Ly,
$KTHE

VETENSKAP
3@ OCH KONST 8%

"oq\.‘:bxd%?%

KTH Computer Science
and Communication

School of Computer Science and Communication

A non-conforming finite element method
for interface Stokes problems and its application
to two-phase Rayleigh-Taylor instability with solid obstacles

Alexei Loubenets, Michael Hanke

TRITA-NA 2007:4



Alexei Loubenets, Michael Hanke
A non-conforming finite element method
for interface Stokes problems and its application
to two-phase Rayleigh-Taylor instability with solid obstacles

Report number: TRITA-NA 2007:4
ISSN 0348-2952

ISRN KTH/NA--07/04--SE
Publication date: September 2007
E-mail of author: alexei@nada.kth.se

Reports can be ordered from:

School of Computer Science and Communication (CSC)
Numerical Analysis

Royal Institute of Technology (KTH)

SE-100 44 Stockholm

SWEDEN

telefax: +46 8 790 09 30
http://www.csc.kth.se/



A non-conforming finite element method
for interface Stokes problems and its application
to two-phase Rayleigh-Taylor instability with solid
obstacles

Alexei Loubenets, Michael Hanke

September 14, 2007

Abstract

In this paper, we establish an immersed finite element method for the solution of interface
Stokes problems. The main idea of the method is to use a fixed, uniform mesh everywhere
over the computational domain except the vicinity of the interface, where specifically de-
signed macro elements are employed, such that the jump conditions are well approximated.
In general, the resulting immersed finite element space is non-conforming. The interface
itself is represented with the help of Lagrangian markers. The capability of the method is
illustrated in the case of a Rayleigh-Taylor two-phase flow instability problem with solid
suspensions governed by the Stokes equations.

1 Introduction

The flow situation considered in this article is a variation of the classical viscous Rayleigh-
Taylor (RT) flow problem that is often used in the literature to evaluate the performance
of different interface tracking numerical methods. Physically, the RT problem is a fingering
instability of an interface between two or more stratified fluids of different density subjected
to acceleration, or in a vertical gravitational field. The interface becomes unstable for
certain perturbations and these perturbations evolve into spikes of heavy fluid and bubbles
of light fluid which penetrate into both fluids. This type of instability occurs in diverse
applications, including mantle and lithosphere dynamics, diapirism, post-glacial rebound
and many others. The experimental and analytical investigations of this instability were
performed by, among others, Lewis [12], Chang and Watson |7|, Daff, Harlow and Hirt |6],
Popil and Curzon [18|, Gertsenstein and Cherniavskii [9], Danilov and Omelyanov [4],]5]
, and Barnes |1]. It has been shown that the evolution of a RT instability is a complex
phenomena that involves formation and detachment of droplets, development of Helmholtz
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2 1 INTRODUCTION

instability on the side of the penetrating spikes, competition and amalgamation among the
rising bubbles and etc.

Since then, many numerical methods have also been developed and applied to study
this phenomena. Fraigneau et al. |8| developed an Eulerian method for simulating variable
density incompressible viscous flows. They compared the finite element method and finite
volume method for the RT problem in the viscous regime for two different Reynolds num-
bers. It was shown that, even at moderate Reynolds numbers, this problem is very sensitive
to the numerical method used and, in particular, to the mesh refinement algorithm.

Rudman |22| used an algorithm for volume tracking based on the concept of flux-
corrected transport (FCT) to solve the RT flow problem. He also compared his method
with three other techniques: the simple line interface calculation (SLIC) method, the VOF
method of Hirt and Nichols [11] and Young’s method [30].

Zhao et al. [31] solved the incompressible Navier-Stokes equations for two superimposed
viscous fluids on unstructured grids with the finite volume method. The free surface was
computed with the VOF method and the surface tension was taken into account. The
motion of the characteristic RT mushroom shape of the interface was studied at Re = 283.
See [23] and [21] for the further references on VOF methods applied to RT instability.

Popinet and Zaleski in [19] revisited the work of Puckett et al. [20] and solved the RT
flow problem with the front-tracking technique. A source term was added to account for
the surface tension forces as well. Glimm et al. have successfully applied front-tracking
method to three dimension, as well as extending the front tracking capabilities to deal with
the topological changes in the interface [10]. Similar work has been done by Tryggvason
and Unverdi in [27], [29] and [28].

The level set method has also been extensively used in the simulation of the RT flow
problems, see [25] and |32 for further references.

