → R. Realizations of coefficients
can then be obtained by setting

di j (x,ω) = di j (T(x)ω).

Assume in the following thatdi j ∈ L∞(Ω) and

α|ξ |2 ≤ di j (ω)ξiξ j , ξ ∈ R
m

for almost allω ∈ Ω with α > 0 independent ofξ andω.
A (deterministic) matrixd(y) is said to admit a homogenization if there exists a constant

elliptic matrixdeff such that for anyf ∈ H−1(G) the solutionsuε of the Dirichlet problem (16) it
holds

uε −→ u in H1
0(G) weakly asε −→ 0, and

dε∇uε −→ deff∇u in L2(G) weakly asε −→ 0,

whereu is the solution of the Dirichlet problem

−∇ · (deff∇u) = f , u∈ H1
0(G).

This definition correspondents to the stationary version ofTheorem 2.1. The following theorem
holds true [5, p. 230]:
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Theorem 2.2. Assume additionally that the family of mappings T(x) : Ω → Ω, x∈ R
m, forms an

ergodic m-dimensional dynamical system. Then for almost all ω ∈Ω, the matrix with coefficients
di j (x) = di j (T(x)ω) admits homogenization, and the homogenized matrix deff is independent of
ω.

Unfortunately, an analytical representation ofdeff is only possible in exceptional cases. We
are interested in diffusion coefficients having a representation

d(x) = T(x,ω)QT(x,ω)−1

whereT(x) ∈ SO(m) is uniformly distributed inSO(m) andQ is a fixed diffusion tensor. In the
two-dimensional case, an analytic solution is provided in [5, p. 235]. Form= 2, deff is simply a
scalar equal to the geometric mean of the eigenvalues ofQ,

deff =
√

det(Q).

Here det(Q) denotes the determinant ofQ.
There is no analytical solution known for the casem= 3.
For later use in the experimental estimation of the effective diffusivity, the following obser-

vation is important: According to our assumptions ond, the estimate

‖(Aε)−1‖ ≤ α−1

holds true such that, for anyf andl in H−1(G),

|〈l ,(Aε)−1 f 〉| ≤ ‖l‖H−1(G)α
−1‖ f‖H−1(G)

independently ofω ∈ Ω. Consequently, for the expectation values it holds

E〈l ,(Aε)−1 f 〉 −→ E〈l ,A−1 f 〉 (17)

by the dominated convergence theorem.

3 Numerical Determination of Effective Diffusivities

Under the assumption that an effective diffusivity for a given problem exists, the corresponding
diffusion constants can be determined experimentally. Forthat, letD ⊂ G be a subdomain which
is in size comparable toG such that the small scale structure is considerable smallerthan the size
of D. Assume that we want to determine the (scalar) diffusion constant for the diffusion process
in x-direction. In that case it is convenient to use a cylindrical domain

D = (0,L)×ω

with ω ⊂ R
2 being some bounded domain. OnD consider the stationary diffusion equation

−∇ · (d(x)∇u) = 0, x∈ D.

The boundary conditions are selected as follows:
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• On the boundaryΓ0 = {0}×ω, a fixed Dirichlet condition is given,

uΓ0 = c0.

• On the boundaryΓ1 = {1}×ω, a free diffusion into the surrounding medium is assumed,

−n · (d(x)∇u)Γ1 = M(uΓ1 −c1).

Here,M is the mass transfer coefficient andc1 is the concentration in the bulk solution
outside ofD.

• All other boundariesΓ2 = ∂G\ (Γ0∪Γ1) are isolated,

−n · (d(x)∇u)Γ2 = 0.

If d(x) would be a constantdeff, it would hold

deff
c0−uout

L
= Naverage,

Naverage=
1

|Γ1|

∫

Γ1

M(u−c1)dΓ,

uout =
1

|Γ1|

∫

Γ1

udΓ.

By |Γ1| we denote the Lebesgue measure ofΓ1. If d(x) is varying, these equations can be used
as an estimation of the effective diffusivitydeff. In case of an anisotropic effective diffusivity, the
above construction leads to an estimate of the effective diffusivity in x-direction, i.e.,deff,11.

In the one-dimensional casem = 1, however, an analytic solution is possible. A simple
calculation gives

deff =





1
L

L
∫

0

d(x)−1dx





−1

,

which amounts to the harmonic mean.

