Fast Neighbor Joining

Isaac Elias and Jens Lagergren

Dept. of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden
{isaac, jensl}@nada.kth.se

Abstract. Reconstructing the evolutionary history of a set of species is
a fundamental problem in biology and methods for solving this problem
are gaged based on two characteristics: accuracy and efficiency. Neighbor
Joining (NJ) is a so-called distance-based method that, thanks to its good
accuracy and speed, has been embraced by the phylogeny community.
It takes the distances between n taxa and produces in ©(n®) time a
phylogenetic tree, i.e., a tree which aims to describe the evolutionary
history of the taxa. In addition to performing well in practice, the NJ
algorithm has optimal reconstruction radius.

The contribution of this paper is twofold: (1) we present an algorithm
called Fast Neighbor Joining (FNJ) with optimal reconstruction radius
and optimal run time complexity O(n?) and (2) we present a greatly
simplified proof for the correctness of NJ. Initial experiments show that
FNJ in practice has almost the same accuracy as NJ, indicating that the
property of optimal reconstruction radius has great importance to their
good performance. Moreover, we show how improved running time can
be achieved for computing the so-called correction formulas.

1 Introduction

The evolutionary history of a set of species is a central concept in biology that
is commonly described by a phylogenetic tree. Frequently it is the case that the
phylogenetic tree is unknown and the only information available are the genetic
sequences from the extant species, i.e., currently living species. It is therefore
a fundamental problem to reconstruct the phylogenetic tree given genetic se-
quences. Several reconstruction methods have been suggested, and it is natural
to compare these based on how accurate they are in reconstructing the correct
phylogeny. Unfortunately though, of these methods the more accurate are much
too slow to be used in studies that involve reconstructing large or many phylo-
genies. The focus of this paper is to build an algorithm that is accurate and has
quadratic running time in the number of species.

As more genetic information is collected it becomes possible to answer more
complex questions. An obvious question that involves reconstructing a large
phylogeny is to relate all living species in the tree of life. Another very central
question is to relate large sets of genes and from such phylogenies draw conclusion
about their function and origin. However, reconstruction of large phylogenies is

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1263-1274, 2005.
© Springer-Verlag Berlin Heidelberg 2005

1264 1. Elias and J. Lagergren

not the only case in which efficient reconstruction is necessary. There are other
cases that involve many reconstructions, e.g., studies where phylogenies are built
for each gene shared by a set of species. The common technique of bootstrapping
also requires many reconstructions in order to obtain significance values for a
single phylogeny.

Throughout the paper, phylogenetic trees are leaf-labeled binary trees with
edge lengths. Thus each phylogenetic tree T naturally induces an additive leaf-to-
leaf distance function Dp. The reconstruction methods for which most complex-
ity results have been shown are the so-called distance methods. These algorithms
take as input an estimated distance function D (normally computed from the
genomic sequences) and construct a phylogeny whose additive distance function
is close to D. The problem of finding the closest additive distance function under
the infinity norm is known to be NP-hard [1].

The Neighbor Joining (NJ) algorithm is a distance method introduced by
Saitou and Nei in [15]. As shown in [8], when NJ is given an additive distance
function Dy, it reconstructs the unique tree T'. However, as Atteson [2] proved
NJ reconstructs the closest tree for even more cases. A distance function D is
nearly additive if there is an additive distance function D such that

|D — Drloe < (T)/2, (1)

where (T') is the minimum edge length in 7. All the additive distance functions
for which Equation 1 holds have the same topology, i.e., disregarding the edge
lengths, T" is the unique tree for which the equation holds. The NJ algorithm
has optimal reconstruction radius in the sense that: (a) given a nearly additive
distance function it reconstructs the unique tree T and (b) there can be more
than one tree for which |D — Dr| < 6 holds if § > u(T)/2. In practice most
distances are far from being nearly additive. Thus, although important, optimal
reconstruction radius is not sufficient for an algorithm to be useful in practice.

The estimated distances that are given as input to distance methods are
normally deduced from genomic sequences and a probabilistic model. There are
various Markov models of sequence evolution which describe how sites evolve
independently and identically from the root down toward the leafs. Many of these
models have an associated closed correction formula for inverting the model and
giving an estimated evolutionary distance for a pair of sequences. These formulas
are consistent in the sense that the estimated distance approaches the underlying
additive distance as the sequence length approaches infinity. As a result, the NJ
algorithm is a consistent method for recovering the correct phylogeny, i.e., NJ
reconstructs the correct phylogeny given infinitely long sequences.

