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A non-
onforming �nite element methodfor interfa
e Stokes problems and its appli
ationto two-phase Rayleigh-Taylor instability with solidobsta
lesAlexei Loubenets, Mi
hael HankeSeptember 14, 2007Abstra
tIn this paper, we establish an immersed �nite element method for the solution of interfa
eStokes problems. The main idea of the method is to use a �xed, uniform mesh everywhereover the 
omputational domain ex
ept the vi
inity of the interfa
e, where spe
i�
ally de-signed ma
ro elements are employed, su
h that the jump 
onditions are well approximated.In general, the resulting immersed �nite element spa
e is non-
onforming. The interfa
eitself is represented with the help of Lagrangian markers. The 
apability of the method isillustrated in the 
ase of a Rayleigh-Taylor two-phase �ow instability problem with solidsuspensions governed by the Stokes equations.1 Introdu
tionThe �ow situation 
onsidered in this arti
le is a variation of the 
lassi
al vis
ous Rayleigh-Taylor (RT) �ow problem that is often used in the literature to evaluate the performan
eof di�erent interfa
e tra
king numeri
al methods. Physi
ally, the RT problem is a �ngeringinstability of an interfa
e between two or more strati�ed �uids of di�erent density subje
tedto a

eleration, or in a verti
al gravitational �eld. The interfa
e be
omes unstable for
ertain perturbations and these perturbations evolve into spikes of heavy �uid and bubblesof light �uid whi
h penetrate into both �uids. This type of instability o

urs in diverseappli
ations, in
luding mantle and lithosphere dynami
s, diapirism, post-gla
ial reboundand many others. The experimental and analyti
al investigations of this instability wereperformed by, among others, Lewis [12℄, Chang and Watson [7℄, Da�, Harlow and Hirt [6℄,Popil and Curzon [18℄, Gertsenstein and Cherniavskii [9℄, Danilov and Omelyanov [4℄,[5℄, and Barnes [1℄. It has been shown that the evolution of a RT instability is a 
omplexphenomena that involves formation and deta
hment of droplets, development of Helmholtz1



2 1 INTRODUCTIONinstability on the side of the penetrating spikes, 
ompetition and amalgamation among therising bubbles and et
.Sin
e then, many numeri
al methods have also been developed and applied to studythis phenomena. Fraigneau et al. [8℄ developed an Eulerian method for simulating variabledensity in
ompressible vis
ous �ows. They 
ompared the �nite element method and �nitevolume method for the RT problem in the vis
ous regime for two di�erent Reynolds num-bers. It was shown that, even at moderate Reynolds numbers, this problem is very sensitiveto the numeri
al method used and, in parti
ular, to the mesh re�nement algorithm.Rudman [22℄ used an algorithm for volume tra
king based on the 
on
ept of �ux-
orre
ted transport (FCT) to solve the RT �ow problem. He also 
ompared his methodwith three other te
hniques: the simple line interfa
e 
al
ulation (SLIC) method, the VOFmethod of Hirt and Ni
hols [11℄ and Young's method [30℄.Zhao et al. [31℄ solved the in
ompressible Navier-Stokes equations for two superimposedvis
ous �uids on unstru
tured grids with the �nite volume method. The free surfa
e was
omputed with the VOF method and the surfa
e tension was taken into a

ount. Themotion of the 
hara
teristi
 RT mushroom shape of the interfa
e was studied at Re = 283.See [23℄ and [21℄ for the further referen
es on VOF methods applied to RT instability.Popinet and Zaleski in [19℄ revisited the work of Pu
kett et al. [20℄ and solved the RT�ow problem with the front-tra
king te
hnique. A sour
e term was added to a

ount forthe surfa
e tension for
es as well. Glimm et al. have su

essfully applied front-tra
kingmethod to three dimension, as well as extending the front tra
king 
apabilities to deal withthe topologi
al 
hanges in the interfa
e [10℄. Similar work has been done by Tryggvasonand Unverdi in [27℄, [29℄ and [28℄.The level set method has also been extensively used in the simulation of the RT �owproblems, see [25℄ and [32℄ for further referen
es.In this paper, we will employ an alternative approa
h that is also an Eulerian model,the immersed interfa
e �nite element method. This approa
h, originally proposed by Liin [13℄ ,[14℄ and extended in [15℄, [16℄,[17℄ uses a triangulation that is independent of theinterfa
e. The interfa
e itself is represented by an additional stru
ture (t.ex. markers witha parametri
 des
ription ) that is 
ontinuously updated using some information obtainedfrom uniform ba
kground mesh.The main idea of the method is to separate the elements of the ba
kground mesh intotwo 
lasses, the ones that are interse
ted by the interfa
e and the rest. On the non-interse
ted elements we use standard linear polynomials. On the interse
ted elements weuse a strategy similar to that of the Hsieh-Clough-To
her ma
ro-element [2℄. That is, ea
hinterse
ted element is subdivided by the interfa
e into two subdomains. Then, we 
onstru
ta C0 fun
tion 
onsisting of pie
ewise linear polynomials on ea
h of the subdomains su
hthat the element has a total of 4 degrees of freedom. At the verti
es of the originalelement, we spe
ify the fun
tion values. The additional degrees of freedom are satis�ed bythe approximation of the jump 
onditions. Sin
e this pro
edure involves subpartition of theoriginal triangle, we 
an regard the interse
ted elements as ma
ro-elements. The resultingimmersed �nite element spa
e over the entire domain is, in general, non-
onforming.The obje
tive of this paper is twofold. First we aim at extending the 
apabilities of the



