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Abstract— We address the problem of planning the placement
of a grasped object with a robot manipulator. More specifically,
the robot is tasked to place the grasped object such that a place-
ment preference function is maximized. For this, we present an
approach that uses in-hand manipulation to adjust the robot’s
initial grasp to extend the set of reachable placements. Given
an initial grasp, the algorithm computes a set of grasps that
can be reached by pushing and rotating the object in-hand.
With this set of reachable grasps, it then searches for a stable
placement that maximizes the preference function. If successful
it returns a sequence of in-hand pushes to adjust the initial
grasp to a more advantageous grasp together with a transport
motion that carries the object to the placement. We evaluate
our algorithm’s performance on various placing scenarios, and
observe its effectiveness also in challenging scenes containing
many obstacles. Our experiments demonstrate that re-grasping
with in-hand manipulation increases the quality of placements
the robot can reach. In particular, it enables the algorithm to
find solutions in situations where safe placing with the initial
grasp wouldn’t be possible.

I. INTRODUCTION

When a robot is tasked to place an object, the target
placement may either be specified explicitly in form of a
specific pose, or implicitly in form of a target region. In the
latter case, the pose for placing the object must be selected
by the robot. Consider Fig. 1, where a robot is tasked to
place a grasped object inside a cabinet. To solve this task,
the robot needs to overcome multiple challenges:

1) Locate object poses within the shelf that afford a stable
placement.

2) Among these stable poses, select the pose that is
most suitable. In many tasks there exists a placement
preference, such as a preference for certain object
orientations or clearance from obstacles.

3) Ensure that the selected placement can be reached
among clutter. This process involves ensuring that
a collision-free approach motion exists and can be
computed.

The grasp that the robot acquires on the object is decisive
for the robot to succeed at this task. For example, the grasp
shown in Fig. 1 on the left allows the robot to place the
depicted object in an upright position, whereas the one on
the right does not.

Prior works on pick-and-place [1]–[3] have addressed this
issue by integrating the process of grasp selection with the
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Fig. 1: An example of a placement problem. The robot has to place
an object inside the cabinet. The initial grasp on the left allows the
robot to place the object in an upright position. The initial grasp
on the right does not allow such a placement, as the gripper would
collide with the environment.

process of placement selection. This integration, however,
places significant constraints on the grasps that can be used.
This is particularly problematic in scenarios where the initial
grasp can not be chosen freely, e.g. due to obstruction by
obstacles, or when the object is handed to the robot.

Enabling the robot to change its grasp can simplify the
placement problem, and render infeasible queries feasible.
Classical re-grasping [4]–[6] addresses this by placing the
object at an intermediate placement, and then picking it
up again with a different grasp. This, however, requires
locating an intermediate placement first, which is the same
problem the robot is trying to solve in the first place. In-hand
manipulation, in contrast, allows to change the grasp without
placing the object.

In this paper, we integrate Dexterous Manipulation
Graphs (DMG) [7], an in-hand manipulation framework,
with our recent work on placement planning [8]. The DMG
is a tool for in-hand manipulation that enables us to plan
sliding paths for a parallel-jaw gripper along an object’s
surface. Combined with our placement planner, this provides
us with the ability to plan placements under the consideration
of different grasps that can be reached through in-hand
manipulation. Given an initial grasp on an object, and a user-
specified preference for placements, our algorithm computes



a sequence of actions that adjust the grasp in-hand, and
then transport the object to a placement that maximizes the
preference function.

II. RELATED WORKS

We first provide an overview of related placement planning
works. Thereafter, we discuss various alternatives for plan-
ning in-hand manipulation to change a robot grasp without
prior placement.

A. Placement Planning

Placement planning focuses on the problem of locating and
selecting a placement pose for a given object. To locate such
a pose, prior works have proposed both analytic geometry-
based methods [8], [9], as well as data-driven methods [10],
[11]. Analytic methods locate stable placement poses by
matching shape features of the object to shape features of
the environment. For example, a common approach is to
locate horizontal support surfaces in the environment and to
compute the various orientations, in which the object can rest
on these [6], [8], [9], [12]. Existing data-driven approaches
train classifiers to either discriminate support surfaces from
clutter [10], or to evaluate the placement suitability for
sampled object poses [11].

