Nada technical report: TRITA-NA-0316
Settling the Intractability of Multiple Alignment

Isaac Elias

Dept. of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden
isaac@nada.kth.se

Abstract. In this paper some of the most fundamental problems in computa-
tional biology are proved intractable. The following problems are shown NP-hard
for all binary or larger alphabets under all fixed metrics: MULTIPLE ALIGNMENT
with SP-score, STAR ALIGNMENT, and TREE ALIGNMENT (for a given phy-
logeny). Earlier these problems have only been shown intractable for sporadic
alphabets and distances, here the intractability is settled. Moreover, CONSENSUS
PATTERNS and SUBSTRING PARSIMONY are shown NP-hard.

The new cases for which intractability is established are of significant practical
interest. For example, these are core problems in areas such as protein structure
prediction, phylogeny, and gene regulation.

1 Introduction

Multiple sequence alignment is at the very core of many computational problems
in molecular biology. Different variations of multiple sequence alignment occur
in areas such as protein structure prediction, phylogeny (inference of evolution-
ary history among species), and localization of functionally important units in
biological sequences. As the field of bioinformatics grows these problems, and
several of their variations, become increasingly important. Although the results
in this paper are not surprising, the significance of the problems make the results
both interesting and important.

The evolutionary process is driven by mutation and natural selection. DNA
sequence similarity is therefore a good indication of common evolutionary origin
and function. With pairwise alignment two sequences are aligned while allowing
errors such as substitutions, insertions and deletions of symbols. The idea is
that these errors model the mutations occurring in DNA sequence replication.

Multiple alignment is the natural extension of pairwise alignment, and also a
much more powerful tool. Typically, when sequence similarity is weak, multiple
alignment may find similarities which pairwise alignments would not. However,
pairwise alignment is solvable in polynomial time and multiple alignment is
“not”.

Many scoring schemes have been suggested to measure the cost of a multi-
ple alignment. In this paper the focus is on the sum-of-pairs score (SP-score),
STAR ALIGNMENT, and TREE ALIGNMENT. The three scoring schemes are
in many aspects different and are therefore considered as separate problems.
There are numerous papers on practical applications of these problems, e.g.
[CWC92,AMS*97 BA86,SC83,AL89] to mention just a few.

2 MULTIPLE ALIGNMENT with SP-score is NP-hard

In [WJ94] Wang and Jiang gave a short NP-hardness proof for the SP-score
under a non-metric distance measure over a 4 symbol alphabet. This result was
then improved by Bonizzoni and Vedova [BV01], who showed that the problem is
NP-hard for the binary alphabet and a specific metric. The result was extended
further by Just [Jus01] to cover many metrics, and also under some non-metrics
the problem was proved APX-complete. However, all metrics were not covered
and in particular not the unit metric. We build on some of the ideas developed
by Bonizzoni and Vedova to show that the problem is intractable for all binary
or larger alphabets under any metric.

In [WJ94] STAR ALIGNMENT was proved to be APX-complete over a 7
symbol alphabet, however the symbol distance did not have the property of
identity nor that of triangle inequality. In [LMW99| Li et al. gave a PTAS and
an NP-hardness result under the unit metric for a version of STAR ALIGNMENT
in which there was a restriction on the number of gaps. Moreover, in [SP01]
the problem was proved NP-hard for a 6 symbol metric. Wang and Jiang also
proved that TREE ALIGNMENT is NP-hard for a specific metric over a 4 symbol
alphabet. Later in two companion papers [WJL96,WJGO1]| they gave a couple
of nice PTASs working for all metrics. In this paper both problems are proved
intractable for all binary or larger alphabets under any metric, thereby settling
the complexity! of TREE ALIGNMENT. We emphasize that hardness results for
non-metrics are easier to come by and that these do not cover the problems
considered in practice. Moreover, by considering metrics in general, this paper
covers most, if not all, variations occurring in practice.

Rather than finding a consensus for the strings as a whole it is sometimes
of biological interest to focus on the consensus of well conserved regions, e.g.
in gene regulation. A well conserved region in biological sequences relates to
a functionally important unit. CONSENSUS PATTERNS [PS00,BT02] and SuB-
STRING PARSIMONY [BST02| are natural formalizations of the problem of find-
ing the most conserved region. While our NP-hardness result for SUBSTRING
PARSIMONY is new, CONSENSUS PATTERNS has earlier been proved NP-hard
[LMWO01,BST02,Aku98| and WJ[1]-hard in [FGN02|. Nonetheless, since the con-
struction is similar to that of STAR ALIGNMENT, both proofs are given.

In the following section MULTIPLE ALIGNMENT with SP-score is first proved
to be NP-hard for the binary alphabet under the unit metric, at the end the con-
struction is extended to cover all metrics. In Sect. 3, STAR ALIGNMENT is proved
to be NP-hard for binary or larger alphabets under any metric. Thereafter, in
Sect. 4, we extend the construction to handle the structure of a tree, thereby
equivalently showing that TREE ALIGNMENT is NP-hard. Finally, in Sect. 5, the
NP-hardness proofs of CONSENSUS PATTERNS and SUBSTRING PARSIMONY are
given.

2 MULTIPLE ALIGNMENT with SP-score is NP-hard

In this paper a string is a sequence of symbols from an alphabet X, typically
Y ={0,1} . A pairwise alignment of two strings s; and sg is a 2 X [matrix

1 All problems considered in this paper have polynomially bounded optimal solutions and
therefore an FPTAS can not exist unless P=NP.

MULTIPLE ALIGNMENT with SP-score is NP-hard 3

A, where row one and two contain strings s; and so interleaved by spaces,
respectively. The spaces are represented by the symbol '—' ¢ 3. By the cost of
A we mean d4(s1,82) = 22:1 p(ri[é], r2[i]), where r1 and ro are the rows in A
and u a predefined metric for symbols from the extended alphabet X U{—}. We
call the least such cost, denoted d(s1, s2), the evolutionary distance.

The most simple of metrics, the unit metric, is the metric in
which all non-zero distances are exactly 1. The cost of the min-

. o Table 1.
imum pairwise alignment under the unit metric is also referred ol1l-
to as the edit distance for strings. The edit distance is simply 0[0[a|B
the minimum number of edit operations (substitutions, inser- 1]a|0]y
tions, and deletions) needed to transform one of the strings 1870

into the other. In Table 1 the metric for the extended binary
alphabet is depicted (the variables will reappear later).

Definition 1 (MULTIPLE ALIGNMENT with SP-score). A multiple align-
ment of a set S of k strings, is a k X | matriz A where row i contains string s;
interleaved by spaces. The SP-score (sum-of-pairs) for a multiple alignment is the
sum of all pairwise distances between rows in the alignment; Zle Ef:i da(si, s;)-
MULTIPLE ALIGNMENT with SP-score is the problem of finding a minimum
alignment under the SP-score.

The main theorem of this section is Theorem 1 which states that MULTIPLE
ALIGNMENT with SP-score is NP-hard under all metrics. However, to convey
the proof, a restricted case of the problem is shown NP-hard, Corollary 1. The
full proof which requires a more detailed analysis is given thereafter. Some of
the ideas in the construction® is by Bonizzoni and Vedova [BVO01].

Theorem 1. The decision version of MULTIPLE ALIGNMENT with SP-score is
NP-complete for the binary alphabet under each metric. (Proof on page 6)

Corollary 1. The decision version of MULTIPLE ALIGNMENT with SP-score
is NP-complete for the binary alphabet under the unit metric. (Proof on page 6)

First the reduction is presented and on page 6 its correctness is proved. The
reduction is from INDEPENDENT SET in 3-regular graphs: INDEPENDENT R3
SET. Let V = {v1,...,v,} be the vertices of the graph and F C {(v;,v;): 1<
i < j < n} the edges. From now on we reserve n for |V|, m for |E|, and ¢ for
the decision limit of the INDEPENDENT R3 SET instance.

