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Abstract—We discuss the properties of a class of latent
variable models that assumes each labeled sample is associated
with a set of different features, with no prior knowledge of which
feature is the most relevant feature to be used. Deformable-Part
Models (DPM) can be seen as good examples of such models.
These models are usually considered to be expensive to train
and very sensitive to the initialization. In this paper, we focus
on the learning of such models by introducing a topological
framework and show how it is possible to both reduce the learning
complexity and produce more robust decision boundaries. We will
also argue how our framework can be used for producing robust
decision boundaries without exploiting the dataset bias or relying
on accurate annotations. To experimentally evaluate our method
and compare with previously published frameworks, we focus
on the problem of image classification with object localization.
In this problem, the correct location of the objects is unknown,
during both training and testing stages, and is considered as a
latent variable.

I. INTRODUCTION

Latent variable models are well-known for their strength
in automatically adapting to variations of the data. In this
paper, we focus on a specific class of latent variable models
for discriminative learning. These models assume that a set of
feature vectors is associated with each labeled sample and the
role of the latent variable is to select one feature vector from
this set, to be used in the calculations. In both training and
testing stages, these models assume that no prior knowledge
is provided about which features are to be used. Deformable
Part Models (DPM) [5], [6] can be seen as a good example of
these models. With the aid of Latent SVM framework, DPM
provides a level of freedom for samples, in terms of relocatable
structures, to adapt to the intra-class variation. As the result
of this flexibility, the appearance of the samples becomes
more unified and the training framework can learn a more
robust classifier over the training samples. A good practice
of the model discussed in [5] can be found within the DPM
framework. In their work, the method does not assume the
ground truth bounding boxes are perfectly aligned and leaves
it to the model to relocate the bounding boxes and find a better
alignment between the samples. The location of this alignment
is regarded as a latent variable. In a more complex example
[12], [8], the task is to train an object detector without having
prior knowledge of the location of the objects and considering
it as a latent variable. In their work, it is left to the learning
framework to both locate the objects in the training images and
learn the detector. Looking at the solutions provided for these
examples, we can see that they are either guided by a high level

of supervision, such as considering the alignment to be close to
the user annotation [6], [1], or guided by the bias of the dataset,
such as considering the initial location to be in the center of
the image in a dataset where most of the objects are already
located close to the center of the images [12], [8]. In general,
such weakly supervised learning problems are considered to
be among the hardest problems in computer vision and to our
knowledge no successful solution has been proposed for them.
This is because, with no prior knowledge of how an object
looks like and acknowledging the fact that different image
descriptors such as HOG [2] and SIFT [9] are not accurate
enough, finding the perfect correspondence between the images
becomes a very challenging and computationally expensive
problem.

In this paper, we propose a topological framework for
the training of such latent variable models and address the
problems of learning complexity and supervision in these
models. In our framework, a sequence of sets of feature vectors
is used to find an optimal decision boundary (Explained in
§II). As we will discuss, these sets play an important role
in our framework. While their size will directly relate to the
computational complexity of the method, their content will
determine to which solution the method will converge. We
will argue that the strategy that is used for populating these
sets plays a key role in the quality of the resulting decision
boundary. Moreover, to address the supervision problem, we
ask the questions, “Will the training framework still hold if
no cue about the object is given to the model?”, and if the
model doesn’t hold, “How can we formulate the desirable
solution and automatically push the latent variables toward this
solution?”. To answer these questions, we formulate this as
a weakly-supervised clustering problem and show that it can
provide an efficient initialization for the latent variable models.
Finally, to experimentally evaluate our method, we look at the
problem of object classification with latent localization. This
setup will provide us with an easy to evaluate framework which
is very challenging to solve. Fig. 1, shows examples of this
problem. In each image the blue box is the location that is
initially considered to be the location of the object and the red
box is the location found after the training is finished.

We organize this paper as following : In §II, we provide
a proper definition of the problem and in §III, §IV and §V,
we describe different strategies for solving this problem. In
§VI, we experimentally evaluate these strategies and discuss
the initialization problem. Finally, §VII concludes the paper.



Fig. 1. This figure shows how the localization is done in our framework. Since the location of the object is not known, the blue box corresponds to the initial
location of the object. During the training, the model allows the position of this box to change in order to find a better correspondence between the positive
samples. The red bounding box is the location that corresponds to the object after the training.