In this paper, we will employ an alternative approach that is also an Eulerian model,
the immersed interface finite element method. This approach, originally proposed by Li
in [13] ,[14] and extended in [15], [16],[17] uses a triangulation that is independent of the
interface. The interface itself is represented by an additional structure (t.ex. markers with
a parametric description ) that is continuously updated using some information obtained
from uniform background mesh.

The main idea of the method is to separate the elements of the background mesh into
two classes, the ones that are intersected by the interface and the rest. On the non-
intersected elements we use standard linear polynomials. On the intersected elements we
use a strategy similar to that of the Hsieh-Clough-Tocher macro-element [2|. That is, each
intersected element is subdivided by the interface into two subdomains. Then, we construct
a C° function consisting of piecewise linear polynomials on each of the subdomains such
that the element has a total of 4 degrees of freedom. At the vertices of the original
element, we specify the function values. The additional degrees of freedom are satisfied by
the approximation of the jump conditions. Since this procedure involves subpartition of the
original triangle, we can regard the intersected elements as macro-elements. The resulting
immersed finite element space over the entire domain is, in general, non-conforming.

The objective of this paper is twofold. First we aim at extending the capabilities of the



immersed interface finite element method that was recently developed and analyzed for the
elliptic interface problems ([13] ,[14],[15], [16] and [17]). This extension should allow our
method to handle the Stokes interface problems. In addition, solid obstacles are included in
the computational domain. That should be regarded as a first step in a practical direction
of having suspensions in the flow. Note, that in reference [15| the interface Stokes problem is
solved by decoupling the equations into three separate Poisson problems, one for pressure
and two for the velocity components. That was possible due to the periodic boundary
conditions that were used and homogeneity of the physical fields. In the present work,
the Stokes equations are not decoupled, the physical fields are discontinuous and singular
source terms are present. The method will be used to solve the Rayleigh-Taylor instability
problem. The investigation will mainly concern the effect of the density gradient, shape
of the computational domain and the amount and structure of the solid obstacles on the
dynamics of the interface.

The rest of the paper is organized in the following way. The problem formulation and
its background are given in Section 2. The method description is presented in Section 3.
This is followed numerical examples and conclusions.

2 Problem formulation

In this chapter we introduce the Rayleigh-Taylor two-phase flow instability problem with
solid obstacles governed by the Stokes equations. We describe the typical dynamics of the
interface in the classical Rayleigh-Taylor instability, introduce the variational formulation
of the problem and, finally, derive the jump conditions across the interface.

2.1 Rayleigh-Taylor instability problem

Let us consider the flow of two immiscible and incompressible fluids in the following two-
dimensional domain

Q={zeR? 0<x<2L, -L<y<L}\UQ,
where each rectangular subdomain €2; represents a single solid obstacle
Q={rcR? ag<z<b, c<y<d}

for some a;, b;, ¢;, d; € R, see Figure 1. Let, initially, the interface between two immiscible
liquids be
[ ={z R’ y=h(x),r € [s1,s9] C[0,2L]},

where h is some C'°°, L-periodic function. Then the interface I' divides the domain € into

O ={-L<y<h(x), 0<z<2L}\UQ,
QO ={hx)<y<L, 0<z<2L}\UQ,.
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Figure 1: The computational domain €2 and its partition by the interface I'.

Let
u:Q—-R?* p:Q—R

be the velocity vector and the pressure. Denote by p and p the piecewise constant kinematic
density and viscosity of the two fluids

pt for x€QF, put for xe QT
pP= o H=

1
p- for xe€Q, pw— for xe€Q. 1)

Moreover, denote by X(s,t) = (X(s,t),Y(s,t)) the location of the interface I" at some
moment time ¢ parameterized with respect to the arclength s. Then the dynamics of two
immiscible and incompressible fluids in computational domain €2 is described by the Stokes
equations

uAu — Vp = pg + for, x €,

2
V-ou=0, zeQ\l, 2)

together with the Cauchy problem for the interface

0
X (s.1) = u(X(s.0.1).

X(s,0) = (s, h(s)).

Here, g = (0,1) is the gravitational constant and the source term fdr describes either
tension or an elastic force acting along the interface with force density f = (fi, f2). We
pose no-slip boundary conditions on the upper and lower bases of the domain 2 and the
periodicity condition on its lateral sides

0 JFu
u g _—
y=tL  OxF

JFu
e=0 Ok

No-slip boundary conditions are also imposed on the boundaries of the solid suspensions

k=0,1.

)
z=2L

u‘UaQi = 0



2.2 Variational formulation and jump conditions Y

The interface I' between the liquids has the same velocity as the surrounding fluids.