An interesting line of research is to design fast-converging algorithms, i.e.,
algorithms that reconstruct the correct phylogeny from sequences whose length
is polynomial in the number of sequences [7,9,12,5]. However, except from the
Disc-Covering Method (DCM) [9, 12] these algorithms have had little or no prac-
tical impact. The only variation of DCM that is fast-converging and of practical
interest uses NJ to construct small sub-phylogenies that are later patched to-
gether into one larger phylogeny, i.e., NJ is used as a subroutine.

Fast Neighbor Joining 1265

Although the NJ algorithm is not fast-converging, it has in experimental
studies been shown to perform very well [13]. Moreover, with O(n?) as the worst
case running time it has become the reconstruction algorithm that is most fre-
quently used in practice. Heuristic implementations of NJ have been given which,
without leading to better worst case analysis of the time complexity, in practice
show improved running time [3,17].

There are two major contributions in this paper: (1) we present an algorithm
called Fast Neighbor Joining (FNJ) with optimal reconstruction radius and op-
timal run time complexity O(n?) and (2) we present a greatly simplified proof
for the correctness of the NJ algorithm. Initial experiments show that the FNJ
algorithm in practice has almost the same accuracy as the NJ algorithm; this
indicates that it is the optimal reconstruction radius and other similarities with
NJ that give FNJ its good performance. We also describe how a better running
time for computing the correction formulas can be achieved, in theory, through
matrix multiplication and, in practice, through table lookups.

The FNJ algorithm is useful in its own right. But it is also important to note
that FNJ together with the proof of optimal reconstruction radius presents a
good foundation for building reconstruction algorithms that are both practically
useful and fast-converging. For example the running time of DCM can be im-
proved by a factor O(n) by simply replacing NJ with FNJ. It will be interesting
to see how the running time of extensions of NJ, such as Weighbor and BioNJ,
can be improved using our ideas.

The paper is organized as follows. The next section contains some basic defi-
nitions and a description of the NJ algorithm. In Section 3, the FNJ algorithm is
introduced. Subsequently we give the proof of the FNJ algorithm and also a more
economical and intuitively appealing proof of Atteson’s theorem. Finally, in Sec-
tion 7, we approach the practical problem of computing the correction formulas
and also show that the FNJ algorithm in practice performs almost exactly as good
as the NJ algorithm. Except for Lemma 1 below, which in [2] (Lemma 12) is proved
by straightforward algebraic verification, the present paper is self-contained.

2 Definitions and the Neighbor Joining Algorithm

A nxn distance function D, for a set of taxa N'(D), is a function N'(D)? — R*,
where |[N'(D)| = n, which is symmetric and satisfies D(z,z) = 0 for every z €
N (D). For two distance functions D; and Dy such that N(D1) = N(D3) = N,
their distance is defined as max, yen |Di(x,y) — Do(z,y)| and denoted |D; —
Ds|oo- By a phylogenetic tree we mean a tree T given together with an edge
length function i : E(T) — R™. For a phylogenetic tree T, u(T) denotes the
minimum edge length of T', i.e., mingcp(7) I(e). The unique path in a tree T
between two of its vertices u and v is denoted Pr(u,v). Every phylogenetic tree
T induces a distance function for the leafs in the tree, i.e., Dy : L(T)? — R*
where Dr(a,b) £ Deepp(an) LE)-

A distance function D is additive if there is a phylogenetic tree T such that
D = Drp; the tree is said to realize D, it is unique, and it is denoted T'(D). A

1266 1. Elias and J. Lagergren

distance function D is nearly additive if there is a phylogenetic tree T such that
|D — Drloo < u(T)/2; again, the tree is said to realize D, it is unique, and it is
denoted T'(D) [2]. The parent of a leaf a in a tree T is the unique neighbor of a
in T. A pair of leaves of a tree T are siblings if they have the same parent in T’
(note only leaf-siblings).