Theorem 2. INDEPENDENT R3 SET is NP-hard.

Proof. In [PY91,BF95| INDEPENDENT SET is shown to be APX-complete even
for graphs with degree bounded by 3. This result is simply extended to 3-regular
graphs by joining vertices of degree 1 and 2 with gadgets as in Fig. 1. ad

! Bonizzoni and Vedova made a reduction from VERTEX COVER. Although they conjectured
that it could be improved to cover an ultra metric, they did not consider the unit metric
or, more importantly, metrics in general.

4 MULTIPLE ALIGNMENT with SP-score is NP-hard

-
Vertex of degree 1

Fig. 1. Gadgets for showing that INDEPENDENT R3 SET is NP-hard. Each gadget has a
maximal independent set of size exactly 2. In the picture a vertex of degree 1 is joined with
two gadgets.

The decision version of the MULTIPLE ALIGNMENT instance has a set of
strings § = 7T UP UC and a decision limit K. It will be shown that there is an
independent set of size ¢ if and only if there is an alignment of S of cost K.

Let b = 6nm?; a number chosen big enough to have a dominating effect in
the alignment. In S there are b template strings T, which force every optimum
alignment to have a canonical structure, illustrated in Table 2. All template
strings are identical to T' = (10°)"~*1. Since they are identical, they are also
aligned identically in every optimum alignment. In the canonical alignment the
1’s in column (b+ 1)(# — 1) 4+ 1 play the role of vertex v; in the graph. For this
reason we refer to the column as the i’th verter column.

In S there are also b = |P| identical pick strings P = 1°. For the same
reason as for the template strings, these are aligned identically. Moreover, in
any optimum alignment the 1’s in the pick strings are aligned in those columns
with the most 1’s, which are the vertex columns. Thus the pick strings pick ¢ of
the n vertices to be part of the independent set (in Table 2 vertex v9 is picked).

v1 v2 v3 Vg
ITI=b 1]0...0... |1o...0... [1]o...0... |1
Table 2. A canonical alignment for :
the complete graph with four ver- = 1100 1 0..-0.. |1/0.:.0... |1
tices. Since vy is the only vertex col- _
umn containing three 1’s from the :
constraint strings, the pick strings !
. c Cia 0[0...10...[1]0...0-.. 0[0...0... [0]0
are allgned to ple V2. C13 0... 1]0...0... 01/0...10 01]0...0... 0
C1a 00...10...]00...0... 0f0...0... |1]o
Cos 0... |0]0...0... [1]0...10...|00...0... |0
Coa 0... |0]0...0... [1]0...0... |00...10...]0
C3za 0... 0(0...0... 0 |0...0... 1(0...10.. 0
S~~~ S~~~
4n 0’s 4n 0’s

In § there are m constraint strings C, one for each edge. The constraint
string for edge (v;,v;) € E is the string

That is, Cj; has two 1’s and is 4n longer than the template strings (|Cj;| =
5n 4 b(n — 1)). The string C;; can be constructed from T by setting all but
the ¢’th and j’th vertex positions to 0, adding 4n 0’s to the beginning and end
and removing 4n 0’s from in between the i’th and j’th vertex position. This

MULTIPLE ALIGNMENT with SP-score is NP-hard 5

structure ensures that only one of the two 1’s can be aligned in its associated
vertex column. The 1 that is not aligned in its vertex column is not part of
the independent set. (In Table 2 vertex wv; is selected not to be part of the
independent set by both the alignment of rows Ci2 and Ci4.)

We now formally define the canononical alignment illustrated in Table 2.

Definition 2 (Canonical Alignment). A canonical alignment is an align-
ment in which; (1) the template strings are aligned identically, (2) the pick
strings are aligned identically and their 1’s are in verter columns, (3) each con-
straint string is aligned with the template strings so that 4n of its first or last
0’s are matched with spaces and the rest with symbols of the template strings.

We use d(7,P) to denote the sum of pairwise distances between rows (the
alignment matrix is implicit) associated with strings in 7 and P, i.e. d(T,P) =
S te7 pep d(t,). With this notation the total cost of the alignment is 5d(S, S).

Since § =T UP UC the cost of any alignment is

£A(S,8) = ZA(T,T) +A(T,P) +d(T,C) + 7d(P.P) + d(P,C) + 3(C.C).

Below we consider each pairwise distance to get the value of the decision limit
K. That is, K is chosen so that there is an alignment of cost K if and only if
there is an independent set of size c.
A1. d(7,7) =0 in any optimum alignment and in any canonical alignment.
A2. A(T,P) = (n —c+ b(n — 1))b? in any optimum alignment and in any
canonical alignment. All 0’s and n — ¢ 1’s are matched with spaces for each pair
of template and pick strings.
A3. d(T,C) > (4n + n)bm is the sum of minimum pairwise costs and also the
cost in any canonical alignment. One of the two 1’s in each constraint string is
aligned in its associated vertex column. Thus 4n 0’s are matched with spaces
and n 1’s are matched with O’s for each pair of template and constraint string.
A4. d(P,P) =0 in any optimum alignment and in any canonical alignment.
A5. d(P,C) > (5n + b(n — 1))bm — ¢3b gives a lower bound for all canonical
alignments. Remember, the graph is 3-regular and hence there can at most be
three 1’s from the constraint strings in the columns picked by the strings in
P. It is clear that if there is an independent set of size ¢ then there also is a
canonical alignment for which equality holds. Moreover, the minimum possible
cost of d(P,C) in any alignment is (5n + b(n — 1))bm — 2bm, which happens if
both 1’s of each constraint string are aligned with a 1 from the pick strings.
A6. 1d(C,C) < (8n+4)m(m — 1)/2 < 5nm? in any canonical alignment. In a
canonical alignment at most 8n 0’s are matched with spaces and at most 4 1’s
are matched with 0’s for each pair of constraint strings.

Summing all these we get the value for the decision limit;

K = (n—c+bn—1))b*+ (4n+ n)bm + (5n + b(n — 1))bm — c3b + 5nm?.

Note that the equalities in A1-A4 are achieved by every canonical alignment.
Equality in A5 is achieved by every canonical alignment describing an indepen-
dent set of size c. A6 provides an upper bound for the constraint strings in every
canonical alignment.

6 MULTIPLE ALIGNMENT with SP-score is NP-hard

Proof (Corollary 1). Clearly MULTIPLE ALIGNMENT € NP. Moreover, K was
chosen in such a manner that if there is an independent set of size ¢ then there is
an alignment of cost K. Below the opposite is proved; if there is no independent
set of size ¢ then there is no alignment of cost K.

Assume that there is no independent set of size c. We first show that there
can not be a canonical alignment with cost K. Consider a canonical alignment,
since there is no independent set of size ¢, there has to be at least one column,
selected by the pick strings, which does not contain three 1’s from the constraint
strings. Thus, the cost of d(P,C) > (5n+b(n—1))bm — c3b+ b, i.e. compared to
the lower bound in A5 there is an additional cost of at least b. Thereby the cost
of the alignment is at least K —5nm?+b > K. Notice that we have disregarded
the cost of %d(C ,C) > 0 and only considered A1-A5. Therefore, the cost of any
canonical alignment is more than K.

