
Provably Correct Runtime Monitoring

Irem Aktug, Mads Dam, Dilian Gurov

CSC KTH
Stockholm, Sweden

Provably Correct Runtime Monitoring 1

Outline

1 Introduction
Mobile Security

2 Motivation
Target Programs
Policies

3 Monitoring

4 The Framework

5 Specification of Correct Inlining

6 Conclusion

Provably Correct Runtime Monitoring 2

Mobile Code

Applications obtained from an untrusted source to be executed locally
mobile code

open platform

Figure: Mobile Code Joining Platform

Examples:

Java Web Applets
Code embedded in Microsoft Office documents
Java Card Applets (smart card applications)
Java Midlets (mobile phone applications)

Provably Correct Runtime Monitoring 3

Mobile Code

Applications obtained from an untrusted source to be executed locally
mobile code

open platform

Figure: Mobile Code Joining Platform

Examples:

Java Web Applets
Code embedded in Microsoft Office documents
Java Card Applets (smart card applications)
Java Midlets (mobile phone applications)

Provably Correct Runtime Monitoring 3

Mobile Code

Applications obtained from an untrusted source to be executed locally

mobile code

open platform

Figure: Mobile Code Joining Platform

Examples:

Java Web Applets
Code embedded in Microsoft Office documents
Java Card Applets (smart card applications)
Java Midlets (mobile phone applications)

Provably Correct Runtime Monitoring 3

Mobile Security

Main Problem: How do we know if the system combined with the mobile
component works “correctly”?

Provably Correct Runtime Monitoring 4

Mobile Security

Main Problem: How do we know if the system combined with the mobile
component works “correctly”?

Common solution

Identify property P to be satisfied by mobile component.
Examples:

Sends SMSs only with user permission

Does not connect to internet if personal data is accessed

Provably Correct Runtime Monitoring 4

Mobile Security

Main Problem: How do we know if the system combined with the mobile
component works “correctly”?

Common solution: Identify property P to be satisfied by mobile
component.

Subproblem: How do we check that the mobile component has property P
at time of join?

Provably Correct Runtime Monitoring 5

Mobile Security

Main Problem: How do we know if the system combined with the mobile
component works “correctly”?

Common solution: Identify property P to be satisfied by mobile
component.

Subproblem: How do we check that the mobile component has property P
at time of join?

Common solutions

Code signing

Sandboxing

Proof-carrying code

Provably Correct Runtime Monitoring 5

Proof-carrying Code

Necula and Lee’96: Proof checking is easier than proof construction yet as
sound.

compliance
 proof

proof

generator

platform
policy

platform
policy

AcceptedRejected

program activities

activities

off−device

on−device

proof checker

Provably Correct Runtime Monitoring 6

The S3MS Project
(Security of Software and Services for Mobile Systems) http://www.s3ms.org

European Union project that aims to develop novel approaches for
security of mobile devices such as mobile phones, PDAs.

15 partners, both from industry and academics.

The main objective is to safely run third-party applications on mobile
platforms.

Provably Correct Runtime Monitoring 7

The Target Applications

We consider java bytecode programs.

As a first step, we handle:

only sequential programs,

exception handling, and

inheritance.

Provably Correct Runtime Monitoring 8

Example: Target Program

Label Instruction
L1 aload r0

L2 getfield gui

L3 invokevirtual GUI/AskConnect()Z

L4 ireturn

Figure: An application method

Provably Correct Runtime Monitoring 9

Policies
a.k.a “How to define safe?”

A policy is a predicate on the set of all possible sequences of actions and
selects only the acceptable sequences.

Our security relevant actions are calls to and returns from a fixed API.

Provably Correct Runtime Monitoring 10

Policies
Security Automata [Schneider 2000]

”Don’t send after read”

read

send read

s0 s1

Figure: Security Automata for The Policy

Provably Correct Runtime Monitoring 11

Policies
Security Automata [Schneider 2000]

”Don’t send after read”

read

send read

s0 s1

send

⊥

read

send

read, send

Figure: Automata for The Policy

Provably Correct Runtime Monitoring 11

The Policy Language ConSpec

Adapted from PSLang of Erlingsson and Schneider

Semantics given through security automata

A restricted language to allow the formal treatment of several security
related activities

Bounded domains for state variables to enable policy matching
Restricted language for state updates (e.g. no loops) for automatic
proof generation

Provably Correct Runtime Monitoring 12

Policies
Example: ConSpec Language

”Applications are allowed to access existing files for reading only, and are

required, once such a file has been accessed, to obtain approval from the

user each time a connection is to be opened.”