II. PROBLEM DEFINITION

To formulate the problem, we assume that a dataset of
labeled images D = {(xi, yi)}Ni=1 is provided, with xi being
the image and yi ∈ {−1, 1} being the binary label associated
with it. For each image, there is a latent variable hi ∈ Z(xi)
which localizes a fixed size bounding box. The content of this
bounding box is encoded by the feature vector Φ(xi, hi) ∈ Rd.
In this problem, the task of the learning algorithm is to classify
the images xi according to the labeling yi, while correctly
localizing the object. If the accurate value of hi is known for
the training examples, then the problem becomes a standard
detector training problem. However, with the assumption that
this value is unknown, the training task becomes significantly
more challenging. This is due to the fact that wrong fixation
of this value can lead to training of inefficient models. The
Latent SVM model (LSVM) [5] addresses this problem by
minimizing the objective function

LD(w) =
1

2
||w||2 + C

N∑
i=1

max(0, 1− yifw(xn)), (1)

where
fw(xn) = max

z∈Z(xn)
wT Φ(xn, z). (2)

This optimization is usually done by iterating between fixing
the latent variables based on computed w and optimizing the
model parameters w over the fixed problem. These iterations
usually start by an initial fixation of the latent variables.

Looking at the problem of image classification with latent
localization, our goal is to locate a feature vector that exists in
all positive images and does not in negative images. Knowing
about this feature vector allows us to localize the object
(Localization) and score the image based on this localization
(Classification). Since we do not have a prior knowledge of
this feature vector in the training set, the training algorithm
tries different fixations of latent variables until it converges to
a proper solution with respect to the labeling of the images. In
this paper, we look at this problem from a topological point of
view [13], [10] and discuss the advantages of such perspective.
Here, each image can be seen as a set of features, given by

Cn = {Φ(xn, h) : h ∈ Z(xn)}. (3)

There are exactly N such sets, each corresponding to an image
and any feature vector that can potentially be involved in the

training exists in the set X = ∪Ni=1Ci ⊂ Rd. The sets C =
{C1, . . . , CN} can be seen as a cover for some topological
space (X, τ) with τ ⊂ 2X .

In a topological space, two elements a,b ∈ X are related
iff there exists a set A ∈ τ such that a,b ∈ A. The elements
of A does not necessarily have a geometrical relation with
each other. This can be seen in the elements of each Cn.
These elements are related since they come from the same
image and not because there is a geometrical relation between
them. In this paper, we will refer to a set A ∈ τ geometrical
iff its elements have a geometrical relation with each other.
As an example, A ∈ τ geometrical if it is populated by
the elements of each Cn, with the property that they are
optimal in a geometrical sense (Eq. 4 and Eq. 12). Using
these definitions, we can formulate the problem in terms of
constructing a sequence of geometrical sets A1, . . . , AM ∈ τ
with the property that the set Am+1 is populated based on
the elements of Am, by selecting feature vectors from the
elements cover sets C1, . . . , CN . Our aim here, is to construct
a geometrical sequence in a manner that the set it converges to,
successfully encodes the required geometrical properties that
are necessary for localizing the object, while having a minimal
size. Throughout this paper, we assume that the binary labeling
of the elements of each Am is known.

A good example of this procedure is the LSVM framework.
The set Am contains the one element from each image which
corresponds to an initial fixation of the latent variables. A
decision boundary wm ∈ Rd is trained over the elements
of this set. Having this decision boundary, the set Am+1 is
populated by the elements that maximize wm from each Cn

and every element from Ap(p < m + 1) that is considered
as hard negative. Such hard negative mining is considered
to be essential for the convergence of the LSVM framework
[5]. By following this procedure, we produce a sequence of
sets A1, A2, · · · ∈ τ with the property that if i < j then
LD(wj) < LD(wi). Clearly, the sets {Am}Mm=1 control how
the learning procedure proceeds. The content of these sets
determines to which solution the method converges to and
the size of these sets controls the complexity of the problem.
Usually, training on larger sets requires more complex learning
algorithms. While there are many computational advantages in
keeping the size of these sets small, doing so can make the
problem unstable and prevent the sequence from converging



to a solution.

The contributions of this paper are different strategies that
can be used for constructing this sequence. We will discuss,
how by taking different strategies it is possible to obtain
an efficient and robust learning framework for such latent
variable models. We will motivate these strategies from both
theoretical and analytical perspectives. Finally, will show how
our framework can be used to obtain a proper initialization for
the training procedure.

