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Abstract— Hand pose estimation from video is essential for
a number of applications such as automatic sign language
recognition and robot learning from demonstration. However,
hand pose estimation is made difficult by the high degree of
articulation of the hand; a realistic hand model is described
with at least 35 dimensions, which means that it can assume a
wide variety of poses, and there is a very high degree of self
occlusion for most poses. Furthermore, different parts of the
hand display very similar visual appearance; it is difficult to
tell fingers apart in video. These properties of hands put hard
requirements on visual features used for hand pose estimation
and tracking. In this paper, we evaluate three different state-of-
the-art visual shape descriptors, which are commonly used for
hand and human body pose estimation. We study the nature of
the mappings from the hand pose space to the feature spaces
spanned by the visual descriptors, in terms of the smoothness,
discriminability, and generativity of the pose-feature mappings,
as well as their robustness to noise in terms of these properties.
Based on this, we give recommendations on in which types of
applications each visual shape descriptor is suitable.

I. INTRODUCTION

Humans convey and relay a significant amount of informa-
tion through non-verbal communication. An important part
of this communication is carried out by moving our hands. To
that end, being able to automatically estimate the movement
and pose of hands [1] is very important for a range of
applications such as robot learning from demonstration [2]
and automatic sign language recognition [3].

However, the human hand is capable of a large range of
poses and complicated movements. This places significant
demands on the sensory system employed; it needs to be
non-intrusive to not restrict the movement, but still needs
to be able to reflect the intricate details of the hand. These
requirements are met by a passive vision sensor, which does
not require any equipment to be worn by the human, and
is able to capture data at a frequency such that even the
smallest changes in pose would be reflected. In this paper,
we concentrate on visual hand pose estimation.

The mapping of a hand pose to its appearance in an image
is very complex. Firstly, a hand is a very high-dimensional
structure, which makes the range of poses that the hand
can assume very large. Secondly, many parts of the hand,
e.g., different fingers, have very similar appearance, which
make them easily confusable. Furthermore, highly articulated
structures like hands (and also full human bodies) display a
great deal of self occlusion in the image. This means that
many aspects of the hand pose are unobservable and have to
be inferred from other aspects of the hand pose. Moreover,
most information contained in an image are not relevant
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Fig. 1. Three desirable properties of features for hand pose estimation:
Smoothness: A sequence of small motions in the pose space should lead
to (•) a sequence of small motions in the feature space, not (•) a sequence
of large motions. Likewise, the pose estimate should (•) be robust to small
changes in feature value, not (•) change abruptly when the feature undergoes
a small variation.
Discriminability: A certain observed feature value should map to (•) a
tight and unimodal distribution of poses, not to (•) a wide and multimodal
distribution.
Generativity: A certain pose should map to (•) a tight and unimodal
distribution of generated feature values, not to (•) a wide and multimodal
distribution.

for pose estimation, but rather reflect orthogonal variations
such as skin color and background patterns. This means that
inference using such data is very challenging, as only a
subset of the variations are correlated with the information
we wish to infer; the pose, or functions thereof, such as the
sign class in automatic sign language recognition. This is
further formalized in Section II.

To address this issue and simplify hand pose estimation
from images, a number of shape features have been de-
signed, which strive to extract the relevant information from



the image, and filter away the image variations that are
not correlated with the hand pose. It would in theory be
possible to learn a ”perfect” hand feature (which reflected
only the pose-related information) if one had access to
enough training data. However, due to the extremely high
dimensionality of image parameterizations, doing this in a
principled manner would require an in-feasibly big data-set.
To that end, most features are instead constructed in an ad-
hoc manner, motivated by experimental results and intuitions
rather than learned from training data.

Fig. 1 illustrates the desirable properties of successful
visual shape features. First of all, for the estimation to be
robust to noise, the mapping between a pose and its observed
feature value should be smooth. This means that a small
change in pose should not cause a great variation in feature
value, and vice-versa, that a small random variation in the
observed feature value (due to image noise) should not cause
a great change in estimated pose. Secondly, if the feature is
to be used for regression, it is important that it is possible to
estimate the underlying pose from an observed feature value.
This property can be denoted discriminability. Third, if the
feature is to be used in a generative method such as an HMM
or a particle filter, it is important that the feature generation
process can be modeled in an accurate manner, i.e., that a
certain pose always give rise to the same feature value, with
small random variations due to image noise. This property
can be denoted generativity.

