ConSpec: A Formal Language for Policy Specification

Irem Aktug Katsiaryna Naliuka
KTH UNITN
irem@nada.kth.se naliuka@dit.unitn.it

1 Introduction

As mobile devices become increasingly popular, the problem of secure mobile application development gains
importance. Mobile devices contain personal information, which users wish to protect. They also provide
access to costly functionality, such as GSM services and GPRS connections. It is necessary to provide
controlled access to the sensitive resources through fine-grained, at times application specific, constraints on
execution.

A security policy specifies the set of acceptable executions and can thus be used to define how and under
what conditions a sensitive resource can be accessed. For instance, a user policy may limit the number of
SMSs that are sent by an application per hour in order to prevent spamming. A program adheres to a policy if
all its executions are acceptable by the policy. Several techniques exist to ensure that an application complies
to a policy. Static verification techniques analyze the program code in order to construct a mathematical
proof that no execution of the program can violate the policy. Though such an analysis provides full
assurance, due to the complexity of the problem, static verification is most often unfeasible in the resource-
critical environment of the mobile device. Runtime monitoring, on the other hand, observes the behavior of
a target program at runtime and terminates it if it does not respect the policy. Monitoring can effectively
enforce many practically useful security policies [8]. However, it creates performance overhead since each
security relevant action of the program should be detected and checked against the policy.

Our framework combines static with dynamic techniques in order to enforce security policies on mobile
devices in the most effective way. It is similar to the model-carrying code approach [9], in that security
specifications can be enforced at the three stages of the application lifecycle: the development, installation
and runtime phases.

Development Phase: We associate with the application a contract [2], a piece of data that describes its
security-relevant behavior. In the development phase, the contract is a specification of the intended security-
relevant behavior of the application by the producer. The compliance of the application to the contract
can be checked using static verification. The analysis can be performed by the producer or a trusted third
party, which then signs the application and the contract by its private key. This analysis is performed by
powerful machines rather than the mobile devices, and can make use of knowledge available to the developer
(e.g. program specifications, annotations derived from the source code). Instead of signing with a private
key, proof-carrying code techniques [7] can be used to convey assurance in program-contract compliance. If
contract compliance can not be statically verified, then an execution monitor can be inlined in the program
at this stage so that compliance is ensured at runtime [4, 3].

Installation Phase: Before the program is installed on the device, a formal check is needed to show that
the security-relevant behavior of the application given by the contract is acceptable by the user policy; we call
this process contract-policy matching. In the case where the contract does not match to the policy, adherence
to policy can be enforced by inserting a monitor to the environment of the program in the installation phase.

Runtime: At runtime, the behavior of an application may be checked against a policy by monitoring.

The main contribution of this paper is the language ConSpec (Contract Specification Language), which
can be used for specifying both user policies and application contracts in a framework such as the one
described above. ConSpec aims for a balance of language expressiveness and tractability of the various tasks
identified in the framework. For example, the problem of matching a contract against a policy reduces to
the language containment problem for such automata, if policies and contracts are captured with automata
on infinite strings. The complexity of this task (see e.g. [5, 6]) severely restricts the expressive power of the
language. We provide a semantics for ConSpec and we briefly explain how the design of ConSpec renders
possible the formal treatment of several of the activities in the framework mentioned above.



2 ConSpec Language

ConSpec is strongly inspired by the policy specification language PSLang, which was developed by Erlingsson
and Schneider [3] for runtime monitoring. PSLang policies consist of a set of variable declarations representing
the security state, followed by a list of security relevant events, where each event is accompanied by a piece
of Java-like code that specifies how the security state variables should be updated in case the event is
encountered in the current state. PSLang trades the formalisation of the monitor to the simplicity of
inlining it. While a PSLang policy text is intended to encode a security automaton, a formal semantics for
PSLang is not provided. Such a task is not trivial due to the power of the programming language constructs
that can be used in the updates. Furthermore, contract-policy matching would be undecidable when such
an expressive language is used. ConSpec is a more restricted language than PSLang: the domains of the
security state variables are finite and we have used a guarded-command language for the updates where the
guards are side-effect free and commands do not contain loops. The simplicity of the language then allows
for a comparatively simple and elegant semantics. ConSpec has the additional scope construct for expressing
security requirements on different levels. Case studies show that this feature is necessary for expressing many
interesting real-life policies [10]. ConSpec is expressive enough to write policies on multiple executions of
the same application, and on executions of all applications of a system, in addition to policies on a single

execution of the application and on lifetimes of objects of a certain class.