3immersed interfa
e �nite element method that was re
ently developed and analyzed for theellipti
 interfa
e problems ([13℄ ,[14℄,[15℄, [16℄ and [17℄). This extension should allow ourmethod to handle the Stokes interfa
e problems. In addition, solid obsta
les are in
luded inthe 
omputational domain. That should be regarded as a �rst step in a pra
ti
al dire
tionof having suspensions in the �ow. Note, that in referen
e [15℄ the interfa
e Stokes problem issolved by de
oupling the equations into three separate Poisson problems, one for pressureand two for the velo
ity 
omponents. That was possible due to the periodi
 boundary
onditions that were used and homogeneity of the physi
al �elds. In the present work,the Stokes equations are not de
oupled, the physi
al �elds are dis
ontinuous and singularsour
e terms are present. The method will be used to solve the Rayleigh-Taylor instabilityproblem. The investigation will mainly 
on
ern the e�e
t of the density gradient, shapeof the 
omputational domain and the amount and stru
ture of the solid obsta
les on thedynami
s of the interfa
e.The rest of the paper is organized in the following way. The problem formulation andits ba
kground are given in Se
tion 2. The method des
ription is presented in Se
tion 3.This is followed numeri
al examples and 
on
lusions.2 Problem formulationIn this 
hapter we introdu
e the Rayleigh-Taylor two-phase �ow instability problem withsolid obsta
les governed by the Stokes equations. We des
ribe the typi
al dynami
s of theinterfa
e in the 
lassi
al Rayleigh-Taylor instability, introdu
e the variational formulationof the problem and, �nally, derive the jump 
onditions a
ross the interfa
e.2.1 Rayleigh-Taylor instability problemLet us 
onsider the �ow of two immis
ible and in
ompressible �uids in the following two-dimensional domain
Ω = {x ∈ R

2| 0 < x < 2L, −L < y < L}\ ∪i Ωi,where ea
h re
tangular subdomain Ωi represents a single solid obsta
le
Ωi = {x ∈ R

2| ai < x < bi, ci < y < di}for some ai, bi, ci, di ∈ R, see Figure 1. Let, initially, the interfa
e between two immis
ibleliquids be
Γ = {x ∈ R

2| y = h(x), x ∈ [s1, s2] ⊆ [0, 2L]},where h is some C∞, L-periodi
 fun
tion. Then the interfa
e Γ divides the domain Ω into
Ω+ = {−L < y < h(x), 0 < x < 2L}\ ∪ Ωi,

Ω− = {h(x) < y < L, 0 < x < 2L}\ ∪ Ωi.



4 2 PROBLEM FORMULATION
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Figure 1: The 
omputational domain Ω and its partition by the interfa
e Γ.Let
u : Ω → R2, p : Ω → Rbe the velo
ity ve
tor and the pressure. Denote by ρ and µ the pie
ewise 
onstant kinemati
density and vis
osity of the two �uids

ρ =

{

ρ+ for x ∈ Ω+,

ρ− for x ∈ Ω−,
, µ =

{

µ+ for x ∈ Ω+,

µ− for x ∈ Ω−.
(1)Moreover, denote by X(s, t) = (X(s, t), Y (s, t)) the lo
ation of the interfa
e Γ at somemoment time t parameterized with respe
t to the ar
length s. Then the dynami
s of twoimmis
ible and in
ompressible �uids in 
omputational domain Ω is des
ribed by the Stokesequations

µ∆u−∇p = ρg + fδΓ, x ∈ Ω,

∇ · u = 0, x ∈ Ω\Γ,
(2)together with the Cau
hy problem for the interfa
e

∂

∂t
X(s, t) = u(X(s, t), t),

X(s, 0) = (s, h(s)).Here, g = (0, 1) is the gravitational 
onstant and the sour
e term fδΓ des
ribes eithertension or an elasti
 for
e a
ting along the interfa
e with for
e density f = (f1, f2). Wepose no-slip boundary 
onditions on the upper and lower bases of the domain Ω and theperiodi
ity 
ondition on its lateral sides
u

∣

∣

∣

y=±L
= 0,

∂ku

∂xk

∣

∣

∣

x=0

=
∂ku

∂xk

∣

∣

∣

x=2L
, k = 0, 1.No-slip boundary 
onditions are also imposed on the boundaries of the solid suspensions

u|∪∂Ωi
= 0.



2.2 Variational formulation and jump 
onditions 5The interfa
e Γ between the liquids has the same velo
ity as the surrounding �uids.The behavior of the 
lassi
al RT instability problem (without solid obsta
les) is usuallydivided into four separate stages [24℄. The �rst stage is dominated by the small growth ofthe perturbations. As analyzed by the linear stability theory, the growth rate depends onthe �uid's density gradient, vis
osities, surfa
e tension and 
ompressibility (if appli
able).The linear theory is no longer appli
able after the perturbation grows to more than 10−40%of its original size. The se
ond stage is 
hara
terized by the nonlinear perturbation growth,formation of the bubbles of light �uid threading through heavy �uid and emergen
e of thespikes of the heavy �uid that falls into the light �uid. During this stage, the nonlineargrowth of perturbations is strongly in�uen
ed by the density ratio and three-dimensionale�e
ts. Intera
tions and amalgamations among the bubbles and the mushroom-shapedspikes are 
hara
teristi
s of this stage. Finally, this intera
tion evolves into a turbulentor 
haoti
 mixing whi
h dominates the fourth stage of the instability. In this �nal stage,phenomena su
h as the penetration of a bubble through a slab of �uid of �nite thi
kness,ne
king, breakup of the spikes by various me
hanism, and other 
ompli
ated, topologyrelated e�e
ts take pla
e.2.2 Variational formulation and jump 
onditionsConsider problem (2) in the distributional sense. That is we view all the terms in theequations as distributions a
ting on any smooth fun
tions φ and ψ. Integrating by partsin (2) and summing up the momentum equations we obtain the following saddle pointproblem: Find (u, p) ∈ H1
0 (Ω)2 × L2