The NJ algorithm builds a tree by iteratively combining pairs of taxa. It takes
as input a distance function D for n taxa and attempts to identify two siblings
by selecting the pair of taxa (a,b) that minimizes the NJ function, defined by

SD(xay> £ (lN(D)| - 2) : D(.Z‘,y) - Z (D(Z,.Z‘) +D(Z7y)) (2)
2N (D)

Thereafter the pair (a,b) is reduced to a a new node ¢, representing the parent,
which gives a new distance function D’ with (D) = (NM(D) \ {a,b}) U {c}
defined by

D(z,y), if ¢ ¢ {7, y}

D' £
(z,y) { D—(zva);“D(z’b)’ otherwise z € {x,y} \ {c}. (3)

Finally the algorithm is applied iteratively on the new distance function D’. A
formal description of the NJ algorithm is given below.

Algorithm NJ(D,)

1. For each i «— 1 ton —3 do
(a) (a,b;) < argming_yen(p,)So; (7, Y)
(b) Reduce a; and b; to a new node ¢; and let D;y1 be the new distance
function given by the reduction in Equation 3.
(c) Connect a; and b; to ¢; by adding edges (a;, ¢;) and (b;, ¢;).
2. Connect the three nodes of N(D,,_3) in a star and return the resulting
tree.

Theorem 1 (Atteson’s Theorem). Given a nearly additive distance function
D NJ outputs T(D). Moreover, in each iteration i, D; is nearly additive and

T(D;) =T(D;i—1) \ {ai—1,bi—1}.

In Section 3, we will show the analogous theorem for the FNJ algorithm,
by showing that for nearly additive distance functions it gives exactly the same
output as NJ. In Section 5, we give a proof of Atteson’s theorem above.

3 The Fast Neighbor Joining Algorithm

In Step la of the NJ algorithm and for ¢ < n/2, the minimum is taken over
2(n?) pairs which implies a running time of £2(n?). In the FNJ algorithm an
O(n?) running time is obtained by using two ideas. First, the minimum is taken

Fast Neighbor Joining 1267

over a set, called the visible set, of cardinality O(n). Second, using the auxiliary
function R, introduced below, the updated NJ function can be computed in
constant time. It should be noted that the resulting trees of NJ and FNJ are
only guaranteed to be the same if the input is nearly additive.

A pair (a,b) is visible from a w.r.t. a distance function D if

b= argminmeN(D)\{a}SD(a, at)

A pair (a,b) is wvisible w.r.t. D if it is visible from either a or b. Hence the
number of visible pairs is O(n). In the next section it is shown that for each
nearly additive distance function D, any sibling pair in T'(D) is visible w.r.t. D.
To enable an overall O(n?) running time, the NJ function is computed using
an auxiliary function R defined by Rp(a) = > zen(py Dla,z), ie., Ris the row
sums. It is straightforward to verify that for a D’ defined as in Equation 3,
D(z,a) + D(x,b)

Rp/(z) = Rp(z) — . . (4)

Hence, given Rp it is possible to compute the updated row sums Rp/ in time
O(n). Moreover, since Sp(z,y) = (|N(D)| — 2) - D(z,y) — Rp(x) — Rp(y), the
NJ function can be computed in constant time, for any given pair (z,y).

It should be clear, from the formal description below that the FNJ algorithm
runs in time O(n?). Note that the input actually has size £2(n?).

Algorithm FNJ(D,)

1. The first visible set V; is initialized to the set of pairs visible w.r.t. Dy.
2. For each a € N (D), Rp, (a) is initialized to > zen(py) D1(a,).
3. For each it +— 1 ton —3 do
(a) (a;,b;) < argming, ,yey, Sp, (2, y)
(b) Reduce a; and b; to a new node ¢; and let D;y1 be the new distance
function given by the reduction in Equation 3.
(c) Connect a; and b; to ¢; by adding edges (a;, ¢;) and (b;, ¢;).
(d) Compute Rp,_, .
(e) Viz1 — Wi\ {(z,y) : x = a; or x = b;}) U{(c;,d)} where (c;,d) is the
pair visible from ¢; w.r.t. D;yq.
4. Connect the three nodes of N(D,,_3) in a star and return the resulting
tree.

4 Correctness of FINJ

According to Theorem 1, given a nearly additive distance function D, NJ outputs
T(D), i.e., it outputs the unique tree that is close to D. Here we prove that FNJ
has the same property. Since NJ constructs the correct tree, we know that in
each iteration the minimum pair over the NJ function is a sibling pair in T'(D;).

1268 1. Elias and J. Lagergren

Hence, to prove the correctness of FNJ, it suffices to show that in each iteration
the minimum pair is in the visible set, V;. The proof is in two steps; first the
Visibility lemma is presented. According to this, if @ has a sibling b in T'(D), then
(a,b) is in the visible set. Second, in Theorem 2, the Visibility lemma together
with the correctness of NJ is used to prove the correctness of FNJ.