A particular challenge in placing are obstacles, as the
robot needs to move close to a support surface and other
obstacles to reach a placement. Therefore, to guarantee that
a placement pose is reachable, previous works integrate the
search for a placement pose with sampling-based motion
planning [8], [9]. An alternative to transporting an object
all the way to its target pose is to drop it in a controlled
manner. Holladay et al. [13] formulate the problem of placing
as inverse motion planning problem. The approach exploits
geometrical features of the environment and the robot to
constrain the possible motions a dropped object can follow
after it was released. This allows placing at poses that would
be infeasible to reach otherwise. If the grasped object is
fragile, however, or placement accuracy is of relevance,
placing the object directly at the target pose is preferable.

When placing objects at a specific pose, there often exists a
preference for certain placements over others. In our previous
work [8], we proposed an algorithm to search for placements
that maximize a placement objective function. The work
focused on locating such placements in the presence of
many obstacles. The approach combines motion planning
with a Monte-Carlo Tree search based sampling algorithm
for placements. The proposed sampling algorithm is adaptive
and addresses the presence of obstacles by dynamically
focusing its sampling on placements that are likely reach-
able. The placements the algorithm computes, however, only
consider a single initial grasp. Hence, this grasp needs to be
carefully selected in advance to ensure that the algorithm
can succeed. In this work, we extend this algorithm to
consider different grasps by integrating it with an in-hand
manipulation framework.

B. In-Hand Manipulation Planning

In-hand manipulation allows a robot to change its grasp
without releasing the object. This is in stark contrast to
re-grasping by placing [4]–[6], [14], or hand-over grasping
with a second manipulator [14]. It is particularly useful
in the context of placing, as it does not require locating
intermediate placements, nor does it necessarily require a
second manipulator.

Many works on in-hand manipulation rely on having
access to high fidelity dynamic models of the object. An
example is the RRT* based planner in [15] that plans a
sequence of pushes of the object against external fixtures
to reach a desired grasp configuration. All the friction
coefficients between the object, the gripper and the external
fixtures are assumed to be known, so that a dynamic solver
can properly backtrack the effect of each action. Similarly,
various strategies for smaller changes in the grasp con-
figuration (e.g. pivoting, sliding) have been proposed that
also rely on complete knowledge of the system’s dynamic
properties [16]–[18].

In contrast, an example of a planner that relies only on
kinematic models has been proposed in [19]. Using trajectory
optimization, this method provides a solution to change the
grasp configuration of a multi-finger hand. However, the
contacts between the object and the fingertips do not slide,
making this planner strongly rely on the multiple degrees-of-
freedom of the hand. In addition, it is not suitable for large
changes in the desired grasp.

In our previous work, we developed a planner for in-
hand manipulation based on analysis of only the object’s
shape: the Dexterous Manipulation Graph (DMG) [7]. This
planner provides solutions to move the object inside the
gripper as a sequence of pushes against the environment or
exerted by a second gripper in a dual-arm robot scenario.
Among the possible alternatives for in-hand manipulation
planning, we will exploit the DMG to easily determine what
grasps are reachable from the initial grasp through in-hand
manipulation.

III. PROBLEM STATEMENT

We consider a placement problem as depicted in Fig. 1.
A robot grasping a rigid object o with an initial grasp g0,
is tasked to place the object on a piece of furniture in front
of it. For this, the user specifies a target volume V ⊂ R3

describing the permitted object positions, and a placement
preference function ξ : X o → R that is to be maximized,
where X o = V × SO(3) ⊂ SE(3) is the set of poses in V .

We consider a robot with a parallel-jaw gripper. Accord-
ingly, a grasp g = (a, eT o) is a tuple of an aperture a ∈ [0, â],
and the pose of the object w.r.t. the gripper, eT o ∈ SE(3).
Let G ( [0, â] × SE(3) denote the set of all such grasps on
the object o. The initial grasp g0 ∈ G may be poorly suited
for placing the object, and therefore we equip the robot with
the ability to change its grasp through in-hand manipulation.
For this, let G(g0) ⊆ G denote the set of grasps that can
be reached through in-hand manipulation from g0 without



releasing the object. Then, formally, we aim to solve the
following constrained optimization problem:

maximize
x∈Xo,g∈G(g0)

ξ(x)

subject to cf (x) = 1

s(x) = 1

r(x, g) = 1,

(1)

where the binary predicate cf (x) = 1 states that x is
physically feasible, i.e. o does not penetrate any obstacle,
s(x) = 1 states that o rests stably, and r(x, g) = 1 that x is
reachable by the robot with grasp g.

