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Abstract— In this work we combine sampling-based motion
planning with reinforcement learning and generative modeling
to solve non-prehensile rearrangement problems. Our algorithm
explores the composite configuration space of objects and robot
as a search over robot actions, forward simulated in a physics
model. This search is guided by a generative model that
provides robot states from which an object can be transported
towards a desired state, and a learned policy that provides
corresponding robot actions. As an efficient generative model,
we apply Generative Adversarial Networks.

I. INTRODUCTION

In cluttered environments, a robot needs to be able to
rearrange obstacles in a purposeful manner. This requires a
manipulation planning algorithm that computes a sequence
of actions that achieve the desired rearrangement. Wilfong et
al. [1] showed that this rearrangement planning problem is
PSPACE-hard. The problem is particularly challenging due to
the high dimensionality of the search space and the constraint
that objects only move as a result of robot actions. Alami et
al. [2] therefore introduced the distinction between transfer
and transit actions. In transfer actions the robot manipulates
objects, whereas in transit actions it only changes its own
configuration.

Many existing works on rearrangement planning address
the problem for pick-and-place transfer actions, where the
outcome is simple to model and only a single object is
moved at a time [2]–[8]. When transfer actions include non-
prehensile manipulation their outcomes are more difficult
to model and are therefore often abstracted by manually
designed manipulation primitives [9]–[14].

Modeling primitives manually, however, is labor-intensive,
and difficult to adjust to different robot embodiments and
object types. Furthermore, it may restrict the robot’s manip-
ulation abilities unnecessarily, e.g. forcing a robot to push
only a single object at a time. One approach to overcome
these limitations is to perform a forward search over robot
actions propagated through a physics model [15]–[18]. This
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Fig. 1: Our planning algorithm rearranges movable objects on a plane
(drawn in green and blue) in the presence of obstacles (red) using non-
prehensile manipulation. The algorithm explores the composite configu-
ration space of robot and objects in slices. Each slice corresponds to an
object arrangement and is the subset of composite configurations with this
arrangement.

allows the robot to manipulate multiple objects simulta-
neously and also move sliding or rolling objects. Early
approaches [16], [17], however, suffer from poor exploration
rates of the search space, since robot-centric actions are
sampled uniformly at random, leading to little interaction
with objects. Recently, King et al. [18] addressed this
by combining a physics-based forward search with object-
centric manipulation primitives. This biases the planner to
apply the primitives, but does not limit it to it. Providing
such primitives, however, is yet a limiting factor.

In the present work, we adopt these ideas and combine
a physics-based forward search with reinforcement learning
and generative modeling. Our algorithm computes sequences
of non-prehensile actions to rearrange multiple target objects
among movable and non-movable obstacles on planar sur-
faces. In contrast to previous works, our approach requires no
manually designed manipulation primitives. Furthermore, in
our experiments, our approach achieves a better exploration
rate and finds solutions faster than previous physics-based
approaches.

II. METHOD

The concepts of our approach are illustrated in Fig. 1
and pseudo-code is provided in Algorithm 1. Our algorithm
constructs a search tree T on the composite configuration
space Cr:m of the robot r and 1 . . .m movable objects in
a similar fashion as the kinodynamic RRT algorithm [19].
Similar to [17], it constructs the tree by forward propagating
robot actions through a dynamic physics model. An action
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is parameterized by the velocity at which it moves the robot
from one resting state to another. The physics model models
object-to-object contacts as well as object dynamics, and
predicts where the objects come to rest after an action.

A major difference to the kinodynamic RRT algorithm
and [17] is that our algorithm explores the configuration
space in slices. By slice s = {x ∈ Cr:m|x1:m = xf1:m}
we refer to a subset of the configuration space that shares
the same object configurations xf1:m, and only differs in
robot states. As illustrated in Slice a in Fig. 1, the planner’s
search tree may contain multiple configurations within the
same slice. The motions between two such configurations
are collision-free robot motions (transit actions) illustrated by
yellow arrows. Moving between two configurations within a
slice is a classical motion planning problem. In particular,
steering the robot between two configurations within a slice
ignoring collisions is simple for many types of robots. It is
the purposeful transition to a different slice, a transfer action,
that requires insight about manipulation.