Before we proceed to prove the Visibility lemma, we state an observation
and a lemma which in Atteson [2] are proved through straightforward algebraic
verification. For any tree T, edge e of T', and leaf a of T', let L1 (a, e) denote the
set of leaves of T' belonging to the same connected component of T'\ {e} as a.

Observation 1 (Atteson). If Dr is an additive distance function, then,

Spr(a,b) = Z we(a,b) l(e), where
ecE(T)
-2 if e € E(Pr(a,b))
we(a,b) = {—2|L(T) \ Lr(a,e)| otherwz'se.T

Lemma 1 (Atteson, Lemma 12). Let Dy and D be two n-domain distance
functions such that D is additive and D is nearly additive w.r.t. Dp. For any
a,b,z,y € N(D), the value of Sp(a,b) — Sp,(a,b) + Sp,(z,y) — Sp(z,y) is

o {3 =Hu(T) if {a, b} 0 {z,y} =0
—2(n = 3)u(T) if {a, b} N {z, y}| = 1.

Lemma 2 (The Visibility Lemma). Let Dy and D be two n-domain distance
functions such that Dt is additive and D is nearly additive w.r.t. Dr. If a has
a sibling b in T, then (a,b) is visible from a w.r.t. D, i.e.,

b = argmin,e (py\ {a}Sp(a,).

Proof. As in Figure 1, let ¢ € N (D) \ {a,b} and let e, €5, and e, be the edges
of T incident with a, b, and ¢, respectively. Moreover, let e be the edge incident
with the parent of a and b which is not incident with either a or b. Consider Dy,
by definition of the weights in Observation 1 the following is true

(i) wyi(a,b) = —-2=wy(a,c) for any f € {eq,ep, €.},
(i) wplab) < —3<wplac) forany f € E(Pr(a,)\ {ew ech,
(i) wy(a,b) =wys(a,c) for any f € E(T)\ E(Pr(a,c)).

Moreover, since we(a, b) = —2(n—2) and we(a, ¢) = —2, it follows that Sp, (a, ¢)—
Spr(a,b) > 2(n — 3)u(T). Finally, by Lemma 1,

Sp(a,c) — Sp(a,b) =

Spla,c) — Sp,(a,c) + Spy(a,b) — Sp(a,b) + Sp,(a,¢) — Sp,(a,b) >0. O

>—2(n—3)u(T) >2(n—3)u(T)

Fast Neighbor Joining 1269

We are now ready to prove that given a nearly additive distance function
D, FNJ in each iteration selects the same sibling pair as NJ, i.e., FNJ outputs
T(D). By Atteson’s theorem NJ outputs T (D) by in each iteration reducing a
pair of siblings such that T'(D;) = T(D;—1) \ {@i—1,bi—1}. Since FNJ uses the
same reduction as NJ it is sufficient to show that all sibling pairs are in the
visible set. In the next section, we give a short and intuitively appealing proof
of Atteson’s theorem, which together with the Visibility lemma gives a direct
proof of the theorem below.

Theorem 2. Given a nearly additive distance function D, FNJ outputs T'(D).

Proof. We prove by induction that, for each i = 1,...,n — 3, V; contains all
sibling pairs of T'(D;) (here D; = D). By the Visibility lemma it is clear that the
statement is true for 4 = 1. Assume that the statement holds for eachi =1,..., 7.

By the correctness of NJ, if (a;, b;) is the minimum over the NJ function, then
(a;,b;) is a sibling pair T(D;). Therefore, by the induction assumption, (a;,b;)
is in V;. Consequently, since the minimum over the NJ function is a sibling pair,
FNJ and NJ select the same sibling pair in iteration j.

After reducing (aj,b;) to ¢;, by the Visibility lemma, if ¢; has a sibling d in
T(Dj41), then in Step 3e (¢;,d) is added to V,11. Moreover, by the assumption,
all other sibling pairs of T'(D;4+1) are in V; and therefore also in V1. Hence,
by induction and the correctness of NJ, FNJ outputs T'(D). ad

5 Atteson’s Theorem - Correctness of NJ

The proof of Atteson’s theorem is in two steps. The first step consists of the key
technical lemma below, of which we give a much more concise and direct proof.
The central idea in this proof, is to show that for any additive distance function
the difference is large between the value of NJ function applied to a sibling pair,
and applied to a pair of leaves which are not siblings. In fact, the difference is so
large that even when the distance function is nearly additive the NJ function is
minimized by a sibling pair. The final step in proving Atteson’s theorem consists
of showing that the distance function, after a reduction, remains nearly additive.