The reachability constraint is determined by the robot’s
kinematics. Let C denote the configuration space of the robot,
and let Og(q) : C → SE(3) denote the pose of the object at
configuration q ∈ C under grasp g. Depending on the grasp g,
the configuration space is partitioned differently in collision
and collision-free space, C = Cgfree ·∪ C

g
obst. A configuration

q ∈ C is colliding, if the robot is colliding or the object at
pose x = Og(q) is colliding.

The reachability constraint, r(x, g), consists of two sub-
constraints. First, the pose x must be kinematically reach-
able, i.e. there must exists a grasp g ∈ G(g0) and a collision-
free configuration q ∈ Cgfree such that Og(q) = x. Second,
given the initial configuration of the robot q0, the pose must
be path-reachable, i.e. there must exists a grasp g ∈ G(g0),
for which a collision-free continuous path τ : [0, 1] → Cgfree
starting from the initial configuration τ(0) = q0 ∈ Cgfree and
ending in a configuration τ(1) ∈ Cgfree with Og(τ(1)) = x
exists.

The aim of our algorithm is to solve the problem in Eq. (1),
and provide a grasp g∗ ∈ G(g0), as well as a path τ∗ that
reach the solution x∗ of Eq. (1). In addition, the algorithm
should provide a sequence of in-hand pushes that transfer
the grasp from g0 to g∗. Solving Eq. (1) exactly, however,
is very challenging, as we cannot express its feasible set
in closed form. Instead, we will present a sampling-based
algorithm that incrementally produces reachable placements
that subsequently achieve higher objectives.

A. Practical Considerations and Limitations

To perform the in-hand manipulation, we use a second
manipulator to push the grasped object within the grasping
gripper while the grasping arm remains in configuration q0.
For this, we assume there is an obstacle-free region in front
of the furniture, where this manipulation can be performed
safely, without the need to avoid obstacles.

We also assume access to the kinematic and geometric
model of the robot, the geometry of the object, the location
of its center of mass, and the geometry of the environment
in form of surface points S ( R3. Additionally, we assume
that the environment is rigid, and define the world’s reference
frame such that gravity acts antiparallel to the z-axis.

For a pose x ∈ SE(3) let px = (x, y, z) ∈ R3 denote its
position and ox = (ex, ey, ez) its orientation w.r.t the world
reference frame axes. To optimize the objective function
ξ, we assume that the function is differentiable w.r.t. the

x, y, ez components of a pose and compute these gradients
numerically.

IV. METHOD

An overview of our algorithm is shown in Fig. 2. The
extensions to our previous work [8] are highlighted in green.
The algorithm receives the information listed on the left as
input and produces manipulator paths τi : [0, 1] → Cgifree to
stable placements as output. Each path τi is associated with
a grasp gi ∈ G(g0) on the object. The algorithm operates
in an anytime fashion by iteratively producing new paths
τi as runtime progresses. Each subsequent path leads to a
placement pose with higher objective value than the previous
path. All paths start at the same initial arm configuration q0,
at which the in-hand manipulation will be performed prior
to following the path.

The algorithm consists of two stages: the pre-processing
stage and the optimization stage. In the pre-processing stage
the various input geometries are analyzed. From the environ-
ment, the algorithm extracts contiguous horizontal surfaces
in the target volume on which the object may be placed. We
refer to these surfaces as placement regions. From the object,
the algorithm computes the DMG and the grasps G(g0)
that can be reached using it. In addition, it computes the
different orientations of the object at which it can be placed
horizontally. For this, the algorithm extracts different faces
of the object’s convex hull, that we refer to as placement
faces.

In the optimization stage, the algorithm uses these quan-
tities to first locate stable, physically feasible and kinemati-
cally reachable placement poses. It then provides arm config-
urations reaching these poses as goals to a motion planning
algorithm to verify path-reachability. Subsequently, path-
reachable placements are locally optimized using a greedy
gradient-descent algorithm. This procedure is repeated until
the user requests termination. Whenever a path-reachable
placement has been found, the corresponding approach path
is returned and the subsequent iterations are constrained to
only search for placements achieving a higher objective.

