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Abstract

In this paper we propose a new approach for learning
low-dimensional image features that retains class discrim-
inative properties while simultaneously generalising be-
tween within class variations. Our approach is based on
the concept of a joint feature where several small features
are combined in a spatial structure. The proposed frame-
work automatically learns the structure of the joint constel-
lations in a class dependent manner improving the general-
isation and discrimination capabilities of the local descrip-
tor while still retaining a low-dimensional representations.
As such the framework is capable of learning from small
data-sets where previous approaches becomes severely af-
fected by the curse of dimensionality.

1. Introduction
The ideal characteristics of an image feature is such that

will robustly extract interclass variation (discrimination)
while simultaneously be insensitive to intraclass variations
(generalisation). Further, it should be low-dimensional
such that sufficient statistics can be extracted from the data
that is available. One approach to satisfy both the low-
dimensionality and the generalising capabilities is to extract
variations on a very small scale. However, these variations
will also generalise between classes. One approach to fa-
cilitate discrimination is to consider several local features
in a constellation rather than single features in isolation
see Fig 1. Learning such a constellation is a challenging
task as it will induce a combinatorial explosion in the pos-
sible joint configurations. The traditional approach in the
computer vision literature have been to avoid this problem
completely by using a single feature whose support cov-
ers a much larger region or for problems where a semantic
structure exists fix the structure a-priori [4]. The first con-
tribution of this paper is a method capable of learning such
features directly from data in a principled manner. We refer
to such a constellation as a joint feature. The second con-

Figure 1. The above figure depicts a schematic of the approach
presented in this paper. The right-most pair of images show two
shapes belonging two separate “classes” that we wish to discrim-
inate. As the shapes are generated as spatial permeations of each
other the local statistics, which we have sufficient data to reliable
extract, will be the same (top image middle column). In order to
recover discriminative information larger spatial structures needs
to encoded. Either by using a less local features (blue square) or
use spatial combinations of local features. In the first case the
dimensionality of the feature will explode which will require a
significantly much more training data while in the later case find-
ing the discriminative structure leads to a combinatorial problem
which will be very challenging to approach. In this paper we pro-
pose a method to handle the combinatorial problem an learn low-
dimensional feature that generalises well while at the same time
being discriminative.

tribution of the paper is a novel method for summarising
sets of local feature responses. The traditional approach of
summarising an unordered set of local features in computer
vision is a Bag-of-Words descriptor (BoW). In this paper
we propose a different approach for summarising a set of
responses into a single descriptor. Similarly to a BoW ap-
proach we use a vocabulary to model the feature space but
rather than using quantity we use a class dependent quality
measurement of each word as a descriptor of the set. This
class dependent view is an essential part of our approach
as it facilitate adaptive learning of joint features in order to
achieve a better balance between discrimination and gen-
eralisation in the final descriptor. In specific, our method
initially considers features in isolation and then gracefully
adapts features through the creation of joint structures such
that the final representation can discriminate with between
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Figure 2. This figure illustrates the pipeline of the proposed de-
scriptor in this paper. In this framework, we make use use of
an already trained vocabulary and labeled local features to train a
number of local classifiers which are used to summarize the image
using qualitative information. In this work we will show that by
gradually replacing the poor local classifiers with discriminative
constellation models it is possible to obtain a richer summariza-
tion for the images.

the classes while keeping the dimensionality of the feature
as low as possible.

We will now proceed to relate our approach to the current
literature.

2. Related Works
Vocabulary based models are very popular for image and

object description and recognition [14, 12, 8, 10]. However,
these models were originally developed for text and doc-
ument processing [6, 9] where the notion of vocabulary is
well-defined. For images the notion of words and vocabu-
laries are not as obvious and have the topic of much work.
One of the most influential works in this area is the work by
Savarese et al. [13] in which they a well-defined visual vo-
cabulary is built by introducing relational spatial constraints
in calculation of the vocabulary. Similarly [17] have shown
that it is possible to improve the quality of the inference
obtained from the words by incorporating higher order re-
lational information. Our method shares the same goal as
[11] which is encoding the relational information at the fea-
ture level rather than between the different visual words. In
our work we show that collecting relational information is
not required for all the words in the vocabulary and it is
possible to obtain richer descriptors by just gathering this
information for a small fraction them. The framework used
in this paper uses a series of local classifiers based on the
vocabulary to obtain qualitative information from the fea-
tures. Methods such as [16, 7] share the same goal of build-
ing category-specific visual words with the difference that
our method method builds them based on a standard visual
vocabulary rather than redefining the notion of visual word.

