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Abstract— Extracellular recordings are a key tool to record
the activity of neurons in vivo. Especially in the case of
experiments with behaving animals, however, the tedious pro-
cedure of electrode placement can take a considerable amount
of expensive and restricted experimental time. Furthermore,
due to tissue drifts and other sources of variability in the
recording setup, the position of the electrodes with respect to the
recorded neurons can change causing low recording quality. The
contributions of this work are threefold. We introduce a quality
measure for the recording position of the electrode which should
be maximized during recordings and is especially suitable for
the use of multi-electrodes. An automated positioning system
based on this quality measure is proposed. The system is able
to find favorable recording positions and adapts the electrode
position smoothly to changes of the neuron positions. Finally,
we evaluate the system using a new simulator for extracellular
recordings based on realistically reconstructed 3D neurons.

I. INTRODUCTION

The use of large arrays of multi-electrodes (AME) is a
popular recording technique, since it combines two favorable
aspects with respect to data analysis. Namely, the temporal
resolution is high enough to record spike trains of single
neurons, but also the activity from a large number of neurons
is captured simultaneously. While more methods become
available to process, sort and analyze such large amounts of
data obtained from AME recordings (see e.g. [1], [2]), only
a few contributions deal with the task of properly position-
ing the individual multi-electrodes. When considering acute
recording experiments with electrode arrays of 16 or up to 64
tetrodes, it is evident that positioning every single electrode
manually becomes a time consuming part of the experiment.
This is in particular an issue when carrying out experiments
with primates, as maximum experiment duration is often
limited by national animal protection laws. Hence, there is a
need for an automatic multi-electrode positioning algorithm
which would place individual electrodes not only faster and
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more reliable than a human, but possibly also several elec-
trodes simultaneously, reducing considerable amount of setup
time. Additionally, even when the experimenter succeeds in
placing all electrodes at favorable positions at the beginning
of a recording session, the signal quality can decrease during
the recording. In fact, due to the insertion of electrodes, the
brain tissue is compressed. During the experiment, the tissue
relaxes again, which can lead to a displacement between the
electrodes and the surrounding neurons [3]. Consequently, an
experimenter would have to constantly monitor the recording
quality of each electrode, and adapt its position in order to
maintain acceptable recording performance.

In [4], [5] an autonomous electrode positioning algorithm
was proposed, which was designed to isolate single neurons.
We propose a method that differs in several ways from
this approach. In brief, the use of tetrodes (or other multi-
electrodes) allows for a superior discrimination performance
of the recorded spikes, simplifying spike classification on
such data as compared to data from single electrodes [6].
This is due the fact, that a spike waveform is recorded si-
multaneously on several recording channels (”stereo-effect”).
Keeping this advantage in mind, it should be preferred to
record the activity form several neurons on the same multi-
electrode in order to maximize the information yield about
the local neural population. Hence, we propose a quality
measure which favors electrode positions where most likely
several neurons are present. In contrast to the work presented
in [4], [5] our method does not rely on error-prone and time
consuming results of spike sorting.

To evaluate automatic positioning algorithms, simulated
recordings of extracellular potentials (EP) were utilized.
Compartmental membrane currents of a spiking, recon-
structed L5 pyramidal cell from [7] were simulated using
the simulation tool NEURON [8], [9], and subsequently used
to calculate EP-traces using the line-source method [10]. In
turn, a simulation environment which allows the simulation
of virtual electrode movements in a volume containing many
neurons and realistic noise using these traces was developed.

The remainder of this article is organized as follows.
In section II the new quality measure is introduced. The
positioning system that tries to maximize the quality over
time is described in III. The simulator used for online use
and evaluation of the system is outlined in IV and the results
of the evaluation can be found in IV-C.
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Fig. 1. Simplified overview of the complete simulation and positioning framework. Data is simulated by placing morphologically reconstructed neurons
in a 3D space. Multi-electrodes that are composed of a number of recorders can record the spikes emitted by the neurons in their vicinity. The data are
then passed to the positioning system. After a preprocessing step the state machine decides where to place the electrode and sends this information back
to the simulator.

II. QUALITY METRIC

A. Problem statement

In this work we are interested in a general quality measure
for the recording position of an extracellular electrode which
can be used in many different experiments and does not make
any further assumptions about the neurons recorded other
than that they should have a minimum firing rate during the
experiment. Such a quality measure Q should omit possible
biases to certain neuron types as much as possible. As
opposed to other recording techniques where the explicit goal
is to record only from one single neuron, we try to increase
the total yield of recorded neurons after sorting, maximally
exploiting the stereo-effect of multi-electrodes. This leads to
the following constraints for the quality measure Q:

• Invariance to firing rate of neurons
• Maximization of the signal-to-noise ratio, the number

of recorded neurons and the separability of spikes from
different neurons

• Monotonic growth with parameters to be maximized
• Robustness to noise and variability of the data
• Fast computation

Especially the last two constraints restrain the use of cluster-
ing to estimate the number of neurons: Clustering procedures
need considerable amounts of computation time and the
problem of determining the number of clusters consistently
over time would lead to abrupt changes of the quality
estimated. However, we want to emphasize that the complete
framework presented here can also be used unchanged with
different quality measures.

