
REM 2007

ConSpec – a formal language for policy
specification 1

Irem Aktuga, Katsiaryna Naliukab

a Royal Institute of Technology, Stockholm, Sweden

b University of Trento, Trento, Italy

Abstract

The paper presents ConSpec, an automata based policy specification language. The language trades off
clean semantics to language expressiveness; a formal semantics for the language is provided as security
automata. ConSpec specifications can be used at different stages of the application lifecycle, rendering
possible the formalization of various policy enforcement techniques.

1 Introduction

As mobile devices become increasingly popular, the problem of secure mobile appli-
cation development gains importance. Mobile devices contain personal information,
which users desire to protect. They also provide access to costly functionality, such
as GSM services and GPRS connections. Hiding these resources from third-party
applications would largely handicap application development for mobile platforms.
It seems necessary to provide controlled access to the sensitive resources through
fine-grained, at times application specific, constraints on execution.

A security policy selects a set of acceptable executions from all possible execu-
tions and thus can be used to define how and under what conditions a sensitive
resource can be accessed. For instance, a user policy may limit the number of SMSs
that are sent by an application per hour in order to prevent spamming. The decision
for allowing access to a requested resource at a certain point of the program execu-
tion may depend on various factors, such as the previous actions of the application,
the state of the environment, the parameters of the request etc. The user may want
to forbid the sending of SMSs, for instance, after an application has accessed certain
local files.

1 Partially supported by S3MS project (http://s3ms.org).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Aktug and Naliuka

A program adheres to a policy if all its executions are in the set of executions
selected by the policy. Several techniques exist to ensure that an application com-
plies to a policy. Static verification techniques, such as model checking, analyze
the program code in order to construct a mathematical proof that no execution
of the program can violate the policy. Such an analysis is thorough and provides
full assurance, at the same time, it is costly and often requires human interaction.
Runtime monitoring can be used as an alternative to static checking. This security
enforcement mechanism observes the behavior of a target program and terminates
it if it does not respect the policy. Monitoring can effectively enforce many inter-
esting security properties [14]. However, it creates performance overhead since each
security relevant action of the program should be detected and checked against the
policy. Monitoring may be performed explicitly, i.e. by a separate program which is
co-executed (executed in parallel) with the untrusted application. Due to expensive
interprocess communication however, this technique is costly. In order to reduce
this overhead, the monitor can instead be inlined in the untrusted program [5].
Then, the code of the program is interleaved with the code of the monitor.

We describe here first how security specifications can be enforced at the three
stages of the application lifecycle: the development, installation and runtime phases.
The approach that we present here combines static verification and monitoring
to enforce security properties on mobile devices in the most effective way. We
associate with the application a contract [4], a piece of data that describes its
security-relevant behavior which simplifies tasks related to security enforcement. A
framework which spans different stages of the application lifecycle and combines
different techniques for ensuring compliance benefits from a common language for
policy specification. In turn, the different aspects of the framework imposes different
restrictions on such a language. The main contribution of this paper is the language
ConSpec (Contract Specification Language) which can be used for specifying both
user policies and application contracts. A semantics for ConSpec is provided and
the formal treatment of several activities in the framework is briefly explained based
on this semantics.

The paper is structured as follows. In §2, we describe the lifecycle of the appli-
cation paired with its contract. In §3, we discuss design decisions behind ConSpec,
present its syntax and give a formal semantics to the language. Discussion of the
related work and final remarks §5 end the paper.

2 Security Enforcement in the Application Lifecycle

In this section, we describe how security enforcement techniques can be applied
throughout the lifecycle of an application and how the goals of all participants can
be achieved in the contract-aware framework. The lifecycle of the application and
the activities associated with each development phase are illustrated in Fig. 1. We
make use of the following scenario in the rest of the section:

Companies Alpha and Beta produce applications for mobile devices. Alpha devel-
ops application Weather that every morning at a user-defined time sends an SMS
message to the operator’s weather service and displays to the user the forecast it
receives. Application HappyBirthday, produced by Beta, checks the user’s address

2

Aktug and Naliuka

Fig. 1. Security enforcement through application development phases

book and sends a congratulation SMS to each contact that has a birthday. Both
companies want their applications to be used by as many users as possible.

Alice is a user of the mobile device. She wants to download and use the third-
party applications. But she does not want these applications to break the policy “An
application must not send more than 5 SMSs messages per day”.