The proof is completed by showing that there is no alignment of cost K.
Recall that the equalities in Al, A2, and A4 are achieved by any optimum
alignment and that the contribution of d(7,C) can be no less than in A3. Thus
for an optimum alignment to have cost < K the contribution of d(P,C) has to be
made smaller. There are two cases in which this is possible and in each case we
show that there exists a better canonical alignment, a contradiction. Essentially;
aligning the constraint strings in a non-canonical fashion to improve d(P,C) is
penalized by d(7,C).

(i) Assume that there are r constraint strings aligned such that one of their 1’s
is in an unassociated vertex column. That is, if Cj; is such a string then one of its
1’s is in the k’th vertex column for k # 4, 7. Then the cost of d(P,C) + %d(C,C)
can be at most 2br + 5nm? less than in a canonical alignment. However, the
cost of d(7,C) is at least 2(b —4n — 1)br more than in a canonical alignment;
due to a gap of > b — 4n. Since 2(b — 4n — 1)br > 2br + 5nm? the alignment is
not optimum.

(ii) Assume that there are r constraint strings aligned such that both of their
1’s are in associated vertex columns. That is, if Cj; is such a string then the
first of its 1’s is in the ¢’th vertex column and the other in the j’th. As above
d(P,C) + 3d(C,C) is at most 2br + 5nm? less than in a canonical alignment.
However, the cost of d(7,C) becomes > (8n — 2)br more than in a canonical
alignment; due to a gap of 4n positions. Since (8n — 2)br > 2br + 5nm? the
alignment is not optimum. ad

2.1 Proof for All Metrics

Proof (Theorem 1). To generalize the proof of Corollary 1, it is sufficient to
change the value of b, K, and the constraint strings such that they depend on
the metric. We use the variables in Table 1 on page 3. Moreover, in addition to
the metric propetries, we assume w.l.o.g. that g <, and that 1 < a, 3, 7.

The important property of the constraint strings is that only one of the two
1’s can end up in its associated vertex column. This was achieved by adding
4n 0’s to each end and removing 4n 0’s from the middle. Here the seperation,
denoted by s, depends on the metric. Let s = ba+ 5y + 1, and modify b so that
it continues to have a dominating effect, b = 2(a+7) + (s +2a)m? + s+ o+ 1.

MULTIPLE ALIGNMENT with SP-score is NP-hard 7

The constraint strings then become
Ci; = 0°(00%)"~110°7%(00%)7~*~110°(00")" 7 ~100?,

thus |C,'j| =s+ (b-l— 1)(?’1, — 1) + 1.

To get the apropriate value of K we recalculate the pairwise costs (the cases
are the same as for A1-A6):
B1. d(7,7) =0 in any canonical and optimum alignment.
B2.d(T,P) = (n—c)yb?+b(n—1)Bb? in any canonical and optimum alignment.
B3. d(7,C) > (sf + na)bm is the minimum pairwise cost and also the cost in
any canonical alignment.
B4. d(P,P) =0 in any canonical and optimum alignment.
B5. d(P,C) > (ca +(s+bn—1)+n—c—2)8+ 27)bm — 3cb(a + v — f),
in any canonical alignment with equality if there exists an independent set of
size c. Similarly to (A5) for each pair (P, C;;) the worst situation is if the ¢ 1’s
in P are matched with 0’s of Cj; and all remaining symbols of Cj; are matched
with spaces. However if there is an independent set of size ¢ then there can be
¢ vertex columns with three 1’s. Moreover, a lower bound on the cost in any
alignment is (ca + (s +b(n — 1) +n —c—2)B + 2y)bm — 2(a + v — B)bm (all
1’s from C are aligned with 1’s from P).
B6. £d(C,C) < (2sB+4a)m(m—1)/2 < (s842a)m? in any canonical alignment.

Choose K = (n— c)yb? +b(n — 1)Bb? + (s + na)bm + (ca-l— (s+bn—1)+

n—c—2)B+ 27)bm —3cb(a +7v — B) + (8B + 2a)m?.

As before we prove that there is an alignment of cost at most K if and only
if there is an independent set of size c¢. Recall that K was chosen so that there
is a canonical alignment of cost K if there is an independent set of size ¢, below
the opposite direction is shown.

Assume that there is no independent set of size ¢. Then in any canonical
alignment d(P,C) > (ca+(s+b(n—1)+n—c—2)B+2y)bm—(3c—1)-b(a+v—71),
since one picked column does not contain three 1’s. Moreover, since the upper
bound in B6 is less than b(a+ v —) the canonical alignment can not have cost
<K.

The proof is completed by considering the same two cases as in the previous
proof. Assume that there is an optimum alignment of cost < K:

(i) Moreover, assume that in the alignment r constraint strings are aligned such
that each Cj; has a 1 in vertex column k # 4,j. Then the cost of d(P,C) +
1d(C,C) can be at most 2(a + 7 — B)br + (s + 2a)m? less than in a canonical
alignment. However, the cost of d(7,C) is at least (2(b— s)8 — 2a)br more than
in a canonical alignment. Since 8 > 1 and b—s—a > 2(a+vy—B)+ (s8+2a)m?
there is a better canonical alignment contradicting optimality.

(ii) Moreover, assume that in the alignment r constraint strings are aligned
such that each 1 is aligned in its associated vertex columns. Then the cost of
d(P,C) + £d(C,C) can be at most 2(a + v — B)br + (s8 + 2a)m? less than in a
canonical alignment. However, the cost of d(7,C) is at least (258 — 2a)br more
than in a canonical alignment. Again since the canonical alignment is better we
have a contradiction.

Thus there is no alignment of cost < K and the proof is complete. O

8 STAR ALIGNMENT is NP-hard

3 STAR ALIGNMENT is NP-hard

Here STAR ALIGNMENT is proved NP-hard for all binary or larger alphabets
under any metric. In the next section the construction, given here, is extended
to cover TREE ALIGNMENT. In addition to the distance measure being the
metric depicted in Table 1 on page 3 we assume w.l.o.g. that < v and that
1 < min(a, 8). Moreover, we first treat the case when a < 8+« and at then
separately handle the special case @« = 8 + . From now on we assume that
a< f+7.

The following lemma is essential to the construction. However, the proof is
very simple and therefore left out.

Lemma 1 (Triangle inequality for strings). If the symbol distance, u, is a
metric then the distance for strings defined by the cost of pairwise alignments
w.r.t. | satisfies the triangle inequality.

Below we formally define the problem. The reader should notice the relation
to Steiner trees and that the Steiner tree is restricted to be a star.

Definition 3 (STAR ALIGNMENT). Given a set of strings S, STAR ALIGN-
MENT is the problem of finding a string ¢ (called a Steiner string) minimizing
the sum of pairwise alignments between ¢ and the strings in S, i.e. Y g d(c,s).

The reduction is from VERTEX COVER and the construction, given in Table
3 and Fig. 2, has three types of components; base components, selection compo-
nents, and one ground component. A general outline of the construction is given
below (see 1-3). Let G = (V, E) be the graph of the VERTEX COVER instance,
n = |V|, and m = |E|.
(1) There are r base components, definition below, ensuring that the optimum
Steiner string is a string in which there are n vertex positions. A 1 in vertex
position ¢ corresponds to the i'th vertex being part of the vertex cover. That is,
the optimum Steiner string corresponds to a subset V' of the vertices.
(2) There are m selection components, definition below, one for each edge. These
components ensure that there for each edge (v;,v;) is a 1 in either the 7’th or the
7’th vertex position of the Steiner string. That is, the optimum Steiner string
corresponds to a vertex cover V'.
(3) The ground component, definition below, minimizes the number of 1’s in
vertex positions. That is, the optimum Steiner string corresponds to a minimum
vertex cover V.