A. Pre-processing

1) Placement Regions and Faces: The computation of
placement regions and placement faces is described in detail
in our prior work [8]. Briefly, a placement face is a face
of the object’s convex hull that supports a stable horizon-
tal placement. A face supports such a placement, if the
projection of the object’s center of mass along the face’s
normal falls into its interior. Each placement face gives
rise to a base orientation of the object, at which it can be
placed horizontally. If aligned with the horizontal surface
of a placement region, different placements can be achieved
by translating the object parallel to the surface, or rotating
it around the surface’s normal. For a placement face f and
placement region r, let Ŝ(r, f) ⊂ X o denote the set of all
object poses that can be achieved this way.
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Fig. 2: Our approach consists of two stages. In the pre-processing stage it computes placement regions, faces and the DMG of the object.
From the DMG it then computes the set of reachable grasps G(go). In the optimization stage an adaptive sampling algorithm samples
kinematically reachable and collision-free stable placement poses under the consideration of different grasps. These are provided to an
asynchronous motion algorithm to verify path-reachability and construct an approach motion. Subsequently, a local optimization improves
the reached placements locally. Every new solution is made available to the user, and subsequent iterations return better solutions. The
additions for re-grasping to our prior [8] work are highlighted in green.

All placement faces and regions together define a param-
eterized search space for valid placement poses:

Ŝ =
⋃

r∈R,f∈F

Ŝ(r, f) ⊂ X o, (2)

where R is the set of all placement regions and F the set of
all placement faces. The set Ŝ is a lower dimensional subset
of X o that is likely to contain stable poses, and serves as our
search space. Not all poses within Ŝ, however, are stable, i.e.
poses located at the edge of a region. In addition, many of
the poses may be physically infeasible or not reachable.

2) Dexterous Manipulation Graph: To enable the robot to
change its grasp using in-hand manipulation, we compute the
DMG of the object. The DMG is a disconnected undirected
graph that represents how one finger of a parallel-jaw gripper
can move along the object’s surface. The DMG is obtained
by analyzing the object’s shape, and the process of deriving
it is detailed in our previous work [7].

A DMG node is a tuple n=〈pn,Φn〉, where pn ∈ R3

is the position of the contact point between the fingertip
and the object, and Φn is a continuous set of orientations
that the finger can assume when in contact at pn. Two
DMG nodes n and m are adjacent in the graph, if it is
possible for the fingertip to translate between pn and pm, and
Φn ∩ Φm 6= ∅. The possible translations and rotations of
the finger along the object depend on the object’s shape; for
instance, a finger cannot slide across sharp edges. Therefore,
the DMG is a disconnected graph.

3) Reachable Grasps: We use the DMG to compute in
advance the grasps G(g0) that the robot can reach from its
initial grasp g0 using in-hand manipulation. A grasp does not
directly correspond to a single node in the DMG. A DMG
node represents a set of possible orientations that a single
finger can assume at the node’s contact position. Therefore,
each grasp is associated with two nodes as well as the actual
orientation the fingers assume for the grasp — one node and
orientation per finger.

With this in mind, the DMG implicitly defines a graph of
grasps. In this graph of grasps each node represents a grasp,

and the adjacency relation describes the robot’s ability to
locally slide from one grasp to another through a rotation
or a translation of the object. Each grasp node is a tuple
〈n1, φ1, n2, φ2〉, where ni is the DMG node and φi ∈ Φi the
orientation of the respective finger.

The adjacency relation is obtained from the DMG ac-
cording to the two following rules. Two grasp nodes
a = 〈na1 , φa1 , na2 , φa2〉, b = 〈nb1, φb1, nb2, φb2〉 are translation-
ally adjacent, if
• finger 1 can slide: na1 is adjacent to nb1
• finger 2 can slide: na2 is adjacent to nb2
• finger 1’s orientation is valid: φa1 ∈ Φnb1 and φa1 = φb1
• finger 2’s orientation is valid: φa2 ∈ Φnb2 and φa2 = φb2.

This adjacency means the robot can translate the object
in-hand between the two grasps. Additionally, two grasp
nodes a = 〈n1, φa1 , n2, φa2〉, b = 〈n1, φb1, n2, φb2〉 that share
the same contact point and only differ in orientation are
rotationally adjacent. This adjacency means the robot can
rotate the object around the grasp axis to a grasp with
different orientation.

Similar to the DMG, the grasp graph is a disconnected
graph. Accordingly, the set of reachable grasps G(go) is only
a subset of all grasps on the object. We employ Dijkstra’s
algorithm to explore the connected component originating
from g0. As a result, we obtain the reachable grasp set G(go),
and the shortest sequence of in-hand object translations and
rotations to move from g0 to any g ∈ G(g0). Note that the
grasp set G(g0) is a discrete set of grasps, whose cardinality
is determined by the resolution of the DMG.

