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Tree Reconstruction Problem

Tree T Additive Metric
a DT(Q?’ y) - Zeépath(x,y) l(e)
d\l 3 y a b ¢ d
/1 1\ a|0 3 6 ©6
C b Dr = b 0O 5 5
C 0 2
d 0
Input A non-additive metric D.
a b ¢ d
Output Tree S, without edge D - Z 0 3 451 0
lengths, that is closest to D, o °
C 0 1
d 0

minpg |[Dg — D|oo.




The Mighty Error Correcting Code

1. G*d is sending us the message 7T'.

2. He has written down D,

3. D7 changes atmost r. Dy~ D = |Dr— Do <7

4. Find the closest tree S. Ds = argmmDS\DS ~ Dl

How big can r be such that T'=5 7



Optimal Reconstruction Radius [Atteson]

(1) = shortest edge length in 7.
1. 1f r < “I) then § = T (D is nearly additive).

2. If r > @ then it can be that S # T.

No algorithm can have reconstruction radius > @



Upper Bound on Reconstruction Radius [Atteson]

Tree T Input distances D Tree S
d a d\ 2
d I a
> < /2 I
C b
/2
c b av

| D1 — Dloo = p/2 | Ds — D|oo = p1/2



NJ and FNJ has Optimal Reconstruction Radius

(1) = shortest edge length in 7.

1. 1f r < “I) then § = T (D is nearly additive).

2. If r > “<2T) then it can be that S # T.

No algorithm can have reconstruction radius > @

Time Radius  Our contribution
NJ O(TLS) @ simplify the proof
FNJ 0(77,2) @ new fast algorithm



Iterative Clustering

Unresolved




Iterative Clustering

Cluster - find two siblings




Iterative Clustering

Reduce - replace by parent




Iterative Clustering

Cluster and Reduce




Iterative Clustering

Cluster and Reduce




Iterative Clustering

Three leafs




Iterative Clustering

Resolved




Neighbor Joining [Saitou,Nei]
Clustering - O(n?)

(a,b) is the pair minimizing

d d

b—‘\/
f
é//] SD(xvy) = (n—2)D(z,y) — > ,(D(2,z) + D(z,9))
e
d
p\/
f

c//le

Reduction - O(n)

Replace (a,b) by p

D(p, ZI?) iy D(a,x);D(b,x)

Total time (n-3) iterations - O(n?)



Fast Neighbor Joining

NJ FNJ
(aa b) < argmin g .) SD(xa y) (aa b) € argmin g )ev SD(xa y)
D(p, ZIZ‘) _ D(a,z)+D(b,x)

D(a,x)+D(b,x
: D(p,z) = ( )-2F( )

The minimal pair is selected from the visible set V' of size O(n).

Time Radius

NJ O<n3) p(T)

2

T)

=4

FNJ O(n?)



FNJ - Detailed

FNJ(D)
1. For each node a add (a,b) < agmin(q ) Sp(a,y) to V

2. Foreach 7+ 1ton—3do
(a) (a,b) < argmin, oy Sp(z,y)

(b) Reduce (a,b) — p using D(p,z) = (D(a,z) + D(b,x))/2

(c) Add (p,b) < argmin, .y Sp(p,y) to V
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The Proof

T
\DT—D\OO<¥ —  FNJ(D)=T

We prove by induction
1. (a,b) < argming, ey Sp(z,y) = (a,b) are siblings in T

2. After reducing a sibling pair (a,b) — p the matrix D is nearly additive to a tree
S=T\{a,b}.
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Reduction Correct

Tree T Tree S

‘D T DT‘OO < ,u(T)/Q

Reduction step Show that

a D(a,x) 4+ D(b, x)

9 ‘D_DS‘oo<:u(S)/2

D(p, )
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Proof Sketch

1. For each node a add (a, b) +— argmin(, ) Sp(a,y) to V Part 1
2. Foreach 7 «+— 1ton — 3 do
(a) (a,b) «— argmin(m,y)EVSD(mv Y) Part 2
(b) Reduce (a,b) — pusing D(p,x) = (D(a,x)+D(b,x))/2
(c) Add (p,b) < argmin, ,y Sp(p,y) to V Part 1

Part 1 If a has sibling b then (a,b) < argmin, ey Sp(a, z).
— V" contains all sibling pairs
Part 2 If (¢,d) is not a sibling pair = J(a,b) s.t. Sp(a,b) < Sp(c,d).