To achieve a transfer action towards a target slice sd of
the configuration space, i.e. another object arrangement, our
algorithm first randomly selects which object t it aims to
transport (illustrated in Fig. 1 as green object). It then queries
a learned generative model for a robot state within the current
slice to steer to. This is illustrated in Fig. 1 by a set of
colored points. Each point represents a manipulation state
generated by the model and is a state from which the robot
can transport the object towards its target within a single
action. The colors encode different orientations of the robot.

After acquiring such a state from the generative model, the
algorithm selects the closest robot state in its search tree that
lies in the current slice. Thereafter, it computes a sequence of
robot actions to move from this state to the generated state
and forward propagates these actions through the physics
model. In the example, this approach leads to contact and the
resulting composite configuration lies in a new slice, Slice
b. As there are no collisions with static obstacles, the new
configuration is added to the search tree. Next, a learned
policy is queried to provide a robot action that transports the
target object towards its state in the target slice. Again, this
action is forward propagated through the physics model and
the search tree is updated accordingly.

The algorithm proceeds with this procedure iteratively. In
each iteration it first randomly samples an object arrangement
that identifies a target slice sd. It then selects the slice in
its search tree sa that is most similar in terms of object
configurations and proceeds as described. In some iterations
instead of selecting to move an object, it focuses on growing
the tree within a slice by sampling random robot states as
targets, i.e. t = r. This continues until either a maximum
number of iterations is exceeded or until the search tree
contains a composite configuration for which the target
objects are located within some goal regions.

Learning the Policy and the Generator

The generative model and the policy are trained in an
obstacle-free world containing only the robot and a single

Algorithm 1: The rearrangement planning algorithm.
Input: Start configuration x0 ∈ Cfree

r:m, maximum number of
iterations nmax, goal region G ⊂ Cfree

r:m

Output: Solution [(x0, u0) . . . , (xn,⊥)] or ∅
1 s0 ← SLICE(x0) // Obtain start slice

2 S ← {s0} // Set of all explored slices

3 T ← TREE(x0) // Tree of explored states
4 for j ← 1, . . . , nmax do
5 sd ← SAMPLESLICE()
6 sa ← arg min

s∈S
ds(s, s

d) // Closest slice in S

7 t← RANDOMCHOICE({r} ∪ {1, . . . ,m})
8 if t = r then
9 xd

r ← SAMPLEUNIFORM(C free
r )

10 else
11 xd

r ← QUERYGENERATOR(sa, sd, t)
// Retrieve closest state w.r.t. r in sa

12 xa ← arg min
x∈sa

dCr (xr, x
d
r)

// sdi denotes desired state of object i

13 xd ← (xd
r , s

d
1, . . . , s

d
m) // Store targets

14 if SAMPLEUNIFORM([0, 1]) ≤ prand then
15 u← SAMPLEUNIFORM(U ) // Random control

// Extend T ,S using physics model
16 ⊥, T ,S ←EXTENDSTEP(xa, u, T ,S)

17 else
// Transit

18 u← STEER(xa
r , x

d
r )

// Extend T ,S and return result xb

19 xb, T ,S ←EXTENDSTEP(xa, u, T ,S)
20 if t 6= r then

// Transfer

21 u← QUERYPOLICY(xb
r, x

b
t , x

d
t )

22 ⊥, T ,S ←EXTENDSTEP(xb, u, T ,S)

23 if T ∩ G 6= ∅ then
24 return EXTRACTANDSHORTCUT(T )

25 return ∅

object. We leave it to the planning algorithm to find robot
states and actions that are feasible in the full problem
containing multiple objects and obstacles.