B. Optimization Stage

The optimization algorithm is shown in Algorithm 1. As
aforementioned, the algorithm is sampling-based as we can
not model the set of valid placement poses in closed form.
Instead, we confirm the validity of sampled placement poses
through collision-checking, inverse kinematics computation
and motion planning.

The algorithm alternates between sampling collision-free
arm configurations that reach candidate placement poses,



Algorithm 1: Placement Optimization
1 Ps ← ∅ // Goal sampler state
2 τbest, gbest, ξbest,Q ← ⊥,⊥,−∞, ∅
// Initialize asynchronous motion planning

3 M ← INITMOTIONPLANNER(q0)
4 while not TERMINATE()

// Goals are tuples (q, g), q ∈ Cgfree, g ∈ G(g0)
5 Qn, Ps ← SAMPLEGOALS(ξbest, Ps)
6 Q ← Q∪Qn
7 if |Q| > 0
8 τ, gτ ← SYNCHRONIZEGOALS(Q,M )
9 if τ 6= ⊥

10 τ ← OPTIMIZELOCALLY(τ, gτ )
11 τbest, gbest ← τ, gτ
12 ξbest ← ξ(Ogτ (τ(1)))
13 Qo = {(q, g) ∈ Q | ξ(Og(q)) ≤ ξbest}
14 Q = Q \ Qo
15 publish τbest, gbest, ξbest

16 return τbest, gbest, ξbest

synchronization with a motion planning algorithm, and local
optimization. The arm configurations are sampled in the sub-
algorithm SAMPLEGOALS. Each sampled arm configuration
q is associated with a grasp g, for which the arm configura-
tion reaches a stable and physically feasible placement pose.
All such sampled tuples (q, g) form the set Q, which serves
as goal set for the motion planning algorithm.

The motion planning algorithm operates asynchronously
to Algorithm 1. It explores the various free spaces Cgfree of
the robot arm for the different grasps g ∈ Q to compute
approach paths to the respective goal placements. The SYN-
CHRONIZEGOALS function informs the motion planner about
the current set of sampled goals Q. If the motion planner
has found a new path since the last call of SYNCHRONIZE-
GOALS, it returns this path τ and its associated grasp gτ .
If multiple paths have been found, the path leading to the
placement with highest objective value is returned.

Whenever a new path has been found, the path is locally
extended by an arm motion that greedily moves the object
to a placement with higher objective. This operation is
performed in OPTIMIZELOCALLY, and uses the pseudo-
inverse of the arm’s Jacobian to follow the gradient of the
objective function. For more details on this operation, we
refer to [8].

After this local optimization step, the goal setQ is updated
to only contain goals that achieve higher objective values
than the newly found solution. In addition, in subsequent
iterations of the algorithm, the SAMPLEGOALS function
will only return goals that achieve higher objective values.
This way the algorithm achieves optimization and limits the
verification of path-reachability only to placements poses that
improve upon the objective.

1) Goal Sampling: The SAMPLEGOALS function is
shown in Algorithm 2. The purpose of this algorithm is to
locate stable, physically feasible, and kinematically reachable
placement poses x ∈ Ŝ with objective value ξ(x) > ξbest.
This can be very challenging in narrow spaces as it is the case
inside shelves and other furniture. Uniform random sampling
has low probability of sampling collision-free poses and arm
configurations in such environments.

Algorithm 2: SAMPLEGOALS: Sampling of pose,
grasp and arm configuration

Input: Best achieved objective value ξbest, state storage Ps
Constants: Number of maximal iterations imax,
Output: Feasible placement configurations Qn, updated state

storage Ps
1 Qn ← ∅
2 for i← 1, . . . , imax
3 n← SELECTFRNODE(Ps)
4 x← SAMPLEPOSE(n)
5 g ← SELECTGRASP(x, n, Ps)
6 q ← IKSOLVER(x, g)

// If x is valid, add (q, g) to Qn
7 if s(x) = 1 ∧ cf (x) = 1 ∧ ξ(x) > ξbest ∧ q ∈ Cgfree
8 Qn ← Qn ∪ {(q, g)}
9 UPDATE(n, Ps,x, q, ξbest, g)

10 return Qn, Ps

To alleviate this, we proposed in our previous work to
use an adaptive sampling algorithm. The algorithm is based
on Monte Carlo Tree Search, and focuses its sampling on
regions of Ŝ that are likely to contain valid placement
poses. These operations are performed in line 3 and 4 of
Algorithm 2, and will be described in more detail shortly.