Fig.2. Construction for STAR
ALIGNMENT. See 1-3 above for an
outline of the components. The
strings are from Table 3.

m selection
components

components

STAR ALIGNMENT is NP-hard 9

Table 3. An overview of the strings Name Notation Form |Length
in the construction (s is from Eq. Padding P 0°1°0° 3s
1). Each string is formally in- 1-Block B P1P 2|P|+1
troduced below. The general idea 0-Block By POP 2|P|+1
though is that there is a one-to-one Vertex string Vi By BBy~ |Bo|n
correspondance between the opti- Delimiter string D 1/Vil |Bo|n
mum vertex covers and the opti- Cover string C (B1|Bo)™ |D|
mum Steiner strings which are base Selection string Sij V;DV; 3|D|
strings. Enforcer string E DD BY DD | 5|D|
Ground string G DD By DD | 5|D|
Base string DDCDD 5|D|

Base Components The optimum Steiner string is base string and is of the
form DDCDD; where C is a cover string and the D’s are delimiter strings, see
Table 3. A cover string consists of n consecutive blocks, each being By or Bj.
If the 4’th block is By then this corresponds to the ¢’th vertex being part of the
cover. In By = POP and By = P1P the 0 and 1, respectively, are in the so
called wvertex position. For the construction to work for all metrics the size of
the paddings, denoted by P, depends on the metric. Let

mee) o

and let P = 0°1°0°. The delimiter strings consists of |C| 1’s: D = 1/¢/,

In the construction there are sufficiently many special pairs of base strings,
called base components, to ensure that the optimum Steiner string is a base
string. The string pair in a base component consists of one enforcer string and
one ground string, defined by E = DDB}DD and G = DDB} DD, respectively.
The important properties of base components are given in the lemma below and
follow from lemmas 5 and 6 in Sect. 3.1.

32(n+1)-[

Lemma 2 (Base components). (1) The only optimum alignment of an en-
forcer string and a ground string is the direct match. That is, in the direct match
the i ’th symbol of E is aligned with the i’th symbol of G, thus d(F,G) = na.

(2) If d(E,z) + d(G,z) < d(E,G) + min(a, 8,8 +v— @) and a < f+ 1,
then x is a base string.

Selection Components Each edge (v;, v;) in the vertex cover instance is repre-
sented by a selection component. A selection component for the edge (v;, v;) con-
sists of two strings, one enforcer string E and one selection string S;; = V; DV},
where V; = Bé_lBlBg_i. The important properties of the component are given
in the lemma below and follow from lemmas 5 and 7 in Sect. 3.1. According to
the lemma d(E,z) 4+ d(S;j, =) is minimized if and only if = is a base string in
which block i or j is By. Correspondingly, for each edge (v;,v;) in the VERTEX
COVER instance vertex v; or vj have to be part of the cover.

Lemma 3 (Selection component). (1) The cost of an optimum alignment of
an enforcer string and a selection string is d(E, Sij) = 2|D|y + (4ns+2n — 2)a.

10 STAR ALIGNMENT is NP-hard

(2) If z is a base string and d(E, z) + d(S;;,z) = d(E, S;;), then the i’th or
7’th block of x is By. Moreover, if x is a base string in which both block i and j
are By then d(E,z) 4+ d(S;, z) = d(E, Si;) + 2.

Ground Component The ground component is simply one single ground
string. For each B;p block in the Steiner string the ground component adds
an additional cost to the alignment. In other words, the fewer vertices that
are selected the smaller the cost. The lemma below is a direct consequence of
Lemma 5 in Sect. 3.1.

Lemma 4. If x is a base string and z the number of By blocks in x, then
d(G, z) = za.

The Completeness Proof

Theorem 3. The decision version of STAR ALTHEMENT is NP-complete for
the binary alphabet under all metrics in which o < B+ «y. (Remark: The proof

for a =+ is on page 14)

Proof. Clearly STAR ALIGNMENT € NP. As Fig. 2 indicates, the alignment
instance has 2m + 2r + 1 strings; one selection component per edge, r base
components, and one ground component. Let

max(a,) " @)

" n[min(aaﬂaﬂ+7_ a)

and the decision limit
K=m- (2|D\'y+(4ns+2n—2)a) +7r-an+ ac,

where c is the decision limit of the VERTEX COVER instance.

We now show that an optimum Steiner string corresponds to a minimum
vertex cover, and vice versa. If the Steiner string is a base string corresponding
to the cover V' then the cost of the star alignment is

m'd(Easij) + T'd(E,G) +a|VI|7 (3)
N——— N——— ——
selection comp., Lemma 3 base comp., Lemma 2 ground

which is strictly decreasing in the size of the cover, |V’|. Clearly, by lemmas
2, 3, and 4, if there exists a cover of size ¢ then there is alignment of cost
K. In particular, there is always an alignment of the same cost as above with
V|=n—1.
Let s* be an optimum Steiner string.

(i) Assume that s* is not a base string. By Lemma 2 the cost of the base
components is r(d(E, s*) + d(G, s*)) > ran + nmax(q, 7). Moreover, the cost
of the selection components is at least m - d(E, S;;). Since this is more than the
upper limit of (3) this contradicts the optimality of s*.

(ii) Assume that s* does not correspond to a cover. Then there is a selection
string .S;; such that both block 7 and j of s* is By. By Lemmas 2, 3, and 4, we

STAR ALIGNMENT is NP-hard 11

could exchange block i or j for By and thereby improve the cost, contradicting
the optimality of s*.

Since (3) is strictly decreasing in the size of the cover we have shown that
the optimum Steiner string corresponds to a minimum vertex cover. Clearly, the
reduction is polynomial. Hence STAR ALIGNMENT is NP-hard for the binary
alphabet under metrics in which a < 8+ 7. O

3.1 Technical Lemmas for STAR ALIGNMENT

Here the technical lemmas needed above are given.

Lemma 5. Let a and b be two base strings, and z the number of positions in
which the two strings disagree. Then the only pairwise alignment of a and b with
cost < za + min(a, 8,8 + v — @) = u is the direct match. That is, d(a,b) = za
is the hamming distance.

Proof. Note that the direct match has cost za < na and that s - min(e, 8) >
(n 4+ 1) max(a,y) > (n + 1)a. Thus in any alignment of cost less than u there
can not be s mismatches. It should be clear that since delimiter strings only
consist of 1’s the delimiter strings of a and b are directly matched. Thus the
delimiter strings can be disregarded in the rest of the proof.

We argue by induction over the number of blocks in the cover strings of a
and b, that the strings are directly matched. The induction hypothesis is that
for two strings o' and b € {By, B1}*, 1 < i < n, the only alignment of cost
< Z'a+ min(a, 8,8 + v — @) = 4/, is the direct match. As before 2’ < i is the
number of positions in which a’ and b’ disagree.

The basis step, ¢ = 1, is simple. That is, that the only alignment of B; and
By of cost < o+ min(a, 8, 8 + v —) is the direct match.

Inductively let the hypothesis be true Vi < k — 1 < n — 1. Recall that the
paddings in the block strings are P = 0°1°0°. Since there are k blocks there
are also £ — 1 substrings 1°0°0°1% in the strings, i.e. the left and right part of
two paddings lying next to each other. We show that in any alignment of cost
u' there is such a substring in the same position of @’ and &' which is directly
matched. By induction this implies that a’ and b" are directly matched.