Lemma 3. If D is a nearly additive distance function, a,b € N(D), and
Sp(a,b) = ming_,yepn(p) Sp(x,y), then (a,b) is a sibling pair in T = T(D).

Proof. According to the Visibility lemma, if a has a sibling b then Sp(a,b) <
Sp(a,x) for any « # b. Hence, the lemma follows if for any two leaves, z and
y, of which none has a sibling in 7', there exists a sibling pair (a,b), such that
Sp(z,y) — Sp(a,b) > 0. Let Dy be an additive distance function such that
|D — Dr| < p(T')/2. Notice that

Sp(z,y) — Sp(a,b)

= SD(QL',y) - SDT(x7y) + SDT(avb) - SD(a’b) + SDT('T7y) - SDT(a7b)

1270 I. Elias and J. Lagergren

Fig. 1. To the left the figure for the Visibility lemma. To the right the figure for
Lemma 3

> —3(7’L - 4):”(T) + SDT (‘Tv y) - SDT (av b)7
where the inequality follows by Lemma 1. We proceed by showing that Sp,. (z, y)—
Spr(a,b) > 3(n —4)u(T).

In T let 2’ and y’ be the unique neighbors of = and y, respectively (see
Figure 1). Further, let 7% and TY be the subtrees of T\ Pr(a’,y’) containing
x and y, respectively. W.lo.g., assume that |L(T*)| < |L(TY)|, and hence that
|L(T*)| < n/2. Let e be the edge of Pr(x’,y’) incident to z’. Since neither z
nor y has a sibling, both T and 7Y contain a sibling pair of T". Let a and b be
siblings in 7%, and let f be the edge incident with their parent but not a and
not b.

First note that wg(a,b) < wy(x,y) for any g € E(T)\ {e, f}. The only edges
for which the latter inequality is non-trivial are those of Pr(a,x’); for those the
inequality follows from the assumption that |L(T®)| < n/2. Using the definition
of weights, it is straightforward to verify that we(a,b) = —2|L(T)\ L(T*)| > —n
while we(z,y) = —2, and that wy(a,b) = —2(n — 2) while wy(z,y) = —4. It
follows that

SDT(‘r7y) - SDT<a’b) > (—2—-4+n+ 2(” - 2)):“’(T)
— (30— 10)u(T)
> 3(n — 4)u(T). 0

(Proof Theorem 1). The proof is by induction. First note that the theorem
holds when |[N(D)| = 3. Assume that the theorem holds when |N(D)| =n — 1.
We now prove that it holds for |V (D)| = n.

Since D is nearly additive, by the lemma above, NJ in the first iteration
reduces a pair (a, b) that are siblings in T'= T'(D) to a new node ¢, representing
their parent. Denote the distance function after the reduction by D’. We need
to prove that D’ is nearly additive and that T(D’) = T \ {a, b}.

Let S be the tree T'\ {a,b} with the edge length function defined as follows:

ls(u,v) = lp(u,v)

for all u,v € V(S)\ {c}, and

Fast Neighbor Joining 1271

l lr(e,b
ZS(C,CI) A ZT(Q C/) + T(c7a)_2|' T(c7)
for the unique neighbor ¢’ of ¢ in S. It should be clear that u(T) < p(S).

We now show that |D’ — Dg| < u(S)/2, i.e., that T(D') = S = T\ {a,b}.
From this, the theorem follows immediately. For u,v € L(S) \ {c
w(T)

|D'(u,v) — Dg(u,v)| = |D(u,v) — Dr(u,v))| < —5 < %

b
I

For all uw € L(S),

|D'(u, ¢) — Ds(u,c)|

_ D(u,a)+ D(u,b) —Ds(u,c/) —ls(c/,C)‘

2
— D(uva) ;f_ D(uvb) o DT(’LL, Cl) _ lT(C/,C) o lT(Cv a) ;_ZT(C’ b)
< D(u,a) ;DT(u,a) n D(u,b) ;DT(U, b) ‘
< D(u,a) —QDT(u,a) ‘ N ‘D(u, b) —QDT(u, b) ‘
w(T) (™) _ (1) _ pl(S)
ST4 i T S B