After sampling a pose x, the algorithm selects a grasp
g ∈ G(g0) to compute an arm configuration to reach x.
The arm configuration is computed using a numerical inverse
kinematics solver [20] starting at a random seed. If the solver
succeeds, and the resulting arm configuration is collision-
free, the pose is considered kinematically reachable with
grasp g. If the pose x is also stable, s(x) = 1, physically
feasible, cf (x) = 1, and improving upon the objective,
ξ(x) > ξbest, the algorithm found a new goal for the motion
planner. The new goal is then added to the set of goal samples
Qn. In the following the validity of the sample is reported
in a data structure, Ps, that is used for the adaptive sampling
and grasp selection. These operations are repeated for a
constant number of iterations before the algorithm returns
to Algorithm 1.

Exploiting Spatial Similarities: Both the pose sampling
and the grasp selection procedure utilize a hierarchical par-
titioning of Ŝ from Eq. (2) to exploit spatial similarities
between placement poses. The hierarchy encodes these sim-
ilarities in dependence of the parameters f, r, x, y, θ. Here,
the parameters f, r are the categorical choices of placement
face and region in Eq. (2). The parameters x, y, θ denote
the continuous translation and rotation of the object w.r.t the
horizontal placement region r.

The first level of the hierarchy determines the base orienta-
tion of the object by selecting a placement face. The second
level determines the placement region r. Accordingly, the
nodes on the second level represent the pose sets Ŝ(r, f).
From the third level on, each node represents a subset of
Ŝ(r, f) by recursively partitioning the set. The range of
positions are partitioned like a quadtree, and the range of
orientations around the support surface’s normal are parti-
tioned in four sub-intervals on every level.

With this hierarchy, the algorithm tracks for each subset
the number of samples obtained from the set and their
validity. This information is stored in the variable Ps, and



Algorithm 3: SELECTGRASP: Choosing a grasp for
a sampled placement pose.

Input: Sampled pose x, Hierarchy node n in which the sampled
pose lies, state storage Ps

Output: Feasible placement configurations Qn, state storage Ps
1 G← ∅ // Grasp cache is an ordered set
2 p← n
// Retrieve ordered grasp cache

3 while p 6= ROOT(Ps)
4 G← G ∪ CACHEDGRASPS(p, Ps)
5 p← PARENT(p)

6 if |G| = 0
7 G← {g0}
8 for g ∈ G
9 if GRIPPERCOLLISIONFREE(g,x)

// accept the grasp with probability
paccept

10 if SAMPLEUNIFORMLY([0, 1]) ≤ paccept
11 return g

12 if |G(g0) \G| = 0
13 return SAMPLEUNIFORMLY(G(g0));

14 return SAMPLEUNIFORMLY(G(g0) \G);

maintained throughout the whole optimization process in
Algorithm 1. In Algorithm 2, the function SELECTFRNODE
uses this information to select a subset of Ŝ to sample
from. The function operates in a similar way as a single
iteration of Monte-Carlo Tree search using UCB1 [21] as
in-tree policy. The Monte-Carlo rollout is performed in line
4 of Algorithm 2 by randomly sampling a pose x from the
selected subset. For more details about this procedure we
refer to [8].

Selecting a Grasp: The grasp set G(g0) can encompass
a large variety of grasps, making it detrimental to the algo-
rithm’s performance to try them all for every pose. Instead,
the SELECTGRASP function samples a grasp from G(g0).
Rather than sampling G(g0) uniformly at random, however,
the SELECTGRASP function biases its grasp selection to
grasps that likely enable the robot to reach the selected pose.

For this, the algorithm utilizes the hierarchical partitioning
of Ŝ, and stores for each sampled subset an ordered set
of grasps in Ps. Initially these sets are empty. Whenever
a kinematically reachable pose x is sampled from a subset
associated with node n from the hierarchy, the corresponding
grasp g is stored in the grasp set of n. In addition, the grasp
g is propagated up in the hierarchy and stored for every
ancestor of n.