To encode the relational information our work uses con-

stellation models for locating the most informative features
around each word and uses this information for the infer-
ences. Constellation models and pictorial structures have
played an important role in the development of computer
vision in the past decade [18, 3, 4, 5]. These models con-
sist of a root “part” connected to a number of flexible parts
that are connected to the root feature. Due to the built-in
flexibility of these models they can adapt to the intra-class
variation to form better and more robust descriptors for the
objects. The parts involved in the constellation models are
either learnt using ground truth labeling [18] learned well
aligned data using strong heuristics on their location and
sizes [4]. Studies such as [2] have shown that in the later
case alignment and number of components play a more im-
portant role than the flexibility of the parts. In this paper we
are applying constellation models to a less controlled sce-
nario where the root feature corresponds to the instances of
a certain visual word. Where these instances appear is only
governed by the local structure in the image, which can be
completely different in a global context. The support fea-
tures are chosen from a much larger area than compared to
the size of the root feature. This will enables us to extract
rich features while still retaining a low dimensional feature.

The pipeline of our method for describing images can be
seen in Fig. 2. We make use of an already trained vocab-
ulary to train single feature local classifiers and then grad-
ually replace with more complex constellation models. In
the experiments section we will show that this replacement
has an significant impact on the final classification perfor-
mance.

The reminder of the paper is structured as follows: in
§3 we describe first our qualitative descriptor used for sum-
marising a set of local descriptors and then how joint fea-
tures can be learned. We then proceed to experimentally
evaluate the performance of the approach in §4 both in terms
of quantitative and qualitative experiments. Finally §5 con-
cludes the paper.

3. Methodology
In this work we introduce a different approach toward

the visual vocabularies. The information is gathered by
our method used for describing regions relies on finding the
most representative features for each word. The goal here
is to show, by using constellation models and joint features
it is possible to increase the performance of the vocabulary
based methods without changing the vocabulary itself.

For better understanding of the methodology and show-
ing how constellation models are used for improving the in-
ference, this section is divided into four subsections. In §3.1
we describe how qualitative information is gathered based
on single features from the region. This descriptor consists
of a large number of local classifiers assigned to different
visual words and provides a ground which enables us to em-
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Figure 3. This figure shows how the differences between the fea-
tures assigned to a visual word can be highlighted by employing
class specific classifiers in that region.

ploy the constellation models. §3.2 discusses the conditions
in which constellation models can be beneficial for improv-
ing the performance of the proposed descriptor. The result
of this process is the selection of a number of visual words
as root features for constellation models. §3.3 describes the
details of how these models are trained and used. Finally
§3.4 discusses some details of the methodology.

3.1. Qualitative Descriptor

The fundamental principle underpinning a bag-of-words
approach is that the elements of the dictionary D capture
the local structures of the image. Here the goal is to mea-
sure the quality of these structures with respect to different
target classes in a discriminative manner and use this infor-
mation to describe the image. In other words the question
being asked in this paper is “How representative of the word
is the feature?” rather than “How often a word is seen?”. In
this work we exploit the differences between the features as-
signed to a certain visual word based on the object class they
have appeared on. While this difference is usually ignored
by quantitative approaches, we show how by exploiting this
information it is possible to obtain a richer summarization.

To measure the quality of the features assigned to the dif-
ferent visual words lets assume that {(x1, y1), ..., (xn, yn)}
is a set of labeled local features extracted from an image
dataset with yi ∈ {C1, ..., CM} and D is an already trained
vocabulary with N words. The goal here is to train class
specific classifiers, fCw , for the features assigned to the word
w. These classifiers are trained by selecting the features as-
signed to the word w and creating a binary labeling where
features with yi = C are assigned to the positive and others
to the negative set. Each classifier is formulated as

fCw = arg min
f

1

N

∑
x

L(x, ȳC ; f) + λ|f |2. (1)