The planning algorithm applies its physics model to pre-
dict the outcome of any robot action, and can thus be applied
to objects with various physical properties. Accordingly, we
wish our policy and generative model to be applicable to
objects with different physical properties as well. We achieve
this, by parameterizing both by properties like the object’s
mass, approximate shape and friction. On the other hand,
however, we learn both policy and generator only for a single
robot at a time. Applying the planner to a different robot
requires training a different policy and generator.

Learning the Policy: For simplicity, we choose
to model the policy as a deterministic function
uθ = πθ(xr, xo, x

d
o, νo), where θ denotes the parameters

of the function approximator, xr is the current state of the
robot, xo, xdo the current and the desired object state and
νo the physical parameters of the object. We can train this
policy by minimizing the loss function

Lθ(xr, xo, x
d
o, νo) := Ex′

o
[d(x′o, x

d
o) | uθ, xr, xo, νo] (1)



over some training set of tuples (xr, xo, x
d
o, νo) by per-

forming deterministic policy gradient descent [20]. This
loss expresses the expected distance d(x′o, x

d
o) between the

resulting object state x′o and the desired object state xdo, when
executing the policy action uθ from robot state xr.

To perform this training, we need a differentiable model
of the loss Lθ w.r.t θ. For this, we choose the distance
function for the SE (2) state of the object to be of the form
d(x′o, x

d
o) =

∑3
j=1 σj(x

′
oj − xdoj)

2 with positive weights
{σj}3j=1 and where xo1, xo2 is the object’s position and xo3
its orientation. With this the loss becomes

Lθ(xr, xo, x
d
o, νo) =

3∑
j=1

σj

(
Varx′

o
(x′oj) +

(
Ex′

o

[
x′oj
]
− xdoj

)2)
, (2)

where both variance and expected value are conditioned on
xr, xo, νo, uθ. This means we can express the loss Lθ as a
function of forward models

fµ(xr, xo, νo, u) = Ex′
o
[x′o|xr, xo, νo, u] (3)

and

fσ2(xr, xo, νo, u) = Varx′
o
(x′o|xr, xo, νo, u). (4)

In particular, if these forward models are differentiable w.r.t.
to the action argument u, we can apply the chain rule in
Eq. (2) to obtain the gradient of Lθ w.r.t. θ. Such models
fµ and fσ2 can be learned in a supervised manner from the
physics model of the planner by generating a training set
D = {(xjr, xjo, νjo , uj , (x′o)j) | j ∈ {1, . . . , n}} of n robot-
object interactions.

Learning the generative model: Given the trained policy,
the purpose of the generative model is to provide robot state
samples from which the policy can be applied. Given an
object state xo, a target state xdo and the object’s proper-
ties νo, we can find such states by minimizing the loss
Lθ(xr, xo, x

d
o, νo) w.r.t. to xr. However, since the policy does

not take any obstacles into account, limiting the model to
providing the minima of Lθ is too restrictive. Instead, we opt
to define a distribution over robot states with wider support

p(xr|xdo, xo, νo) =
1

Z
e−λLθ(xr,xo,x

d
o,νo), (5)

where Z is a normalization constant and λ ∈ R+ a manually
selected parameter. The distribution becomes narrower for
large choices of λ and wider for small ones.

We can generate state samples from this distribution using
the Markov Chain Monte Carlo (MCMC) method. This,
however, is computationally too expensive to be applied
within the planner. Instead, we use this method to gener-
ate samples xr ∼ pMCMC offline and train a (conditional)
generative adversarial network (GAN) [21] to mimic this
distribution online. We train the GAN by optimizing

min
ϕG

max
ϕD

V (ϕD, ϕG) (6)

where V is defined as

V (ϕD, ϕG) = Exr∼pMCMC

[
log(DϕD (xr, xo, x

d
o, νo))

]
+

Ez
[
log(1−DϕD (GϕG(z, xo, x

d
o, νo), xo, x

d
o, νo))

]
(7)

Here, ϕG parameterizes the generator network G, and ϕD
the discriminator D. Once trained, we only need to perform a
single forward pass through the generator network to provide
a sample from the above distribution.