The grasp selection process is shown in Algorithm 3.
The algorithm receives the sampled hierarchy node n, the
sampled pose x and the state variable Ps as arguments.
Starting from n, the algorithm first collects all previously
stored grasps in an ordered set G by ascending the hierarchy.
The order of grasps in G is the order, in which the grasps
are added. This allows the algorithm to first try the grasps
that have been successful closest in the hierarchy to n. If no
grasp has been stored before, G is initialized with the initial
grasp g0. This gives preference to place the object with the
initial grasp if possible. Next, the algorithm iteratively tests
for each grasp in G whether the robot’s end-effector would
be collision-free at the given object pose x. If this is the case,

the algorithm returns the tried grasp with a high probability.
A collision-free end-effector is not a sufficient condition

for a placement pose to be reachable with a particular
grasp. The end-effector pose may be out of the reachable
workspace, or force the arm to penetrate an obstacle. For
this reason, the algorithm only returns a collision-free grasp
with probability paccept. If none of the grasps in G were
selected, the algorithm samples a grasp uniformly at random.
In case G does not encompass all reachable grasps G(g0),
it randomly samples a grasp from G(g0) \ G. Otherwise, it
re-samples any grasp from G(g0).

C. Motion Planning

Each grasp results in a slightly different obstacle space
Cgobst. Hence, to validate path-reachability we can not trivially
employ a single motion planning algorithm. We address this
problem by running separate motion planners for each grasp
in Q in parallel. As algorithm we employ a modification
of OMPL’s [22] bidirectional RRT algorithm [23]. The
modification allows us to add and remove backward trees
while the algorithm is running. A backward tree is removed
when the respective goal is removed from Q, due to its
objective being smaller than ξbest.

V. EXPERIMENTS

We implemented the presented framework in Python and
C++ using OpenRAVE [24]. We generated the DMG for two
considered objects: the Elmer’s glue bottle and the Expo
Dry Eraser box from the Amazon Picking Challenge 2016
objects set. In our experiments, we evaluate the performance
of the planning algorithm for different initial grasp choices,
and how enabling the robot to change its grasp affects the
optimization performance. All evaluations were run on an
Intel Core i7-4790K CPU @ 4.00GHz×4 with 16GB RAM
running Ubuntu 18.04. For a video showing an execution on
a real robot, we refer to our website1.

In our first set of experiments, we query the algorithm to
compute placements for the glue bottle shown in Fig. 1. We
evaluate the algorithm on two different environments: the
cabinet shown in Fig. 1, and the cluttered table top shown in
Fig. 4a. In both cases the placement objective is to maximize
the average distance to obstacles within the target volume:
ξ(x) = D(x) = 1

|Bo(x)|
∑

p′∈Bo(x) dS(p′), where Bo(x) is
a finite collection of points approximating the object at pose
x. The obstacle distance function dS : R3 → R measures the
distance to obstacles in the target volume V that are above
or on the side of the object.

We ran the algorithm for the two different initial grasps
shown in Fig. 1. The first grasp allows the object to be placed
without changing the grasp, whereas the second one requires
re-grasping. We ran the algorithm 50 times on each problem
and recorded the objective values of the found solutions as
a function of runtime. Fig. 3 (a,b,d,e) show the development
of the mean objective values as time progresses.

The green solid line shows the optimization performance
of the algorithm as presented in Sec. IV. The blue dashed

1https://joshuahaustein.github.io/plcmnt-web/

https://joshuahaustein.github.io/plcmnt-web/


0 10 20 30 40 50
Runtime (s)

min

max

O
bj

ec
ti

ve

random grasp selection
no re-grasping
using Algorithm 3

(a) Glue, whole cabinet, not blocking grasp

0 10 20 30 40 50
Runtime (s)

min

max

O
bj

ec
ti

ve

random grasp selection
using Algorithm 3

(b) Glue, whole cabinet, blocking grasp

0 10 20 30 40 50 60
Runtime (s)

min

max

O
bj

ec
ti

ve

random grasp selection
no re-grasping
using Algorithm 3

(c) Expo box, whole cabinet

0 10 20 30 40 50 60
Runtime (s)

min

max

O
bj

ec
ti

ve

random grasp selection
no re-grasping
using Algorithm 3

(d) Glue, table, not blocking grasp

0 10 20 30 40 50 60
Runtime (s)

min

max

O
bj

ec
ti

ve
random grasp selection
using Algorithm 3

(e) Glue, table, blocking grasp

0 10 20 30 40 50 60
Runtime (s)

min

max

O
bj

ec
ti

ve

random grasp selection
no re-grasping
using Algorithm 3

(f) Expo box: table

Fig. 3: Planning and optimization performance of the different variations of our algorithm. All plots show the evolution of the mean
objective value of computed placement solutions as a function of runtime. The shaded areas around the lines indicate the mean standard
error. The objective values min and max are the minimal and maximal objective values that we ever observed for the respective scene.

line shows the performance of the algorithm without using
Algorithm 3. Instead, the algorithm always samples a random
grasp from G(g0). The orange dashed-dotted line shows the
performance of the algorithm without the ability to change
its grasp.