Development phase We assume that the developer is aware of typical secu-
rity policies and is willing to keep his application in conformance with them. From
the policies he learns which actions of the application are security-relevant. Using
this information he provides the application with the contract, which specifies the
intended security-relevant behavior of application. At this phase, the policy lan-
guage is used for expressing this contract. The compliance of the contract and the
application can be checked, for instance, using static verification by a trusted third
party, who then signs the application and the contract by its private key. This
analysis is performed by powerful machines rather than the mobile devices, and
can make use of knowledge available to the developer (e.g. program specifications,
annotations derived from the source code etc). Instead of signing the application
with a private key, proof-carrying code method [13] can be used to convey assurance
in program-contract compliance. The application and the contract are supplied
with an easy-to-check proof of their compliance. If contract compliance can not be
statically verified, then an execution monitor can be inlined in the program at this
stage so that the compliance is ensured at runtime.

In our example scenario Alpha and Beta are not aware about the particular limit
of SMS messages that Alice allows. But they know that the number of messages
matters. Therefore, Alpha supplies the Weather application with the contract that
the application sends only one message per day. However, Beta developers cannot
tell in advance how many messages their application sends per day. For this reason,
the contract for their application is more complex. It tells that the application will
send one message to every contact from the address book that has a birthday.

Installation phase Before the program is installed on the device, a formal

3

Aktug and Naliuka

check is needed to show that the security-relevant behavior of the application given
by the contract is acceptable by the user policy. If policies and contracts are cap-
tured with automata on infinite strings, the problem of matching a policy against
a contract reduces to the language containment problem for such automata. The
complexity of this task (for example, the problem of language containment is unde-
cidable for two context-free languages [9,10]) severely restricts the expressive power
of the policy language. When the problem is decidable, however, contract-policy
matching is much simpler than checking the program itself, and is more likely to be
feasible on a mobile device [4].

In our scenario, the contract of Weather can be matched against Alice’s policy
“No more than 5 messages per day”. So this application is permitted to run at
the device without any modifications. But the contract of HappyBirthday cannot be
matched due to the lack of the precise number of messages the program can send. It
can still run on the device, after it undergoes inlining.

A policy that is not covered by the contract can be enforced by monitoring. If the
program is to be monitored explicitly, hooks that notify the monitor about ongoing
security-relevant activity should be injected to the program in the installation stage,
i.e. prior to execution. If the monitoring task is to be optimized in order to reduce
runtime overhead, the monitor for the desired policy should be inlined into the
program at this stage.

For instance, application Weather does not need to undergo inlining since its
compliance to the user’s policy has already been verified. But a monitor for Alice’s
policy is inlined in the HappyBirthday application to ensure that the application
does not send more than 5 messages.

Runtime At runtime, the behavior of an application may be checked against a
policy by monitoring. Because of the performance overhead created by monitoring,
it is preferable to use static methods described above and leave as little work to
runtime as possible. But in many cases, the application of other techniques is not
feasible (or not even possible due to, for example, the unavailability of the source
code), and runtime monitoring is the only solution to protect a system.

In our example, application Weather will not be monitored. But HappyBirthday
will, and if a violation is detected (that is, if the application is trying to send the
6th message), it will be terminated. The behavior of the program will otherwise be
unaltered (except for the slight performance deterioration due to monitoring) and
the user will be able to freely enjoy its functionality.

3 ConSpec Language

The intention behind ConSpec is to design a language that can be exploited both
for specification of requirements and for the description of the security-relevant
behavior of actual systems. For this reason, the formalism selected is based on
automata, which have been used for both purposes. For instance, the SPIN tool [8]
inputs system specifications as models written in the guarded-command language
Promela and performs model checking on the Büchi automata extracted from these
models. Security properties are also expressed as automata in various approaches
(e.g. [14,15]).

4

Aktug and Naliuka

ConSpec is strongly inspired by the policy specification language PSLang, which
was developed by Erlingsson and Schneider [5] for runtime monitoring. PSLang poli-
cies consist of a set of variable declarations, followed by a list of security relevant
events, where each event is accompanied by a piece of Java-like code that specifies
how the security state variables should be updated in case the event is encountered
in the current state. PSLang policies make monitor inlining simple: the updates
provided by the user can be almost directly inserted into the target program. How-
ever, this leads for making specifications less formal. A policy text is intended to
encode a security automaton: the state variables represent the automaton states
and updates represent transitions. While this intuition is given, the exact way to
extract the automaton from a PSLang policy is not provided. Such a task is not
trivial due to the power of the programming language constructs that can be used
in the updates.