Now consider any padding in the same position of a’ and ¥'. Since there can
not be more than s mismatches, at least s/2 of the 1’s from a padding of o’
have to line up with 1’s from the padding in the same position of ', see Table 4.
As described in the table there are three possible types of alignments in which
all 1’s do not line up. First we conclude that the first two types of alignments
can not be of cost u'. Thereafter we use the third type to show that there is a
substring, as described above, which is directly matched.

Let j < s of the 1’s line up for some padding and let z and y be as in the table.
As shown the first two types of alignments can not be of cost min(e, 8, B+v7—a)
from the optimum:

(i) Both z and y are -. By matching the j + 1 of the right most 1’s with the
j + 1 left most 1’s the alignment is improved by 2.

12 STAR ALIGNMENT is NP-hard

(ii) z is 0 and y - (and vice versa). By matching the j + 1 of the right most 1’s
with the 7 + 1 left most 1’s and aligning x with a - the alignment is improved
by y+a—08>a.

However, if the alignment is of the third type, i.e. both z and y are 0, then
the mismatch of x and y results in a cost of 2a. As described above there are
k — 1 pairs of paddings PP in the strings. If in the alignment both paddings in
such a pair are aligned according to the third type the contribution is 4. Since
4(k — 1)a > 2'a + « it can not be that all pairs are of that type. Since (i) an
(ii) are not possible there is a pair PP in which all 1’s from one padding line up
with all 1’s from the same padding in the other string. Moreover, since there are
2s 0’s in both strings in between the 1’s these have to be directly matched which
implies that the 1’s from the other padding either are lined up or of type (i)
or (ii). Since (i) and (ii) can not occur we have shown that there is a substring
1%50%0%1° of a’ and b’ which is directly matched. 0

Table 4. Part of an alignment of the two base strings a’ and b'. In the table i > s/2 1’s of
the paddings line up. There are three cases that can occur; both x and y are -, one of x and
y is a - and the other a 0, both z and y are 0.

L8
1i

1
Y

T
1

1s—i—1

Lemma 6. Let a and b be two base strings. Moreover, let x be a string such
that d(a,z) + d(z,b) < d(a,b) + min(a, 8,8 + v — a) = u. Then x is a base
string.

Proof. The symbol in each position of z has to agree with the symbol in the same
position of either g or b. If this was not the case then, by the triangle inequality,
the alignments of (a,z) and (z,b) induce an alignment of (a,b), other than the
direct match, of cost < u. According to Lemma 5 this is not possible. Therefore
z has to be a base string. O

Table 5. The only two types of optimum pairwise alignments for a selection string and a base
string.

D D
v; is in the cover V; D
v; is in the cover

c
Vi
Vi

D D

DV;

Lemma 7 (Selection string and base string). In any optimum alignment
of a selection string S;; = V;DV; and a base string DDCDD either the blocks
of Vi or V; are optimally aligned with the blocks of C' (Table 5).

Proof. The cost of such an alignment is 2|D|y + (n(4s + 1) — 1)a + z«, where
z is the number of blocks in C' that differs from V; or Vj. Since z < n the cost

STAR ALIGNMENT is NP-hard 13

of the alignment is less than 2|D|y + |D|a. Below all other types of alignments
are shown to be worse.

(i) It is not possible for substrings of both V; and Vj to be aligned with the cover
string in an optimum alignment. As shown in Table 6, r of the rightmost symbols
of V; and [of the leftmost symbols of V; are aligned with the cover string. Then
the cost from only the right and left part of the alignment!® is at least

2|D| —r—1

Q2|D|+r+1)y+ 5

a > 2|Dly +|Dle,

where the inequality is given by a < 27.

Table 6. Parts from both vertex strings are aligned with the cover string.

D D C D D
Vi[1..ap|-m]|Vi[(DI=7)...|D]] D Vj[1...(\D|-1-1)] |V][1+1...|D]]

(ii) The delimiter string of S;; is matched with a delimiter string of DDCDD
in every optimum alignment. Trivial since the cover string has 0’s to the right
and left.

(iii) The only optimum alignment of DDCDD and V, is the alignment in which
C and V, are directly matched. Since both V, and C have s 0’s to the right and
left no part of V, is aligned with delimiter strings. Moreover, by Lemma 5 the
optimum alignment of C' and V;, is the direct match. O

3.2 STAR ALIGNMENT is NP-hard when o = 8 + v

Above only the metrics in which a@ < 8 4+ 7 were handled, here the special
case @ = 3+ v is handled. The arising problem is that one substitution can be
explained by two insertions. As a result the base components can not force the
optimum Steiner string to be a base string. Instead the base components force
the optimum Steiner string to be a semi-base string. A semi-base string is like
a normal base string except that the blocks of the cover string can be on any of
the forms: B1, By, PP, P10P, and PO1P.

The new lemmas given below are, as their predecessors, consequences of
Observation 1 and Lemma 1. Here the observation plays the role of the techincal
lemmas above: lemmas 5 and 7. It is a very simple matter to modify the proves
of the technical lemmas to prove the observation. Moreover, the proves of the
lemmas below are also very simple. Therefore these proofs have been left out.

Observation 1 (a« = B+7). (1) Let r1 and ro be two semi-base strings. Then
the only alignments of cost < d(r1,72) + f are alignments in which all substrings
15 of r1 are aligned with the same 1° substring in ro.

(2) Let Si; be a selection string. Then the only alingments of cost d(r1, Sij)
are alignments in which the cover string of r1 is aligned with one of the vertex
strings of S;; such that the 1° substrings are aligned.

Ya(DD, V[1...qp|-n)]) + A(DD, V[i+1...p)])

14 STAR ALIGNMENT is NP-hard

Lemma 8 (Base components (cont. Lemma 2)). (1) The cost of an opti-
mum alignment of an enforcer string and a ground string is d(E, G) = na.

(2) If a = B+ 7, then the only strings x for which d(E,z) + d(G,z) <
d(E,G) + B are semi base strings.

Proof. (1) is a direct consequence of the observation. (2) follows from the ob-
servation, Lemma 1, and the fact that G and F only have blocks that are By or
Bj. O

Lemma 9 (Selection components (cont. Lemma 3)). (1) The cost of an
optimum alignment of an enforcer string and a selection string is d(E, S;;) =
2|D|y + (4ns + 2n — 2)a. (unchanged)

(2)If x = DDCDD is a semi base string in which the i’th or j’th block is
By then d(E,z) 4+ d(Sij,z) = d(E, Sij). Moreover, if neither block i and j is
By then d(E, z) + d(Si;, z) > d(E, Sij) + z, where

2« if both blocks are By
z = < 20 if one block is P10P or PO1P
2 if one block is By and the other PP

Lemma 10. The cost of an optimum alignment of a ground string, G, and a
semt base string, x, is d(G, x) = z1a+ 2o + 237y, where z1 is the number of By
blocks, zo PP blocks, z3 blocks P10P or PO1P, in x.

Theorem 4. The decision version of STAR ALIGNMENT is NP-complete for
the binary alphabet under all metrics in which o = B + 7.

Proof. The construction is as in Theorem 3 except for r which is

o
r=mn [5-‘ .

We show that an optimum Steiner string corresponds to a minimum vertex
cover, and vice versa.

Let s* be the optimum Steiner string.

(i) Then s* is a semi base string. Otherwise by Lemma 8 the cost of the base
components is r(d(E, s*) + d(G, s*)) > ran + na. Moreover, the cost of the
selection components is at least as in Equation 3. Therefore, s* is a semi-base
string.

(ii) For each selection string S;; either block i or j in s* is By. If for some
selection string S;; neither block ¢ or j of s* is By. Then block i of s* is on
either of the forms By, PP, P10P, or PO1P. By the Lemmas 8, 9, and 10, the
1’th block can be exchanged for B; and thus the alignment is improved by at
least 3.