In all test cases the algorithm using Algorithm 3 performs
as good or better than the other versions. In the case where
the initial grasp allows a placement, we do not observe any
degradation in performance in comparison to the algorithm
that does not consider different grasps.

Unsurprisingly, for the initial grasp that prohibits placing
the glue bottle, the algorithm without re-grasping fails at
finding any solution. Hence, there is no orange dashed-dotted
line in Fig. 3 (b, e). In contrast, enabling re-grasping leads to
similar optimization performance as with the non-blocking
initial grasp. The benefit of Algorithm 3 is neglectable in
these test cases except for the table scene with blocking
grasp, Fig. 3 (e).

In the next set of experiments, we evaluate the optimiza-
tion performance for the box-shaped Expo Dry Eraser object
shown in Fig. 4b. In contrast, to the glue this object has
six different placement faces always allowing a placement
independent of the initial grasp. Again, we ran the algorithm
for the two environments and recorded the optimization
performance, Fig. 3 (c, f). For both environments the al-
gorithms with re-grasping outperform the algorithm without
re-grasping. This indicates that re-grasping not only renders
infeasible queries feasible, but also eases the optimization
problem, as a larger variety of placement poses becomes
accessible.

In our last set of experiments, we highlight another benefit
of re-grasping. In this experiment, we query the algorithm
to place the Expo Dry Eraser object with the initial grasp
shown in Fig. 4b in the compartments on the left side of
the cabinet, see Fig. 4c. We modify the objective function to

ξ(x) = y+D(x), where y denotes the object’s y−position.
In the cabinet, the y-axis points into the cabinet. Thus this
objective rewards placement poses that are deeper inside of
the cabinet.

While it is possible with the initial grasp to place the object
in front of the compartments, high objective placements are
only reachable if the robot changes its grasp to reduce the
object’s footprint. This way it can reach deeper into the small
compartments. The result of this experiment are shown in
Fig. 4d. The problem is more difficult than the previous ones,
due to the narrow space. Here, we observe a clear benefit
of re-grasping. We also observe again a small advantage of
using Algorithm 3.

VI. DISCUSSION & CONCLUSION

We presented a placement planning algorithm that given
an initial grasp on an object and a placement objective
function, computes a sequence of in-hand pushing actions to
adjust the grasp, and then transport the object to a placement
maximizing the objective. For this, we integrated our prior
works on Dexterous Manipulation Graphs [7] and placement
planning [8]. Our experiments demonstrate that the resulting
algorithm succeeds in computing high-quality placements
even in challenging environments. The ability to change
the grasp through in-hand manipulation can not only render
infeasible placement queries feasible, but also benefits the
algorithm’s ability to locate high-quality placements.

In-hand manipulation is very well suited as preparatory
manipulation for placing. In contrast to re-grasping with
pick-and-place, it does not require to locate any intermediate
placements. This allows us to address the placement problem
largely isolated from the picking problem. While the DMG-
based in-hand manipulation does not allow the robot to
change to every possible grasp, the reachable grasp set is
usually sufficiently diverse to allow horizontal placements.
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Fig. 4: Table top experiment scene, initial grasp on Expo Dry Eraser
box and placement after re-grasping, and optimization performance
for placing the Expo object deep inside the cabinet.

While our algorithm is capable of computing reachable
placements also in difficult to navigate environments, its
performance degrades the narrower the open spaces are.
This is due to the sampling-based nature of the algorithm.
The freedom of choosing different grasps further increases
the burden on the motion planning component, as every
grasp leads to a different collision space. The grasp cache
is therefore in part designed to keep the total number of
considered grasps low.

In future work, we plan to investigate whether the simi-
larities between the motion planning problems for different
grasps can be exploited to make this process more resource
efficient. In addition, the assumption that the robot can
perform in-hand manipulation in a safe region with a second
arm currently limits the approach to dual arm robots. An
interesting extension is to utilize a fixture in the environment
to achieve the desired grasp change.

Finally, our algorithm currently only verifies that an ap-
proach motion to a target exists. In narrow spaces it can
occur that a collision-free retreat for the robot arm is not

possible after placing. Hence, in future work this additional
constraint on the placement pose needs to be incorporated.
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