The literature in computer vision and pattern recognition
describes many different image features. However, it is often
not completely understood which feature to choose for a
specific context. In this paper we will perform a thorough
evaluation of three popular shape based descriptors in the
context of human pose estimation. In Section III we describe
the three popular image features, while Section IV details
how the test data are generated, and Section V describes the
experiments. Our aim is to provide an intuition not only on
when and for what scenarios the descriptors work but more
importantly why they produce the results they do. This study
forms a basis both for designing new descriptors and for
choosing the right descriptor for a given task.

We do not aim go give a comprehensive overview of the
state of the art in hand tracking, but rather give a systematic
comparison of a representative set of shape features. For a
recent review of hand tracking efforts, see [1].

II. HAND POSE ESTIMATION
We now formalize the hand pose estimation task. Let hand

pose (or any other state defining the hand pose, e.g., sign
type in a sign language application) be denoted X , and let
an image observation of this hand pose (an image, or a
functional descriptor extracted from the image, see Section
III) be denoted Y . The process whereby images are generated
from hands in the world can be described by the functional
mapping

Y = f(X) + ν(X) (1)

where f is a deterministic function and ν is a noise term
(arising from, e.g., noise when capturing the image, or

from spurious changes in lighting conditions). This can be
expressed in a probabilistic manner as if the observation Y is
sampled from the likelihood of observations given the state
X , p(Y |X).1 The function f and the statistics of the noise
term ν, alternatively the likelihood density, can be learned
from training data tuples [Xi, Y i].

The inference problem is to model the inverse of the image
generating function – inferring the underlying state (hand
pose) X from a certain observation (image descriptor) Y .
Deterministically speaking, the inference problem boils down
to modeling the inverse mapping f−1. An approximation of
this mapping can be learnt from data, if the true mapping
f is one-to-one and the noise term ν is not too large. In
probabilistic terms, the problem is to model the posterior
density p(X |Y ), the probability density of the underlying
state X given a certain observation Y .

For realistic applications it is not possible to learn the
posterior directly, since the state space X is usually large,
and the mapping f is usually many-to-many, making f−1

ill defined on the whole state space. There are two ways to
go about in practice [4], the generative and discriminative
approach. Both make use of the fact that whereas f−1 is
ill-defined globally, it can be approximated locally around a
certain prior estimate of X .

In the generative approach, used e.g. in [5], the posterior
is modeled as a product of the likelihood and the prior
over X using Bayes’ theorem: p(X |Y ) ∝ p(Y |X)p(X).
The discriminative approach, used e.g. in [6], [7], models
the likelihood p(Y |X), not caring about how the states are
distributed, and finds the X that maximizes the likelihood for
a certain observed Y , using some optimization procedure.

Regardless of estimation or inference method, the image
descriptor giving the measure Y should be such that the
mapping f is as ”nice” as possible – that is, contain as few
singlarities or near-singularities as possible. In the optimal
case, there is no observation noise ν, and the mapping
function is unity: Y = X , i.e., the state (hand pose) is
directly observable.

However, this is never the case in reality, as the hand
pose space is very high-dimensional, and the hand pose X
changes fast and in a non-linear manner over time, and since
the image generating process (Section III) is highy complex.
In this study, we evaluate three state-of-the-art visual hand
shape descriptors with respect to

A the smoothness of f – a small motion in the pose
space X should correspond to a small motion in the
feature space Y and vice versa, see Section V-A,

B how functional f is – is there a clear unimodal
maximum in the posterior distribution p(X |Y ) for
a certain Y (discriminability), and is there a clear
unimodal maximum in the likelihood p(Y |X) for
a certain X (generativity), see Section V-B,

C how resistible the descriptor is to image noise,

1The notation is simplified, in that X indicates both the probabilistic state
variable X and a certain value of this probabilistic variable, and Y denotes
both the probabilistic observation variable Y and a certain observed value.



in terms of generativity and discriminability, see
Section V-C,

and discuss them in relation to the needs of different appli-
cations of hand pose estimation.