6 Improved Computations of Correction Formulas

As was mentioned in the introduction, the real input to a reconstruction problem
is usually n sequences of length . The assumption is that these sequences have
evolved from an original ancestor sequence down the branches of the phylogeny,
according to a model of sequence evolution. The distance method approach, to
the reconstruction problem, is to first use the sequences to estimate the actual
distances between every pair of leaves, and thereafter find a phylogeny that fits
the estimated distances. That is, from the n sequences of length [, an n x n
distance function is computed through a correction formula. This formula is
dependent on the model assumed to have generated the sequences; the most
common models are Jukes-Cantor (JC) [10] and Kimura 2-parameter (K2P)
[11]. Most correction formulas are in a sense functions of the hamming distance,
e.g., the JC correction formula is given by

4. H(S1,82))
3l ’

where H is the hamming distance. Clearly, the straightforward way of computing
this function takes O(l) time, and as a result the overall running time of com-
puting all estimated distances is O(In?). Since [typically is larger than n, the
computation of the correction formula is the bottleneck in fast reconstruction
algorithms.

JC(s1,82) = —% -log (1 -

1272 1. Elias and J. Lagergren

Computing all n? pairwise hamming distances for n strings is a special case
of matrix multiplication, and can therefore be done in O(In'-37) time [4]. The
reduction for strings from the alphabet {A,C,G, T}, is by representing each
string by a row in the matrix M, and code each symbol by the unary code, e.g., by
letting A = 1000. Thereby, the elements in the matrix MM7T are | — H(s;, s;). It
should be noted that the general belief is that matrix multiplication can be done
in O(In) time, which would imply that the correction formulas can be computed
in optimal time. Unfortunately, all existing matrix multiplication algorithms are
slow in practice.

Below we present an algorithm that improved the computations of the cor-
rection formula by more than a factor of 3, compared to the straightforward
approach. The idea is to first represent each symbol by 2 bits, and then use a
precomputed table with 22¢ entries to look up the distance for k symbols at a
time. In our tests, k = 7 resulted in the best running time.

1. Code the symbols of the sequences as follows: A = 00, C = 01, G = 10,
T=11.
2. For each pair of compacted strings ¢; and c;
(a) Compute the xor X;; = ¢; P c;.
(b) Read 2k bits of X;; at a time and use the table to look up the distance
for the associated k symbols.

7 Experiments

In this paper it has been shown that both NJ and FNJ have optimal recon-
struction radius. However, there are many distance matrices that are not nearly
additive and for which both algorithms reconstruct the closest tree. And for yet
more matrices the algorithms fail to reconstruct the tree, but they do not fail
by much. Therefore, it is of major interest to know how well the two algorithms
perform in practice.

Several studies have been made on the accuracy of different reconstruction
algorithms, the most notable work being that by Nakhleh et al. [13]. In that
paper, four different methods are examined: NJ, DCM-NJ+MP, Weighbor, and
Greedy Parsimony. And it is noted that the NJ algorithm, because of its speed,
is the method of choice when the input data are accurate, i.e., when the sequence
length is large and the corrected distances are close to additive. In this section,
we replicate some of the experiments and show that although the NJ algorithm
perform slightly better than the FNJ algorithm, when the input data are accurate
the performance is in fact close to the same.

The test data were produced in the same way as in [13]. First, the model
trees were generated through a random birth-death process using the r8s[16]
software package. These trees where then made non-ultrametric, i.e., root to leaf
paths where made to vary in length, by multiplying the edge lengths with a

Fast Neighbor Joining 1273

NJ vs. FNJ for 400 leafs

N ——
FNJ oo |

| Algo.| Time (min) | Avg. RF (%)
1 FNJ 4 10.5
1 NJ 52 10.1
1 GME 26 14.1

Avg. RF rate

o 200 400 600 800 1000 1200 1400 1600 1800 2000
Sequence length

Fig. 2. Left: Trees with 400 taxa. Right: Comparing the running time for 10 trees of
4000 taxa

random number in different intervals'. Subsequently, sequence data was gener-
ated according to the JC model using the Seq-Gen[14] program. The JC correc-
tion formula was then applied to get the distances, and for saturated data a fix
factor of 1 was used.