Provably Correct Runtime Monitoring 13

Policies
Example: ConSpec Language

”Applications are allowed to access existing files for reading only, and are

required, once such a file has been accessed, to obtain approval from the

user each time a connection is to be opened.”

p = T

a = Fa = F

p = F

p = F

a = T a = T

p = T

File.Open(, Read, OpenRead)

File.Open(, CreateNew,)

File.Open(, CreateNew,)

File.Open(, CreateNew,) File.Open(, CreateNew,)

T = GUI.AskConnect()

Connection.Open(,)

Connection.Open(,)

F = GUI.AskConnect()

F = GUI.AskConnect()

T = GUI.AskConnect()

Connection.Open(,)

F = GUI.AskConnect()

File.Open(, Read, OpenRead)

File.Open(, Read, OpenRead)

F = GUI.AskConnect()

File.Open(, Read, OpenRead) T = GUI.AskConnect()

T = GUI.AskConnect()

Provably Correct Runtime Monitoring 13

Policies
Example: ConSpec Language

”Applications are allowed to access existing files for reading only, and are

required, once such a file has been accessed, to obtain approval from the

user each time a connection is to be opened.”

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals(CreateNew) → { skip; }
mode.equals(Open) &&

access.equals(OpenRead) → { accessed = true; }

AFTER bool answer = GUI.AskConnect()

PERFORM answer → { permission = true; }
!answer → { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }

Provably Correct Runtime Monitoring 13

The Challenge

Low level programs: We do not have access to source code at
certification time and even possibly at time of proof generation

Limited computational resources: Proof checking should occur on the
mobile device

“Push button” technique: Automatic proof generation is desirable for
usability

Therefore, we want to simplify proof generation.
Why is proof generation and proof checking hard? Because we do not
know why the program actually complies with the policy.

Provably Correct Runtime Monitoring 14

The Challenge

Low level programs: We do not have access to source code at
certification time and even possibly at time of proof generation

Limited computational resources: Proof checking should occur on the
mobile device

“Push button” technique: Automatic proof generation is desirable for
usability

Therefore, we want to simplify proof generation.
Why is proof generation and proof checking hard? Because we do not
know why the program actually complies with the policy.

1 Take any program

2 Change it to adhere to the policy (even if it already does) Coming up:
Monitor Inlining

3 Create proof (now we know approximately why the program complies
with the policy)

Provably Correct Runtime Monitoring 14

The Challenge

Low level programs: We do not have access to source code at
certification time and even possibly at time of proof generation

Limited computational resources: Proof checking should occur on the
mobile device

“Push button” technique: Automatic proof generation is desirable for
usability

Therefore, we want to simplify proof generation.
Why is proof generation and proof checking hard? Because we do not
know why the program actually complies with the policy.

1 Take any program

2 Change it to adhere to the policy (even if it already does) Coming up:
Monitor Inlining

3 Create proof (now we know approximately why the program complies
with the policy)

Provably Correct Runtime Monitoring 14

Runtime Monitoring

A monitor operates by observing the behavior of a target program and
terminating the program when an action that violates the policy is about
to occur.

Monitoring has been implemented in the following two ways:

external monitoring: external entities that run in parallel with the
target program (e.g. firewalls),

monitor inlining: the program is rewritten to make it self-monitoring

Provably Correct Runtime Monitoring 15

Monitor Inlining

General purpose monitor inlining has been introduced by Evans and
Twyman 1999/Erlingsson and Schneider 2000.

1 The monitor state is inserted into the program by the inliner.

Embedded state: The concrete representation of the monitor state in
the program, usually in the form of global program variables.

2 Code is inserted around relevant actions to check if the action violates
the policy; program is terminated in case the action is violating and
the embedded state is updated otherwise.

Variants include:

Wrapping (Naccio’99)
Scattered (PSLang/POet’00)
Central (Polymer’05)

Provably Correct Runtime Monitoring 16

Policies
Example: ConSpec Language

”After applications access an existing file, they are required to obtain

approval from the user each time a connection is to be opened.”