Hand pose is almost always represented in terms of
finger joint angles [1]. It should however be noted that this
parameterization of hand pose displays certain peculiarities
[8], [7]. For example, the Euclidean distances between two
poses with change in the outermost joints might be larger
than the Euclidean distance between two hands rotated 45◦

relative to each other – even though the latter two hands
display vastly more different image appearances. Hauberg et
al. [8] suggest an alternative state space with more coherence
between pose difference and perceived image difference.
However, the differences between these two pose spaces are
not larger than that the findings in our study here are relevant
to hand pose estimation in both spaces.

III. VISUAL HAND SHAPE DESCRIPTORS

The most straight-forward way to model the likelihood
function p(X |Y ) is by using a articulated model of the hand,
placing this hand model in the pose X and projecting it into
the image. The appearance descriptor Y is some aspect of
the image, e.g., the edges [6], [5] or the edge and ridge
response [9]. In [10], the 2D finger positions in the image
are estimated from the silhouette, which further guides the
3D hand model. The likelihood is measured as a function of
the distance between the real image appearance Y and the
image appearance postulated by the hand model in pose X .
In the case of edges [6], the distance is in terms of the closest
distance between the model and real edges, in the case of
interest points [10], the distance is in terms of the closest
distance between the model and the point detections, and in
the case of filter responses [9], the distance is in terms of
the actual filter responses at the model edges and ridges. If
the measurement includes depth [11] or measurements from
multiple cameras [12], the comparison can be made in terms
of 3D hull instead of edges, which gives a more accurate
likelihood estimate.

These model-based likelihood measures give very rich in-
formation about the hand appearance – hence their popularity
for accurate pose estimation. However, they suffer from the
short range of the measure in pose space: the estimate of the
likelihood is only valid in a very narrow proximity of the true
pose X . As an example, if the pose of the hand is correct,
but the hand is shifted 2 cm to the left, the real edges of the
index finger would match the model edges of the middle
finger, the real edges of the middle finger would match
the model edges of the ring finger, etc – the likelihood for
this erroneous pose would display a local maximum. Hence,
the likelihood densities in methods employing these kinds
of descriptors are highly multi-modal. To deal with this,
the pose estimation methods using these descriptors involve
advanced optimization procedures [6], [11], or sequential
tracking with careful manual initialization [5].

However, for applications when the full 3D hand pose
is not estimated (e.g., automatic sign language recognition,

where the state X is a sign class or a vector of descriptors
of scene class), or there is no accurate initial estimate of
the hand/human state X , or when computing power limi-
tations prevent the use of advanced optimization methods,
a more global descriptor (with a more smooth likelihood
distribution) of hand pose is needed. Such applications
include pedestrian detection [13], automatic sign language
recognition [3], and detection-based hand and body tracking
[14], [15], [16], [7], [17], [18].

An alternative approach to using a well-behaved feature
with a smooth likelihood function is to use a simpler shape
feature with a less smooth likelihood function, and compen-
sate for this using a more elaborate functionality for explor-
ing the state space, e.g., using clustering followed by a de-
cision forest methodology for local classification/regression
[19]. The trade-off is here in terms of computational speed:
while the introduction of more well-behaved shape feature
functions will improve any pose estimation method, the
choice of feature might be limited to very simple features due
to real-time requirements and computational power limita-
tions. On the other hand, the computational cost of regression
is lower with a more well-behaved feature. This trade-off has
to be decided upon in each application.

In this paper we evaluate three state-of-the-art hand shape
descriptors in the literature: Hu moments [20], shape context
[21], and histograms of oriented gradients (HOG) [22].

A. Hu Moments

The 7 Hu moments [20] constitute a rotation, mirroring
and scale invariant representation of the shape of a 2D
silhouette. The moments are different combinations of scale-
normalized centralized moments of the shape. The feature
Y hu
t = [h1,t, . . . , h7,t], the 7 Hu moments extracted from a

hand contour Ht segmented from the image frame It.
This image descriptor was commonly used for hand shape

representation before 2005 [3], [1], [17]. After this, it has
gradually been replaced by other shape descriptors – in
Section V we show why this is the case.

This representation does not take any interior parts of the
hand appearance into account, only the outer hand shape.
One can thus assume that it is susceptible to errors in the
segmentation of the hand from the background. Furthermore,
since the representation includes higher-order derivatives, it
is sensitive to small variations in shape.

B. Shape Context

Like Hu moments, shape context [21] is computed from
the silhouette of a shape. However, while Hu moments are a
global representation of the shape, a shape context is a local
representation of a certain point on the silhouette. The shape
context descriptor is a polar histogram around a certain edge
point, where each bin counts the number of other edge points
in this area of the neighborhood.

