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Abstract—We aim to learn a mapping of human commu-
nicative behavior to a robot with fewer degrees of freedom,
which would preserve its high-level characteristics, such as
attitude and intention. We take a deep learning approach,
using the encoding-decoding idea. Our preliminary results
of the human motion representation learning indicate that
we can benefit from having recurrent connections only in
some layers of the neural network. The best-performing
representation size is roughly two times less than the original
input data dimensionality.

I. INTRODUCTION

A step towards robot autonomy is telepresence, where
a robot is steered by a human, e.g. representing the human
in a meeting. A central problem is then motion mapping.
Mapping from human to robot motion is not a straight-
forward task, because most robots have fewer degrees of
freedom (DoF), as well as other physical limitations.

Most of the work in this area is restricted to the
mapping on an activity level [1], [2]. In contrast, we aim
to transmit the “content” of the motion and its high-level
characteristics, e.g. attitude and intention.

We propose a deep learning approach, in which we map
the human embodiment, via the abstract representation of
the motion, to the robot embodiment, as shown in Fig.1.

Our system includes encoding and decoding of the
motion, which resembles the idea of autoencoders (AE).
Hence, we choose AE as a network architecture. In
particular, we use Stacked Denoising AE [3] with LSTM
[4] for recurrency, as described in Section III. We are cur-
rently collecting training data for human-to-robot maping.
In this paper we report on initial experiments with the
CMU Mocap dataset, where we evaluate different design
choices. We aim to design an architecture with the most
generalizable representation. So we experiment with two
important decisions, as described in Section IV:

1) Which layers of the network should be recurrent
and which fully-connected?

2) What is the effect of the size of the middle layer?

II. RELATED WORK

An early work on deep representation learning for
human motion had no recurrency in their networks. Lie
and Taniguchi [5] have used sliding window over time-
series and random forest on low-dimensional represen-
tation in order to classify the motion. They showed
that reducing dimensionality of the human motion data
drastically improves classification performance and that

Fig. 1: Illustration of our approach to mapping from
human motion to robot motion: use latent representation,
abstracted from the embodiment. To the left we show a
human pose obtained through 3D motion capture. To the
right is a NAO robot: humanoid with much fewer DoF.

deep sparse autoencoder (SAE) can extract better low-
dimensional representations than PCA or a shallow SAE.
Recently, this approach was extended [6] to prediction.
It outperformed previous work and yielded better gener-
alization. In contrast to these papers, we are processing
the motion frame by frame and use an LSTM to store
relevant information about the past frames.

Plenty of research has been done on using recurrent
neural networks for representation learning as well. One
approach [7] was to use recurrent connections at each
layer. To reduce the number of parameters and avoid over-
fitting, an LSTM was used only at the last layer, and
a standard RNN in all the other layers. An alternative
approach [8] used encoding-recurrent-decoding network,
where recurrency was applied only at the middle layer.
They was focused on motion prediction or classification,
while we are aiming for human-to-robot mapping.

To the best of our knowledge, there is a lack of system-
atic analysis of the effect of adding recurrent connections
and the best place to add such connections. This analysis
is the main topic of our experiments.

III. DEEP NETWORK ARCHITECTURE

We use a deep neural network, which has 5 hidden
layers (Figure 2b) with 100 neurons in each, combined as
a Stacked Denoising Autoencoder (SDAE) [3]. This net-
work is designed for unsupervised representation learning
and is regularized by adding noise to the input data and
learning to reconstruct the noise-free input. We modify the
original SDAE by adding a recurrency (LSTM), unrolled
over 64 time-steps.

Training was done using Adam optimizer [9] and layer-
wise pretraining. Error measure was an L2 reconstruction
loss averaged over all the test examples. Early stopping



TABLE I: recurrency analysis

Recurrency Train error Test error
Everywhere 0.0063 0.096
No 0.0088 0.196
1st layer 0.0065 0.021
2st layer 0.0057 0.033
3st layer 0.0051 0.030
4st layer 0.0050 0.030
5st layer 0.0091 0.021

was used: the training was terminated, if the validation
error droped by 8% from the best accuracy so far.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We use CMU Mocap dataset: mean pose was sub-
stracted, the rotation and translation of all joints was
mapped to the [-1,1] interval. Global coordinates were
ignored, since they contain no redundancy.

Our objective is to learn a representation with a good
generalization to new types of motions.1 In order to
evaluate that we test our network on a type of motion not
included in the training examples. We use the following
motions for training : kid on a playground, dance, kicking
a ball, basketball dribble and running. We use jumping
for validation and boxing for testing.

A. Analysis of the amount of recurrency in the network

In the following experiment we test if recurrency is
needed at every layer and at which layer are the recur-
rent connections the most important. We compare DAE
without recurrency, with recurrency at each layer and with
recurrency only at a particular layer. While other hyper-
parameters are kept fixed, the learning rate is optimized
by grid search for every architecture. Results in Table
I clearly show that recurrency helps, but the network
overfits to the training data when recurrency is added at
each layer. The network performs best with recurrency
added only to the first or the last layer. Over-fitting of
fully-recurrent network likely happens because an LSTM
layer has many more parameters than a FC layer and is
harder to train when combined in a deep network.

B. Optimal middle layer size

In the following experiment we evaluate the choice
of dimensionality of the representation. Keeping all the
other parameters and architecture structure fixed, we vary
only the middle (3rd) layer size. Based on the previous
experiment, we have chosen a network with the 1st layer
being LSTM and all the rest being FC. Fig. 2a shows that
having a bottleneck in the network indeed decreases both
train and test error. The best performance was achieved,
when the representation size is 70, while the input data
has 126 degrees of freedom. For a different task, such
as mapping from human to robot, the best representation
size may be different.

1In the human-to-robot mapping scenario, the method will instead
generalize from human communicative motion to the corresponding
robot motion

(a) Effect of the middle layer size. (b) Network architecture.

Fig. 2: Architecture analysis

V. CONCLUSIONS

This paper is a first step towards a method for human-
to-robot mapping of communicative motion that preserves
the essential high-level characteristics of the motion.
We present initial analysis of design considerations for
an architecture with the best generalization capability.
We observe that it may be beneficial to have recurrent
connections only in some layers of the network and that
best representation size may be on the order of original
dimensionality.
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