Further we provide a formal semantics which maps ConSpec policies to formal
objects that can be used in constructing mathematical proofs. It is important to
note that ConSpec is a more restricted language than PSLang; this is a design
decision taken in order to allow application of formal methods for all stages of the
development process, and not just runtime monitoring. More specifically, ConSpec
does not allow arbitrary types in representing the security state and restricts the
way the security state variables are updated. We have used a guarded-command
language for the updates where the guards are side-effect free and commands do
not contain loops. The simplicity of the language then allows for a comparatively
simple semantics. While the general ConSpec, which is the common language for
all tasks in the application lifecycle, is to be kept as simple as possible, specific
tasks may allow certain extensions. For instance, while putting conditions on heap
objects make matching undecidable, these are easily handled by monitor inlining.
A table that shows which features can be supported by different tasks is included
in the Appendix.

ConSpec has a construct (Scope) for expressing security requirements on differ-
ent levels. Case studies [16] show that many interesting real-life policies concern the
entire execution history rather than a single run of the application, although most
policy languages (including PSLang) do not contain the feature of distinguishing
between events in the current run and in the previous runs. ConSpec is expres-
sive enough to write policies on multiple executions of the same application (scope
Multisession) and on executions of all applications of a system (scope Global),
in addition to policies on a single execution of the application (scope Session) and
on lifetimes of objects of a certain class (scope Object).

ConSpec Syntax Figure 2 summarizes the syntax of ConSpec policies. Before
the actual policy, ConSpec files set a limit on values of the type int which consist
of some initial segment of natural numbers. Similarly, maximum length of strings
are specified. We have skipped these in the example policy. Persistent state dec-
laration that follows the multi-session and global scopes is similar to security state
declaration and aims to specify the state that is preserved across single executions.

An event clause (see Figure 2(b) for syntax) gives us a security relevant action
and its modifier. The events that we are considering security relevant are method
invocations. These methods can be system calls or methods provided by an API.

5

Aktug and Naliuka

MAXINT M
MAXLEN N
SCOPE <Object ClassName

| Session
| Multisession PersistentStateDec
| Global PersistentStateDec>

SECURITY STATE
PrimType SecVar1 = InitVal1

.

.

.
PrimType SecVarN = InitValN

Clause1

.

.

.
ClauseK

(a) Policy Syntax

<BEFORE
|EXCEPTIONAL
|AFTER [Type Name =]> Signature

PERFORM
Guard1 -> {UpdateBlock1 }

.

.

.
GuardM -> {UpdateBlockM }
[ELSE -> {UpdateBlock }]

(b) Event Clause Syntax

Fig. 2. ConSpec Syntax

In order to resolve which method is of interest in case of overloading, the argument
types of the method is to be specified as part of the action specification. The security
relevant action is then fully specified by its signature which consists of the name of
the method, the class to which the method belongs and the types of its arguments.
The signature of an event clause is defined as the signature of the method associated
with it. In ConSpec policies, all event clauses with the same modifier have a unique
signature. This restriction means that one can not, for example, have two BEFORE
clauses for the same method. The restriction has been imposed in order to ensure
determinism. Notice that since the signature does not include the type of the return
variable, it is not possible to have two AFTER event clauses for the same method,
even if they do not agree on the return variable types. The modifier states when the
update to the state will be performed: will the guards be evaluated before the event,
after the event or immediately after the throwing of an exception by the event.

The event specification is followed by a sequence of guard-update block pairs.
The update specifies how a state will be updated for the security relevant action
while the guard selects the states, which the particular update will apply, as a subset
of all states. The guards are considered from top to bottom. In case none of them is
true, there is no transition for that action from the current state. If an ELSE block
is present, however, the update of this block is executed in case none of the guards
above it are satisfied. The guard is a side-effect free boolean expression which can
mention only the set of argument values (and the return value for the case of AFTER
modifier), and the security state. The update block begins with declarations of the
local variables, which have the current block as their scope. A list of assignments to
local variables and security state variables follow the declarations. If no assignments
are present, the update block consists of the statement skip.

