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Two Correctness Problems

Main Problem: How do we check that the system composed with the
mobile component works correctly?

Problem 1

Choose a reasonable property P’ for the mobile component

Build a generic model for P’

Check if the system composed with this generic model has property P

Problem 2
Check if the mobile component has property P’ at time of join.
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Part I

(Problem 1)
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Part I: State Space Representation

We develop a representation for the state space of open systems to
facilitate visualization and verification.
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Part I: State Space Representation

We develop a representation for the state space of open systems to
facilitate visualization and verification.

The Setting

Implementations are given as processes in a process algebra.

Assumptions on components and open system properties are given in
modal µ-calculus.

Algorithmic Verification Techniques for Mobile Code 5



Contribution: OTA

We specify open systems with open process terms with assumptions.
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Contribution: OTA

We specify open systems with open process terms with assumptions.

Example

The platform can only do a single a action.

Only one mobile component can execute in the system at a given
time.

The mobile component runs in parallel with the platform.

The mobile component can only perform a finite number of a actions.
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Contribution: OTA

We specify open systems with open process terms with assumptions.

Example

The platform can only do a single a action.

Only one mobile component can execute in the system at a given
time.

The mobile component runs in parallel with the platform.

The mobile component can only perform a finite number of a actions.

C : µZ . [a]Z ⊲ a.0 ‖ C
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Contribution: EMTS

We represent the state space of open systems with extended model

transition systems.

Special features of EMTSs:

Two types of transitions for the two modalities of the logic

Coloring of states for fairness constraints

Algorithmic Verification Techniques for Mobile Code 7



Contribution: EMTS

We represent the state space of open systems with extended model

transition systems.

Special features of EMTSs:

Two types of transitions for the two modalities of the logic

Coloring of states for fairness constraints

Example

EMTS for the open system C : µZ . [a]Z ⊲ a.0 ‖ C

Algorithmic Verification Techniques for Mobile Code 7



Contribution: EMTS

We represent the state space of open systems with extended model

transition systems.

Special features of EMTSs:

Two types of transitions for the two modalities of the logic

Coloring of states for fairness constraints

Example

EMTS for the open system C : µZ . [a]Z ⊲ a.0 ‖ C

a
a

a
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Contribution: Characteristic Model Construction for Modal

µ-calculus

We define a construction that maps the formulae of the logic to EMTSs.
The construction is defined recursively on the structure of the formula.
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Contribution: Characteristic Model Construction for Modal

µ-calculus

We define a construction that maps the formulae of the logic to EMTSs.
The construction is defined recursively on the structure of the formula.

Example

The mobile component can only do a finite number of a’s, i.e. it has the
property µZ . [a]Z
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Contribution: Characteristic Model Construction for Modal

µ-calculus

We define a construction that maps the formulae of the logic to EMTSs.
The construction is defined recursively on the structure of the formula.

Example

The mobile component can only do a finite number of a’s, i.e. it has the
property µZ . [a]Z

a

a

ε(Z )
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Contribution: Characteristic Model Construction for Modal

µ-calculus

We define a construction that maps the formulae of the logic to EMTSs.
The construction is defined recursively on the structure of the formula.

Example

The mobile component can only do a finite number of a’s, i.e. it has the
property µZ . [a]Z

a

a

ε(Z )

a

a

a

ε([a]Z )

a

a
a

ε(µZ . [a]Z )

Algorithmic Verification Techniques for Mobile Code 8



Correctness of Construction I

Characteristic Model Property

Given a property P, the EMTS constructed simulates exactly those
processes that have property P.
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Contribution: Model Construction for OTA

The construction is defined recursively on the structure of the process
term with assumptions.
Uses characteristic model of the given property for mobile components.
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Contribution: Model Construction for OTA

The construction is defined recursively on the structure of the process
term with assumptions.
Uses characteristic model of the given property for mobile components.

Example

C : νZ . [a]Z ⊲ a.0 ‖ C
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term with assumptions.
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Contribution: Model Construction for OTA

The construction is defined recursively on the structure of the process
term with assumptions.
Uses characteristic model of the given property for mobile components.

Example

C : νZ . [a]Z ⊲ a.0 ‖ C

ε(0)
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ε(a.0)
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a
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ε(µZ . [a]Z )
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Correctness of Construction II

Model Construction Correctness
1 Given an open process term with assumptions with a single mobile

component, the constructed EMTS simulates exactly those closed
systems specified by the OTA, as long as the OTA does not have
dynamic process creation.