The behavior of the classical RT instability problem (without solid obstacles) is usually
divided into four separate stages [24|. The first stage is dominated by the small growth of
the perturbations. As analyzed by the linear stability theory, the growth rate depends on
the fluid’s density gradient, viscosities, surface tension and compressibility (if applicable).
The linear theory is no longer applicable after the perturbation grows to more than 10—40%
of its original size. The second stage is characterized by the nonlinear perturbation growth,
formation of the bubbles of light fluid threading through heavy fluid and emergence of the
spikes of the heavy fluid that falls into the light fluid. During this stage, the nonlinear
growth of perturbations is strongly influenced by the density ratio and three-dimensional
effects. Interactions and amalgamations among the bubbles and the mushroom-shaped
spikes are characteristics of this stage. Finally, this interaction evolves into a turbulent
or chaotic mixing which dominates the fourth stage of the instability. In this final stage,
phenomena such as the penetration of a bubble through a slab of fluid of finite thickness,
necking, breakup of the spikes by various mechanism, and other complicated, topology
related effects take place.

2.2 Variational formulation and jump conditions

Consider problem (2) in the distributional sense. That is we view all the terms in the
equations as distributions acting on any smooth functions ¢ and . Integrating by parts
in (2) and summing up the momentum equations we obtain the following saddle point
problem: Find (u,p) € H}(Q)? x L3(Q) such that

—mz://QuVum-V@Z)mdsz//QpV-wdx:
2 2 _ g
S [ oot S [ i, = ) € Hi0P,

//Q ¢V -udr =0, Vo e L*(Q),

where p, p are given by (1).

Theorem 2.1. The first velocity component uy satisfies the following jump conditions at
the interface T’

[ui]|r = F1, [M%} )r: F, (4)

where Fy = 0 and Fy = [p|cos(©) — f1. Here n is the outward unit normal vector to 2~
and 0 is an angle between a normal vector n and x-axis.

Proof. Consider the equivalent classical formulation of the first momentum eq. (2). Namely

Ip
Au; — — = O\
HAUp Oz PI1, (ZL’,y) € \
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Multiply by a sufficiently smooth test function ¢ € D(2) and integrate we obtain:

//Qi pAupdr — //Qi —tdx = // pEgida, (5)

where, — and + signs indicates whether we approach interface I' from Q= or QF, corre-
spondingly. Apply Greens theorem to the first term of the left hand side for each of the

domains
//Q piupde = = / p(Vui - n)pds — / /Q +u(Vul-vwazx
//,uAullpdx:/ (Vup -n ¢ds_// (V- Vi)
Similarly, we rewrite the integral over pressure in
//m SPhda = /qup*,m ds+//Q+ gﬁ ?5 - [p, 0] dx,
// —¢dx—/rw([p_,0] n)ds +// ?ﬁ glyp [, 0

Insert (7) and (6) in (5) to obtain the following formulation

(6)

//Q(—MVul -V +pg—i})dx+ /[ | cos(0)ids

- [5wds = [[ pavvis. s

Consider now the first momentum eq. (2) in the distributional sense on the whole of €.
Multiplying by a sufficiently smooth test function ¢» € D(Q2) and integrating by parts we

obtain
/ /Q —pVuy - Vdr + / /Q p%dxz /F fréds + / /Q pgitdz, Vi € D(Q).  (9)

Since the test function is arbitrary, equations (9) and (8) are equal and thus

[wlr=0 and [,f?“l”_ 7] cos(©) — fi.
O

Theorem 2.2. The second velocity component uy satisfies the following jump conditions
at the interface I’

wlle =B, [152]| = 7 (10

where F3 =0 and Fy = [p]sin(©) — fo.
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Proof. The proof is similar to that of the Theorem 2.1. 0

Theorem 2.3. The pressure p is subject to the following jump conditions at the interface

r

[plr = F5, [g—ﬁ ‘r: Fs, (11)

where F5 = fl and Fg = %—ff. Here 7 1s the tangent unit normal vector to I' and fl,f2 are
the normal and tangential components of the force density f = (f1, f2), correspondingly.

Proof. To simplify the proof, we reduce (2) to the pressure Poisson problem. That is we
multiply the momentum equations with some smooth test function ¢ € D((), differentiate
(in the distributional sense) the first equation with respect to z, the second with respect
to y, add the resulting equations together and use the continuity equation to obtain

(Ap,¢) = (V- (for),¢), V¢ e D(Q), (12)

where <-, ¢> denotes the action of the distribution on the test function ¢. Recalling the
definition of the distribution and its derivative, we end up with

/APA¢dx:—Af1%ds—Af2g—zds, Vi) € D(Q).