B. Definition

Let sik be the waveform of the i-th detected spike on
channel k and N be the total number of detected spikes
in a piece of data X of length T . Let further σk be the
noise standard deviation at the recording channel k. Then,
the channel wise peak-to-trough SNR of a spike with respect

to the noise distribution is defined as:

SNRk(si) = P (sik) :=
max(sik)−min(sik)

σk
(1)

The detectability of the spikes detected during period T is
just their mean SNR:

QSNR(X) :=
1

N

∑
i,k

P (sik) (2)

The discriminability of the spikes via the stereo effect can
be approximated by the difference of their SNRs among the
channels. This can be expressed by the difference of the
SNR distribution of every single spike to the mean SNR
distribution:

Qstereo(X) :=
1

N

∑
i,k

∣∣〈Pk〉 − P (sik)
∣∣ , (3)

where 〈Pk〉 := 1
N

∑
i P (sik). Both measures can be com-

bined to a single quality measure by simply adding both
terms:

Q(X) :=
1

N

∑
i,k

[
P (sik) + c ·

∣∣〈Pk〉 − P (sik)
∣∣] (4)

It is important to note that this quality measure is monoton-
ically increasing with both, the theoretical SNR of single
neurons and their discriminability, if c < 1 (see Fig.2).
The maximization of the number of neurons is implicitly
rewarded by Qstereo: Only spikes from different neurons
can have different discriminable stereo effects. In the top
of Fig.3, an example of the quality measure calculated for
different depths of a simulated electrode track is shown. Note
that the function is invariant to the rate of the neurons (Fig.3,
middle).

III. POSITIONING SYSTEM

The positioning system consist of two main parts: A
preprocessing of the incoming extracellular recordings and a
state machine which controls the movement of the (multi-)
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Fig. 2. Effect of spike waveform on the quality measure. A Both waveforms
have their energy on the same channel yielding a low quality. B The energy
of the two waveforms is unequally distributed among the channels which
is rewarded by Qstereo. C This combination has the highest quality, since
the increase in SNR exceeds the loss in stereo effect.

electrode. A schematic overview of the system is shown in
Fig.1 right.

A. Preprocessing

In order to operate online and reasonably fast, the system
analyzes small periods of recording. We assume that the
data is already bandpass filtered. Spikes are detected by
thresholding the squared signal. For every spike the SNR on
all channels is calculated individually and the quality of the
current data period evaluated. This information, together with
the current electrode position is passed to the state machine.

B. State machine

The decision logic of the positing algorithm was realized
by implementing a finite state machine consisting of 4 states,
see Fig. 1. The electrode stays at each position for a certain
amount of time for gathering sufficient data to reliably
estimate the quality measure. Depending on this value, the
algorithm decides to which subsequent state the system has
to transit. In the following each state is described in detail
as well as its transition criteria.

1) Search: This is the initial state, and as long as the
quality of the signal is below a certain threshold Qmin, the
electrode is simply advanced in the direction D (D is either
-1 or 1, since electrodes can be moved only in either of two
directions, namely back or forth) by a constant step size Ss.
If three consecutive quality estimates yield a value larger
than Qmin, the algorithm changes to the ”optimize” state.

2) Optimize: The goal of this state is to determine the
position at which the quality function exhibits a local max-
imum, and hence the electrode should be moved to. The
function Q and its derivative g are not know a priori, but
only noisy observations are available, which suggests the
use of methods from stochastic approximation [11]. One
way to solve this would be the use of a two-sided finite
difference approximation for the gradient, but despite popular
use of this technique, it is inappropriate for realization in our
setting. A realization of a two-sided finite difference would
imply that in order to estimate the derivative, the electrode
would have to move forward and backward at every position
(dithering). This might damage the brain tissue and also
evoke further drifts. The problem of estimating the gradient
and the second derivative g′ can be avoided by introducing an
interpolation function. In order to keep the algorithm simple
we use piecewise interpolation. As interpolation functions
cubic Hermite polynomials seem to be a reasonable choice

(e.g. they have no overshoots or oscillations in contrast to
splines). In contrast to [4], our approach avoids the task of
order estimation and there is no risk of oscillations at the
ends of the fitted data. The Hermite polynomials are fitted
through the average quality estimates (Q(k), ..., Q(1)) and the
next electrode position u(k+1) is determined by a modified
Newton-Raphson rule1 uk+1 = uk + ak · g(uk)/|g′(uk)|.