2 Given an open process term with assumptions, the constructed EMTS
simulates all closed systems specified by the OTA (and possibly
more), as long as the OTA does not have dynamic process creation.
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Proving Properties of Open Systems

We prove modal µ-calculus properties of open systems using a proof
system.
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Proving Properties of Open Systems

We prove modal µ-calculus properties of open systems using a proof
system.

Proof System Properties

The proof system is sound in general and complete for prime formulae of
the logic.
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Publications

1 I. Aktug and D. Gurov, “Towards State Space Exploration Based
Verification of Open Systems” to appear in Proceedings of the 4th

International Workshop on Automated Verification of Infinite-State
Systems (AVIS’05), April 2005, Edinburgh, Scotland

2 I. Aktug and D. Gurov, “State Space Representation for Verification
of Open Systems”, in Proceedings of the 11th International
Conference on Algebraic Methodology and Software Technology
(AMAST ’06), volume 4019 of Lecture Notes in Computer Science,
pages 5-20, July 2006, Kuressaare, Estonia
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Part II

(Problem 1)
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Part II: Program Models

We extend a compositional verification framework for handling exceptional
and multi-threaded behavior.
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Part II: Program Models

We extend a compositional verification framework for handling exceptional
and multi-threaded behavior.

The Setting

Implementations are given as Java bytecode programs.

Assumptions on components and open system properties are given in
a fragment of modal µ-calculus.
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Compositional Verification Framework

Developed by Gurov, Huisman and Sprenger

Structure: control-flow graphs with procedures, without data

Behavior: a set of (possibly infinite-length) executions induced from
the program structure

Structure extraction from bytecode: Defined, Implemented using
SOOT.

Structural and behavioral properties of programs

Structural properties can be checked using model checking

Behavioral properties can be checked using PDA-based model
checking
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Contributions

Exceptional Control Flow

Structure: Extended with a set of exceptions, such that control points
of the flow graph may be labeled with an exception.

Behavior: Throws and catches are reflected.

Structure extraction from bytecode: Defined, Implemented by
extending the extraction tool for basic model.
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Contributions

Exceptional Control Flow

Structure: Extended with a set of exceptions, such that control points
of the flow graph may be labeled with an exception.

Behavior: Throws and catches are reflected.

Structure extraction from bytecode: Defined, Implemented by
extending the extraction tool for basic model.
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Exc1

m5

Exc1 Exc2

Exc1

m1

m6

finally { m6(); }

catch Exc1 { m5(); }

    }

     catch Exc1 { m4(); }

     try { m3(); }

try { m2();

m1();

m2
v1

v2 v3

v4

v5

v6
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Contributions

Exceptional Control Flow

Structure: Extended with a set of exceptions, such that control points
of the flow graph may be labeled with an exception.

Behavior: Throws and catches are reflected.

Structure extraction from bytecode: Defined, Implemented by
extending the extraction tool for basic model.

Model With Multi-threading

Structure: We extend the basic program model with a set of thread
id’s and lock names.
We add new labels (e.g. spawn, lock, unlock, wait, notify).

Behavior: We maintain a configuration per active thread, a lock map
and a wait map.

Structure extraction from bytecode: Defined.
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Benefits

More precise models: Exits due to uncaught exceptions are added

Properties related to exceptional/multi-threaded behavior can be
shown:

Exception e is never thrown
Exception e is always caught within the method where it is thrown
Method m can only be called by thread t, if t has lock l
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Publications

1 M. Huisman, I. Aktug and D. Gurov, “Program Models for
Compositional Verification”, in Proceedings of the 10th International
Conference on Formal Engineering Methods (ICFEM’08), volume
5256 of Lecture Notes in Computer Science, pages 147-166, October
2008, Kitakyushu-City, Japan
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Part III

(Problem 2)
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The Framework

inlined
program

platform (and user)
policy

producer
policy

proof

generator

Match

No match
AcceptedRejected

program activities

activities

policy

matcher

off−device

on−device

proof checker

inliner

compliance
    proof
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Provably Correct Inlining

An inlined program is correctly inlined for policy P, if the program adheres
to the policy.
For a given inlined program, we want to create a proof of correct inlining
such that:

can be automatically generated,

efficiently checkable.
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Provably Correct Inlining

An inlined program is correctly inlined for policy P, if the program adheres
to the policy.
For a given inlined program, we want to create a proof of correct inlining
such that:

can be automatically generated,

efficiently checkable.

The Setting

Mobile component implementations are sequential Java bytecode
programs.

Our security relevant actions are calls to and returns from a fixed API.