For the sake of simplicity, we express 22 and g—i in terms of the normal and tangential

oz
derivatives along the interface I'

% = g—i cos(©) — % sin(0),
oo 0¢ . ¢
3~ on sin(©) + 9 cos(0).

Then
0 0 . 0
/F(fl@_i + fga—j)ds = /F<(f1 cos(0) + fs sm(@))%
+ (facos(©) — f1 sin(@))%)ds = /F(fl% + fg%)ds,

where fl and fQ are correspondingly the normal and tangential components of the force
density f

fi = f1cos(©) + fosin(0),
fo = —f15in(0) + f, cos(O).
Integrating the second term by parts and using the periodicity in I' we obtain

) R R of. of.
/ oL s = Fadloss — Fodlocwr — | D2oas = — [ 244,
ror r Ot r Ot
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Then
//Q pAddz = af%zs 7,945 (13)

Consider now the eq. (12) separately on Q+ and Q7 and apply Greens formula twice to
the left hand side we get

//m Amdx_//mpmdx_/—gbd o +0¢ (14)
//Apcbd:)s://pAgbda:jL/F%Qsds_/Fp—a_Zd&

Add equations (14) together to obtain

//Qpﬁébdﬂf—/r[g—z] ¢ds+A[p]g—ids —0, VoeDQ).

Compare this equation with (13) and use the fact that ¢ is arbitrary we get the following
jump conditions
plle=fi and [2] = (Vo)
P onlr 2
U

Remark 1. Note that with the help of Theorem 2.3 we can rewrite the flux jump condition
for the velocity vector as

[u%} ‘r: [p] cos(©) — f1 = fosin©,

3 Finite element formulation

In this section, we discuss the approximation of the interface, construction of the specific
macro-elements that will approximate the jump conditions, introduce our non-conforming
immersed interface finite element spaces and, finally, present the finite element formulation
of our problem.

The Taylor-Hood element [2] is an often-used triangular element where the velocity
polynomial has a higher degree than the pressure polynomial and thus the LLBB stability
condition (inf-sup) is satisfied. In this paper, we will employ the modified Taylor-Hood
element. That is, with h as the discretization step, we introduce triangulation 7o, = {T'}
of the domain  for the pressure. This triangulation is not aligned with the interface I
and satisfies the following standard conditions:

L] Q - UTe’]'th,

o If 71, Ty € Ty, and 17 # Ty, then either Ty NTy, = @ or T3 N T, is a common vertex
or edge of both triangles,



e The triangulation is assumed to be uniform i.e. there are two positive constants
independent of A such that
Copr < h < Cipr

where, for all T € 75, pr and pr stands for the diameters of inscribed and circum-
scribed circles, respectively,

together with the following compatibility conditions with the interface I

e If " meets a triangle T" at two points, then these points must be on different edges
of this triangle,

e [f [ meets one edge of a triangle at more than two points, then this edge is a part of
r.

For the velocity field, we introduce an additional, twice finer triangulation 7, that satis-
fies the same standard and compatibility conditions as 75,. That is achieved by subdiving
each pressure element into four congruent velocity subtriangles, see Figure 2. Thus, the
number of degrees of freedom is the same as for the standard Taylor-Hood element.

(a) The classical P2-iso-P1 Taylor-Hood (b) The modified Pl-iso-P1 Taylor-
element. Same mesh is used for both ve- Hood element. Twice finer mesh is used
locity and pressure. for the velocity field.

Figure 2: The Taylor-Hood elements. Here the velocity field u is given at the nodes (e)
and the pressure p at the nodes (x).

We are now ready to consider the construction of the finite element functions on an
interface elements. The main idea is to separate the elements of the partition in two classes,
the one that are intersected by the interface and the rest. On the non-intersected elements
we use the standard linear polynomials for pressure and velocity fields. On the intersected
elements we use a strategy similar to that of the Hsieh-Clough-Tocher macro-element [2].
That is, each intersected element is subdivided by the interface in two subdomains. Then,
we construct a C° function consisting of piecewise linear polynomials such that the element
has a total of 6 degrees of freedom. At the vertices of the original element, we specify the
function values. The additional degrees of freedom are satisfied by the approximation of
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the jump conditions. Since this procedure involves subpartition of the original triangle, we
can regard the intersected elements as macro-elements.