—> the minium over V is a sibling pair
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The Additive Case

| will only show the additive case,

FNJ(Dp) =T

15



The Additive Case

Dr(z,y) = Z [(e)

e€path(zx,y)

Sp(z,y) = (n —2)D(z,y) — X .(D(z,x) + D(z,y))

Soq(x,y) = Z We(x,y) l(€e), where

ecE(T)

B _9 if e € path(z, y)
We(z,y) = { —2|L(T)\ Lr(z,e)| otherwise.
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Part 1. The Additive Case (cont.)

SDT(QU, y) = Z we(X,y) l(e), where
ecE(T)
B _9 if e € path(z,y)
we(z,y) = { —2|L(T) \ Lr(x,e)| otherwise.
a

oC

SDT(CL, b)

6 leafs
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Part 1. The Additive Case (cont.)

Spp(x,y) = Z We(x,¥y) l(e), where
eeE(T)
B —2 if e € path(zx, y)
wel@,y) = { —2|L(T) \ Lr(z,e)| otherwise.

SDT(CL, b)

6 leafs
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Part 1. The Additive Case (cont.)

Spp(x,y) = Z We(x,¥y) l(e), where
eeE(T)
B —2 if e € path(zx, y)
wel@,y) = { —2|L(T) \ Lr(z,e)| otherwise.

a
SDT(CL, b) @ 77777 P -2 oC

6 leafs

Spr(a,c) —Sp.(a,b) > 2(n — 3)u(T)

16



Proof Sketch (cont.)

1. For each node a add (a, b) < argmin, ) Sp(a,y) to V
2. Foreachi?+ 1ton — 3 do

(a) (a,b) «— argmin(x’y)evSD(x, Y)
(b) Reduce (a,b) — pusing D(p,x) = (D(a,x)+D(b,x))/2
(c) Add (p, b) < argmin, ,y Sp(p,y) to V

Part 1

Part 2

Part 1

Part 1 If a has sibling b then (a,b) < argmin, ,ycy Sp(a, ).

—> V' contains all sibling pairs
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Proof Sketch (cont.)

1. For each node a add (a, b) < argmin, ) Sp(a,y) to V Part 1
2. Foreachi?+ 1ton — 3 do
(a) (a,b) « al"gmin(x,y)evSD(fEa Y) Part 2
(b) Reduce (a,b) — pusing D(p,x) = (D(a,x)+D(b,x))/2
(c) Add (p, b) < argmin, ,y Sp(p,y) to V Part 1

Part 2 If (¢,d) is not a sibling pair = J(a, b) s.t. Sp(a,b) < Sp(c,d).

—> the minium over V is a sibling pair
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Part 2. The Additive Case

If (c,d) is not a sibling pair = 3(a,b) s.t. Sp,(a,b) < Sp,(c,d).

n
< 5 leafs
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Part 2. The Additive Case

If (c,d) is not a sibling pair = 3(a,b) s.t. Sp,.(a,b) < Sp,(c,d).

SDT(CL, b)

a p < 5 leafs

SDT(C7 d) - SDT(av b) > 3(n - 4)M(T)

18



Theory vs. Practice



Theory vs. Practice

Many algorithms have good theoretical properties.

Quartet methods are better than NJ like methods in theory but not in practice.

Reconstruction Radius - the whole tree is guaranteed to be correctly
reconstructed.
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Theory vs. Practice

Many algorithms have good theoretical properties.

Quartet methods are better than NJ like methods in theory but not in practice.

Reconstruction Radius - the whole tree is guaranteed to be correctly
reconstructed.

Edge Radius - long edges that are guaranteed to be correctly reconstructed.
A method has edge radius « if it reconstructs all edges |D — Drp| < « - L.

E.g. o = 1/2 all edges which are longer than 2 - |D — Dy| are correctly reconstructed.
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Overview

Time Radius Edge Radius
NJ O(n?) % i
BioNJ O(n®) 5 i
FNJ O(n?) 5 .
ADDTREE | O(n?) 5 :
Buneman O(n?) 5 !
DLCA O(n?) 5 !
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Biological Background

1. Genomic sequences from unkown tree.

aagqgc
2. Assume probabilistic model of evolution. tgga /
3. Estimate pairwise distances. ttegt atcgc

4. Use pairwise distances to build tree.

DNA sequences — Estimated Distance Matrix — Tree

22



Biological Background

1. Genomic sequences from unkown tree.

aagqgc
2. Assume probabilistic model of evolution. tgga /
3. Estimate pairwise distances. ttegt atcgc

4. Use pairwise distances to build tree.

DNA sequences — Estimated Distance Matrix — Tree

Consistent long sequences — good estimates —— correct tree
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Estimation Accuracy

. Build random tree T'.