(iii) s* is a base string. If s* has a block on form PP, PO1P, or P10P, then
exchanging that block for a By decreases the contribution of the ground com-
ponent and leaves the contribution of the other components unchanged.

Since Equation 3 is strictly decreasing in the size of the cover we have shown
that the optimum Steiner string corresponds to a minimum vertex cover. Clearly
the reduction is polynomial. Hence STAR ALIGNMENT is NP-hard for the binary
alphabet under all metrics in which a = 8+ 7. O

TREE ALIGNMENT is NP-hard 15

3.3 All Alphabets and All Metrics

As a Corollary of theorems 3 and 4 we get the comprehensive result below.

Corollary 2. The decision version of STAR ALIGNMENT is NP-complete for
all binary or larger alphabets under all metrics.

Proof. The problem that could occur in a larger alphabet is that the optimum
Steiner string might contain letters different from 1 and 0. However, it is not
difficult to see that any different letter could be exchanged for a 1 or a 0 without
effecting the cost of the alignment. O

4 TREE ALIGNMENT is NP-hard

A full labeling of a tree is a function assigning strings to all vertices of the tree.
Similarly a leaf labeling is a function assigning labels to the leafs. The length of
an edge (u,v) in a labeled tree is the cost of the minimum pairwise alignment
of the labels at u and v.

Definition 4 (TREE ALIGNMENT). For a leaf labeled tree of bounded degree
a tree alignment is a full labeling of the tree, such that the leafs are labeled
according to the leaf labeling. Given a leaf labeled tree, TREE ALIGNMENT! is
the problem of finding a minimum cost full labeling, where the cost is the sum
of all edge lengths.

The construction for TREE ALIGNMENT (Fig. 3) is very similar to that of STAR
ALIGNMENT. However, we need two additional technical lemmas to handle the
tree structure, these are given after the proof. Moreover, just as with STAR
ALIGNMENT we first assume that o < + 7 and thereafter handle the case

a=p0+1.

7 base comp. inbetween

each branch

Fig.3. Construction for TREE
ALIGNMENT. There are m branches
(one for each edge), each branch has
r base components and one selec-
tion component. Moreover, in be-
tween each branch there are r base
components.

! “TREE ALIGNMENT” is sometimes used to refer to the problem of finding the structure of
the tree in addition to the optimal alignment. This problem is shown to be APX-complete
for an ultra metric in [WJ94], the proof is trivial to extend to all metrics. However, for
notional convenience we use the term “TREE ALIGNMENT” for the more restricted case.

16 TREE ALIGNMENT is NP-hard

Theorem 5. The decision version of TREE ALIGNMENT is NP-complete for
the binary alphabet under all metrics in which o < B+ 7.

Proof. Clearly TREE ALIGNMENT € NP. As Fig. 3 indicates, the alignment
instance consists of a tree with 2m + 2r(2m — 1) 4+ 1 leaves. Let r be as in (2)
in the previous proof. For each edge, in the vertex cover instance, there is a
branch with one selection component and r base components (see the figure for
details). Moreover, each such branch is separated by r base components. As in
the proof for STAR ALIGNMENT there is also one ground component. Moreover,
the alignment instance has a decision limit

K = m(2|D|7 + (4ns + 2n — 2)a) +r(2m — 1)an + ac,

where ¢ is the decision limit of the VERTEX COVER instance.
If z is a base string corresponding to a cover V', then the cost of the align-
ment in which all internal vertices are labeled with z is

m-d(E, Si;) +r(2m —1) -d(E,G) + o|V']. (4)
~ ~ PR -~ - N——r
selection comp. base comp. ground

If |V’| < ¢ then the alignment has cost < K (follows from lemmas 2,3, and 4).

internal vertices incident

A to base comp. B C
DDC'DD DDCDD
? DDC;;DD
DDCDD DDC"DD E Si;

Fig. 4. (A) Part of a branch in the construction. All vertices incident to base components are
labeled with the same base string. (B) The vertex connecting a branch is labeled with a base
string. (C) The vertex in a selection component is labeled with a base string.

We now show that there is a vertex cover of size c if there is an alignment

of cost at most K. This is done by proving that there is an optimum alignment
in which each vertex is labeled with the same base string z, corresponding to a
cover. Since (4) is strictly decreasing in |V’|, z corresponds to a minimum cover.
The proof is in two steps: (i) in every optimum alignment all labels are base
strings, (ii) using (i) we show that there is an optimum labeling with a base
string corresponding to a cover.
(i) Consider an optimum alignment. We show that if not all internal vertices
are labeled with base strings then the alignment is not optimum. According to
Lemma 2, if a vertex incident (e.g. vertex ¢ in Fig. 4A) to a base component is
not labeled with a base string, then the cost of that base component is at least
d(E,G) + min(«, 8,8 + v — a). There are r base components on each branch.
Thus at least one of the vertices incident to the base components is labeled with
a base string. Otherwise, since the contribution of these components is

r(d(E,G) + min(e, 8, 8 + v — «)) > rd(E, G) + na,

TREE ALIGNMENT is NP-hard 17

the alignment is not optimum, i.e. na more in (4).

Let the vertices a,b,c, and ¥, in Fig. 4A be labeled with the strings sq4,sp,5¢,
and sy, respectively. We show that if s, is a base string then so is sp, which
inductively implies the claim. Assume that s, is not a base string. Then by
exchanging the label at both b and ¥’ for s, we achieve a better alignment, a
contradiction. This is a direct consequence of the triangle inequality (Lemma 1)
and the properties of the base component (Lemma 2).

It remains to show that the vertices connecting the branches and the vertices
connected with the leafs of a selection component are labeled with base strings,
i.e. the vertices in Fig 4B and 4C. This is shown in lemmas 11 and 12 below.
(ii) We show that there is an optimum alignment in which all internal vertices
are labeled with a base string x, corresponding to a cover. Consider an optimum
alignment in which all labels are base strings. Then z is created so that Vi € [1,n]
if the #’th block is Bj in any of the labels in the optimum alignment then the
i’th block in z is also Bj. The labeling with z is still optimum because: (1) base
strings are aligned symbol by symbol (Lemma 5), (2) triangle inequality holds
for symbols, and (3) only the cost at the ground is effected by B; blocks. Thus
with the labeling with = all missmatches occuring in vertex positions have been
transfered to the edge incident to the ground. Moreover, by Lemma 12, for each
selection string S;; the i’th or j’th block of x is By, hence x corresponds to a

cover.
Clearly, the reduction is polynomial. Consequently, TREE ALIGNMENT is
NP-hard for the binary alphabet under any metric in which a < 8+ 7. O

Lemma 11. Let r1, o, and 73, be three base strings (Fig. 4B). Then there is a
base string = for which

d(ri, z) + d(rj,z) = d(rs,ry), 1 <i<j<3. (5)
Moreover, any x satisfying (5) is a base string.

Proof. The three equations are satisfied if for ¢ € [1, |r1|] the symbol in position
1 in z is given by the majority symbol in position ¢ of the base strings. For
example, if the ¢’th symbol of at least two of the strings is 1 then the 7’th
symbol of z is 1. Moreover, by Lemma 6 it is indeed the case that z is a base
string. d

Lemma 12 (Selection component). For an enforcer string E, a selection
string S;j, and a base string v (Fig. 4C), there is a string x for which: (1)
d(E,z) + d(r,z) = d(E,r), (2) d(E,z) + d(Sij,z) = d(E, Si;), (3) d(r,z) +
d(Sij,z) = d(r, Sij). Moreover, any x satisfying the equations is a base string
in which block i or j is Bi.