III. DECISION BOUNDARY STRATEGY (DBS)

In this section, we discuss the conditions that are required
for keeping the size of Am sets low. Here, we assume that
each Am contains at least one feature vector from each
image, which gives us the lower bound |Am| ≥ N . However,
we will consider the worst case scenario, where for each
m, |Am| = N . Since N � |X|, there is a significant
computational advantage in keeping the size of these sets low,
which renders the process of making the intermediate models
more simple. A downside of this assumption is the fact that
at each iteration the model is trained on a very small fraction
of the overall feature vectors and this can prevent the method
from converging to a solution. To analyze this behaviour, we
assume the set Am has exactly N elements and each coming
from a different cover set (image) Cn. Since the elements of
Am are labeled, we can train the linear classifier wm over this
set and let

Am+1 = {Ψ(Cn,wm) : n ∈ {1, . . . , N}}, (4)

where
Ψ(Cn,wm) = arg max

f∈Cn

wT
mf . (5)

To determine the relation between Am and Am+1, let a(n)m ∈
Am and a

(n)
m+1 ∈ Am+1 be the elements coming from Cn and

we state their relation through the following theorem.

Theorem 1. Using the definitions above, if a
(n)
m ∈ Am and

a
(n)
m+1 ∈ Am+1 then

wT
ma(n)m ≤ wT

ma
(n)
m+1. (6)

Proof: Considering Eq. 5, the proof is straight forward.

This theorem states that the set Am+1 is populated by
feature vectors with higher scores than the elements of Am

with respect to the decision boundary wm. In other words, by
obtaining a feature vector with higher score, we are populating
Am+1 with more positive-like feature vectors coming from
both positive and negative images. This can result in a large
difference between the elements of Am and Am+1, specially
in the elements coming from negative images. This difference
will cause wm+1 (trained over Am+1) to focus on completely
different attributes of the feature vectors compared to wm. This
difference can also be motivated from a different perspective,
namely that we have N labeled vectors and we are replacing a
significant number of them by vectors that look more similar
to the positive vectors. Clearly, the decision boundary of the
original vectors is different from the one trained over the
replaced vectors.

In general, we would like to have a relation between the
sets Am and Am+1 which translates to a relation between wm

and wm+1. As mentioned, in studies such as [5], this relation
is encoded by adding the previously mined hard negatives to
Am+1. By doing so, they enforce a similarity between the
decision boundaries wm and wm+1 since most of the negative
vectors used in their training is shared between them. Here,
our goal is to keep |Am| = N and still encode such a relation
between Am and Am+1. To do so, the following theorem states
that if we add a correction term to the decision boundary of
wm−1, based on the content of the set Am, rather than using a
newly trained decision boundary, then we can formulate such
relation.

Theorem 2. Assuming that the elements of Am are selected by
the decision boundary wm−1 and w′m is the decision boundary
trained over Am. If we let

wm = wm−1 + αt(w
′
m −wm−1), (7)

for some α ∈ [0, 1) and select the elements of Am+1 using
wm then the following inequalities always hold:

wT
ma

(n)
m+1 −wT

m−1a
(n)
m ≤ αt(w

′
m −wm−1)Ta

(n)
m+1 (8)

wT
ma

(n)
m+1 −wT

m−1a
(n)
m ≥ αt(w

′
m −wm−1)Ta(n)m (9)

Proof: The proof can be found in the supplementary
material.

It is clear from Eq. 7 that the smaller the value of αt, the
more similar wm will be to wm−1. While many strategies can
be revised for choosing this value, we will assume that this
value will decrease as the sequence advances and we selected
it to be αm = 1

m . Here, in the early iterations, the value of αm

is rather large and this allows large changes in the elements Am

and after these iterations, as the value of αw becomes smaller,
the updates will simply fine tune the decision boundary. It
should be mentioned that even though we are keeping the size
of the sets Am small, it is always guaranteed (Eq. 5) that it is
populated with hardest negative feature vectors in the dataset
with respect to the decision boundary. Because of this fact, the
solution found by our method will be similar to the solution
found by previously published methods.

IV. EUCLIDEAN DISTANCE STRATEGY (EDS)

So far, we have discussed the problem in which each
set in the sequence {Am}Mm=1 is populated, using a decision
boundary obtained from the previous members of the sequence.
In this section, we construct a sequence with its members
populated based on euclidean distance rather than decision
boundaries. We will show how using this strategy it is possible
to find different feature vectors that are shared by all images
and use them as an initialization seed to find better decision
boundaries.