4 Theoretical And Experimental Diffusivities For Layered Struc-
tures

The homogenization of layered structures in Section 2.3 made use of the assumption that we
have ideal planes of different materials with different diffusion tensors. In a real biological cell,
this assumption is only approximately fulfilled in small subdomains. Besides the effect of not
having the parameterε close to zero an additional error is introduced this way. Theaim of the
present section is to obtain some experimental estimates ofhow large the error will be. We will
start with a real photograph of some cell organelles and extract the geometrical structure of the
lipophilic and aqueous layers. Then the diffusivity is estimated using the strategy of Section 3.
This diffusion constant will be compared to the theoreticalhomogenized value.
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Figure 3: Detail of a rat cell showing the Golgi-apparatus. The box indicates the area used as a
reference domain. Copyright Dr. H. Jastrow

4.1 The Experimental Set-up

The experiments of this section are based on the micro-photograph shown in Figure 3. The
part enclosed by a box in that figure has been extracted and amplified in contrast. This way, the
membrane structure in Figure 4 has been obtained. Note that only the black lines represent mem-
branes. The geometry of this structure has been too complex for the software used in the numer-
ical experiments. The number of degrees of freedoms obtained after discretization has become
too large. Therefore, we extracted again a part of this geometry in order to make the problem
tractable with the available software. Note that the diffusion in this problem is anisotropic. In
order to be able to compare the experimental numerical diffusivity with the analytical value, the
main orientation of the membranes was aligned with they-axis. The resulting geometries can be
found in Figure 5. Two cases have been considered.

• Case A:In this case, almost perfect layers have been used.

• Case B:Here we want to estimate the influence of short circuits and more irregular struc-
tures.

The geometrical data for both data are provided in Table 1. The corresponding data for
the diffusion constants are given in Table 2. Observe that the diffusion in the lipophilic part is
anisotropic. This has been used for the numerical experiments. In contrast to that, the homoge-
nized diffusion constant has been determined by usingd2,11, only. So we expect a larger error in
the experiments with the domain of case B.
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Figure 4: Contrast amplified reference domain. The black areas indicate membranes

(a)

(b)

Figure 5: Computational domains for case A(a) and case B(b)

Case A Case B
lx[m] 4.359×10−7 4.390×10−7

ly[m] 0.9125×10−7 1.568×10−7

p1 0.8122 0.8139
p2 0.1878 0.1861

Table 1: Geometric constants
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Value
d1[m2s−1] 1.0×10−14

d2,11[m2s−1] 1.0×10−12

d2,22[m2s−1] 1.0×10−10

Kp 1.26×10−2

Table 2: Diffusion constants

The experimental determination of the effective diffusivity according to Section 3 can be
carried out using two approaches:

1. Use the original equation (3) subject to the inner boundary conditions (4) and (5).

2. Use the transformed problem (7) without any inner boundary conditions.

In order to be as close as possible to the original problem we have chosen the first alternative for
our experiments. Note that, in the case ofKp = 1, both approaches are identical.

Unfortunately, it is not possible to formulate the inner transmission conditions (4), (5) directly
in Comsol Multiphysics. Instead, both conditions have beencoupled by a penalty approach as
suggested in [4]. For a suitably chosen constantκ, (4), (5) is replaced by

d1
∂v1

∂n1
= κ(v1−Kpv2), x∈ Γ (in G1),

d2
∂v2

∂n2
= κ(Kpv2−v1), x∈ Γ (in G2).

(18)

κ acts as a mass transfer coefficient.
For comparison purposes, even the homogenized problem (10)has been implemented in

Comsol Multiphysics.

4.2 Results

The experiments have been carried out using the values

κ = 10−4, M = 10−7, c0 = 1, c1 = 0.

The penalty parameter has been chosen such that both sides ofthe equations (18) are somehow
in balance. The value ofM has been chosen such that the outflow has the order magnitude 0.3c0.
In case 1,Kp = 1 while, in case 2,Kp = 0.0126. The results are summarized in Table 3.

The effective diffusivities given above refer to the steadystate. In order to get a feeling for
the influence of the homogenization on the transient behavior, we compared the time history of
the mean flux out of the domain at the left boundary between theoriginal equation (3) and its
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case hom. constant exper. constant rel. difference
1A 1.2284 1.3131 6.9%
1B 1.2258 1.3590 10.9%
2A 1.2312 1.2910 4.9%
2B 1.2286 1.4680 19.5%

Table 3: Homogenized and experimental effective diffusivities scaled by 10−14

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

time

av
ar

ag
e 

flu
x

Avarage flux at the outflow boundary

Figure 6: Comparison of the flux at the outflow boundary for thehomogenized model (line) and
the detailed model (dashed line)

homogenized counterpart (10). For that, the boundary valueproblem has been solved as before
using the initial condition

u(x,y) = 10−6exp

(

−1000

(

x
2.179×10−7

)2
)

at t = 0.