Proof. By Lemma 6, the first equation is only satisfied if z is a base string. By
Lemma 3, the second equation is only satisfied if either the 7’th or j’th block of
z is By. Moreover, by Lemma 7, the third equation holds if z is a base string in
which block ¢ or j is Bj. O

18 TREE ALIGNMENT is NP-hard

4.1 TREE ALIGNMENT is NP-hard when aa = 8 4+ «v

The special case when o = S+ becomes easier when using the base component
depicted in Fig. 5. The strings denoted by M, are on the form DD (PzP)" DD.
We first show some simple properties for these strings and then show the equiv-
alent of Lemma 2 for the new component.

Lemma 13 (a = S +). The optimum alignment of M_ and My; has cost
d(M_, My1) = na. The only strings x for which d(M_, z)+d(z, Mo1) < na+f,
are base strings in which the blocks are either By, By, PP, or PO1P.

Proof. Both properties follow from Observation 1, Lemma 1, and the fact that
M_ only contains blocks PP and My blocks PO1P. O

DD (Pj1-)P)" DD

FE G M. My Mip M- G E

Fig. 5. The base component when a = y+ 3. Unless the root of the component is a space-base
string, the cost of the component is not optimum. The strings M, are strings DD(PzP)"DD.

We refer to semi-base strings in which no block is PO1P or P10P for space-
base strings.

Lemma 14 (a = 3+). For the base component in Fig. 5 the following prop-
erties hold: 1. The minimum cost of the component is 4na.

2. The only alignments of the component in which the cost < 4na + B are
alignments in which the root is labeled with a space-base string, i.e. DD (P(o|t|-)P)™ DD.

Proof. By Lemmas 8 and 13
2- d(E, G) + d(M_, MOl) + d(M_, Mo1) = 4na.

By the same lemmas it is also easy to see that the second property only holds
if all internal vertices are labeled with the same space-base string. O

Contrary to the base component when a < 8 + < the new situation allows
for base strings in which blocks are PP. Therefore we need to modify lemmas
11 and 12, to handle space-base strings.

Lemma 15 (a = 3 + 7). Let r1, 72, and r3, be three space-base strings. Then
there is a space-base string x for which

d(’f'i,.’L‘) + d(TJ,.’E) = d(’l"i,Tj), [7é .7

Moreover, the three statements are only satisfied if x is a space-base string.

TREE ALIGNMENT is NP-hard 19

Proof. By choosing each block in z according to the majority vote of the three
strings. For example if block i is By in at least two of the three strings then
block 7 of z is set to By. However, if a majority does not exist, i.e. there is
one B, one By, and one PP, then that block in z is set to PP. Moreover, by
Observation 1, Lemma 1, and the fact that 71 2 3 are space-base strings « has to
be a space-base string.

Lemma 16 (Selection component a = 8+). For an enforcer string E, a
selection string S;j, and a space-base string r, there is a string x for which the
three equations in Lemma 12 hold. Moreover, the equations are only satisfied if
T 18 a space-base string with either the i’th or j’th block being B .

Proof. Since each block of E is B; and since r is a space-base string x has to
be a semi-base string (Observation 1 and Lemma 1). Knowing that z is a semi-
base string we note that each block of z is aligned with a block in S;; (again
by Observation 1). Thus each block of z is aligned with a By block from E, a
By, By or PP block from 7, and a By or a By block from S;;. Therefore, by
the same arguments as in the previous proof each block of z is either By, Bi,
or PP, and either block ¢ or j is Bj. ad

Theorem 6. The decision version of TREE ALIGNMENT is NP-complete for
the binary alphabet under all metrics in which a = 3+ 7.

Proof. The proof is almost identical to that when a < 8+ 7. The only parts of
the construction that need changing are r and the decision limit:

K =m(2|D|y+ (n(|P| +238) +2n — 2)a) +r(2m — 1)dna+ a«c .
v ~~
N _v_/

J/

~~
selection comp.

base comp. ground

As before there is an alignment of cost K if there is a vertex cover of size c.
We continue and show the other direction of the reduction. That is, there is a
vertex cover of size c if there is an alignment of cost K.

(1) In every optimum alignment all vertices are labeled with space-base strings.
This follows by the same arguments as in Theorem 5 and by the equivalent
lemmas, lemmas 15 and 16.

(ii) We show that there is an optimum alignment in which all internal vertices
are labeled with a base string x, corresponding to a cover. Consider an optimum
alignment in which all labels are space-base strings. Then z is created so that
Vi € [1,n] if the ’th block is By in any of the labels in the optimum alignment
then the 7’th block in x is also By. The labeling with z is still optimum because:
(1) space-base strings are aligned block by block (Observation 1), (2) triangle
inequality holds for strings (Lemma 1), and (3) only the cost at the ground is
effected by B blocks. Moreover, by the same arguments all other blocks of = can
be exchanged for By. Thus with the labeling with « all missmatches occuring
in vertex positions have been transfered to the edge incident to the ground.
Moreover, by Lemma 16, for each selection string S;; the 4’th or j’th block of x
is B1, hence z corresponds to a cover.

20 CONSENSUS PATTERNS and SUBSTRING PARSIMONY are NP-hard

As before the reduction is polynomial and TREE ALIGNMENT is NP-hard
for the binary alphabet when a = 8 + 7. O

4.2 All Alphabets and All Metrics

From Theorem 5 and Theorem 6 we get the corollary bellow.

Corollary 3. The decision version of TREE ALIGNMENT is NP-complete for
all binary or larger alphabets under all metrics.

Proof. Exactly as the proof of Corollary 2. ad

4.3 Distinct Leaf Labels

In the definition of TREE ALIGNMENT (Definition 4) there was no restriction
that the leaf labels should be distinct. This is however not a very big problem.
To modify the construction such that all leaf labels are distinct we simply add
a huge unique prefix to each leaf label.

Let

Prefix; = AL A, A1

and order all leafs 1...L = (2m + 2r(2m — 1) 4+ 1). Then add Prefix; to the
label at leaf 7. Clearly, all internal labels will have to have the prefix A|0L|.

5 CONSENSUS PATTERNS and SUBSTRING PARSIMONY are
NP-hard

In this section CONSENSUS PATTERNS and SUBSTRING PARSIMONY are shown
NP-hard. However, CONSENSUS PATTERNS has earlier been proved NP-hard
[LMWO01,BST02,Aku98| and W|[1]-hard in [FGNO02].

Definition 5 (CONSENSUS PATTERNS). Given a set of strings S = {s1,...,5p}
and a number k. CONSENSUS PATTERNS is the problem of finding a string c of
length k and substrings t; of s; of length k such that the the sum of Hamming
distances are minimized, > i dg(c,t;).

Definition 6 (SUBSTRING PARSIMONY). For a leaf labeled tree of bounded
degree and a number k, a substring parsimony alignment is a full labeling of the
tree such that all internal vertices are labeled with strings of length k and each leaf
with a substring of length k of the original leaf label. SUBSTRING PARSIMONY is
the problem of finding such a labeling of minimum cost. The cost of the labeling is
the sum of all edge lengths, where the length of an edge is the Hamming distance
between the two labels.

Theorem 7. CONSENSUS PATTERNS s NP-hard.

CONSENSUS PATTERNS and SUBSTRING PARSIMONY are NP-hard 21

Proof. The reduction is from VERTEX COVER. Let n and m denote the number
of vertices and edges, respectively, then the CONSENSUS PATTERNS instance
has the following 2m + 1 strings (see Table 7 for details about the strings): (1)
for each edge (v;,v;) there is a selection string S;;, (2) there are m identical
enforcer strings E, (3) there is one ground string. Moreover, the CONSENSUS
PATTERNS instance consists of a substring length k = 4nm + n.