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals(CreateNew) → { skip; }
!mode.equals(CreateNew) → { accessed = true; }

AFTER bool answer = GUI.AskConnect()

PERFORM answer → { permission = true; }
!answer → { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }

Provably Correct Runtime Monitoring 17

Monitor Inlining

Method before inlining Method after inlining
L1 aload r0 aload r0

L2 getfield gui getfield gui

L3 invokevirtual GUI/AskConnect()Z dup

L4 ireturn astore r1

L5 invokevirtual GUI/AskConnect()Z

L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An application method inlined with the example policy

Provably Correct Runtime Monitoring 18

The Framework

inlined
program

platform (and user)
policy

producer
policy

proof

generator

Match

No match
AcceptedRejected

program activities

activities

policy

matcher

off−device

on−device

proof checker

inliner

compliance
 proof

Provably Correct Runtime Monitoring 19

Provably Correct Inlining

An inlined program is correctly inlined for policy P, if the program adheres
to the policy.

Provably Correct Runtime Monitoring 20

Provably Correct Inlining

An inlined program is correctly inlined for policy P, if the program adheres
to the policy.

Our mission

For a given inlined program, we want to create a proof of correct inlining
such that:

can be automatically generated,

efficiently checkable.

Provably Correct Runtime Monitoring 20

Provably Correct Inlining

An inlined program is correctly inlined for policy P, if the program adheres
to the policy.

Our mission

For a given inlined program, we want to create a proof of correct inlining
such that:

can be automatically generated,

efficiently checkable.

Our approach

Use Floyd-like logic to specify correct inlining!

Provably Correct Runtime Monitoring 20

Specifying Correct Monitor Inlining

The problem

How can we specify that a program has been correctly inlined for a given
policy?

Provably Correct Runtime Monitoring 21

Specifying Correct Monitor Inlining

The problem

How can we specify that a program has been correctly inlined for a given
policy?

Reformulation of the Problem

How can we specify that a program has an embedded monitor for the
policy?

Provably Correct Runtime Monitoring 21

Specifying Correct Monitor Inlining

The target program is annotated in two steps:

Provably Correct Runtime Monitoring 22

Specifying Correct Monitor Inlining

The target program is annotated in two steps:

1 Level I: we insert a correct monitor into the program using
specification variables.

Provably Correct Runtime Monitoring 22

Specifying Correct Monitor Inlining

The target program is annotated in two steps:

1 Level I: we insert a correct monitor into the program using
specification variables.

2 Level II: we specify that an embedded state exists such that:

the embedded state is in agreement with the specified monitor
immediately prior to execution of a security relevant action, and
the updates to the embedded state are made locally, that is by the
method that executes the security relevant method call.

Provably Correct Runtime Monitoring 22

Level I Annotations
(Policy Annotations)

Characterize policy adherence,

Provably Correct Runtime Monitoring 23

Level I Annotations
(Policy Annotations)

Characterize policy adherence,

Created using the policy:

The security state is represented by ghost variables (ghost state) and
updated to mimic the automaton transitions,

The ghost state is asserted to be defined at critical points.

Provably Correct Runtime Monitoring 23

Level I Annotations
Policy

”Applications are allowed to access existing files for reading only, and are

required, once such a file has been accessed, to obtain approval from the

user each time a connection is to be opened.”

SECURITY STATE

bool accessed = false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals(CreateNew) → { skip; }
mode.equals(Open) &&

access.equals(OpenRead) → { accessed = true; }

AFTER bool answer = GUI.AskConnect()

PERFORM answer → { permission = true; }
!answer → { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }

Provably Correct Runtime Monitoring 24

Level I Annotations
Target Program

L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

L5 invokevirtual GUI/AskConnect()Z

L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An target application method

Provably Correct Runtime Monitoring 25

Level I Annotations
Example: Level I Annotations

AI[L] L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs)} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An application method with level I annotations for the example policy

Provably Correct Runtime Monitoring 26

Level I Annotations

Theorem: Correctness of Level I Annotations

Program T annotated with level I annotations for policy P is valid, if and
only if T adheres to P.