0(Ω) su
h that
−

2
∑

m=1

∫∫

Ω

µ∇um · ∇ψmdx+

∫∫

Ω

p∇ · ψdx =

2
∑

m=1

∫∫

Ω

ρgmψmdx+

2
∑

m=1

∫

Γ

fmψmds, ∀ψ = (ψ1, ψ2) ∈ H1
0 (Ω)2,

∫∫

Ω

φ∇ · udx = 0, ∀φ ∈ L2(Ω),

(3)
where ρ, µ are given by (1).Theorem 2.1. The �rst velo
ity 
omponent u1 satis�es the following jump 
onditions atthe interfa
e Γ

[u1]|Γ = F1,
[

µ
∂u1

∂n

]
∣

∣

∣

Γ

= F2, (4)where F1 = 0 and F2 = [p] cos(Θ) − f1. Here n is the outward unit normal ve
tor to Ω−and θ is an angle between a normal ve
tor n and x-axis.Proof. Consider the equivalent 
lassi
al formulation of the �rst momentum eq. (2). Namely
µ∆u1 −

∂p

∂x
= ρg1, (x, y) ∈ Ω\Γ.



6 2 PROBLEM FORMULATIONMultiply by a su�
iently smooth test fun
tion ψ ∈ D(Ω) and integrate we obtain:
∫∫

Ω±

µ∆u1ψdx−

∫∫

Ω±

∂p

∂x
ψdx =

∫∫

Ω±

ρ±g1ψdx, (5)where, − and + signs indi
ates whether we approa
h interfa
e Γ from Ω− or Ω+, 
orre-spondingly. Apply Greens theorem to the �rst term of the left hand side for ea
h of thedomains
∫∫

Ω+

µ∆u1ψdx = −

∫

Γ

µ(∇u+
1 · n)ψds−

∫∫

Ω+

µ(∇u1 · ∇ψ)dx,
∫∫

Ω−

µ∆u1ψdx =

∫

Γ

µ(∇u−1 · n)φds−

∫∫

Ω−

µ(∇u1 · ∇ψ)dx.

(6)Similarly, we rewrite the integral over pressure in (5) as
∫∫

Ω+

∂p

∂x
ψdx = −

∫

Γ

ψ([p+, 0]T · n)ds+

∫∫

Ω+

[∂ψ

∂x
,
∂ψ

∂y

]T

· [p, 0]Tdx,

∫∫

Ω−

∂p

∂x
ψdx =

∫

Γ

ψ([p−, 0]T · n)ds+

∫∫

Ω−

[∂ψ

∂x
,
∂ψ

∂y

]T

· [p, 0]Tdx.

(7)Insert (7) and (6) in (5) to obtain the following formulation
∫∫

Ω

(−µ∇u1 · ∇ψ + p
∂ψ

∂x
)dx+

∫

Γ

[p] cos(θ)ψds

−

∫

Γ

[µ
∂u1

∂n
]ψds =

∫∫

Ω

ρg1ψdx. (8)Consider now the �rst momentum eq. (2) in the distributional sense on the whole of Ω.Multiplying by a su�
iently smooth test fun
tion ψ ∈ D(Ω) and integrating by parts weobtain
∫∫

Ω

−µ∇u1 · ∇ψdx+

∫∫

Ω

p
∂φ

∂x
dx =

∫

Γ

f1φds+

∫∫

Ω

ρg1ψdx, ∀ψ ∈ D(Ω). (9)Sin
e the test fun
tion is arbitrary, equations (9) and (8) are equal and thus
[u1]|Γ = 0 and [

µ
∂u1

∂n

]
∣

∣

∣

Γ

= [p] cos(Θ) − f1.Theorem 2.2. The se
ond velo
ity 
omponent u2 satis�es the following jump 
onditionsat the interfa
e Γ

[u2]|Γ = F3,
[

µ
∂u2

∂n

]
∣

∣

∣

Γ

= F4, (10)where F3 = 0 and F4 = [p] sin(Θ) − f2.



2.2 Variational formulation and jump 
onditions 7Proof. The proof is similar to that of the Theorem 2.1.Theorem 2.3. The pressure p is subje
t to the following jump 
onditions at the interfa
e
Γ

[p]|Γ = F5,
[∂p

∂n

]
∣

∣

∣

Γ

= F6, (11)where F5 = f̂1 and F6 = ∂f̂2

∂τ
. Here τ is the tangent unit normal ve
tor to Γ and f̂1,f̂2 arethe normal and tangential 
omponents of the for
e density f = (f1, f2), 
orrespondingly.Proof. To simplify the proof, we redu
e (2) to the pressure Poisson problem. That is wemultiply the momentum equations with some smooth test fun
tion φ ∈ D(Ω), di�erentiate(in the distributional sense) the �rst equation with respe
t to x, the se
ond with respe
tto y, add the resulting equations together and use the 
ontinuity equation to obtain

〈

∆p, φ
〉

=
〈

∇ · (fδΓ), φ
〉

, ∀φ ∈ D(Ω), (12)where 〈

·, φ
〉 denotes the a
tion of the distribution on the test fun
tion φ. Re
alling thede�nition of the distribution and its derivative, we end up with

∫∫

Ω

p∆φdx = −

∫

Γ

f1

∂φ

∂x
ds−

∫

Γ

f2

∂φ

∂y
ds, ∀ψ ∈ D(Ω).For the sake of simpli
ity, we express ∂φ

∂x
and ∂φ

∂y
in terms of the normal and tangentialderivatives along the interfa
e Γ

∂φ

∂x
=
∂φ

∂n
cos(Θ) −

∂φ

∂τ
sin(Θ),

∂φ

∂y
=
∂φ

∂n
sin(Θ) +

∂φ

∂τ
cos(Θ).Then

∫

Γ

(f1

∂φ

∂x
+ f2

∂φ

∂y
)ds =

∫

Γ

(

(

f1 cos(Θ) + f2 sin(Θ)
)∂φ

∂n

+
(

f2 cos(Θ) − f1 sin(Θ)
)∂φ

∂τ

)

ds =

∫

Γ

(f̂1

∂φ

∂n
+ f̂2

∂φ

∂τ
)ds,where f̂1 and f̂2 are 
orrespondingly the normal and tangential 
omponents of the for
edensity f

f̂1 = f1 cos(Θ) + f2 sin(Θ),

f̂2 = −f1 sin(Θ) + f2 cos(Θ).Integrating the se
ond term by parts and using the periodi
ity in Γ we obtain
∫

Γ

f̂2

∂

∂τ
φds = f̂2φ|s=s2

− f̂2φ|s=s1
−

∫

Γ

∂f̂2

∂τ
φds = −

∫

Γ

∂f̂2

∂τ
φds.