To formulate this problem, for a given set of images C =
{C1, . . . , CN}, we wish to find a point p ∈ Rd such that a
feature vector close to it exists in all images. To properly define
this, we wish for this point to minimize the cost

LC(p) =
1

N

N∑
n=1

‖p−Θ(Cn,p)‖2, (10)



where
Θ(Cn,p) = arg min

f∈Cn

‖p− f‖2. (11)

To find such a point, we construct a sequence of sets
{Bm}Mm=1 ⊂ τ with the property that

Bm+1 = {Θ(Cn,p
(m)) : n ∈ {1, . . . , N}}, (12)

where p(m) is calculated as the mean of the elements in Bm.
Without loss of generality, we can assume either p(0) or B1

are given. The following theorem shows that the cost function
10 decreases with the increase of m.

Theorem 3. Given an imageset C and the points p(m) and
p(m+1) defined as above, the following statement always hold:

LC(p(m+1)) ≤ LC(p(m)) (13)

Proof: The proof can be found in the supplementary
material.

This theorem shows that the sequence {Bm}Mm=1 always
converges to a point cluster in X with the property that each
member of this cluster comes from a different image Cn. This
cluster can then be used to initialize the method discussed in
the previous section.

We can safely assume that a feature vector that is shared by
the positive images, has a high likelihood of being the object
of interest. To practically use this theorem, we will produce
several of such clusters over the positive images and use cross
validation to pick the most robust initialization. To guarantee
that we converge to distinct clusters, for each Bm we will
remove the elements that are closer to an already found cluster
center than p(m−1). In this case, the size Bm can be smaller
than N . This formulation can be seen as a clustering method.

V. MIXED STRATEGIES (MS)

In this section, we will discuss two heuristic mixed strate-
gies for constructing the sequence. Here, not only do we
wish to select the feature vectors based on their discriminative
properties but also impose an euclidean similarity between
the positive samples. To avoid confusion with the previous
sections, these sequences will be denoted by {Sm}Mi=1 ⊂ τ .
Similar to §III, |Sm| = N for all m and we assume that a
decision boundary wm is trained over Sm. For each image we
define

Cm
n = {f ∈ Cn : wT

mf > 0}, (14)

to be the set that contains every positively classified feature
vector of Cn with respect to wm. We also define p(m) ∈ Rd

to be the mean of the feature vectors within the set

Pm = {Ψ(Cn,wm) : wT
mΨ(Cn,wm) > 0,∀n}, (15)

and n(m) ∈ Rd to be the mean of the elements within

Nm = {Ψ(Cn,wm) : wT
mΨ(Cn,wm) ≤ 0,∀n}. (16)

Using these definitions, we define

Sm+1 = {Ω(Cn,wm) : n ∈ {1, . . . , N }, (17)

where

Ω(Cn,wm) =

{
Ψ(Cn,wm) Cm

n = ∅
Θ(Cm

n ,p
(m)) Cm

n 6= ∅
. (18)

In other words, this strategy picks the positively scored feature
vector that is the closest to the average positive feature, and,
when no positive features are detected, it simply picks the one
with the highest score. We will refer to this strategy as “MS
(1)”. Similarly, we also consider another strategy in which we
pick the positively scored feature vector which is both close
to positive average and away from the negative average. The
feature selection process of this strategy is defined similar to
Eq. 18 with the difference that Θ(Cm

n ,p
(m)) is replaced by

Θ′(Cn,p,n) = arg max
f∈Cn

e−‖p−f‖
2

− e−‖n−f‖
2

. (19)

We will refer to this strategy as “MS (2)”.

VI. EXPERIMENTS AND RESULTS

To experimentally analyze the properties of the discussed
method and compare it with previously published methods,
this paper uses the mammals dataset [7] which has been
used to benchmark the methods in [8], [12] and follows their
experimental setting. In these experiments, it is assumed that
the objects have the same size and the main challenge is
considered to be the localization of the object. To describe
the image, we have used the HOG descriptor [2], [11]. Each
experiment is repeated 10 times on random 50% splits of the
dataset and the average performance is reported. While we use
different strategies for training, the outcome of the training
procedure is always a linear decision boundary for each class
is used to fix the latent variables on the test images similar to
[8], [12], [5]. We do not use any other information at the testing
stage. In our model, the problem transforms into a fixed binary
classification problem and LibLinear [3] is used for training
this classifier. The timing of the codes is done on a single core
of Intel Xeon 2.67GHz cpu using Matlab R2012b.