III. EXPERIMENTS

We implemented and evaluated our approach for a holo-
nomic planar robot endowed with a configuration space in
SE(2). As shape of the robot, we chose the shape of the
gripper shown in Fig. 1 and in Fig. 2a on the right.

Fig. 2a shows the robot states that the trained generative
model provides for this robot when queried to push an object.
The states are predominantly oriented such that the robot
traps the object between its fingers. We achieve this behavior
by training the forward models fµ and fσ2 under observation
noise of the physical properties νo and the object state xo.
As a result the model fσ2 learns that there is variance that
depends on the robot state xr and action u. As can be seen
in Eq. (2), the loss Lθ is minimized, if the variance of the
successor state is minimized. Thus, the generator produces its
states accordingly. In the states shown in Fig. 2a the object is
trapped between the fingers and the object thus moves with
the robot, resulting in low variance successor states.

We compare our algorithm to King et al.’s [18] Hybri-
dActionRRT algorithm and our learned models to a simple
manually defined generative model and policy. The Hybri-
dActionRRT algorithm differs from ours in that it does not
structure its search tree in slices, and requires object-centric
manipulation primitives. For this we define primitives by
concatenating a straight line approach to a state generated by
a generator with the respective policy action for that state.
Although this is a similar behavior as applied in our algo-
rithm’s extension step, HybridActionRRT treats the primitive
as black box and queries the policy prior to modeling the
approach action. As simple generator we sample a position
located next to the object, and as simple policy we steer the
robot in a straight line towards the object’s target position.

We run the algorithms on various rearrangement problems
that include different numbers of obstacles and objects with
varying physical properties. Fig. 2b shows the planning
success rates as a function of iterations of the algorithms.
Our algorithm achieves the steepest increase and highest
final success rate after 10000 iterations. The learned models
outperform the simple hand-defined models. We observe in
particular that the learned models perform significantly better
than the simple ones on problems where objects can slide.
This highlights that taking an object’s physical properties
into account is highly beneficial, which is difficult to model
manually. For more experimental evaluation we refer to our
full manuscript.



(a) Learned manipulation states for a gripper-like robot. Each colored point represents
a robot pose relative to the object generated by the generator. The arrow represents the
desired push of an object located in the origin. For most robot poses the palm is facing
the object, and the robot is placed opposite to the pushing direction. The mapping from
colors to orientations is shown on the right.
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(b) Planning success rate as function of number of iterations. For any given number
of iterations n, the corresponding success rate can be interpreted as an empirically
determined probability that an algorithm successfully finds a solution within n iterations.
The shaded areas show the 95% Wilson confidence interval of this probability.

Fig. 2: Samples of robot states from our generative adversarial network and success rate curves of the evaluated algorithms. Consult our online supplementary
material for more results including a different robot shape, and a video showing how the samples are influenced by different arguments to the generator.

IV. DISCUSSION AND CONCLUSION

In the present work, we designed a new algorithm that
combines sampling-based motion planning with reinforce-
ment learning and generative modeling for non-prehensile
rearrangement planning. Learning a policy and generative
model provides valuable guidance to the sampling-based
search without the need of manually defining manipulation
primitives. This in combination with the physics modeling
allows the approach to produce solutions where the robot
applies a versatile set of manipulation actions.

Our planner assumes a deterministic physics model and
its solutions are therefore likely to fail when executed on a
real robot. While this has been addressed by related previous
works [22]–[24], we believe that combining such approaches
with learning an uncertainty reducing policy is a promising
direction for future work.

Lastly, to solve challenging instances of rearrangement
problems efficiently, a higher level logic is required that
guides the physics-based search. The question whether an
object obstructs another strongly depends on a robot’s em-
bodiment. Thus, we believe that learning a high-level policy
conditioned on this is a promising direction for future work.
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