8 3 FINITE ELEMENT FORMULATIONThen
∫∫

Ω

p∆φdx =

∫

Γ

∂f̂2

∂τ
φ− f̂1

∂φ

∂n
ds. (13)Consider now the eq. (12) separately on Ω+ and Ω− and apply Greens formula twi
e tothe left hand side we get

∫∫

Ω+

∆pφdx =

∫∫

Ω+

p∆φdx−

∫

Γ

∂p+

∂n
φds+

∫

Γ

p+∂φ

∂n
ds,

∫∫

Ω−

∆pφdx =

∫∫

Ω−

p∆φdx+

∫

Γ

∂p−

∂n
φds−

∫

Γ

p−
∂φ

∂n
ds.

(14)Add equations (14) together to obtain
∫∫

Ω

p∆φdx−

∫

Γ

[∂p

∂n

]

φds+

∫

Γ

[p]
∂φ

∂n
ds = 0, ∀φ ∈ D(Ω).Compare this equation with (13) and use the fa
t that φ is arbitrary we get the followingjump 
onditions

[p]|Γ = f̂1 and [∂p

∂n

]

Γ

= (∇f̂2 · τ).Remark 1. Note that with the help of Theorem 2.3 we 
an rewrite the �ux jump 
onditionfor the velo
ity ve
tor as
[

µ
∂u1

∂n

]
∣

∣

∣

Γ

= [p] cos(Θ) − f1 = f̂2 sin Θ,
[

µ
∂u2

∂n

]
∣

∣

∣

Γ

= [p] sin(Θ) − f2 = −f̂2 cos Θ.3 Finite element formulationIn this se
tion, we dis
uss the approximation of the interfa
e, 
onstru
tion of the spe
i�
ma
ro-elements that will approximate the jump 
onditions, introdu
e our non-
onformingimmersed interfa
e �nite element spa
es and, �nally, present the �nite element formulationof our problem.The Taylor-Hood element [2℄ is an often-used triangular element where the velo
itypolynomial has a higher degree than the pressure polynomial and thus the LBB stability
ondition (inf -sup) is satis�ed. In this paper, we will employ the modi�ed Taylor-Hoodelement. That is, with h as the dis
retization step, we introdu
e triangulation T2h = {T}of the domain Ω for the pressure. This triangulation is not aligned with the interfa
e Γand satis�es the following standard 
onditions:� Ω̄ = ∪T∈T2h
T ,� If T1, T2 ∈ T2h and T1 6= T2, then either T1 ∩ T2 = ∅ or T1 ∩ T2 is a 
ommon vertexor edge of both triangles,



9� The triangulation is assumed to be uniform i.e. there are two positive 
onstantsindependent of h su
h that
C0ρT ≤ h ≤ C1ρ̄Twhere, for all T ∈ Th, ρT and ρ̄T stands for the diameters of ins
ribed and 
ir
um-s
ribed 
ir
les, respe
tively,together with the following 
ompatibility 
onditions with the interfa
e Γ� If Γ meets a triangle T at two points, then these points must be on di�erent edgesof this triangle,� If Γ meets one edge of a triangle at more than two points, then this edge is a part of

Γ.For the velo
ity �eld, we introdu
e an additional, twi
e �ner triangulation Th that satis-�es the same standard and 
ompatibility 
onditions as T2h. That is a
hieved by subdivingea
h pressure element into four 
ongruent velo
ity subtriangles, see Figure 2. Thus, thenumber of degrees of freedom is the same as for the standard Taylor-Hood element.
.

.

.

X

X X

. .

. . .

.

.

.

.

X

X X(a) The 
lassi
al P2-iso-P1 Taylor-Hoodelement. Same mesh is used for both ve-lo
ity and pressure. (b) The modi�ed P1-iso-P1 Taylor-Hood element. Twi
e �ner mesh is usedfor the velo
ity �eld.Figure 2: The Taylor-Hood elements. Here the velo
ity �eld u is given at the nodes (•)and the pressure p at the nodes (×).We are now ready to 
onsider the 
onstru
tion of the �nite element fun
tions on aninterfa
e elements. The main idea is to separate the elements of the partition in two 
lasses,the one that are interse
ted by the interfa
e and the rest. On the non-interse
ted elementswe use the standard linear polynomials for pressure and velo
ity �elds. On the interse
tedelements we use a strategy similar to that of the Hsieh-Clough-To
her ma
ro-element [2℄.That is, ea
h interse
ted element is subdivided by the interfa
e in two subdomains. Then,we 
onstru
t a C0 fun
tion 
onsisting of pie
ewise linear polynomials su
h that the elementhas a total of 6 degrees of freedom. At the verti
es of the original element, we spe
ify thefun
tion values. The additional degrees of freedom are satis�ed by the approximation of



10 3 FINITE ELEMENT FORMULATIONthe jump 
onditions. Sin
e this pro
edure involves subpartition of the original triangle, we
an regard the interse
ted elements as ma
ro-elements.Denote by T ′
h the set of all elements in the triangulation Th that are interse
ted bythe interfa
e Γ (interfa
e elements). By the 
onstru
tion, the interfa
e Γ 
an meet theelement T ∈ T ′

h at most at two edges. Denote these interse
tion points by A = (xA, yA)and B = (xB, yB) and use Z1 = (x1, y1), Z2 = (x2, y2) and Z3 = (x3, y3) to denote theverti
es of the triangle. Let mh denote the total number of the interse
ted triangles. Then,we represent the interfa
e Γ and its pie
ewise linear approximation Γh as
Γ = ∪mh

r=1Γ
r and Γh = ∪mh

r=1Γ
r
h,where the ar
 segment Γr = Γ ∩ T r for some T r ∈ T ′

h and Γr
h = AB is the linear approxi-mation of Γr, see Fig. 3.