To measure the accuracy we used the normalized Robinson-Foulds (RF) dis-
tance between the model tree and the tree given by the method. To get sta-
tistically robust results we performed 20 runs on each test size, and computed
the average RF rate and standard deviation. In Figure 2, to the left, we plot
the average RF rate as a function of the sequence length for trees with 400
taxa. Notice that both methods converge to the true tree as the sequence length
increases, and that for accurate data the methods perform almost the same.
For these experiments the standard deviation varied between 1-4% except for
sequences of length 50. Many more experiments have been performed and the
same pattern emerges there too but due to space limitations these data have
been omitted.

7.1 Comparison with GME

In Desper et al. [6], an O(n?) algorithm called GME is introduced that, although
it does not have optimal reconstruction radius, in practice it has acceptable
accuracy. However, as is clearly shown in Figure 2, for 10 trees of 4000 taxa
each, FNJ outperforms both GME and NJ. When accuracy is concerned the
best algorithm is NJ, tightly followed by FNJ. In addition to GME, Desper
et al. present a clever nearest neighbor interchange (NNI) algorithm, that in
many cases improves the accuracy of reconstruction algorithms. It is therefore
reasonable to believe that FNJ in conjunction with NNI would be a very fast
and accurate combination.

! Following [13] we used ultrametric deviation 4 and generated sequences with diam-
eter factors 0.05, 0.10, 0.25, and 0.5. E.g. diameter factor 0.25 yields the interval
[1/16,1]

1274 1. Elias and J. Lagergren

Acknowledgments

We would like to thank Luay Nakhleh and Tandy Warnow for discussions on
experimental studies of the NJ algorithm and for helping us replicate their ex-
periments. We are also grateful to Johan Hastad for valuable comments and
ideas.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the ap-
proximability of numerical taxonomy (fitting distances by tree metrics). SICOMP,
28(3):1073-1085, 1999.

. K. Atteson. The performance of neighbor-joining methods of phylogenetic recon-

struction. Algorithmica, 25, 1999.

G.S. Brodal, R. Fagerberg, T. Mailund, C.N. Pedersen, and D. Phillips. Speeding
up neighbour-joining tree construction. Technical Report ALCOMFT-TR-03-102,
2003.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. In STOC ’87, pages 1-6, 1987.

M. Cstirés. Fast recovery of evolutionary trees with thousands of nodes. In
RECOMB-01, pages 104-113, 2001.

R. Desper and 0. Gascuel. Fast and accurate phylogeny reconstruction algorithms
based on the minimum-evolution principle. Journal of Computational Biology,
19(5):687-705, 2002.

P.L. Erdos, M.A. Steel, L.A. Szekely, and T.J. Warnow. A few logs suffice to build
(almost) all trees (I). RSA: Random Structures & Algorithms, 14:153-184, 1999.
O. Gascuel. Concerning the NJ algorithm and its unweighted version, UNJ. Amer-
ican Mathematical Society, pages 149-170, 1997.

D.H. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging
method for phylogenetic tree reconstruction. Journal of Computational Biology,
6(3/4):369-386, 1999.

T.H. Jukes and C.R. Cantor. Evolution of protein molecules. Mammalian Protein
Metabolism, pages 21-132, 1969.

M. Kimura. A simple model for estimating evolutionary rates of base substitu-
tions through comparative studies of nucleotide sequences. Journal of Molecular
Evolution, 16:111-120, 1980.

J. Lagergren. Combining polynomial running time and fast convergence for the
disk-covering method. JCSS: Journal of Computer and System Sciences, 65, 2002.
L. Nakhleh, B.M.E. Moret, K. St John, J. Sun, U. Roshan, and T. Warnow. The
accuracy of fast phylogenetic methods for large datasets. PSB-02, pages 211-222,
2002.

A. Rambaut and N.C. Grassly. Seq-gen: An application for the monte carlo sim-
ulation of dna sequence evolution along phylogenetic trees. Comp. Appl. Biosci.,
13:235-238, 1997.

N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4:406-425, 1987.

M. Sanderson. r8s software package. http://ginger.ucdavis.edu/r8s/.

CN. Pedersen T. Mailund. Quickjoin—fast neighbour-joining tree reconstruction.
Bioinformatics, 2004.

	Introduction
	Definitions and the Neighbor Joining Algorithm
	The Fast Neighbor Joining Algorithm
	Correctness of FNJ
	Atteson's Theorem - Correctness of NJ
	Improved Computations of Correction Formulas
	Experiments
	Comparison with GME