Table 7. Strings occuring in the reductions.

Name Notation| Form Length
Vertex string Vi 0"~ 110™" n
Delimiter string D o™ 1™M™™ | 2n’m

Selection string Sij DV;DV;D|6n*m + 2n
Enforcer string E D1"D |4n’m+n
Ground string G DO"D |4n’m+n
Base string DXD |D(O/1)"D|4n*m+n

We now show that there is a one-one correspondance between the optimum
patterns and the minimum vertex covers. Each optimum pattern is a base string
DXD, where X is of length n and a 1 in position ¢ corresponds to the 2'th vertex
being part in a minimum vertex cover. Note that if X represents a cover V' then
the cost of the pattern DXD is

m(n—|V')) + m(]V|=1) + |V'| =m(n—-1)+|V’|. (6)
—_— — ~~

enforcer strings selection strings ground

This is strictly decreasing with the size of the cover |V'| and no more than
m(n —1) + n.
(i) The optimum pattern is a base string, DX D. Let s be the substring of length
k selected from S;;, then due to the triangle inequality dg(G,c) + du(s,c) >
du(G,s). If s is not DV;D or DV;D (i.e. the prefix or the suffix), then the
delimiter strings of G and s are unaligned and dg (G, s) > 4nm — 2. This is more
than m(n — 1) +n and therefore not optimum. Thus, all selected substrings are
base strings and hence also the optimum consensus pattern.
(ii) X corresponds a vertex cover. There are m enforcer strings so whenever a
substring DV;D is selected from a selection component then, by majority vote,
X also has a 1 in position . Thus X must correspond to a cover. Moreover, since
(6) is strictly decreasing in the size of |V’|, we have shown that the optimum
pattern corresponds to a minimum vertex cover, and vice versa.

Clearly the reduction can be done in polynomial time, so CONSENSUS PAT-
TERNS is NP-hard. O

Theorem 8. The decision version of SUBSTRING PARSIMONY is NP-complete
for binary trees.

Proof. Clearly SUBSTRING PARSIMONY € NP. As Fig. 6 indicates, the binary
tree in the SUBSTRING PARSIMONY instance consists of a “grounded backbone”
with m branches; one for each edge in the VERTEX COVER instance. Each

22 Acknowledgments

B Sy

1 branches

G FE Si’j’
Fig. 6. The construction for SUBSTRING PARSIMONY.

branch has one enforcer string and one selection string, related to an edge in
the VERTEX COVER instance. Consequently there are a total of 2m + 1 leafs in
the tree. Moreover, the SUBSTRING PARSIMONY instance has a substring length
k = 4n?m +n and a decision limit K = m(n — 1) + ¢, where c is the limit of the
VERTEX COVER instance.

If there is a vertex cover of size c, then there is a substring parsimony
alignment of cost K. Let V' be a vertex cover of size c. Then the alignment in
which all labels are identical to the base string DX D corresponding to V' has
cost m(n — 1) + |V'| = K (same cost as before: (6)).

If there is a substring parsimony alignment of cost K, then there is a vertex
cover of size c. We show that there exists a minimum substring parsimony
alignment in which all labels are identical and that the labels correspond to a
vertex cover. Therefore, since (6) is strictly decreasing in the size of |V'|, such
a label corresponds to a minimum vertex cover.

(1) In the minimum substring parsimony alignment the label at every vertex is
a base string DX D. As above, let s be the substring selected from S;;. Then as
before, due to the triangle inequality dg (F,c) +dg(c, s) > dg(F,s), where ¢ is
the label at the vertex connecting E and S;;. Hence s is either the prefix DV;D
or the suffix DV;D, otherwise di(E,s) > 4nm — 2. In a minimum alignment,
since all leaf labels are base strings, all internal labels are base strings.

(ii) There is a minimum substring parsimony alignment in which all labels are
identical and correspond to a vertex cover. Whenever a substring DV;D is se-
lected from a selection string then the parent of the selection vertex is labeled
with DX D, where X by majority vote has a 1 in the #’th vertex position. With-
out effecting the cost of the alignment, all other cover strings can be changed
so that they have a 1 in position 7. Moreover, since the alignment is optimum,
all cover strings have 0 in all remaining positions (positions not selected by
the selection strings). By this argument all internal vertices are labeled with
an identical base string. In addition, since the base string has a 1 from each
selection string the base string corresponds to a vertex cover.

The reduction is polynomial and thus SUBSTRING PARSIMONY is NP-hard.

a

6 Acknowledgments

I am very grateful for the help and support that I have received from my supervi-
sor Prof. Jens Lagergren. Without him this paper would not have been written.
Moreover, I would like to thank an anonymous referee of an earlier version of
this paper for many valuable comments.

Acknowledgments 23

References

[Aku98]

[AL8Y

T. Akutsu. Hardness results on gapless local multiple sequence alignment. Technical
Report 98-MPS-24-2, 1998.

S. F. Altschul and D. J. Lipman. Trees, stars and multiple biological sequence
alignment. SIAM Journal of Applied Mathematics, 49:197-209, 1989.

[AMS*97] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

[BASG]
[BF95|
[BSTO02]
[BT02]
[BVOI1]
[CWC92|
[FGNO02|
[Jus01]

[LMW99)

[LMWO1]
[PS00]
[PY91]

[SC83]

[SPo1]
[WJ94]
[WIGO1]

[WJILI6]

D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res, 25:3389-3402, 1997.

D. Baconn and W. Anderson. Multiple sequence alignment. Journal of Molecular
Biology, 191:153-161, 1986.

P. Berman and T. Fujito. On approximation properties of the independent set
problem in degree 3 graphs. Lecture Notes in Computer Science, 955:449-77, 1995.
M. Blanchette, B. Schwikowski, and M. Tompa. Algorithms for phylogenetic foot-
printing. J. Comput. Bio., 9(2):211-223, 2002.

J. Buhler and M. Tompa. Finding motifs using random projections. J. Comput.
Bio., 9(2):225-242, 2002.

P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence alignment
with SP-score that is a metric. T'CS, 259(1-2):63-79, 2001.

S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu. A survey of multiple sequence
comparison methods. Bulletin of Mathematical Biology, 54(4):563-598, 1992.

M. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability
of CLOSEST SUBSTRING and related problems. In STACS, 2002.

W. Just. Computational complexity of multiple sequence alignment with sp-score.
Journal of Computational Biology, 8(6):615-623, 2001.

M. Lij, B. Ma, and L. Wang. Finding similar regions in many strings. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC’99),
pages 473-482, New York, May 1999. Association for Computing Machinery.

M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. accepted
by Journal of Computer and System Sciences, July 2001.

P. A. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in
DNA sequences. Proc. 8th Int. Conf. on Intell. Sys. for Mol. Biol., August 2000.
C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425-440, 1991.
D. Sankoff and R. J. Cedergren. Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison, chapter Simultaneous comparison
of three or more sequences related by a tree, pages 253—-264. Addison-Wesley, 1983.
J. S. Sim and K. Park. The consensus string problem for a metric is np-complete.
Journal of Discrete Algorithms, 2(1), 2001.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J.
Comput. Bio., 1:337-348, 1994.

L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation scheme for
tree alignment. SIAM Journal on Computing, 30(1):283-299, February 2001.

L. Wang, T. Jiang, and E. L. Lawler. Approximation algorithms for tree alignment
with a given phylogeny. Algorithmica, 16(3):302-315, September 1996.