Γ h

r
Γ r

A

B

Z

3Z

Z21Figure 3: The ar
 segment Γr and its linear approximation Γr
h.In addition, ea
h T ∈ T ′

h is subdivided by the 
orresponding linear segment Γr
h intotwo subdomains T− and T+, see Figure 4. Similarly, we 
onstru
t the elements of the T ′

2htriangulation. Note, that both triangulations share the same interfa
e representation Γh.At this point, we should also mention that this parti
ular representation of the interfa
eintrodu
es a O(h2) error in the solution [3℄.
Τ+ T−

Figure 4: Subdomains T+ and T− are formed by Γr
h.The idea now is to use the partition of T ∈ T ′

h generated by the approximation ofthe interfa
e Γh in order to approximate the jump 
onditions. That is, for ea
h interfa
etriangle we form a �nite element fun
tion by two polynomials de�ned separately on T−



11and T+

ψh(x, y) =

{

ψ−

h (x, y) = a1x+ a2y + a3, x ∈ T−,

ψ+

h (x, y) = b1x+ b2y + b3, x ∈ T+.
(15)Then for all T ∈ T ′

h de�ne a linear spa
e
Sh(T ) =

{

ψh is de�ned by (15),

ψ−

h (A) = ψ+

h (A), ψ−

h (B) = ψ+

h (B),that 
onsists of the pie
ewise linear fun
tions satisfying the 
ontinuity 
onditions along Γh.De�ne
QΓr

h
(ψh) :=

∫

Γr

h

(µ−

h∇ψ
−

h − µ+

h ∇ψ
+

h ) · nΓr

h
ds,where nΓr

h
is the unit normal ve
tor to line segment Γr

h and µh stands for the approximationof the 
oe�
ient fun
tion µ(x, y) that is equal to µ on the non-interfa
e elements and isde�ned as follows
µh(x, y) =

{

µ−, ∀(x, y) ∈ T−,

µ+, ∀(x, y) ∈ T+
(16)for any T ∈ T ′

h . Note, that µh is just a restri
tion/prolongation of the pie
ewise 
onstantfun
tion µ. We now introdu
e the following a�ne spa
e that 
onsists of the pie
ewise linearfun
tions that satisfy standard interpolation 
onditions on the fun
tion itself together withthe spe
i�
 interpolation 
ondition on the line integral over a jump in the �ux of thefun
tion
S0

h(T ) = {ψh ∈ Sh(T )|, ψh(Zi) = um(Zi), QΓr

h
(ψh) = 0}.We use the partition Th to de�ne immersed �nite element spa
es on the whole of Ω. Namely,

Vh(Ω) =
{

ψh ∈ C(Ω)2 ∩H1
0 (Ω)2; ψh|T ∈ Sh(T ), ∀T ∈ Th

}

,

V 0
h (Ω) =

{

ψh ∈ Vh(Ω); ψh|T ∈ S0
h(T ), ∀T ∈ T ′

h

}

.In addition, we denote by V 0
h,0 the subspa
e of V 0

h with its fun
tions vanishing on theDiri
hlet part of the boundary ∂Ω. In a similar fashion, we de�ne the pressure spa
es.Namely, let ∀T ∈ T ′
2h

Mh(T ) =

{

φh is de�ned by (15),

φ−

h (A) = φ+

h (A), φ−

h (B) = φ+

h (B),and
WΓr

h
(φh) :=

∫

Γr

h

(∇φ−

h −∇φ+

h ) · nΓr

h
ds.



12 3 FINITE ELEMENT FORMULATIONThen
M0

h(T ) = {φh ∈Mh(T )|, φh(Zi) = p(Zi), WΓr

h
(φh) = 0}.In order to a

ommodate the jump in pressure, we introdu
e an additional a�ne spa
e

M̃h(T ) =

{

φh is de�ned by (15),

φ−

h (A) − φ+

h (A) = F5(A), φ−

h (B) − φ+

h (B) = F5(B),where F5 is given in Theorem 2.3. Note, that the elements of M̃h(T ) are the L2 fun
tionsapproximating the pressure jump 
ondition at the interse
tion points A, B. As in the 
aseof the velo
ity �eld, we use the partition T2h to de�ne the global spa
es Mh(Ω), M0
h(Ω)and M̃h(Ω) as follows

Mh(Ω) =
{

φh ∈ C(Ω) ∩ L2
0(Ω); vh|T ∈ Mh(T ), ∀T ∈ T2h

}

,

M̃h(Ω) =
{

φh ∈ C(Ω) ∩ L2
0(Ω); φh|T ∈ M̃h(T ), ∀T ∈ T ′

2h

}

,

M0
h(Ω) =

{

φh ∈Mh(Ω); φh|T ∈ M0
h(T ), ∀T ∈ T ′

2h

}

.Then, the dis
rete solutions of (3) are represented by the linear 
ombinations
um,h = ũm,h + uN

m,h, m = 1, 2 and ph = p̃h +

2
∑

i=1

pN,i
h ,where

ũm,h =
∑

j

Um,jψm,j , p̃h =
∑

k

Pkφk,with ψm,j ∈ V 0
h,0(Ω) and φk ∈M0

h(Ω). It holds
[ũm,h]Γh

= 0,
[

µh

∂ũm,h

∂n

]

Γh

= 0,

[p̃h]Γh
= 0,

[∂p̃h

∂n

]

Γh

= 0.