Here the x is chosen only from the features with l(x) = w,

ȳC represents the binary labeling of these features with re-
spect to class C and L(x, ȳC ; f) is a given loss function. In
figure 3 we can see that the two features xi and xj are both
labeled as w3 have a different behavior with respect to the
hyperplanes fC1

w3
, fC2

w3
and fC3

w3
which encode class prop-

erties in this section of the space. To estimate the quality
of a feature (the likelihood of belonging to class C while
assigned to the word w), we use the logistic function

PCw (x) =
1

1 + exp(−a(xT fCw ))
. (2)

For any set of features extracted from an image we wish to
build a descriptor based on their visual word quality or cer-
tainty. Each word in D captures a certain structure on the
image. Therefore, the role of PCw (xi) function, Eq. 2, is to
measure the quality the discovered structures assigned to the
word w with respect to class C. This is a one dimensional
measurement corresponding to the models confidence. To
that end it is possible construct a (N,M) dimensional de-
scriptor D, with N being the size of the vocabulary and M
the number of classes. Each dimension of this vector cor-
responds to responses associated with a certain word (wn)
with respect to a certain class (Cm). The question here is
how one can summarize these values into a number that can
capture the qualitative properties of features seen in the im-
age. Here we analyze the max descriptor defined as

Dmax[i] = max
{
PCm
wn

(x) : x ∈ I, l(x) = wn
}
, (3)

which focuses on pooling the features with the most con-
fident rather than relying on the quantitative properties of
their labeling. This can also be seen as a feature selection
problem, where the highest likelihood features are used for
describing the image.

3.2. Analysis of local classifiers

The role of fCw is to determine if the features assigned
to the word w belong to class C or not (binary classifica-
tion). Is possible to construct local classifiers such that the
descriptor Dmax (Eq. 3) can perfectly distinguish different
object classes? To answer, we take a look at the behaviour
of the obtained local classifiers in the previous section. Each
local classifier fCw can be scored by calculating its empirical
loss on the training set given by,

Lemp(fCw ) =
1

N

∑
x

L(x, ȳC ; fCw ). (4)

The value of the empirical loss can be used as heuristic no-
tion for evaluating the behaviour of the local classifiers. The
classifiers with less miss-classification tend to have a lower
empirical loss than the ones with high miss-classification.
In other terms, the lower the empirical loss the more accu-
rate the classifier fCw is in separating the data. Classifiers
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Figure 4. Feature architecture defines how joint features are con-
structed. To create a joint feature the spatial region surrounding
each feature xi is divided into four quadrants and each support
feature is selected from one of the quadrants.

with high empirical loss tend to make more noisy decisions
on the data which makes the resulting descriptor Dmax

more noisy. In our observations a low empirical loss can
happen in three different cases. For a binary classifier fCw ,
the value of Lemp(fCw ) is low if one of the following condi-
tions is met: (a) The word w has very distinctive properties
for class C which is resulting in a strong classifier, (b) The
word w is only frequent on the positive data or (c) it is only
frequent on the negative data. The main remaining type of
words are the ones that are frequent on both positive and
negative regions but the feature is not distinctive enough for
construction of a strong classifier. To improve the quality
of the local classifiers not much can be done for the ones
with low empirical loss, since they are either very strong or
we lack sufficient data for training. We now focus on how a
constellation model can be used for improving the accuracy
of the classifiers with high empirical loss.

3.3. Joint Features

As mentioned, a property of features assigned to a word,
w with high empirical loss is that it is frequent on both posi-
tive and negative regions and therefore is not discriminative.
Since all the instances of w from the positive set share the
property that they have appeared on the same object class
it is possible to couple instances of w with more distinctive
features of that object class to build a richer joint feature and
use that in the summarization Dmax (Eq. 3). In this work
we will treat the joint features as constellation models.

Let’s assume that {(xi, ȳCi )}Ni=1 are the features assigned
to w, which has a high empirical loss with respect to class
C. Here the goal is to find a series of local features
x̄1i , . . . , x̄

n
i in the support region of each xi such that the

concatenated vectors {([xi, x̄1i , . . . , x̄ni ], ȳCi )}Ni=1 are lin-

early separable according to the binary labeling. To for-
mulate this selection let