We divide the experiments into two parts. The first part,
compares the performance of our formulation with the baseline
[12] under the assumption that the latent variables are initially
fixed at the center of each image. In the second part of the
experiments, we discuss how having different initializations
will affect the quality of the decision boundaries.

A. Center Initialization

As mentioned, in this section we follow the experimental
setup of [8], [12] and assume that the latent variables are
initially fixed at the center of each image. For this experiment,
we employ the strategies DBS (§III), MS (1) and MS (2)
(§V). Since the strategy EDS (§IV) is not discriminative, it
does not apply to this experiment. In table I, we can see a
comparison between the decision boundaries produced using
different strategies and the baseline provided by [12]. As it can
be seen, DBS is out performing the LSVM framework while
using significantly lower number feature vectors for training.
This difference can be caused by the fact that DBS uses less
hard negatives, but a stepping mechanism to fine tune itself to
find a better decision boundary. The strategy MS (1), which
pushes positive features to look more similar, gives us a very
small improvement over DBS with a higher standard deviation.
Finally, MS (2) strategy, which pushes the positive features
to be similar but away from negatives, produces the most
precise decision boundary. It is interesting to see that the linear



Method Classifier Acc. (%) Ref. Learning Time (Sec.)
LSVM Linear Classifier 75.07± 4.18 [12] -
KLSVM RBF Kernel 84.49± 3.63 [12] -
DBS Linear Classifier 80.15± 2.79 Section III 17.7
MS (1) Linear Classifier 80.44± 4.43 Section V 26.30
MS (2) Linear Classifier 85.26± 3.80 Section V 29.56

TABLE I. THIS TABLE GIVES A COMPARISON BETWEEN THE DIFFERENT STRATEGIES DISCUSSED IN THIS PAPER AND COMPARES THEM TO THE
PREVIOUSLY PUBLISHED METHODS. IN ALL THESE EXAMPLES, WE HAVE ASSUMED THAT THE INITIAL BOUNDING BOXES ARE LOCATED AT THE CENTER OF

THE IMAGES. THIS TABLE SHOWS HOW BY CHANGING THE STRATEGY OF POPULATING THE SETS OF THE SEQUENCE, WHILE KEEPING THE LEARNING
FRAMEWORK UNCHANGED, IT IS POSSIBLE TO OBTAIN A SIGNIFICANTLY MORE ROBUST DECISION BOUNDARY. THE REPORTED TIME IS FOR TRAINING OF

THE DECISION BOUNDARIES OF ALL SIX CLASSES.
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Fig. 2. (Left)This figure shows the results of the experiment where DBS was applied to train car detector on CALTECH-101 dataset. The plots in this figure
show the effect of different initializations on the ability of the model to localize the object and classify the images. (Right) This figure shows how the hinge
loss (Eq. 1) is minimized by our method on both training and testing sets. This visualization is based on only one of the classes of the dataset and a similar
behaviour is observed for all the classes.

Init. Type Acc. (%) Time (Sec.)
Center 80.15± 2.79 -
Random 66.93± 3.56 -
Top Left 61.75± 3.06 -
Kmeans (10 Centers) 69.85± 2.15 5.0
EDS (10 Centers) 78.47± 3.91 0.6

TABLE II. COMPARISON BETWEEN THE CLASSIFICATION RATES OBTAINED USING DIFFERENT INITIALIZATION METHODS. THE LARGE DIFFERENCE
BETWEEN THESE NUMBERS SHOWS THE SENSITIVITY OF THE LOCAL VARIABLE MODELS TO INITIALIZATION AND HOW IMPORTANT IS IT TO HAVE ROBUST
METHODS FOR INITIALIZING THEM. IN THIS TABLE, EACH EXPERIMENT WAS REPEATED 10 TIMES AND THE AVERAGE PERFORMANCE IS REPORTED. THE

TIMING PRESENTED IN THIS TABLE ONLY CORRESPONDS TO THE CALCULATION TIME OF THE CENTERS AND NOT THE TIME SPENT ON CROSS VALIDATION
OF THE POINTS.

decision boundary produced by this strategy outperforms the
KLSVM method with RBF kernel.