(17)Note, that the a
tual jump 
onditions (4), (10) and (11) have been approximated by theexpli
itly 
onstru
ted fun
tions uN
1,h, u

N
2,h ∈ Vh(Ω), and pN,1

h ∈ Mh(Ω), pN,2
h ∈ M̃h(Ω), withthe following interpolation 
onditions

uN
1,h(Zi) = 0, QΓr

h
(uN,1

h ) =

∫

Γr

F2ds,

uN
2,h(Zi) = 0, QΓr

h
(uN,2

h ) =

∫

Γr

F4ds,

pN,1
h (Zi) = 0, WΓr

h
(pN,1

h ) =

∫

Γr

F6ds,

pN,2
h (Zi) = 0, WΓr

h
(pN,2

h ) = 0.



3.1 Interfa
e propagation 13Then, the varitational formulation of the saddle point (3) reads: Find uh = (u1,h, u2,h) ∈ V 0
hand p̃h ∈M0

h

−
2

∑

m=1

∫∫

Ω

µh∇ũm,h · ∇ψm,hdx+

∫∫

Ω

p̃∇ · ψhdx =

2
∑

m=1

∫∫

Ω

ρhgmψm,hdx+
2

∑

m=1

∫

Γ

fmψm,hdx+
2

∑

m=1

∫∫

Ω

µh∇u
N
m,h · ∇ψm,hdx

+

∫∫

Ω

pN,i
h ∇ · ψm,hdx, ∀ψm = (ψ1,h, ψ2,h) ∈ V 0

h , m = 1, 2,

∫∫

Ω

φh∇ · ũhdx = −

∫∫

Ω

φh

(∂uN
1,h

∂x
+
∂uN

2,h

∂y

)

dx, ∀φh ∈M0
h , (18)where µh is given in (16) and ρh is de�ned in the similar fashion.3.1 Interfa
e propagationFor the approximation of the interfa
e Γ the Lagrangian markers are used. That is at anymoment in time tn, the interfa
e is des
ribed by a given �nite set of 
ontrol points Xn

k =
{Xn

k , Y
n
k } for k = 0, 1, .., mh, together with the pie
ewise linear re
onstru
tion betweenthese points. Here, kth 
ontrol point gives an approximation to (X(sk, tn), Y (sk, tn)) where

s is an ar
length parameterization of the interfa
e. The surfa
e for
es are 
al
ulated at the
ontrol points �rst and then spread all along the interfa
e using linear interpolation.To adve
t the interfa
e, a two-step Runge-Kutta s
heme is employed,
X̃k = Xn

k + ∆tUn
k ,

˜̃
Xk = X̃k + ∆tŨn

k ,

Xn+1

k = (X̃k + ˜̃
Xk)/2,

(19)where the lo
al velo
ities Un
k and Ũn

k are obtained by interpolating the velo
ity �eld
{un

1 , u
n
2} at the 
ontrol points Xn

k and X̃k 
orrespondingly. This interpolation is 
om-pli
ated by the fa
t that the velo
ity �eld has jumps in the normal derivatives a
ross theinterfa
e. Thus the usual bilinear interpolation s
heme 
annot be applied in this 
ase. Amodi�ed interpolation s
heme is required su
h that the jump 
onditions for velo
ity �eld (4)and (10) are a

ounted for. In the 
ase of this paper, we will employ the �nite elementspa
es V 0
h (Ω) and Vh(Ω) to do the job. Namely, to obtain lo
al velo
ities Un

k = (Un
k , V

n
k ) at
ontrol point {Xn

k , Y
n
k } we 
hoose the three 
losest grid points (x1, y1), (x2, y2) and (x3, y3)(whi
h will typi
ally be the nodes of the triangular element 
ontaining the 
ontrol point

{Xn
k , Y

n
k }) and form a linear 
ombination of these values to obtain, say Un

k

Un
k = ψ1(X

n
k , Y

n
k )u(x1, y1) + ψ2(X

n
k , Y

n
k )u(x2, y2)

+ ψ3(X
n
k , Y

n
k )u(x3, y3) + uN

1,h(X
n
k , Y

n
k ) (20)



14 4 NUMERICAL RESULTSwhere u(xi, yi) is the grid velo
ity 
orresponding to the point (xi, yi), ψi(X
n
k , Y

n
k ) ∈ V 0

h (Ω)is the modi�ed test fun
tion 
orresponding to node (xi, yi) and the expli
itly 
onstru
ted
uN

1,h ∈ Vh(Ω) 
orresponding for the inhomogeneous jump in the normal �ux of un
1,h. Asimilar pro
edure is used to obtain V n

k .To review, the numeri
al solution of the interfa
e Stokes problem (2) is obtained by thefollowing pro
edure:� Use the lo
ation of the interfa
e given by the set of the 
ontrol points {Xn
k , Y

n
k } to
ompute the surfa
e for
es on the interfa
e and jump 
onditions (4), (10) and (11).� Obtain the ba
kground grid velo
ities ũh = (u1,h, u2,h) by solving the 
oupled Poissonproblem (18) with the known jump 
onditions.� Interpolate ũh to 
ompute the lo
al velo
ities Un

k and Ũn
k at every 
ontrol point using(20).� Adve
t the interfa
e with these velo
ities for time ∆t using the two-step Runge-Kuttamethod (19).The pro
edure is repeated for every time step ∆t. This 
on
ludes our des
ription of theimmersed �nite element method for the interfa
e Stokes problem.4 Numeri
al resultsIn this se
tion we investigate the performan
e of immersed interfa
e �nite element methodsapplied to the RT instability problem. Two test 
ases are 
onsidered. In the �rst 
ase weare interested in the �ngering or "mushy" behavior of the interfa
e. The solid obsta
les aredi�erent in size and are randomly distributed in the 
omputational domain. In the se
ondtest 
ase, we 
onsider a symmetri
 
on�guration with the solid obsta
les of the same size.In both test 
ases, the initial 
on�guration is unstable, in the sense that the heavy �uid islying on top of the light one. The 
omputational domain Ω is a re
tangle and the interfa
e