Fxi
= {[xi, x̄1i , . . . , x̄ni ] : x̄ji ∈ Nδ(xi)}, (5)

be the set of all possible joint features centered at xi where
n features are chosen from a spatial neighborhood with size
δ of the feature xi on the image. This set will be referred
as the feature cloud of xi. In this work the features in the
neighbouring of xi is partitioned into four quadrants and
each of the four support features is selected from a different
quadrant. The visualization of this structure can be seen in
Fig. 4. For a given linear decision boundary β we define
the function,

Φ(Fxi , β) = arg max
φ∈Fxi

{φTβ}. (6)

The role of this function is to select a joint feature within
the feature cloud Fxi , which best represents the decision
boundary β. Using this definition each decision bound-
ary imposes a different feature selection and changes the
original classification problem into {(Φ(Fxi

, β), ȳCi )}Ni=1.
With this change the feature selection problem is reduced
to finding the decision boundary β such that its correspond-
ing joint features are linearly separable with respect the bi-
nary labeling. As it can be seen in this formulation the data
changes with the changes of β. While this makes the prob-
lem non-convex but gradually updating β using Alg. 1 will
always increases the performance on the training set. It is
easily noticed that the feature vectors obtained using Eq. 6
given a decision boundary β, will not necessarily have β as
their optimal decision boundary. Here the role of the opti-
mization is to find a decision boundary that its correspond-
ing data (Eq. 6) reproduces the same decision boundary. In
this work we are solving this optimization problem as a two
step gradient descend approach. This process is shown in
Alg. 1, where β is initialized as a ones vector which corre-
sponds to making a feature selection from which every di-
mension of the composite feature is treated equally. In this
algorithm the convergence of β is controlled by the learning
rates η(k1,k2) which are set experimentally.

3.4. Effect of the loss function

So far the discussion was based on a generic loss func-
tion L(x, y;β). In this section we discuss the effect on the
output with respect to different loss functions. In a more
precise manner we will compare the Squared Error Loss
(|y − xTβ|2) with the Hinge Loss (max(0, 1 − y.xTβ)).
These loss functions can be viewed as the extremes with re-
spect to how the data points are used for finding the optimal
decision boundary. In a binary classification problem each
of the loss functions impose a different strategy on the op-
timizer for finding an optimal decision boundary. Squared



Algorithm 1 Feature Selection

Input: C = {(Fxi
, yi)}Nn=1

Output: Decision boundary β
1: Select initial β
2: for k1 ← 1 to niter1 do
3: x̄i ← Φ(Fxi

, β) , ∀i ; (Eq. 6)
4: for k2 ← 1 to niter2 do
5: η(k1,k2) ← Learning rate of this stage
6: ∇f(β)← 1

N

∑
x∇L(x̄i, ȳi;β) + λ∇|β|2

7: β ← β − η(k1,k2)∇f(β)
8: end for
9: end for

10: return β

Error Loss (SEL) uses all the data points for finding the op-
timal decision boundary. Due to this the decision boundary
obtained using this loss function encodes both how the two
classes are separated and how the data is distributed on each
side of the boundary. On the other hand Hinge Loss (HL)
focuses on only a small fraction of data points for obtain-
ing the decision boundary. While this reduction of the data
leads to a faster convergence, the distribution of the points
will no longer be encoded within the decision boundary. As
will be shown in the results section (§4) the models trained
using SEL in Eq. 1 provide a better image summarization
than the ones trained using HL. Unfortunately due to com-
putational limitations, it is only feasible to use HL in the
Alg. 1 to search the joint feature space.

4. Experiment Setting and Results

The experimental focus of this paper is on two aspects of
the proposed method. First, we show how the summariza-
tion presented in §3.1 performs against the standard BoW
model and how the choice of the loss function affects the
quality of the summarization. Second, we evaluate how the
quality of the summarization is improved when composite
feature selection is employed. The experiments are con-
ducted on the MSRCv2 dataset [15]. Although this dataset
is relatively small compared to other datasets, it is consid-
ered as a challenging and difficult dataset due to its high
intra-class variation. The main focus of the experiments is
to show how by incorporating features that gracefully adapt
to intra class variations by adding joint features, it is possi-
ble to provide better description of the image regions while
still avoiding an explosion in dimensionality thus running
the risk of over fitting. In this work we have followed the
experiments setup used in [17, 11] in which nine of fif-
teen classes are chosen ({cow, airplanes, faces, cars, bikes,
books, signs, sheep, chairs}) with each class containing 30
images. The focus of these experiments is to summarize the
whole image into one vector and predict the class labeling

of the images based on this vector. For each experiment, the
images of each class were randomly divided into 15 train-
ing and 15 testing images and no background was removed
from the images. The random sampling of training and test-
ing images were repeated 5 times to eliminate the train and
test partitioning and in all experiments SIFT features are
densely sampled at every 5 pixels from multiple scales. In
this work we will show how by employing a class depen-
dent summarization and feature selection it is possible to
recover a robust description for such a small and challeng-
ing dataset.