The value of the experimental effective diffusion has been used in the homogenized problem.
The results for the four different cases differ only marginally. As expected from the experiments,
the largest differences occur in case 2B. This is shown in Figure 6.

Summarizing, the following sources of errors occur:
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• The sizes of the sub-structures are not infinitesimal small;

• The membrane layers are not ideal planes;

• In the geometry case B, the membranes are touching the outflow boundary;

• For computing the homogenized diffusion coefficient, onlythe normal part of the mem-
brane diffusion tensor has been used;

• The partition coefficients are handled by a penalty approach.

The size of the numerical errors is negligible compared to the ones given above.

5 Experimental Effective Diffusivities in Random Media

5.1 The Experimental Set-up

The idea for estimating the effective diffusivity in the present case is to use a Monte Carlo
simulation. For that, the test domainD of Section 3 is chosen to be the unit cube,D = (0,1)3.
Let

Q = diag(d11,d22,d33)

be a fixed diffusion tensor. For a givenN ∈ N, this cube is subdivided intoN3 sub-cubes

Di jk = (xi−1,xi)× (y j−1,y j)× (zk−1,zk)

with xi = yi = zi = ih andh= 1/N. h plays the rôle ofε in Theorem 2.2. One experiment consists
of choosing a realizationdε such that

dε |Di jk
= Ti jkQTT

i jk

whereTi jk ∈ SO(3) are drawn uniformly distributed inSO(3).
In order to describe the orientation we will use the Euler angles. Any rotation inSO(3) can

be described by three angles, the so-called Euler angles. Wewill use the convention to first rotate
around thex3-axis by the angleα, then around the (new)x1-axis byβ , and finally around the
newx3-axis byγ. This can be described formally by

T = R3(γ)R1(β )R3(α), α,γ ∈ (0,2π), β ∈ (0,π), (19)

where

R3(ψ) =





cosψ sinψ 0
−sinψ cosψ 0

0 0 1



 , R1(β ) =





1 0 0
0 cosβ sinβ
0 −sinβ cosβ



 .

Let µ denote the Haar measure onSO(3). Its density has the simple form

dµ =
1

8π2 sinβdαdβdγ
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with respect to the Lebesgue measure on(0,2π)× (0,π)× (0,2π).
This way, the expectation value ofdε

eff can be estimated for givenN (ε). The computation of
uout andNaverageconsists essentially of the evaluation of integrals

∫

Γ1

udΓ

for functionsu∈ H1(G). Since this is a continuous linear functional, we obtain

dε
eff −→ deff for ε −→ 0

by using (17). Since there are no preferred directions in this setting, the diffusion is isotropic
such thatdeff is a scalar.

5.2 Results in 2D

In the two-dimensional setting, an analytic solution of therandom homogenization problem is
known. Let

Q = diag(d11,d22).

The effective diffusivity is the scalar [5, p. 235]

deff = (d11d22)
1/2.

We will carry out the experiment described above in the two-dimensional setting in order to
obtain a certain gauge for its three-dimensional equivalent.

The two-dimensional counterpart of the experiment described in Section 5.1 is to choose
D = (0,1)2 which will be subdivided, for a givenN ∈ N, into sub-squares

Di j = (xi−1,xi)× (y j−1,y j)

with xi = yi = ih andh = 1/N. The realizationsdε are now described by

dε |Di j
= Ti j QTT

i j

whereTi j ∈SO(2) are sampled uniformly distributed inSO(2). The elements ofSO(2) are simple
rotations described uniquely by an angleϕ ∈ [0,2π),

T =

(

cosϕ sinϕ
−sinϕ cosϕ

)

.

The Haar measureµ onSO(2) has the densitydµ = 1
2π dϕ with respect to the Lebesgue measure

on (0,2π).
The experimental results for

d11 = 1, d22 = 10, deff = 3.1623

are provided in Table 4. We can draw the following conclusions:
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• The main parameter for the accuracy of the estimation of theeffective diffusivity isN. This
isn’t hardly surprising.