Γ is represented by some periodi
 
urve.The solution is approximated on a uniform n × 2n Cartesian triangular mesh with
mh dis
rete points, representing the interfa
e Γ. Sin
e the exa
t solution is unknown wemeasure the a

ura
y of our method by using the extrapolation prin
iple. That is, weinvestigate the error between two su

essive solutions e = un − u2n for every resolution n.To measure the error we employ the dis
rete L2 norm de�ned by

||En||L2 = h

√

∑

i,j

e2ij .We also display the ratios between the su

essive errors
ratio = ||En||L2/||E2n||L2,
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Figure 5: The initial 
on�guration and the velo
ity �eld for test 
ase 1 using 80 × 80uniform mesh.where a ratio of 2 
orresponds to �rst order a

ura
y, while a ratio of 4 indi
ates se
ondorder a

ura
y. At this point we should note, that any dis
retization error in the numeri
alsolution will me magni�ed by the unstable nature of the �ow (heavy �uid on-top the lighterone) and a�e
t both the 
onvergen
e study and other desirable properties of the �ow, su
has, for example, the symmetry (if appli
able).4.1 Test problem 1The initial 
on�guration is shown in Figure 5. As we 
an see, four solid re
tangular parti
lesare pla
ed in both heavy and light �uids. The interfa
e is represented by a 
osine fun
tion.The other parameters were taken to be µ+ = µ− = 1, ρ− = 2 and ρ+ = 1. The for
edensity was given by
f = σκnwhere σ = 0.1 is the surfa
e tension 
oe�
ient, κ is is the 
urvature and n is the normalve
tor to Γ. Note, that in all forth
oming pi
tures the plotting resolution is 
hosen to be
oarser than the resolution of the obtained numeri
al solution.First, we 
ompute the solution at t = 0, when the interfa
e has not moved. As expe
ted,the heavy �uid starts to fall down, while the light starts to rise. To measure the order ofa

ura
y of our method a grid re�nement study is performed. The solution (p, u1 and u2)was 
omputed on four di�erent n × 2n grids with n = 40, 80, 160 and 320 and m = 400points on the interfa
e.As we 
an see from Table (4.1) the ratios are approa
hing 4 whi
h is a 
lear indi
ationof se
ond order a

ura
y. We now 
onsider the error at later times, when the interfa
e hasmoved. The main di�
ulty in 
omparing the solution at all the points on the �xed grid
omes from the fa
t that due to the unstable nature of the �ow the interfa
e may lie onone side of 
ertain �xed grid point in one 
al
ulation, but slightly to the other side in adi�erent 
al
ulation.



16 4 NUMERICAL RESULTSn p ratio in L2 norm u1 ratio in L2 norm u2 ratio in L2 norm40 3.1841 3.2131 3.197380 3.5322 3.7412 3.7092Table 1: The ratio in the error between the su

essive solutions, i.e. e = pn − p2n and
e = un − u2n at t = 0 in L2 norm.Sin
e the area en
losed by the interfa
e should be 
onserved we 
an use the mass
onservation as a measure of the 
onvergen
e of our method. Namely, for the �xed valuesof the time step ∆t = 0.01 and the ba
kground grid n = 80, we re�ne the resolution of theinterfa
e m and 
onsider the error

Em = A0 − Amwhere A0 is the initial area of, say, the upper �uid and Am is the area of upper �uid atsome moment in time t = T with m points on the interfa
e.
m |Em| at t = 0.1 ratio |Em| at t = 1.0 ratio20 0.0322431 - 0.0189312 -40 0.0086836 3.7131 0.0050331 3.867580 0.0022555 3.8498 0.0012407 3.9134160 0.0005796 3.8912 0.0003061 3.9733Table 2: Grid re�nement study for the Stokes interfa
e problem with ∆t = 0.01 on the 80×

80 mesh. The 
olumns represent the error in the area at t = 0.1 and t = 1, 
orrespondingly.Table 2 shows the re�nement study for T = 0.1 and T = 1. As we 
an see, the area ispreserved with se
ond-order a

ura
y using IIM FEM.We now 
onsider the qualitative behavior of the RT instability with time. Already at
t = 0 we 
an observe vortex formation due to the density gradient, see Figure 5. Driven bythese vorti
es, the heavy �uid starts to fall down, while the light �uid is gradually rising,see Figures 6 - 9.Already at t = 62.5 we 
an observe a beginning of what looks like threading or �ngeringof the heavy �uid, see Figure 10. At he same time the main bulk of the heavy �uid 
ontinuesto fall down under the gravity for
e. In addition, the 
ir
ulative motion appears behindthe solid obsta
les. Finally, at around t = 70 the �ngers are beginning to form trappedbubbles and self-interse
tion of the interfa
e o