If the gradient changes sign, the last 3 qualities are
interpolated with a quadratic polynomial, and the electrode
is moved to the position with the highest interpolated quality
value. This prevents further unnecessary oscillations (similar
to dithering) of the electrodes resulting in tissue damage.
Once the optimal electrode position is reached, the algorithm
switches to the ”maintain” state.

3) Maintain: The electrode stays at the best found posi-
tion until the quality drops under a certain value. Explicitly,
if the quality Q drops below a certain absolute value, i.e.
Q < Qmm, or a certain relative value, i.e. Q < t · Q, the
”find” state is triggered. On the other hand, if there is a
sudden dramatic quality drop, Q < Qmin, the algorithm
returns to the ”search” state.

4) Find: (not shown in Fig.1) In this state the algorithm
moves the electrode in an arbitrary direction. If the quality
is even lower than at the previous position, the direction is
inverted and the algorithm switches back to the ”optimize”
state.

IV. SIMULATOR

We developed an online simulator for extracellular record-
ings that can incorporate feedback from positioning systems
(see Fig.1, left side). It consists of mainly three building
blocks: Neurons, recorders and noise sources. Neurons are
defined by their 3D position, orientation and their firing be-
havior. For every point in space a neuron has a characteristic
morphology dependent waveform of their extracellular field
potential (see section IV-A). A recorder is defined only by
its 3D position and sampling rate. For example, a tetrode
consists of four recorders with a certain spatial distribution.
Every recorder simulates a recording channel. This way,
arbitrary multi-electrodes can be simulated. All recorders
of a multi-electrode can only be moved simultaneously. If
a recorder is close enough to a spike generating neuron,
the corresponding waveform of that neuron and the relative
position of the recorder to the neuron will be copied into its
simulated data. Every multi-electrode additionally has a noise
source with a given noise covariance matrix (see section IV-
B).

A. Estimation of extracellular field potential

Extracellular field potentials around a reconstructed layer 5
pyramidal neuron were calculated using a forward electro-
static scheme similar to the line-source method described
in Holt and Koch [10]. The reconstructed neuron was a cat
L5 pyramidal neuron published in Mainen and Sejnowski

1More specifically, the Newton-Raphson method is combined with the
steepest ascent method, in order to guarantee that the solution is a local
maximum instead of a local minimum.
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[7]. The membrane currents for each of the 1094 compart-
ments of the reconstructed neuron were calculated using the
simulation tool NEURON [8] with the Python interpreter
[9], using a somatic action potential (AP) trace as a forced
boundary condition in the single compartment representing
soma, similar to Pettersen and Einevoll [12].

For the compartmental neuron simulation, purely passive
membrane properties were assumed, with an intracellular,
axial resistivity of Ra = 150Ωcm, membrane resistivity
rm = 30000Ωcm2, membrane capacitance cm = 1.0µF/cm2,
and an initial crossmembrane potential of vinit = −65V.
The simulated membrane currents and the corresponding
coordinates of these sources were used to estimate the EP
at each time-step using the line-source method [10], with an
homogenous extracellular conductivity σe = 0.3S/m.

The soma, with mid-point position ~rsoma = [0, 0, 0], was
treated as a point source, and the contribution to the EP from
the somatic membrane current Isoma(t) in coordinate ~r is in
the quasistatic approximation to Maxwell’s equations given
by Φ(~r, t) = 1

4πσe

Isoma(t)
|~r−~rsoma| . The analytical solution to the

linearly super-positioned potential from n segments, where
Ik(t) is the membrane current of segment k, is given by [13];

Φ(~r, t) =

n∑
k=1

Ik(t)

4πσe∆sk
log

∣∣∣∣∣
√
h2k + ρ2k − hk√
l2k + ρ2k − lk

∣∣∣∣∣ , (5)

where ∆sk is the segment length, ρk the distance perpen-
dicular to the axis of the line-source, hk the longitudal
distance to the end-point of the segment, and lk = ∆sk+hk
the longitudal distance from the start-point of the segment
[12], [13]. The calculations of EPs were done during the
same simulations as the NEURON simulations, still using
the Python interpreter.

In order to avoid singularities in the EP when the distance
to individual segments was small, the minimum allowable
distance to each line source was set to be the same as the
diameter of each segment. This also ensured that the potential
is not calculated within the intracellular space of the chosen
morphology. The calculation of the EP was performed over
the coordinates of 3D cubic grids spanning [-200, 200]µm
and [-100, 100]µm, with spatial resolutions of 5 and 10
µm respectively, sampling the extracellular signature of the
AP in the volume surrounding the somatic compartment
and basal dendrites. The calculation of potentials at larger
distances was not deemed necessary due to the low resulting
extracellular amplitudes compared to the noise added at a
later point. The resulting potential traces and corresponding
coordinates were written to file on the HDF5-format, and
then used by the extracellular recordings-simulator.