• For a givenN, the sample size has only a minor influence on the accuracy. Once a certain
number of trials has been reached the accuracy does not become better. The optimal sample
size seems to be independent ofN.

• The standard deviation for sufficiently large sample sizesroughly halves while doubling
N. This indicates a linear rate of convergence.

• In all experiments, the mean value of the experimental effective diffusivity is an overesti-
mation of the exact value.

• If the sample size is too small, the standard deviation is misleading small.

• The experiments in Section 4 indicated an error in the orderof magnitude of 5% – 10%
between the theoretical homogenized diffusivity and the experimentally observed. These
results suggests to use a value ofN = 20 and a sample size of at least 15 trials.

5.3 Results in 3D

Finally, the experimental estimation in the three-dimensional case has been carried out. Unfor-
tunately, the geometry handling in Comsol Multiphysics hasled to a severe restriction on how
largeN can be. Although the machine used had enough memory installed (16 GB), the Java
heap space got exhausted rather soon. Moreover, the geometry analysis was surprisingly time-
consuming compared to the assembly and solution process.

For the experiments, we have chosen the diffusion coefficients

d11 = 9, d22 = 25, d33 = 1.

Note that an analytical solution of the homogenization problem is not known. The results are
given in Table 5.

6 Conclusions

The present paper explains the homogenization strategy which has been used to derive effective
equations for modelling the detailed metabolism in mammalian cells. The cytoplasm has been
modelled assuming that three different length scales can beobserved. For going from the smallest
to the medium scale, an analytic homogenization technique is used. By comparing the analytic
effective diffusion constant with results from numerical simulations on real cell geometries taken
from photographs an error of 5% – 20% has been observed. Giventhe accuracy of the known
diffusion constants in the lipophilic and aequous parts of the cytoplasm this accuracy appears to
be sufficient.



19

N sample size mean standard deviation abs. error
20 5 3.1693 0.0788 0.0070

10 3.2689 0.1604 0.1066
15 3.1834 0.1448 0.0211
30 3.2225 0.1294 0.0602
60 3.2059 0.1569 0.0436
90 3.1973 0.1448 0.0350
120 3.1708 0.1516 0.0085
150 3.2109 0.1371 0.0486
180 3.1946 0.1431 0.0323
200 3.1971 0.1451 0.0348

40 5 3.2377 0.0672 0.0754
10 3.2272 0.0602 0.0649
15 3.2343 0.0675 0.0720
30 3.2380 0.0789 0.0757
60 3.2496 0.0722 0.0873
90 3.1907 0.0746 0.0284

60 5 3.1950 0.0276 0.0327
10 3.1870 0.0487 0.0247
15 3.1896 0.0420 0.0273
30 3.1916 0.0417 0.0293

80 15 3.2009 0.0305 0.0386

Table 4: Experimental effective diffusivities in 2D ford11 = 1, d22 = 10,deff = 3.1623
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N sample size mean standard deviation
4 5 7.6753 0.4767

10 7.2391 0.6292
15 7.3391 0.6667
20 7.5785 0.8431
30 7.5144 0.7630

8 5 8.1298 0.1226
10 8.1251 0.2088
15 8.0147 0.2914
20 8.0910 0.2395
30 8.0490 0.2193

10 5 8.3499 0.1448
10 8.2605 0.1769
15 8.2741 0.1523
20 8.2783 0.1522
30 8.3131 0.1524

16 5 8.6457 0.0943
10 8.7546 0.1005
15 8.6834 0.0748
20 8.6453 0.0845
30 8.6787 0.0752

20 5 8.7419 0.1162
10 8.7383 0.0622
15 8.7214 0.0616
20 8.7412 0.0505
30 8.7281 0.0596

Table 5: Experimental effective diffusivities in 3D ford11 = 9, d22 = 25,d33 = 1
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For the step from the medium scale to the large scale, a randomhomogenization technique
has been used. Matheatically the effective diffusivity is known to exists. In the present paper an
algorithm has been developed and tested for estimating the homogenized diffusion constant on
the large scale. However, the computation times in Comsol Multiphysics have become very large
(up to one week on a compute server based on a 2GHz AMD Opteron processor) for a reasonable
setup such that alternative solution techniques should be investigated.

The critical assumption in the last step is that about the probability distribution of the struc-
tures on the intermediate scale. Its validity can probably only be justified by comparision to
biochemical experiments.

More detailed results can be found in [2].
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