The results in table I show the importance of our dis-
cussions in this paper. While starting from the same initial
fixation, different strategies taken to produce the sequence
yield to significant difference in the quality of the decision
boundary found by our method. In these experiments, we
have demonstrated that with an effective strategy it is possible
to produce a linear decision boundary that outperforms the
previously published non-linear models.

B. Arbitrary Initialization

By taking a close look at the images in the mammals
dataset [7] (Fig. 1), it is easy to spot that most of the objects are
already located close to the center of the image and selecting
the initial fixation to be at the center is an assumption that

exploits the bias of this dataset. To show how this initialization
aids the training process, table VI shows the performance of
decision boundary found by DBS using different initializations.
As it can be seen, there is large gap between the quality of
the boundary when initialized at center with compared with
when initialized at top left or a random location. Since none
of these initialization are actually related to the content of the
image, this gap only shows how we are exploiting the bias of
the dataset when placing the initialization at the center.

To highlight this problem, we apply the same model to the
car class of the CALTECH-101 [4] dataset. The goal here is
to use the discussions of this paper to train a car model and
benchmark it as an object detector. This dataset is interesting
because, while the objects look rather similar across different
images, each image contains many of the latent locations that
do not overlap with the object. Here, we consider four different



initializations {Annotation, Center, Random, Top Left}. Fig.
2 (LEFT) shows the results of this experiment. Since this
dataset is considered as one of the simplest available datasets,
there is no surprise that by initializing at the annotation we
obtain close to perfect classification and localization. Since this
dataset also has the bias of most objects being located around
the center of the image, we can see that the accuracy of the
model is still high with center initialization. As it can be seen,
once the initialization becomes more noisy, we see a large
decrease in the accuracy of the model in both classification
and localization. When initialized with top left location, the
initialization has no overlap with the object. As we can see, the
model trained under this condition completely fails to localize
the object. The relatively higher classification performance of
this initialization indicates there are other structures that are
also shared by the positive images which do not over lap with
the object.

To address the initialization problem, we use the EDS (§IV)
strategy to produce 10 centers that are shared by the positive
images. To do so, we initiate each sequence from a random
feature vector coming from the training set and ensure that
it doesn’t converge to already found centers. Among these
centers, we wish to pick the one that provides us with the
most robust initialization. We score each center based on a
2-fold cross validation of DBS initialized using each center,
on the training set. Since this process requires us to train the
model many times, we employ the DBS method even though
MS (2) has shown to produce better results (Table I). As a
baseline, we also produce 10 cluster centers on the training
images using the standard kmeans method and similarly pick
the most robust initializer among them. As it can be seen
in table VI, the initialization provided by EDS significantly
outperforms the baselines and it is comparable with the center
initialization. Similar results can be seen in Fig. 2(LEFT), that
the model produced with EDS initialization performs similar
to the model initialized at the annotation.

C. Convergence

As mentioned in §III, our method converges when a deci-
sion boundary reselects the set it was produced on. In practice,
there are different ways of measuring this convergence. In this
work we have considered the hinge loss to verify if the method
has converged. This measure is both a proper approximation
for our original definition of convergence and also relates our
method to other methods which are based on decreasing the
loss function given in Eq. 1. Fig. 2 (RIGHT), show how this
loss is decreased by our method on both training and testing
sets. In this figure, it should be noticed that MS (2) is more
effective compared to the DBS in decreasing the loss and this
is clearly reflected on the results given in Table I.

VII. DISCUSSION AND CONCLUSION

In this paper, we have addressed the problem of compu-
tational complexity and initialization issues in the training of
latent variable models. The framework introduced in this paper
uses a sequence of feature sets to converge to a solution.
As we have demonstrated, these sets play a key role in our
framework. The complexity can be controlled with the size of
these sets and the quality of the decision boundary is directly
related to the content of these sets. Our experiments show

that it is possible to train robust decision boundaries while
limiting the size of these sets. In this paper, we have also
addressed the problem of initialization of the discussed latent
variable models. A special formulation of our framework can
locate cluster centers that are more likely to be the object of
interest. To demonstrate this, we have shown that our method
is capable of producing robust decision boundaries without
taking advantage of dataset bias. While the experiments of
this paper focus on the task of image classification with object
localization, our method can be applied to any problem with a
similar formulation. It should also be mentioned that the linear
decision boundaries discussed in §III can be replaced with any
discriminative model that resides in a linear algebraic space
including kernel methods. Doing so will highly affect how the
sets of the topological sequence are populated and the study
of these effects is left to future works.
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