Shape context was originally designed for shape matching,
i.e., matching certain points on one shape to the corre-
sponding points on another shape To obtain a global shape
descriptor – which will characterize the overall shape rather



(a) 6 large scale motion sequences (b) 6 small scale motion sequences

Fig. 2. The 12 synthetic motion sequences. Each sequence corresponds to 100 equally long steps along a straight line in the hand pose space. For each
sequence, frames 1, 34, 67 and 100 are shown. (a) Large scale motion. (b) Small scale motion.

than a certain point in relation to the rest of the shape – we
use a bag of words approach: We learn a vocabulary V of size
128 of shape contexts from a representative set of contexts C
extracted from the training data (silhouettes H from all hand
frames I). To represent a hand shape (a silhouette Ht from
the hand frame It), 100 points are sampled uniformly around
the outer contour of the hand. Shape contexts Si,t (8×5 log-
polar histograms) are computed for each point, and classified
as words in the learnt vocabulary using a nearest-neighbor
classifier W = w(S) in the shape context space. The overall
shape is then represented with a histogram Ht over all shape
context words Wi,t. The feature Y sc

t = [H1,t, . . . ,H128,t].
This representation has been used for regression-based

hand and body pose estimation [14], [16] and has been
proven highly discriminative of articulated pose.

Compared to Hu moments, the shape context descriptor is
more robust to small variations in shape thanks to the binning
and vector quantization steps. Therefore, one can expect it to
have better smoothness and discriminability properties, but
not necessarily to be more generative than Hu moments.

C. Histograms of Oriented Gradients

Unlike Hu moments and shape context, the histogram of
oriented gradients (HOG) [22] descriptor operates on the
entire hand image window It. Similarly to the SIFT feature
[23], he image window It is partitioned into cells – here
5×7 cells – and for each cell, a histogram of gradient
orientations – here with 12 bins – is computed. The feature

Y hog
t = [G1,t, . . . , G420,t] where Gt is the concatenation of

the gradient orientation histograms from all 35 cells.
The size of the cells and the granularity of the histograms

affect the generalization capabilities of the feature. A more
detailed discussion on how different parameters of the HOG
affect human detection can be found in [22].

Due to its spatially coarser binning, the HOG descriptor
is expected to be less discriminative than shape context.
However, the robustness of the feature will probably lead to
a very smooth mapping with good generativity – the feature
value can be predicted in an accurate and deterministic
manner from a hand pose.

HOG descriptors are mostly used for detection [22], [24]
but also for regression-based hand and body pose estimation
[25], [26], [7], [18], [27].

IV. DATA SET

To evaluate the three features described above, we need a
set of sequences of hand views over time, together with their
ground thruth pose. Ideally, we would evaluate on real image
sequences, but given the difficulties of capturing ground truth
pose without compromising the appearance of the hand, we
generate a synthetic dataset using the LibHand Library [28].

The hand model used in LibHand has 63 degrees of
freedom, defined by 54 joint angles and 9 camera orientation
parameters, and can generate realistic 400×400 pixel image
views of the hand in a given pose.



(a) Resolution noise (b) Segmentation noise

Fig. 3. Simulated image noise. (a) Simulating the image quality loss that one gets when the hand is captured at low resolution: 400×400 pixels (original
size, 0% noise), 300×300 pixels (scaled up to 400), 200×200 pixels (scaled up to 400), 100×100 pixels (scaled up to 400), 50×50 pixels (scaled up to
400), 20×20 pixels (scaled up to 400), 10×10 pixels (scaled up to 400), 5×5 pixels (scaled up to 400). (b) Simulating the image quality loss caused by
errors in segmentation of the hand from the background: 0%, 3%, 5%, 10%, 15%, 20%, 30%, 50%.

A. Sequences

Fig. reffig:sequences shows the 12 sequences that are
generated for these experiments. The 6 sequences in Fig. ref-
fig:sequences(a) correspond to a large change in at least one
of the pose parameters, while the 6 sequences in Fig. ref-
fig:sequences(b) correspond to very small pose change. Each
sequence, of length 100, correspond to 100 equally long steps
along a trajectory in the hand pose space; in the case of a,
b, c, d, a straight line. The camera orientation is kept fixed
in all sequences.