The expression language of ConSpec has been designed to ensure that checking
language containment of the induced automata (the matching problem) is decid-
able. The security state variables of ConSpec are restricted to the primitive types
(PrimType): booleans, integers, and strings. All other variables can be of the gen-
eral type (Type), which includes both primitive types and classes. The boolean
expressions in guards can also include field accesses using object references . Field
access is expressed by the “.” operator. The expressions on integers are built using
basic arithmetic and comparison operators. Strings can be checked for equality and

6

Aktug and Naliuka

the prefix relation using the functions equals and beginsWith respectively.
An example policy The policy “An application must not overwrite local files

and after it has accessed an existing file, it should get approval from the user before
opening a connection” is expressed in ConSpec as follows:
SCOPE Session SECURITY STATE

bool accessed= false;
bool permission = false;

BEFORE File.Open(string path, string mode, string access) PERFORM
mode.equals("CreateNew") -> { skip; }
mode.equals("Open") && access.equals("OpenRead") -> { accessed= true; }

BEFORE Connection.Open(string type, string address) PERFORM
!accessed -> { permission= false; }
accessed && permission -> { permission = false; }

AFTER string answer= GUI.AskConnect() PERFORM
answer.equals("Yes") -> { permission=true; }

We begin by specifying that the policy applies to each single execution of an
application. Scope declaration is followed by the security state declaration: the se-
curity state of the example policy is represented by the boolean variables accessed
and permission, which are both false initially to mark, respectively, that no file has
been accessed and that no permissions are granted when the program begins exe-
cuting. The example policy contains three event clauses that state the conditions
for and effect of the security relevant actions: call to the method File.Open, call
to the method Connection.Open and return from the method GUI.AskConnect.
The types of the method arguments are specified along with representative names,
which have the event clause as their scope. The modifiers BEFORE and AFTER
mark whether the call of or the normal return from the method specified in the
event clause is security relevant (exceptional returns can be specified by the modi-
fier EXCEPTIONAL). Event clauses contain guards and associated updates to the
security state variables.

ConSpec Semantics We give semantics to policies written in ConSpec
through a particular class of security automata which we term ConSpec automata.

Notation. In the text below, we fix a set of class names C, and method names M
ranged over by c ∈ C and m ∈ M, respectively. We assume that types are ranged
over by τ . The set of all values of type τ is denoted as ‖τ‖. The set of all values is
V al = ∪

τ
‖τ‖ while the set of values of the type int, boolean or string is PrimV al.

We take τLOC to be the object reference type, and LOC = ‖τLOC‖ is the set of
addresses in the heap. Heaps map locations to functions which in turn map a set
of field names to values. Heaps are then defined as partial functions from addresses
(from the set LOC) to objects. We take Θ as the set of all possible heaps, so for
h ∈ Θ, h : LOC ⇀ FV ar → V al.

ConSpec Automata In ConSpec automata, security relevant actions are
method calls, represented by the class name and the method name of the method,
along with a sequence of values that represent the actual argument list of the
method. We partition the set of security relevant actions into a set of before actions
A[and a set of after actions A], corresponding to method invocations and returns.
Both refer to the heap prior to method invocation, while the latter also refers to
the heap upon termination and to a return value from RVal = V al ∪ {⊥, ε} where
ε and ⊥ are used to model return from a void method and return on an exception

7

Aktug and Naliuka

raised during the method call.

A[⊆ C×M×Val∗ ×Θ

A] ⊆ RVal× C×M×Val∗ ×Θ×Θ

The partitioning on security relevant actions induces a corresponding partitioning
on the transition function δ of ConSpec automata. We present a deterministic
version of security automata.

Definition 3.1 (ConSpec Automaton) A ConSpec automaton is a tuple A =
(Q,A, δ, q0), where:

(i) Q is a countable set of states,

(ii) q0 ∈ Q is the initial state,

(iii) A = A[∪A] is a countable set of security relevant actions as described above, and

(iv) δ = δ[∪ δ] is a (partial) transition function, where δ[: Q × A[⇀ Q and δ] :
Q×A] ⇀ Q.

The enforcement language of a ConSpec automaton A is defined as the set LA∪
LA ·A], where LA is the language of A in the standard sense. It is the enforcement
language which defines the security policy induced by a ConSpec automaton.

Automaton Extraction From Policy Text The semantics of a ConSpec
policy P is given in terms of a ConSpec automaton AP = (Q,A, δ, q0) as described
below.