The visual vocabulary plays an important role in our
method and compares our approach with previously pub-
lished methods. The main difference between this method
and other vocabulary based methods is how the vocabulary
is used to summarize the image. To compare the perfor-
mance of bag-of-words histogram with the proposed de-
scriptor, visual vocabularies with different sizes {50, 100,
200, 300, 400, 500, 1000, 1500, 2000} were computed over
the training subset using standard k-means algorithm. The
same vocabulary was shared between all methods.

To efficiently search for joint features, we rely on a pre-
defined search structure. This structure can be seen as the
”feature architecture” as it defines how composite features
are constructed. While there are many different ways to
define this architecture, we focus on a simple constellation
model with four support features. For a root feature xi its
neighbouring features are partitioned into four quadrants
and each of the support features is selected from a different
quadrant. While the size of each single feature is 16 × 16
pixels the neighbourhood size of the constellation δ, is cho-
sen to be 60 pixels. A visualization of this architecture can
be seen in Fig. 4. Even though we are only presenting the
results with four support features, we would like to note that
our framework will work with any architectures.

4.1. Experiments on MSRCv2 [15]

In this section we present the experiments by compar-
ing the performance of the method described in Sec 3.1
compares against the standard BoW descriptor. To conduct
this experiment we train a linear SVM classifier [1] on the
obtained image descriptors Dmax (Eq. 3). The results of
this experiment can be seen in Fig. 5(Left). To provide a
fair comparison the BoW model was trained using both lin-
ear and RBF kernels and as it can be seen in Tab. 1 their
performance is comparable to the previously published re-
sults on this dataset. Having this as a baseline we can see
the linear SVM models trained on top of Dmax descriptors
out perform not only the baseline but also previously pub-
lished results by a large margin. By taking another look at
Fig. 5(Left) we can see that the summarization based on
Square Error Loss (SEL) is providing a significantly better
performance than the ones with Hinge Loss (HL). To verify
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Figure 5. (Right) This plot compares the performance of Dmax descriptor trained using both Square Error Loss (SEL) and Hinge Loss
(HL) with Bag-Of-Words (BoW) descriptor. It can be clearly seen that linear SVM classifier on Dmax is out performing that BoW trained
using both linear and rbf SVM classifier. (Middle) This plot shows how gradually replacing the local classifiers with joint classifiers in
the summarization Dmax improves the over all performance of the descriptor in all vocabulary sizes. Here α represent the fraction of the
classifiers that are replaced by constellation models. (Left) To show the effect of discriminative feature selection this figure compares the
performance of Dmax with α = 0.2 with vocabularies built with spatially larger SIFT features. It is clear to see how discriminative feature
selection is outperforming larger SIFT features that cover the support region of the constellation models.

Cow Model Face Model Car Model Bike Model

Figure 6. (Best viewed in digital format) The feature selection is optimized for each object class separately and the score represents how
good the located features fit the model. In this figure a word w (green patch) is selected which was a candidate for joint feature selection
in all object classes. Each column visualises the feature selection (white patches) done for a different object class. Based on the score
of the feature selection it can be seen how sensitive the method is to the features that exist on the object class.

whether this is due to how these loss functions score the data
points and not the difference in the decision boundaries, we
have calculated the average accuracy of these models for
both loss functions and the accuracies were too close to re-

sult in such a difference in the over all recognition perfor-
mance.

After seeing how this summarization preforms against
other methods, we ask the question whether the extra in-



Figure 7. (Best viewed in digital format) This figure shows how the feature selection is consistent across each object class. In this figure
the same word as Fig. 6 is selected on different instances of each object class and it can be seen there is a large consistency in feature
selection done for each class. It should be mentioned consistency in feature selection does not necessarily imply that the root should also
lay in a globally similar context. Since a visual word can appear on many different global structures, it is the role of the optimizer to select
support features that are discriminative and is shared between these global structures.