Denote by 7, the set of all elements in the triangulation 7, that are intersected by
the interface I' (interface elements). By the construction, the interface I' can meet the
element T € 7, at most at two edges. Denote these intersection points by A = (z4,y4)
and B = (zp,yp) and use Zy = (x1,y1), Zo = (x2,y2) and Zz = (x3,y3) to denote the
vertices of the triangle. Let m;, denote the total number of the intersected triangles. Then,
we represent the interface I' and its piecewise linear approximation I'j, as

where the arc segment I'" = ' N T" for some 7" € 7, and T’} = AB is the linear approxi-
mation of ['", see Fig. 3.

Figure 3: The arc segment I'" and its linear approximation I'.

In addition, each T € 7, is subdivided by the corresponding linear segment I'} into
two subdomains 7~ and 7", see Figure 4. Similarly, we construct the elements of the 75,
triangulation. Note, that both triangulations share the same interface representation I';.
At this point, we should also mention that this particular representation of the interface

introduces a O(h?) error in the solution |3].

Figure 4: Subdomains 7" and T~ are formed by I'.

The idea now is to use the partition of T € 7,/ generated by the approximation of
the interface I'j, in order to approximate the jump conditions. That is, for each interface
triangle we form a finite element function by two polynomials defined separately on 7~
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and T+
w}:(xvy> :a11’+a2y+a37 ,TET_,

15
Ui (w,y) =biw + by + b3, xe€TT. (15)

Yn(z,y) = {

Then for all T € 7, define a linear space

| 4y is defined by (15),
Su(T) = {w;(fU =¥y (A), ¥, (B) = ¢ (B),

that consists of the piecewise linear functions satisfying the continuity conditions along I';,.
Define

Qry(n) = [ (05— V1) g,

Ty

where npr is the unit normal vector to line segment I'; and py, stands for the approximation
of the coefficient function u(x,y) that is equal to x on the non-interface elements and is

defined as follows
po, V(z,y)el",
T,Yy) = 16
(n(z,y) {,u*, Y(x,y) € T (16)

for any T' € 7). Note, that yuy is just a restriction/prolongation of the piecewise constant
function pu. We now introduce the following affine space that consists of the piecewise linear
functions that satisfy standard interpolation conditions on the function itself together with
the specific interpolation condition on the line integral over a jump in the flux of the
function

Si(T) = {vn € Su(T)],  ¥n(Zi) = un(Zs), Qry(¥n) = 0}.

We use the partition 7, to define immersed finite element spaces on the whole of (). Namely,

Vi(Q) = {¢h € CQ2NHL Q)% tnlr € Su(T), VT € Th}
V@) = {on € V() wnlr € SUT),VT € Ty},

In addition, we denote by V), the subspace of V;) with its functions vanishing on the
Dirichlet part of the boundary 0€). In a similar fashion, we define the pressure spaces.
Namely, let VT € 7.,

My(T) = {gbh is defined by (15),

&y (A) = ¢y (A), 6, (B) = ¢ (B),

and

WFZ (¢h) = /F (ngﬁ,j — V(bZ) . IlpzdS.

s
h
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Then
M(T) = {¢n € My(T)|,  én(Zi) = p(Zs), Wry(¢n) = 0}.

In order to accommodate the jump in pressure, we introduce an additional affine space

NIy (T) = {gbh is defined by (15),
" o (A) — ¢ (A) = F5(A),  ¢;,(B) — ¢/ (B) = F5(B),

where F} is given in Theorem 2.3. Note, that the elements of M,(T') are the L? functions
approximating the pressure jump condition at the intersection points A, B. As in the case
of the velocity field, we use the partition Ty, to define the global spaces M;(Q), MP(Q)
and M;, () as follows

Mum:{@ecﬁﬂmﬁ@m WheMﬂﬂNTe%*,
A%GD:{%eCﬂﬂﬁLaQﬁ @heﬂ%@)VTe?ﬁ}
MO(Q) = {gbh e Ma(Q):  énlr € MO(T), VT € z’h}.