For large scale motion, sequence
a corresponds to straigtening the little finger,
b corresponds to straightening the index finger,
c corresponds to straightening the two fingers,
d corresponds to opening the hand,
e corresponds to closing the hand,
f corresponds to opening and turning the hand.

The small scale sequences are parts of the large scale ones,
with denser sampling.

B. Simulating Image Noise

To evaluate the effect of image noise, the synthesized hand
views are perturbed in a controlled manner.

A common problem in many applications where the whole
upper body is in view, such as automatic sign language recog-
nition and human-robot interaction, is that the resolution is
limited. To simulate this situation, 7 lower-resolution datasets
are created where all hand views are down sampled, and then
up-sampled to 400×400 again. Example images from the 7
datasets with different levels of resolution noise are shown
in Fig. 3(a).

Another source of image noise is the segmentation of the
hand from the background. This is typically done using skin
color models, depth boundaries, motion, or a combination
thereof. Segmentation results often suffer from errors along
the boundary, or whole parts of the foreground missing.
To simulate errors in the hand segmentation, 7 datasets
with segmentation errors are created by diluting the original

segmentation masks with random changes of pixels as fg/bg
along the boundaries, followed by erosion and dilation.
Example images from the 7 datasets with different levels
of segmentation noise are shown in Fig. 3(b).

V. EVALUATION

Using the hand sequences described above, the three
features are now evaluated in terms of the smoothness, dis-
criminability and generativity of the pose-feature mapping,
as well as its robustness to image noise. The extraction of
all features are implemented in Matlab.

A. Evaluation of Smoothness

For the ideal pose-feature mapping Y = X as discussed
in Section II, a sequence of poses Xt along a straight line
in the pose space would render a straight line of features Yt
in the feature space. To evaluate how close to ideal a feature
is, we can map a straight line in the pose space and study its
corresponding line in the feature space. This gives an idea
of the smoothness of the mapping f .

For each of the three features, the trajectory Yt in the
feature space corresponding to Sequence d from Fig. 2(a) is
generated. The trajectories, projected down to their respective
3 largest modes of variation, are shown in Fig. 4.

The Hu moments trajectory Y hu
t (Fig. 4(a)) has local

segments where the features change very slightly between
time steps, followed by sudden very large jumps. Thus, the
Hu moments descriptor is sometimes very brittle to small
changes in pose; the mapping is not very smooth. The shape
context trajectory Y sc

t (Fig. 4(b)) is much more smooth, i.e.,
there are fewer and less large jumps. The HOG trajectory
Y hog
t (Fig. 4(c)) is even smoother. There are three almost 90

degree turns. They most probably correspond to the frames in
which the fingers (who are straightened, see Fig. 2(a)) show
up in new cells in the HOG window. This means that the
orientation histograms in the newly occupied cells suddenly
start to change after being constant, causing a sudden change
of feature trajectory direction.
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Fig. 4. Trajectory in the 3 largest eigendirections of variation in the feature space, corresponding to a linear motion in pose space (Sequence d from
Fig. 2(a)). (a) A Hu moments trajectory Y hu

t . (b) A Shape context trajectory Y sc
t . (c) A HOG trajectory Y hog

t .

From this we can conclude that HOG is a very robust
descriptor, whereas Hu moments are brittle.

B. Evaluation of Discriminability and Generativity

A way to study to what degree the pose-feature mapping
is one-to-one is to look at the coherence between distances
in pose space δX = ‖X1 − X2‖ vs distances in feature
space δY = ‖Y1−Y2‖. This can be visualized by taking the
pairwise distances in pose and feature space of all pairs of
points in each sequence in the dataset. A perfectly coherent,
smooth, one-to-one mapping with no noise, Y = f(X),
would generate a histogram where only one bin per row and
column are populated. In reality, this is not the case, since
there are ambiguities and noise in the mapping.

Figure 5 shows the histograms for all three features. For
each feature, the large scale motion histogram was generated
from pairwise distances from the large scale sequences, while
the small scale motion histogram was generated from the
small scale sequences. The small scale histograms (b), (d),
(f) can be regarded as a zoomed view of the upper left corner
of the respective large scale histograms (a), (c), (e).

The discriminability of a feature can be measured using
the standard deviation over δX given a certain δY ; this says
how coherently the inferred pose varies wrt the observed
feature. According to this measure, shape context is the most
discriminative feature, with HOG being nearly as good.