The policies (or properties) consist of a set of security relevant action
sequences.
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Contribution: The Policy Language ConSpec

Adapted from PSLang of Erlingsson and Schneider

Semantics given through security automata

A restricted language to allow the formal treatment of several
activities of the framework

Bounded domains for state variables to enable matching
Restricted language for state updates (e.g. no loops) for automatic
proof generation
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Policies
Example: ConSpec Language

”After applications access an existing file, they are required to obtain

approval from the user each time a connection is to be opened.”
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Policies
Example: ConSpec Language

”After applications access an existing file, they are required to obtain

approval from the user each time a connection is to be opened.”

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals(CreateNew) → { skip; }
!mode.equals(CreateNew) → { accessed = true; }

AFTER bool answer = GUI.AskConnect()

PERFORM answer → { permission = true; }
!answer → { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }
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Contribution: Annotation Scheme for Specifying Correct

Monitor Inlining

The target program is annotated in two steps:
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Contribution: Annotation Scheme for Specifying Correct

Monitor Inlining

The target program is annotated in two steps:

1 Level I: we insert a correct monitor into the program using
specification variables.
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Contribution: Annotation Scheme for Specifying Correct

Monitor Inlining

The target program is annotated in two steps:

1 Level I: we insert a correct monitor into the program using
specification variables.

2 Level II: we specify that an embedded state exists such that:

the embedded monitor is in ”synch” with the specified monitor
immediately prior to execution of a security relevant action, and
the updates to the embedded state are made locally, that is by the
method that executes the security relevant method call.
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Level I Annotations
Policy

”After applications access an existing file, they are required to obtain

approval from the user each time a connection is to be opened.”

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals(CreateNew) → { skip; }
!mode.equals(CreateNew) → { accessed = true; }

AFTER bool answer = GUI.AskConnect()

PERFORM answer → { permission = true; }
!answer → { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }
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Level I Annotations
Target Program

L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

L5 invokevirtual GUI/AskConnect()Z

L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: A target application method
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Level I Annotations
Example: Level I Annotations

AI[L] L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs)} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An application method with level I annotations for the example policy
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Level I Annotations

Theorem: Correctness of Level I Annotations

Program T annotated with level I annotations for policy P is valid, if and
only if T adheres to P.
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Level II Annotations
Example: Level I Annotations

AI[L] L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs)} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An application method with level I annotations for the example policy
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Level II Annotations
Example: Level II Annotations

AII[L] L M[L]
{gs = SecState} L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs) ∧ gs = SecState} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

{gs = SecState} L13 ireturn

Figure: An application method with level II annotations for the example policy
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Level II Annotations

Theorem: Level II Characterization

The level II annotations of T for policy P with the embedded state −→ms is
valid if, and only if, −→ms identifies a method-local monitor for P.
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Contribution: Proofs of Correct Inlining

If T is a ”nicely” inlined program then level II annotations can be
completed to full annotations using weakest precondition calculation on
inlined blocks.
The full annotations can be used as the proof of correct inlining.
Full annotations generated by:

1 Adding the synchronization annotation as precondition to uninlined
instructions

2 Propagating the synchronization annotation from the bottom to the
top of the inlined blocks using a weakest precondition calculator

Full annotations are checked by checking the proof local validity:

constructing verification conditions using the axiomatic semantics of
single instructions

discharging the resulting verification conditions
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Correct Monitor Inlining
Level III (”Full”) Annotations for the Inliner

Proof of correct inlining can be constructed for nicely inlined programs.
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Correct Monitor Inlining
Level III (”Full”) Annotations for the Inliner

Proof of correct inlining can be constructed for nicely inlined programs.

A program is ”nicely” inlined if

the problem of computing the weakest precondition of inlined blocks
is decidable,

the problem of discharging the verification conditions arising from the
local validity of the full annotations is decidable
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Benefits

The annotation scheme facilitates generation of correct inlining proof.
Proof generation and check is efficient.
Such a proof can be used in a proof-carrying code setting for
certifying policy compliance to the platform.

The annotation scheme can be used to show correctness of an inliner.
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Publications

1 I. Aktug and K. Naliuka, “ConSpec: A Formal Language for Policy
Specification”, in Proceedings of The First International Workshop on
Run Time Enforcement for Mobile and Distributed Systems
(REM’07), volume 197-1 of Electronic Notes in Theoretical Computer
Science, pages 45-58, September 2007, Dresden, Germany
Full version accepted for publication in Science of Computer

Programming

2 I. Aktug, M. Dam and D. Gurov, “Provably Correct Runtime
Monitoring”, in the Proceedings of the 15th International Symposium
on Formal Methods (FM ’08), volume 5014 of Lecture Notes in
Computer Science, pages 262-277, May 2008, Turku, Finland,
Full version accepted for publication in Journal of Logic and Algebraic

Programming
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Thank God It’s Over Slide

Thank You!
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