Then, the discrete solutions of (3) are represented by the linear combinations

2
~ N ~ § : N,i
Um,h = Um,h + um7h> m = 1a 2 and Ph = DPh + Pr
i=1

where

U, = Z U, j¥m.j Dh = Z Proy,
J k

with ¢, ; € V;25(€2) and ¢, € M;(€2). Tt holds

_ Oy,
[@pm.n]r, =0, [,U«h g b=,
n Ir,
N (17)
ik, =0, [2] =0
h ’ onlr,

Note, that the actual jump conditions (4), (10) and (11) have been approximated by the
explicitly constructed functions u{',, ud’, € V4(Q2), and ot € My(Q), pi? € My(Q), with
the following interpolation conditions

Ui\,[h(zi) =0, Qrg(uhN’l) :/ Fyds,

I

uy'y(Z;) = 0, QF;(UhN’z) :/ Fyds,

PNZ) =0, Wiy (0)) = / Fuds,

T

Py A(Z;) =0, Wrr (pn?) =0.
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Then, the varitational formulation of the saddle point (3) reads: Find u, = (u1, ugp) € VP
and py € M}?

2
5 [ i T+ [[ 59 vno -
m=1 Q Q
2 2 2
>, / / P Gmmnd + > / fntmpdz + / / Nl - Vi pd
m=1 Q m=1 r m=1 Q

+ / / PV s V= (o) € V2, m=1,2,
Q

5 8“% auévh 0
//QQShV-uhdx——//ngh( p + By )d:zs, Vor € M), (18)

where py, is given in (16) and pj, is defined in the similar fashion.

3.1 Interface propagation

For the approximation of the interface I' the Lagrangian markers are used. That is at any
moment in time t¢,, the interface is described by a given finite set of control points X7 =
{Xp, Y} for k = 0,1,..,my, together with the piecewise linear reconstruction between
these points. Here, kth control point gives an approximation to (X (s, t,), Y (s, t,)) where
s is an arclength parameterization of the interface. The surface forces are calculated at the
control points first and then spread all along the interface using linear interpolation.

To advect the interface, a two-step Runge-Kutta scheme is employed,

X, = X} + AtUY,
X, = X, + AtUY, (19)
Xpth = (X + X4)/2,

where the local velocities U} and sz are obtained by interpolating the velocity field
{ul,uf} at the control points X} and X correspondingly. This interpolation is com-
plicated by the fact that the velocity field has jumps in the normal derivatives across the
interface. Thus the usual bilinear interpolation scheme cannot be applied in this case. A
modified interpolation scheme is required such that the jump conditions for velocity field (4)
and (10) are accounted for. In the case of this paper, we will employ the finite element
spaces V2(Q) and V() to do the job. Namely, to obtain local velocities U} = (U}, V") at
control point {X}', Y/"} we choose the three closest grid points (x1,y1), (22, y2) and (x3, y3)
(which will typically be the nodes of the triangular element containing the control point
{X},Y,"}) and form a linear combination of these values to obtain, say U}’

Up = (X5, Y u(zr, yh) + o (X5, Y u(za, o)
+ 3 (X7, Vi u(ws, y3) + ujl\,[h(Xlsz Yy (20)
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where u(x;, y;) is the grid velocity corresponding to the point (z;, y;), ¥;( X2, V) € V(Q)
is the modified test function corresponding to node (z;,y;) and the explicitly constructed
u{\fh € Vi(Q) corresponding for the inhomogeneous jump in the normal flux of uf,. A
similar procedure is used to obtain V.

To review, the numerical solution of the interface Stokes problem (2) is obtained by the
following procedure:

e Use the location of the interface given by the set of the control points {X}*,Y*} to
compute the surface forces on the interface and jump conditions (4), (10) and (11).

e Obtain the background grid velocities @i, = (uy 5, us ) by solving the coupled Poisson
problem (18) with the known jump conditions.

e Interpolate 1, to compute the local velocities U} and fJZ at every control point using

(20).

e Advect the interface with these velocities for time At using the two-step Runge-Kutta
method (19).

The procedure is repeated for every time step At. This concludes our description of the
immersed finite element method for the interface Stokes problem.

4 Numerical results

In this section we investigate the performance of immersed interface finite element methods
applied to the RT instability problem. Two test cases are considered. In the first case we
are interested in the fingering or "mushy" behavior of the interface. The solid obstacles are
different in size and are randomly distributed in the computational domain. In the second
test case, we consider a symmetric configuration with the solid obstacles of the same size.
In both test cases, the initial configuration is unstable, in the sense that the heavy fluid is
lying on top of the light one. The computational domain € is a rectangle and the interface
I' is represented by some periodic curve.