The generativity of a feature can be measured using the
standard deviation over δY given a certain δX; this says
how coherently the observed feature varies wrt underlying
pose. According to this measure, HOG is by far the most
generative feature.

C. Evaluating Robustness to Image Noise

Up to now, we have studied feature extraction from high
resolution images with perfect background segmentation. To
study the robustness of the three features to these two types
of commonly occurring image noise, the analysis in Section
V-B is performed on the 14 noise-polluted datasets from
Section IV-B. The standard deviations over δX and δY for
each feature are averaged. The mean standard deviations give

a measure of the overall discriminability and generativity of
different features at different noise levels.

Figure 6(a) shows the mean standard deviation as a
function of resolution noise level. All features maintain their
performance down to resolutions of 100×100 pixels. After
that, the generativity of shape context goes down while Hu
moments and HOG are robust to scalings down to as little
as 20×20 pixels.

Figure 6(b) shows the mean standard deviation as a
function of segmentation noise level. HOG is robust to up to
30% segmentation noise, while the others degrade already
at 5%. The reason for this is that HOG uses not only the
silhouette.

Figure 7 show how the HOG, large scale motion histogram
deteriorates at the most severe noise levels. With low image
resolution, the distances take discrete values, as many values
as there are pixels on the hand. With noisy segmentation,
the distances become uncorrelated with the underlying pose
- this is natural since the pose is not visible even to a human
looking at the image.

VI. CONCLUSIONS

We evaluate the three popular shape features Hu moments,
shape context and HOG in terms of their efficiency for hand
pose estimation. Based on our experiments, we can give the
following recommendations:

• It is always better to use shape context or HOG instead
of Hu moments, since these features reflect the pose in
a more robust way.

• Shape context is very descriptive of hand pose, more so
than HOG, which makes it the best choice for regression
based methods. However, if there are large segmentation
errors, HOG should be used instead, as it is more stable
to this kind of image noise.

• HOG is the most generative feature, meaning that the
HOG feature value can be predicted with high accuracy
from a certain pose. This makes it suitable for generative
estimation methods such as particle filters or HMM.

• HOG and Hu moments are resistible to low image
resolution, which makes them preferable over shape
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(a) Hu moments, large scale motion
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(c) Shape context, large scale motion
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(d) Shape context, small scale motion
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(e) HOG, large scale motion
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(f) HOG, small scale motion

Fig. 5. Histograms of Euclidean distances in pose space δX = ‖X1 −X2‖ vs Euclidean distances in feature space δY = ‖Y1 − Y2‖. Next to each
histogram, the generativity, i.e., standard deviation over δY given a certain δX (•), and the discriminability, i.e., standard deviation over pose δX given a
certain δY (•), are plotted. (a) Hu moments δY hu, large scale motion. (b) Hu moments δY hu, small scale motion. (c) Shape context δY sc, large scale
motion. (d) Shape context δY sc, small scale motion. (e) HOG δY hog , large scale motion. (f) HOG δY hog , small scale motion.

context when the image resolution is low, e.g., for
automatic sign language recognition.
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(c) Segmentation noise, large scale motion
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Fig. 6. Change in estimator accuracy with increasing image noise. To the left in each subfigure, the generativity, i.e., standard deviation over δY given
a certain δX , averaged over δX (•) is plotted. To the right in each subfigure, the discriminability, i.e., standard deviation over pose δX given a certain
δY , averaged over δY (•) is plotted. Solid curves with triangles = Hu moments, dashed curves with squares = shape context, solid curves with circles
= HOG (a) Resolution noise, large scale motion. (b) Resolution noise, small scale motion. (c) Segmentation noise, large scale motion. (d) Segmentation
noise, small scale motion.
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(a) Resolution noise: 400×400 pixels (0%), 20×20 pixels, 10×10 pixels, 5×5 pixels
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(b) Segmentation noise: 0%, 20%, 30%, 50%

Fig. 7. Change in feature vs pose distance histogram with increasing image noise. The figures show how the HOG, large scale motion histogram (Fig. 5(e))
is diffused with increasing noise. (a) Resolution noise: 400×400 pixels (original size, 0% noise), 20×20 pixels (scaled up to 400), 10×10 pixels (scaled
up to 400), 5×5 pixels (scaled up to 400). (b) Segmentation noise: 0%, 20%, 30%, 50%.
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