Method Acc %
2nd order spatial [17] 78.3± 2.6%

10th order spatial [17] 80.4± 2.5%
QPC [11] 81.8± 3.4%
LPC [11] 83.9± 2.9%
BOW Linear 78.0± 5.0%
BOW RBF 83.2± 4.0%
Dmax - HL 86.0± 4.0%
Dmax - SEL 88.3± 3.6%
Dmax - (α = 0.10) 90.0± 3.2%

Table 1. Comparison between the classification rates obtained by
the proposed method and the previously published methods on
MSRCv2 dataset.

formation encoded in representing some of the classifiers
as constellation models will affect the classification perfor-
mance or not. To test this hypothesis we use the summa-
rizations based on Square Error Loss (the winning summa-
rization) and gradually change the bad classifiers (§3.2) into
constellation models. Here we are introducing a parameter
α which represents the fraction of the words presented as
constellation models. The results of this experiment can be

seen in Fig. 5(Middle). Here we can see how the over-
all performance of the method improves as the value of α
increases. This improvement is more noticeable for small
sized vocabularies as their performance is pushed toward
the performance of large vocabularies with the increase of
α. In short this experiment shows that the overall perfor-
mance is converging toward a performance independent of
the size of the vocabulary. Importantly this means that we
can reduce the dimensionality of the descriptor by using a
smaller vocabulary compared to the other methods thus cir-
cumventing the curse of dimensionality.

Since the constellation features collect information on a
broader region on the image one might argue that having
larger base features will show a similar behaviour. To ex-
amine this we compare the average performance of Dmax

descriptor with single features of different sizes over all the
vocabulary sizes with descriptors using composite features.
The results of this comparison are seen in Fig. 5(Left). As
it can be seen even though the performance of the single
feature descriptor increases with the size of the base fea-
ture but still they are out performed by the summarization
employing joint features.



4.2. Visualization of Constellation Features

Local features such as SIFT, capture very local edge con-
figurations and textural information of the image. While
the information captured by these local features is in no
sense related to class semantics, the aim of this experi-
ment is to show how class semantic information can be en-
coded within the joint local features. With each constella-
tion model imposing a different feature selection on the im-
age, the expectation is to see that the feature selection best
fits the class it is optimized for. The quality of these feature
selections is measured according to the discussions in §3.1
and §3.3. To continue the discussions we randomly select a
word w from a vocabulary of size 500 from the words that
has been a candidate for joint feature selection in several
classes. The green patch shown in Fig. 6 represent the in-
stance of this word found on different object classes. As it
can be seen in none of the classes this patch contains very
discriminative information. The white patches on each im-
age are the support features found on the image according
to the architecture shown in Fig. 4. Here each column rep-
resents the feature selection imposed by each object model
and it can be seen how the relative score changes from the
object class they were trained on, to the other object classes.
For example in the first column the feature selection is done
based on the constellation learnt over the cow class and it
can be seen how the other classes are not well represented
by this feature selection. The reason for this large difference
in the scores is the fact that even though the best candidate is
selected from negative regions, it fails to provide the proper
textural, edge configuration and the composition that exists
on the positive object class. Another important property of
the feature selection which should be noticed is how con-
sistent is their selection across their native object class. To
show this Fig. 7 shows the feature selection on the different
instances of the object using the same previously selected
visual word. It is interesting to notice that the method shows
a large consistency in selection of the local features while
the over all configuration can lay in a completely different
context. This behaviour is expected since there is no control
on where a visual word appears on the object and it is inter-
esting to see how the optimization process described in §3.3
finds local features that are shared and are stable across this
contextual variation.

5. Conclusion

In this paper we proposed a method capable of extracting
flexible, class dependant local joint features. These features
capture both the intra-class and discriminative variations
while still being low-dimensional making them applicable
to setting when training data is scarce. Our approach makes
use of the “quality” of a local feature when describing an
image. This not only provides a better summarization of

the images but also allows for automatically learning joint
features. We have shown that the propsed method is capable
of using a much smaller vocabulary while still retaining dis-
criminative information with respect to object classes com-
pared to traditional BoW methods. The proposed method
significantly outperforms the base line algorithms on a very
challenging data-set.
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