The solution is approximated on a uniform n x 2n Cartesian triangular mesh with
my, discrete points, representing the interface I'. Since the exact solution is unknown we
measure the accuracy of our method by using the extrapolation principle. That is, we
investigate the error between two successive solutions e = u,, — us, for every resolution n.
To measure the error we employ the discrete L? norm defined by

|Eallzz =h [> €.
,J

We also display the ratios between the successive errors

ratio = || Ep||r2/|| Eon|| L2,
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Velocity Field at T=0

Y axis
o

Figure 5: The initial configuration and the velocity field for test case 1 using 80 x 80
uniform mesh.

where a ratio of 2 corresponds to first order accuracy, while a ratio of 4 indicates second
order accuracy. At this point we should note, that any discretization error in the numerical
solution will me magnified by the unstable nature of the flow (heavy fluid on-top the lighter
one) and affect both the convergence study and other desirable properties of the flow, such
as, for example, the symmetry (if applicable).

4.1 Test problem 1

The initial configuration is shown in Figure 5. As we can see, four solid rectangular particles
are placed in both heavy and light fluids. The interface is represented by a cosine function.
The other parameters were taken to be ut =y~ =1, p~ = 2 and p* = 1. The force
density was given by

f=o0kn

where ¢ = 0.1 is the surface tension coefficient, x is is the curvature and n is the normal
vector to I'. Note, that in all forthcoming pictures the plotting resolution is chosen to be
coarser than the resolution of the obtained numerical solution.

First, we compute the solution at £ = 0, when the interface has not moved. As expected,
the heavy fluid starts to fall down, while the light starts to rise. To measure the order of
accuracy of our method a grid refinement study is performed. The solution (p, u; and uy)
was computed on four different n x 2n grids with n = 40, 80, 160 and 320 and m = 400
points on the interface.

As we can see from Table (4.1) the ratios are approaching 4 which is a clear indication
of second order accuracy. We now consider the error at later times, when the interface has
moved. The main difficulty in comparing the solution at all the points on the fixed grid
comes from the fact that due to the unstable nature of the flow the interface may lie on
one side of certain fixed grid point in one calculation, but slightly to the other side in a
different calculation.
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n | p ratio in L? norm | u,; ratio in L? norm | usy ratio in L? norm
40 3.1841 3.2131 3.1973
80 3.5322 3.7412 3.7092

Table 1: The ratio in the error between the successive solutions, i.e. e = p, — p2, and
€=U, — Uy, at t = 0 in L? norm.

Since the area enclosed by the interface should be conserved we can use the mass
conservation as a measure of the convergence of our method. Namely, for the fixed values
of the time step At = 0.01 and the background grid n = 80, we refine the resolution of the
interface m and consider the error

E,=A)— An

where Ag is the initial area of, say, the upper fluid and A,, is the area of upper fluid at
some moment in time ¢t = T with m points on the interface.

m | |Ey| at t=0.1| ratio | |E,| att=1.0| ratio
20 0.0322431 - 0.0189312 -
40 0.0086836 | 3.7131 0.0050331 | 3.8675
80 0.0022555 | 3.8498 0.0012407 | 3.9134
160 0.0005796 | 3.8912 0.0003061 | 3.9733

Table 2: Grid refinement study for the Stokes interface problem with At = 0.01 on the 80 x
80 mesh. The columns represent the error in the area at ¢ = 0.1 and ¢t = 1, correspondingly.

Table 2 shows the refinement study for 7'= 0.1 and T"= 1. As we can see, the area is
preserved with second-order accuracy using [IM FEM.

We now consider the qualitative behavior of the RT instability with time. Already at
t = 0 we can observe vortex formation due to the density gradient, see Figure 5. Driven by
these vortices, the heavy fluid starts to fall down, while the light fluid is gradually rising,
see Figures 6 - 9.

Already at t = 62.5 we can observe a beginning of what looks like threading or fingering
of the heavy fluid, see Figure 10. At he same time the main bulk of the heavy fluid continues
to fall down under the gravity force. In addition, the circulative motion appears behind
the solid obstacles. Finally, at around ¢ = 70 the fingers are beginning to form trapped
bubbles and self-intersection of the interface occurs.

In order to assess the influince of the viscosity on the interface dynamics, two additional
numerical tests were performed, with =~ =1, u* =2, and u= = 2, u* = 1, correspondigly.
The rest of the parameters and domain configuration were kept the same as in Test problem
1.