Assume that the method Open of the class File is used to create files (when the argument mode has the
value “CreateNew”) or open files (when the argument mode has the value “Open”) for reading or writing.
Similarly, the method Open of the class Connection opens a connection and the method AskConnect asks
the user for permission to open a connection. The policy ” Application must, after accessing an existing file,
get approval from the user before opening a connection” is expressed in ConSpec as follows:

SCOPE Session

SECURITY STATE
bool accessed = false;
bool permission = false;

BEFORE File.Open(string path, string mode, string access)
PERFORM
mode.equals("CreateNew") -> { skip; }
mode.equals("Open") -> { accessed = true; }

BEFORE Connection.Open(string type, string address)
PERFORM

laccessed -> { permission = false; }

accessed && permission -> { permission = false; }

AFTER string answer = GUI.AskConnect()
PERFORM
answer.equals("Yes") -> { permission = true; }

We begin by specifying that the policy applies to each single execution of an application. Scope declaration
is followed by the security state declaration: the security state of the example policy is represented by
the boolean variables accessed and permission, which are both false initially to mark, respectively, that
no file has been accessed and that no permissions are granted when the program begins executing. The
example policy contains three event clauses that state the conditions for and effect of the security relevant
actions: call to the method File.Open, call to the method Connection.Open and return from the method
GUI.AskConnect. The types of the method arguments are specified along with representative names, which
have the event clause as their scope. The modifiers BEFORE and AFTER mark whether the call of or the
normal return from the method specified in the event clause is security relevant (exceptional returns can
be specified by the modifier EXCEPTIONAL). Whatever the execution history, whenever the application
calls the method File.Open, it should be creating a new file (the first guard) or it should be opening an
existing file (the second guard). In order to decide if the application is allowed to open a connection, history
of existing file accesses and user permissions should be consulted. If the current history contains an access
to an existing file (that is if accessed is true), then an attempt to open the connection is allowed only if
the security state variable permission is true. The only way this variable has the value true at a certain
point in the execution is, if the last execution of the method GUI.AskConnect has returned “Yes”. Notice
that the policy does not allow the same permit to be used for several connections since permission is set
to false before each connection. If neither of these conditions hold for the current call, that is if an existing
file has been accessed but no permission for connection was granted, then it is a violating call as none of the
guards are satisfied.

For such a language, an elegant semantics can be given in terms of security automata [8].



3 ConSpec in Use

Current work focuses on the formal treatment of the following tasks related with policy enforcement, based
on ConSpec semantics:

Matching One way to match a ConSpec contract against a ConSpec policy is to check that the
language of the contract automaton is included in the language of the policy automaton. Since the domains
of the security state variables are bounded, the extracted automata have finitely many states and standard
methods for checking language inclusion for automata can be facilitated for contract-policy matching (see
for instance [1]).

Monitoring Given a program and a ConSpec policy with scope Session, the concept of monitoring
can be formalized by defining the co-execution of the corresponding ConSpec automaton with the program.
Such co-executions are a subset of the set of interleavings of the individual executions of the program and the
automaton. Co-executions satisfy the following condition: when the execution of the program component is
projected to its security relevant action executions, each before action is immediately preceded by a transition
of the automaton for the same action; dually, each after action is immediately followed by a corresponding
automaton transition. It is simple, then, to show that the program component of the co-execution adheres to
the given policy, as the co-execution includes an accepting trace of the automaton for the program execution.

Monitor Inlining Inlining a ConSpec policy with scope Session can be performed similar to inlining
a PSLang policy (see [3] for details). The correctness of such a monitor inlining scheme can be proven by
setting up a bisimulation relation between the states of the inlined program and the states of the co-execution
of the original program with the ConSpec automaton (induced by the policy). If the party responsible for
the inlining is not trusted, the proof-carrying code approach can be used. An annotation scheme can be
devised that produces annotations for a given policy, so that if the annotations are valid for a program,
then the program adheres to the policy. The inlining party can use certain information about the inlining
(e.g. the variables used to represent the security state) to prove the verification conditions resulting from
annotating the program with this scheme. A proof can then be shipped to the consumer which enables the
correctness of the inlining to be verified on the mobile device, based on the same scheme.

4 Conclusion

In this paper, we present the language ConSpec, which can be used for specifying both policies and contracts
in various security enforcement related tasks of the application lifecycle. We provide a formal semantics for
the language which enables formal proofs to be constructed for these taks. Currently, we are formalizing
enforcement techniques using ConSpec for sequential programs as summarized in Section 3. As future work,
we aim to extend our approach to applications where multiple threads can perform security-relevant actions.

Acknowledgements The authors thank Dilian Gurov and Fabio Massacci for valuable comments and
discussions.

References

[1] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms for the verification of temporal properties. Form. Methods Syst.
Des., 1(2-3):275-288, 1992.

[2] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract: Toward a semantics for digital signatures on mobile code. In European PKI
Workshop: Theory and Practice (to appear), 2007.

[3] U. Erlingsson. The inlined reference monitor approach to security policy enforcement. PhD thesis, Department of Computer Science, Cornell University, 2004.

[4] U. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retrospective. In Proc. of the Workshop on New Security Paradigms (NSPW °99),
pages 87-95, New York, NY, USA, 2000. ACM Press.

[5] J. E. Hopcroft. On the equivalence and containment problems for context-free languages. Theory of Computing Systems, 3(2):119-124, 1969.
[6] H.B. Hunt and D. J. Rosenkrantz. On equivalence and containment problems for formal languages. J. ACM, 24(3):387-396, 1977.

[7] G. C. Necula. Proof-carrying code. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1997.

[8] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3(1):30-50, February 2000.

[9] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney. Model-carrying code: a practical approach for safe execution of untrusted
applications. ACM SIGOPS Operating Systems Review, 2003.

[10] A. Zobel, C. Simoni, D. Piazza, X. Nuez, and D. Rodriguez. Business case and security requirements. Public Deliverable of EU Research Project D5.1.1,
S3MS- Security of Software and Services for Mobile Systems, http://s3ms.org, October 2006.