States. The set of states Q of AP , also called security states, is determined by
the declarations in the SECURITY STATE block of the policy P. Consider the security
state declaration of P:

SECURITY STATE τs1 s1 = v1

..

.

τsk sk = vk

The set of variable names that are induced by such a state declaration is the set of
security state variables. SVar = {s1, . . . , sk}. The states q ∈ Q of the automaton
are mappings from variable names to values which respect the types of the security
state variables: q : SVar → V al. The initial state q0 simply maps the security state
variables to their initial values: ∀si ∈ SVar . q0(si) = vi.

Actions. The actions A of the automaton are determined by the events men-
tioned in event clauses of the policy. An action a = 〈c,m, (v1, . . . , vn), h〉 is a
security relevant before action, a ∈ A[, if and only if the ConSpec policy contains
an event clause:

BEFORE c.m (τ1 x1, . . . , τn xn) <body>

where v1 ∈ ‖τ1‖, . . . , vn ∈ ‖τn‖. Similarly, an action a = 〈v, c,m, (v1, . . . , vn), h, h′〉
where v is a value v, ε, or ⊥, is a security relevant after action, a ∈ A], if and only
if the ConSpec policy contains an event clause:

AFTER τ x = c.m (τ1 x1, . . . , τn xn) <body> or

AFTER c.m (τ1 x1, . . . , τn xn) <body> or

EXCEPTIONAL c.m (τ1 x1, . . . , τn xn) <body>

respectively, where v1 ∈ ‖τ1‖, . . . , vn ∈ ‖τn‖ and v ∈ ‖τ‖.
Transitions. Each event clause of the policy induces a partial transition function.

The transition functions δ[and δ] of the automaton are the union of the partial

8

Aktug and Naliuka

functions corresponding to event clauses with the BEFORE and AFTER/EXCEPTIONAL
modifier, respectively. The definition of the partial functions is similar for both
types of event clauses; the difference is that the transitions of δ] also contain the
return value when the method has some other return type than void (and the
constant ε when the return type is void). For brevity, here we only describe this
more general case.

Consider an AFTER event clause ϕ]:
AFTER τ x = c.m (τ1 x1, . . . , τn xn)

PERFORM

Guard1 -> UpdateBlock1

.

..

Guardm -> UpdateBlockm

Let AVar = {x1, . . . , xn} be the set of formal arguments of the event and PVar =
{x}∪AV ar be the set of all program variables of the event clause. Below, let states
q ∈ Q be as defined above, and let σ : PVar → Val range over the set Σ of mappings
from program variables to values which respect the declared types of the variables.
For guards Guardj , or Gj for short, and every blocks UpdateBlockj , or Uj for short,
of ϕ], we assume the semantic functions:

JGjK : Q× Σ×Θ×Θ → {True, False}
JUjK : Q× Σ×Θ×Θ → Q

where the two heaps in the function types refer to the heap of the program before
and after the execution of the method call, respectively. The ELSE keyword used as
a guard would then correspond to the guard true.

The ConSpec language refers to fields of object references by using the standard
“.” notation. Semantics of such expressions are relativized on heaps. The heap is
not changed by the automata, but is only used to look up fields of object references.
Below, we denote the heap before the call with h[, and the heap after the call with
h]. Then, the value of field access expressions are as follows:

Var.Field =
{

h[(σ(Var))(Field) if Var ∈ AVar

h](σ(Var))(Field) if Var = x

Then, every event clause ϕ] induces a partial mapping p] : Q×A] ⇀ Q as follows.
For a security state q and after action a = 〈v, c,m, (v1, . . . , vn), h, h′〉, we define
p](q, a) = q′ if there exists 1 ≤ i ≤ m such that:

• JGjK(q, σ, h[, h]) and
• ∀i < j.¬(JGiK(q, σ, h[, h])) and
• JUjK(q, σ, h[, h]) = q′

where σ : PVar → Val is defined by the correspondence of actual to formal param-
eters induced by (v1, . . . , vn) and the return value v. This definition captures that
the guards are evaluated in order from top to bottom in order to select the right
update block.

Finally, the after -transition function δ] is the union of the functions induced by
each event clause (with disjoint domains):

δ] =
⊎

ϕ]∈P
p]

9

Aktug and Naliuka

4 ConSpec in Use

The main advantage of ConSpec is that it allows for a formal treatment of the
various enforcement techniques mentioned in Section 2 through its automata-based
semantics. Here we briefly explain how this can be achieved.