As expected, the higher viscosity in the upper fluid has a stabilizing effect on the
dynamics of the interface, Figure 12. At the same time, the increase in the viscosity of the
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Figure 6: The velocity field and interface I' for test case 1 using 80 x 160 uniform mesh at

t=12.5.
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Figure 7: The velocity field and interface I' for test case 1 using 80 x 160 uniform mesh at

t = 22.5.
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Figure 8: The velocity field and interface I' for test case 1 using 80 x 160 uniform mesh at

t = 32.5.
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Figure 11: The velocity field and interface I' for test case 1 using 80 x 160 uniform mesh

at ¢t = 72.5.
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Figure 14: The velocity field and interface I" for test case 2 using 80 x 160 uniform mesh
at t = 0.
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Figure 15: The velocity field and interface I' for test case 2 using 80 x 160 uniform mesh
at t = 20.

lower fluid seems to decrease the propagation speed of the interface and velocity field in
general.

4.2 Test problem 2

In the second test problem we consider a configuration where the solid obstacles of the
same size are situated symmetric along the axis of symmetry x = 2. The initial position of
the interface, computational domain, boundary conditions and the physical parameters of
the problem are the same as in test case 1. Similar to the test case 1 the density gradient
spawns the formation of two vortexes, the heavy fluid is sinking and the light fluid is rising,
see Figures 14-16.

As we can see from the numerical results, the symmetry in the flow is preserved only for
a short while. Already at t = 60 the symmetry starts to detoriarate and is totally lost by
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Figure 16: The velocity field and interface I" for test case 2 using 80 x 160 uniform mesh

at t = 35.
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at t = 60.
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Velocity Field at T=75
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Figure 18: The velocity field and interface I" for test case 2 using 80 x 160 uniform mesh
at t = 75.

t = 75. As a consequence additional, artificial vortexes are formed and the solution loses
its validity. Most probably, this behavior of the solution is induced by the unsymmetry in
the mesh that is amplified by the unstable nature of the problem at hand. These artificial
solutions are usually referred in the literature as "ghost solutions" since they never appear
as solutions of partial differential equations but only in discrete approximations. Similar
results on unsymmetric meshes applied to RT instability problem have been reported in
[26].

In order to preserve the symmetry invariant in the solution, we introduce an additional
procedure, that can be seen as a projection of the solution to the subspace consisting of
the symmetric solutions to our interface problem. The procedure itself consists of flipping
the interface from left to right, and taking a mean between the original velocity and the
one obtained with the flipped interface as a resulting velocity field. An alternative to
this approach would be to consider a symmetric discretization, such as , for example, a
union-jack mesh, see [26].

As we can see from Figures 19-24 the modified solution retains the symmetry at all
moments in time. Qualitively, we should point out the formation of the trailing vortexes
behind the solid obstacles that induces circulative motions of the fluid, see Figures 22-24.
Also, note the necking effect of the heavy fluid in the upper part of the domain, that
eventually lead to self-intersection of the interface at ¢ = 140. Additional topology changes
are also emerging in other parts of the computational domain.

5 Conclusions

In this paper, an extension of the immersed finite element method for the interface Stokes
problems was presented. It has been shown that triangulation of the computational domain
() that is used in the introduced immersed finite element method can be formed without
consideration of the interface location. In addition, the immersed finite element spaces are
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Figure 19: The modified velocity field and interface I' for test case 2 using 80 x 160 uniform

mesh at ¢t = 20.
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Figure 20: The modified velocity field and interface I' for test case 2 using 80 x 160 uniform

mesh at ¢t = 35.
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Figure 21: The modified velocity field and interface I' for test case 2 using 80 x 160 uniform

mesh at ¢t = 60.
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Figure 22: The modified velocity field and interface I' for test case 2 using 80 x 160 uniform

mesh at ¢t = 75.
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closely related to the standard finite element spaces used for solution of the Stokes problem
except for the elements of the partition that are intersected by the interface. Over the set
of the intersected elements, the immersed finite element function are modified according
to the jump conditions on the interface, that were derived from the problem itself. The
interface representation and its interaction with the flow has been described in detail.

The proposed method was later applied to the solution of the Rayleigh-Taylor instabil-
ity flow problem with solid obstacles. It has been shown that the introduced method can
handle well both the discontinuity of the physical fields and singular forces. The method
proved to be second order accuracy and mass conservative. Based on the numerical exper-
iments, the qualitive description of the interface dynamics for the considered test cases has
been given. The numerical results suggested that the discretization errors are systemati-
cally amplified by the instability of the problem at hand, and thus affect, in the long run,
both the convergence results and the symmetry of the solution. The symmetry preserving
version of the method has also been proposed and successfully tested.

Future work points in several directions from the current stand. One is the theoretical
investigation of the introduced non-conforming finite element method. The other is the
improvement of the method itself, with the primary focus on developing the ability to
capture the topological changes in the interface. Finally, it would be intriguing to apply
the developed method to some more realistic applications.
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