urs.In order to assess the in�uin
e of the vis
osity on the interfa
e dynami
s, two additionalnumeri
al tests were performed, with µ− = 1, µ+ = 2, and µ− = 2, µ+ = 1, 
orrespondigly.The rest of the parameters and domain 
on�guration were kept the same as in Test problem
1. As expe
ted, the higher vis
osity in the upper �uid has a stabilizing e�e
t on thedynami
s of the interfa
e, Figure 12. At the same time, the in
rease in the vis
osity of the
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Figure 6: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80× 160 uniform mesh at
t = 12.5.
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Figure 7: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80× 160 uniform mesh at
t = 22.5.
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Figure 8: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80× 160 uniform mesh at
t = 32.5.
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Figure 9: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80× 160 uniform mesh at
t = 42.5.
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Figure 10: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80 × 160 uniform meshat t = 62.5.
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Figure 11: The velo
ity �eld and interfa
e Γ for test 
ase 1 using 80 × 160 uniform meshat t = 72.5.
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Figure 12: The velo
ity �eld and interfa
e Γ for test 
ase 1 with µ− = 2, µ+ = 1 using
80 × 160 uniform mesh at t = 72.5.
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Figure 13: The velo
ity �eld and interfa
e Γ for test 
ase with µ− = 1, µ+ = 2 using
80 × 160 uniform mesh at t = 72.5.
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Figure 14: The velo
ity �eld and interfa
e Γ for test 
ase 2 using 80 × 160 uniform meshat t = 0.
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Figure 15: The velo
ity �eld and interfa
e Γ for test 
ase 2 using 80 × 160 uniform meshat t = 20.lower �uid seems to de
rease the propagation speed of the interfa
e and velo
ity �eld ingeneral.4.2 Test problem 2In the se
ond test problem we 
onsider a 
on�guration where the solid obsta
les of thesame size are situated symmetri
 along the axis of symmetry x = 2. The initial position ofthe interfa
e, 
omputational domain, boundary 
onditions and the physi
al parameters ofthe problem are the same as in test 
ase 1. Similar to the test 
ase 1 the density gradientspawns the formation of two vortexes, the heavy �uid is sinking and the light �uid is rising,see Figures 14-16.As we 
an see from the numeri
al results, the symmetry in the �ow is preserved only fora short while. Already at t = 60 the symmetry starts to detoriarate and is totally lost by
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Figure 16: The velo
ity �eld and interfa
e Γ for test 
ase 2 using 80 × 160 uniform meshat t = 35.
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Figure 17: The velo
ity �eld and interfa
e Γ for test 
ase 2 using 80 × 160 uniform meshat t = 60.
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Figure 18: The velo
ity �eld and interfa
e Γ for test 
ase 2 using 80 × 160 uniform meshat t = 75.
t = 75. As a 
onsequen
e additional, arti�
ial vortexes are formed and the solution losesits validity. Most probably, this behavior of the solution is indu
ed by the unsymmetry inthe mesh that is ampli�ed by the unstable nature of the problem at hand. These arti�
ialsolutions are usually referred in the literature as "ghost solutions" sin
e they never appearas solutions of partial di�erential equations but only in dis
rete approximations. Similarresults on unsymmetri
 meshes applied to RT instability problem have been reported in[26℄.In order to preserve the symmetry invariant in the solution, we introdu
e an additionalpro
edure, that 
an be seen as a proje
tion of the solution to the subspa
e 
onsisting ofthe symmetri
 solutions to our interfa
e problem. The pro
edure itself 
onsists of �ippingthe interfa
e from left to right, and taking a mean between the original velo
ity and theone obtained with the �ipped interfa
e as a resulting velo
ity �eld. An alternative tothis approa
h would be to 
onsider a symmetri
 dis
retization, su
h as , for example, aunion-ja
k mesh, see [26℄.As we 
an see from Figures 19-24 the modi�ed solution retains the symmetry at allmoments in time. Qualitively, we should point out the formation of the trailing vortexesbehind the solid obsta
les that indu
es 
ir
ulative motions of the �uid, see Figures 22-24.Also, note the ne
king e�e
t of the heavy �uid in the upper part of the domain, thateventually lead to self-interse
tion of the interfa
e at t = 140. Additional topology 
hangesare also emerging in other parts of the 
omputational domain.5 Con
lusionsIn this paper, an extension of the immersed �nite element method for the interfa
e Stokesproblems was presented. It has been shown that triangulation of the 
omputational domain
Ω that is used in the introdu
ed immersed �nite element method 
an be formed without
onsideration of the interfa
e lo
ation. In addition, the immersed �nite element spa
es are
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Figure 19: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 20.
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Figure 20: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 35.
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Figure 21: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 60.
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Figure 22: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 75.
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Figure 23: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 110.
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Figure 24: The modi�ed velo
ity �eld and interfa
e Γ for test 
ase 2 using 80×160 uniformmesh at t = 132.
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losely related to the standard �nite element spa
es used for solution of the Stokes problemex
ept for the elements of the partition that are interse
ted by the interfa
e. Over the setof the interse
ted elements, the immersed �nite element fun
tion are modi�ed a

ordingto the jump 
onditions on the interfa
e, that were derived from the problem itself. Theinterfa
e representation and its intera
tion with the �ow has been des
ribed in detail.The proposed method was later applied to the solution of the Rayleigh-Taylor instabil-ity �ow problem with solid obsta
les. It has been shown that the introdu
ed method 
anhandle well both the dis
ontinuity of the physi
al �elds and singular for
es. The methodproved to be se
ond order a

ura
y and mass 
onservative. Based on the numeri
al exper-iments, the qualitive des
ription of the interfa
e dynami
s for the 
onsidered test 
ases hasbeen given. The numeri
al results suggested that the dis
retization errors are systemati-
ally ampli�ed by the instability of the problem at hand, and thus a�e
t, in the long run,both the 
onvergen
e results and the symmetry of the solution. The symmetry preservingversion of the method has also been proposed and su

essfully tested.Future work points in several dire
tions from the 
urrent stand. One is the theoreti
alinvestigation of the introdu
ed non-
onforming �nite element method. The other is theimprovement of the method itself, with the primary fo
us on developing the ability to
apture the topologi
al 
hanges in the interfa
e. Finally, it would be intriguing to applythe developed method to some more realisti
 appli
ations.
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