Static check If the contract of the application is formalized in ConSpec
model then static check can be performed by translating the corresponding security
automaton into Spec# constraints and verifying the resulting specification. The
approach is described in more details in [1].

Matching One way to match a ConSpec contract against a ConSpec policy
is to check that the language of the contract automaton is included in the language
of the policy automaton. Since the domains of the security state variables are
bounded, the extracted automata have finitely many states and standard methods
for checking language inclusion for automata can be facilitated for contract-policy
matching (see for instance [3]).

Monitoring Given a program and a ConSpec policy with scope Session,
the concept of monitoring can be formalized by defining the co-execution of the
corresponding ConSpec automaton with the program. Such co-executions are a
subset of the set of interleavings of the individual executions of the program and
the automaton. Co-executions satisfy the following condition: when the execution
of the program component is projected to its security relevant action executions,
each before action is immediately preceded by a transition of the automaton for the
same action; dually, each after action is immediately followed by a corresponding
automaton transition. Therefore it is simple to show that the program component
of the co-execution adheres to the given policy, as the co-execution includes an
accepting trace of the automaton for the program execution.

Monitor Inlining Inlining a ConSpec policy with scope Session can be
performed similar to inlining a PSLang policy (see [5] for details). A class definition
is added to the target program which stores the security state variables. Then
the program is rewritten so that each security relevant method call is wrapped
with code compiled from the corresponding event clause(s) of the policy. Such a
code segment evaluates the guards of the event clause from top to bottom and
executes the updates associated with the first guard that is satisfied. If none of the
guards evaluate to true, the program is terminated. The modifier of the event clause
determines where this segment is placed relative to the method call. The correctness
of such a monitor inlining scheme can be proven by setting up a bisimulation relation
between the states of the inlined program and the states of the co-execution of the
original program with the ConSpec automaton (of the policy).

5 Related work and conclusion

There exists a number of automata-based languages for security policy specification.
Amongst these, ConSpec is closest to PSLang [5] which has also introduced the
modifiers used in ConSpec. The language is intended solely for runtime monitoring
and freely uses programming language constructs such as abstractions and functions.

10

Aktug and Naliuka

This enables a larger class of policies to be specified but also complicates the task of
providing a formal semantics. Since the authors do not provide such a formalisation,
their monitor inlining algorithm for PSLang is to be trusted on intuition as no proof
of its correctness can be constructed.

The Polymer language [2] has the same drawback. Polymer policies consist of
Java classes which, when inlined, may trigger various action in case of violation. For
instance it is possible to execute some recovery action as a response to the violation,
after which the application is allowed to progress. Polymer policies implement edit
automata [12], which extend security automata([6]). But the correctness of the
Polymer policy inlining cannot be proven either, as its semantics is not formally
presented.

Many languages use logic-based formalisms to express security properties [7].
However, it seems that these languages are less convenient for specification of the
existing systems automata-based languages, as it is hard to represent the full be-
havior of the system through a limited set of temporal-logic properties. Yet, in
our framework we need a formalism convenient for specification of both programs
and requirements to them. Moreover, temporal logic formulae can be translated to
automata by applying a tableaux procedure [11].

Model-carrying code (MCC) [15] is based on the idea of supplying untrusted
code with additional information to simplify its verification against user policies. In
MCC, this additional information is an extended FSA (EFSA) that represents the
model of the program. This approach has much in common with ours, and EFSA
is much similar to our ConSpec automata. However, for full EFSA verification
algorithms are not developed. Therefore, the current framework for MCC allows
only equality/disequality conditions of the variables, while our language allows more
sophisticated expressions, including basic arithmetic operations and comparisons
of numeric values. Also, our framework does not rely entirely on monitoring for
enforcing code-contract compliance. In many cases the compliance can be verified
statically and run without performance overhead.

In this paper we presented the policy language ConSpec, which has been designed
for formalizing security requirements as well as representing the security-relevant
behavior of the application. ConSpec specifications can be used for various tasks
during all stages of the application lifecycle to ensure that the application conforms
to the user policy. The main features of ConSpec are this universality and its tight
connection with the underlying formalism, which is a fundamental component of
formal proofs of policy adherence.