Provably Correct Runtime Monitoring 27

Level II Annotations
(Synchronisation Check Annotations)

Characterize the existence of a concrete monitor in the program

Obtained by extending level I annotations

Provably Correct Runtime Monitoring 28

Level II Annotations
(Synchronisation Check Annotations)

Characterize the existence of a concrete monitor in the program

Obtained by extending level I annotations

Synchronisation Assertion states the equality of the ghost state and the
embedded state, and is asserted for every method at:

method entry (pre-condition),

method exit (post-condition),

before each method call.

Provably Correct Runtime Monitoring 28

Level II Annotations
Example: Level I Annotations

AI[L] L M[L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs)} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

L13 ireturn

Figure: An application method with level I annotations for the example policy

Provably Correct Runtime Monitoring 29

Level II Annotations
Example: Level II Annotations

AII[L] L M[L]
{gs = SecState} L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1

{Defined(gs) ∧ gs = SecState} L5 invokevirtual GUI/AskConnect()Z

{gs := δ⊥(gs, a)} L6 istore r2

L7 aload r1

L8 instanceof GUI

L9 ifeq L12

L10 iload r2

L11 putstatic SecState/permission

L12 iload r2

{gs = SecState} L13 ireturn

Figure: An application method with level II annotations for the example policy

Provably Correct Runtime Monitoring 30

Level II Annotations

Theorem: Level II Characterization

The level II annotations of T for policy P with embedded state −→ms is valid
if, and only if, −→ms is a method-local monitor for P.

Provably Correct Runtime Monitoring 31

Correct Monitor Inlining

Given a program T, a policy P and an embedded state −→ms,
how do we show that the level II annotated program is valid?

Provably Correct Runtime Monitoring 32

Correct Monitor Inlining

Given a program T, a policy P and an embedded state −→ms,
how do we show that the level II annotated program is valid?

If T is a ”nicely” inlined program then level II annotations can be
completed to full annotations and the problem is reduced to checking local
validity.

Checking local validity consists of

constructing verification conditions using the axiomatic semantics of
single instructions

discharging the resulting verification conditions

Provably Correct Runtime Monitoring 32

Correct Monitor Inlining
Level III (”Full”) Annotations for the Inliner

Full annotations generated by:

1 Adding the synchronization annotation as precondition to uninlined
instructions

2 Propagating the synchronization annotation from the bottom to the
top of the inlined blocks using a weakest precondition calculator

A program is ”nicely” inlined if

the problem of computing the weakest precondition of inlined blocks
is decidable,

the problem of discharging the verification conditions arising from the
local validity of the full annotations is decidable

Proof of correct inlining can be constructed for nicely inlined programs.

Provably Correct Runtime Monitoring 33

Correctness of an Inliner

An inliner is a well-behaved inliner if it produces nicely inlined programs.

Correctness of a well-behaved inliner I can be proven by showing that
given any program T and policy P, a proof of inlining correctness can be
constructed for the inlined program I(T,P).

Provably Correct Runtime Monitoring 34

Conclusion

In this work we introduce a two-level annotation scheme on java bytecode
programs where:

1 level I annotations characterize policy adherence,

2 level II annotations characterize existence of a (method-local) monitor
in the program.

The annotation scheme can be used to show that a program has been
correctly inlined.

Provably Correct Runtime Monitoring 35

Conclusion

In this work we also describe how to compute full annotations for ”nicely”
inlined programs which reduce the problem of proving correct inlining to
checking local validity of the fully annotated program.

The annotation scheme can be used in a proof-carrying code setting
for certifying monitor compliance to the code consumer.

The annotation scheme can be used to show correctness of an inliner.

Provably Correct Runtime Monitoring 36

Future Work

Constructing a proof-carrying code framework

Extending the annotation scheme to handle multi-threaded programs

Adding new features to the policy language, e.g. to define per-object
policies

Finding abstraction functions that identify the embedded state in
unlined but yet self-monitoring programs

Extending the correctness result to cover transparency

Provably Correct Runtime Monitoring 37

Open Problems

Giving semantics to other policy scopes, e.g. to per-object policies

Extending the annotation scheme to handle multi-threaded programs

Finding abstraction functions that identify the embedded state in
unlined but yet self-monitoring programs

Provably Correct Runtime Monitoring 38

The End

Thank You!

Provably Correct Runtime Monitoring 39

	Introduction
	Mobile Security

	Motivation
	Target Programs
	Policies

	Monitoring
	The Framework
	Specification of Correct Inlining
	Conclusion