B. Noise

Noise was simulated with a multivariate autoregressive
model (AR) of order 12. First, the noise covariance matrix
of spike free periods of tetrode recordings from macaque
prefrontal cortex [2] was estimated. Then, the AR model was
fit with a Python implementation of [14] and subsequently
used for the generation of noise.

C. Simulation parameters

For the evaluation of the positioning system we used
an artificial neural environment consisting of 16 simulated
and randomly oriented neurons. A tetrode was simulated
having the four electrodes at the corners of a tetrahedron
(the electrode tip had a distance of 40µm to the other three
electrodes which had a distance of 20µm to each other. It
could be freely moved along a one dimensional track (see
Fig.3, bottom plot, dotted line). The neurons were placed in a
way that 3 possible favorable recording positions are present
on the track corresponding to three clusters of neurons (A, B
and C respectively). The neurons in cluster A and C had the
same relative positions. The mean distance of the neurons
to the recording track were smallest for cluster B, giving
this cluster the highest SNR. Within each cluster all neurons
had the same firing rate (15Hz, 7Hz, 5Hz respectively).
The empirically estimated firing rate at the tetrode using a
threshold (4 times the standard deviation) spike detector on
the absolute signal is shown below. Note that the quality is
independent of the firing rate. A piece of simulated data is
shown for four different recording positions corresponding
to noise and positions within the 3 clusters (Fig.3, bottom).
Fig.3 top shows the quality measure for different electrode
depths, whereas a value of c = 0.95 was chosen, see (4). The
quality was estimated by systematically moving the electrode
in 15µm intervals along the track recording for 2.5 seconds
at each position.

The positioning system was then used to find favorable
recording positions. Depending on the experimenters choice
for parameter Qmin the ”optimize” state will be triggered
either for recording position A (Qmin < 29) or position
B (30 < Qmin < 40) and finds the corresponding local
maximum.

V. DISCUSSION, CONCLUSIONS AND FUTURE
WORKS

A. Discussion

The problem of assigning a distinct quality to a certain
recording position is a peculiar one since the chosen position
will affect all further analysis of the recorded data. This
means that if the quality is defined in a way that biases the
positioning system towards e.g. fast spiking neuron types,
all recordings will suffer from and the results inherit this
bias. It turns out that it is indeed extremely difficult - if not
impossible - to define an unbiased quality metric, especially
since we do not know the true nature of the surrounding
network. However, this is not necessarily an argument against
automated positioning systems. If humans are controlling the
system they can also be seen as a part of it - having a certain
quality metric even though it is only implicitly defined by
the experience of the human operator. Therefore, we argue
for the importance of explicitly stating and documenting this
metric in the experimental protocol. Only then the kind of
bias one can expect will be known and can be used to re-
evaluate certain aspects of the experiment after more facts
about the true nature of neural firing behavior are known.
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Fig. 3. Simulated recording environment containing 16 neurons (black dots) in 3 clusters (A,B and C). The dotted line represents the track of a simulated
tetrode. Also shown are the empirically estimated firing rate (middle) and the quality (top) of the corresponding recording positions. Details see text (IV-C).
For four of the positions (0µm, 150µm, 400µm and 600µm) short pieces of simulated data are shown (bottom).

B. Conclusions

We proposed a new quality measure for the recording
position of multi-electrodes in extracellular recordings. This
measure was combined with an adaptive online positioning
system that can thus automatically find and maintain favor-
able positions. The basic functionality of the system was
demonstrated with the use of a new simulation environment
for extracellular recordings based on realistically recon-
structed 3D neuron morphologies. The complete framework
was written in Python and we hope that it can be used
to foster the development of spike detection and sorting
algorithms as well as automated positioning systems. Due
to the fact, that the extracellular waveforms are calculated
before the actual simulation, the environment runs extremely
fast, allowing a large number of simultaneously simulated
neurons and recorders.

C. Future Works

There are many possible ways to define the quality of a
certain recording position, e.g., more sophisticated measures
of cluster separability of the detected spikes could be used.
That choice will depend on the experimental context.

Another issue are tissue/electrode drifts. These have to
be detected and the position adopted accordingly. At the
moment this will happen, if the quality of the current
recording position drops under a certain threshold. However,
the stereo effect of tetrodes could be used to triangulate
neurons and estimate the direction and speed of the actual
drift to optimally counteract it before the quality drops.

The next step in evaluating the system will be the simula-
tion of electrode/tissue drifts and the operation of the system
in a real experiment.
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