In the scope of the S3MS project, we are formalizing enforcement techniques
using ConSpec as summarized in Section 4. However, we currently consider sequen-
tial programs only. As future work, we aim to extend our approach to applications
where multiple threads can perform security-relevant actions. Such a setting brings
about synchronization issues as mutually dependent events may occur in different
threads and data used by the monitor for decision-making may be shared between
threads. Thus, formalizing monitoring of multi-threading environments emerges as
a challenging problem.

11

Aktug and Naliuka

6 Acknowledgements

The authors thank Dilian Gurov and Fabio Massacci for valuable comments and
discussions.

References

[1] Aktug, I., D. Gurov, F. Piessens, F. Seehusen, D. Vanoverberghe and E. Vétillard, Static analysis
algorithms and tools for code-contract compliance, Public Deliverable D3.1.2, S3MS, http://s3ms.org
(2006).

[2] Bauer, L., J. Ligatti and D. Walker, A language and system for composing security policies, Technical
Report TR-681-03, Princeton University (2004).

[3] Courcoubetis, C., M. Vardi, P. Wolper and M. Yannakakis, Memory-efficient algorithms for the
verification of temporal properties, Form. Methods Syst. Des. 1 (1992), pp. 275–288.

[4] Dragoni, N., F. Massacci, K. Naliuka and I. Siahaan, Security-by-contract: Toward a semantics for
digital signatures on mobile code, in: European PKI Workshop: Theory and Practice (to appear), 2007.

[5] Erlingsson, U., “The inlined reference monitor approach to security policy enforcement,” Ph.D. thesis,
Dep. of Computer Science, Cornell University (2004).

[6] Hamlen, K. W., G. Morrisett and F. B. Schneider, Computability classes for enforcement mechanisms,
ACM Trans. Prog. Lang. Syst. 28 (2006), pp. 175–205.

[7] Havelund, K. and G. Rosu, Efficient monitoring of safety properties, Int. J. on Software Tools for
Technology Transfer (2004).

[8] Holzmann, G. J., The model checker SPIN, Software Engineering 23 (1997), pp. 279–295.

[9] Hopcroft, J. E., On the equivalence and containment problems for context-free languages, Theory of
Computing Systems 3 (1969), pp. 119–124.

[10] Hunt, H. B. and D. J. Rosenkrantz, On equivalence and containment problems for formal languages,
J. ACM 24 (1977), pp. 387–396.

[11] Kesten, Y., Z. Manna, H. McGuire and A. Pnueli, A decision algorithm for full propositional temporal
logic, in: CAV, 1993, pp. 97–109.

[12] Ligatti, J., L. Bauer and D. Walker, Edit automata: enforcement mechanisms for run-time security
policies, Int. J. of Information Security (2003).

[13] Necula, G. C., Proof-carrying code, in: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1997.

[14] Schneider, F. B., Enforceable security policies, ACM Transactions on Information and System Security
3 (2000), pp. 30–50.

[15] Sekar, R., V. Venkatakrishnan, S. Basu, S. Bhatkar and D. C. DuVarney, Model-carrying code: a
practical approach for safe execution of untrusted applications, ACM SIGOPS Operating Systems
Review (2003).

[16] Zobel, A., C. Simoni, D. Piazza, X. Nuez and D. Rodriguez, Business case and security requirements,
Public Deliverable D5.1.1, S3MS, http://s3ms.org (2006).

12

Aktug and Naliuka

Appendix: ConSpec Features for Different Tasks

As extensions to the current language ConSpec, introducing object reference and
list types as security state types emerge as beneficial features considering real-
life policies. The list type makes simple iteration meaningful to include in the
update language, to enable, for instance, updating all elements of a list. The update
language then can be extended with a simple construct that iterates over flat lists.
Extensions to the language should be considered thoroughly, as these may introduce
undecidability of various tasks identified in our framework. Here we provide a table
that shows which extensions to the language can be handled by the various tasks
in the framework. The constructs of ConSpec are specified in the rows of the tables
below, whereas the activities are specified in the columns.

Construct Static
analysis

Monitoring Matching

Policy scope

Scope object + + +

Scope session + + +

Scope multi session - + +

Scope global - + +

State declaration

Bounded integers - + +

Bounded strings - + +

Booleans + + +

Object ref. - + -

Lists (of the above) - + -

Unbounded versions the above types - + -

Command

Local variable declaration - + -

Assignment + + +

Conditional branch - + -

For-loop - + -

13