. Model sequence evolution in the tree.
. Compute distance matrix D from the sampled sequences.
. Compute tree NJ(D) =S

. Measure Robinson-Foulds distance between S and 7.
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Avg. RF rate
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Convergence Rate

How long sequences are need to with high probability reconstruct the
correct tree?

NJ requires exponentially long sequences.

We would like to have a method that reconstructs the tree from short
sequences!

25



Convergence Rate

How long sequences are need to with high probability reconstruct the
correct tree?

NJ requires exponentially long sequences.

We would like to have a method that reconstructs the tree from short
sequences!

DCM uses NJ as a subrutine and has polynomial convergence rate.
DCM+NJ has running time O(n?°).

DCM+FNJ has running time O(n%).
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Other Interesting Results

Daskalakis et al. Optimal Phylogenetic Reconstruction.

If the mutation probability p < 0.146 on all edges of the tree, then the tree can be
recovered from sequences of length O(logn). The algorithm reconstructs ancestral
sequences.

Mihaescu et al. Why netghbor-joining works.
NJ and FNJ reconstructs the correct tree if the input matrix is quartet consistent
and quartet additive. NJ and FNJ have edge-radius 1/4.

Gronau et al. Pivotal Neighbor Joining Algorithms for Inferrring Phylogenies
via LCA-Distances.

An O(n?) algorithm with edge-radius 1/2. The algorithm is also a 3-approximation
under L.
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Part 1. The Nearly Additive Case

D nearly additive distance matrix and (a, b) sibling pair then

Ve#b Sp(a,c) — Sp(a,b)

Sp(a,c)—Sp,(a,c) + Sp,(a,b) — Sp(a,b)

>

>

0

—SDT(CL, C) + SDT(CL, b)
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Part 1. The Nearly Additive Case

D nearly additive distance matrix and (a, b) sibling pair then

Ve#b Sp(a,c) — Sp(a,b)

Sp(a,c) — Sp,(a,c)+ Sp,(a,b) — Sp(a,b)

>

>

0

—2(n = 3)u(T)
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Part 1. The Nearly Additive Case

D nearly additive distance matrix and (a, b) sibling pair then

Ve#b Sp(a,c) — Sp(a,b) > 0

Sp(a,c) — Sp,(a,c)+ Sp,(a,b) — Sp(a,b) > —2(n—3)u(T)

Let D(i,7) — Dr(7,j) = €;; and bound the right hand side

SD(way) = (TL - Q)D(xay) - Z(D(Z,.ﬁlﬁ) + D(Zay))

A
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Part 1. The Nearly Additive Case

D nearly additive distance matrix and (a, b) sibling pair then

Ve#b Sp(a,c) — Sp(a,b) > 0

Sp(a,c) — Sp,(a,c)+ Sp,(a,b) — Sp(a,b) > —2(n—3)u(T)

Let D(i,7) — Dr(7,j) = €;; and bound the right hand side

(n - 2)(5(1,0 - 5a,b) - Z(ga,m + E€eom — €a,m — 5b,m)

m

> —(n—2)(n/2+ p/2) = > (/2 + 1/2) > =2(n — 3)u(T)

m

28



Part 2. The Nearly Additive Case

If D nearly additive and (¢, d) is not a sibling pair = J(a, b) s.t.

Sp(c,d) — Sp(a,b)

SD(C, d)-SDT(C, d) —+ SDT(a, b) — SD(CL, b)

>

>

0

_SDT<C7 d) + SDT(CL, b)
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Part 2. The Nearly Additive Case

If D nearly additive and (¢, d) is not a sibling pair = J(a, b) s.t.

Sp(c,d) — Sp(a,b) > 0

Sp(c,d) — Sp,(c,d) + Sp,(a,b) — Sp(a,b) > —=3(n—4)u(T)
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Part 2. The Nearly Additive Case

If D nearly additive and (¢, d) is not a sibling pair = J(a, b) s.t.

Sp(c,d) — Sp(a,b) > 0

Sp(c,d) — Sp,(c,d) + Sp,(a,b) — Sp(a,b) > —=3(n—4)u(T)

Let D(i,5) — Dr(i,7) = €;; and bound right hand side

(TL — 2)(€c,d - 5a,b) - Z(gc,m + Edom — €a,m — 5b,m)

m

> —(n—2)(n/241/2) = > (1/2+ p/2+ /2 + 1/2) > =3(n — 4)u(T)

m
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