Did you know that Multiple Alignment is NP-hard?

Isaac Elias

Royal Institute of Technology Sweden

Results

- Multiple Alignment with SP-score
- Star Alignment
- TREE ALIGNMENT (with given phylogeny)

are NP-hard under all metrics!

Pairwise Alignment

Mutations: substitutions, insertions, and deletions.

Input: Two related strings s_1 and s_2 .

Output: The least number of mutations needed to $s_1 \rightarrow s_2$.

$$s_1=\hspace{0.4cm}$$
 a a g a c t

$$s_2=$$
 agtgct

Pairwise Alignment

Mutations: substitutions, insertions, and deletions.

Input: Two related strings s_1 and s_2 .

Output: The least number of mutations needed to $s_1 \rightarrow s_2$.

$$d_A(s_1, s_2) = 3$$
 mutations

Metric symbol distance

Unit metric - binary alphabet
(the edit distance)

\sum	0	1	_
0	0	1	1
1	1	0	1
_	1	1	0

Metric symbol distance

Unit metric - binary alphabet
(the edit distance)

	\sum	0	1	_
_	0	0	1	1.5
	1	1	0	1.5
	_	1.5	1.5	0

Insertions and deletions occur less frequently!

Metric symbol distance

Unit metric - binary alphabet (the edit distance)

\sum	0	1	_
0	0	1	1
1	1	0	1
	1	1	0

Insertions and deletions occur less frequently!

General metric - α , β , γ have metric properties (identity, symmetry, triangle ineq.)

\sum	0	1	
0	0	α	β
1	α	0	γ
_	β	γ	0

Multiple Alignment

When sequence similarity is low pairwise alignment may fail to find similarities.

Multiple Alignment

When sequence similarity is low pairwise alignment may fail to find similarities.

Considering several strings may be helpful.

Input: k strings $s_1 \dots s_k$.

Output: $k \times l$ matrix A.

Multiple Alignment

When sequence similarity is low pairwise alignment may fail to find similarities.

Considering several strings may be helpful.

```
Input: k strings s_1 \dots s_k.

Output: k \times l matrix A.

a a g a - c t

- g a g c t

a c g a g c -

a - g t g c t
```

How do we score columns?

Sum of Pairs score (SP-score)

Let the cost be the sum of costs for all pairs of rows:

$$\sum_{i=1}^k \sum_{j=i}^k \mathsf{d}_A(s_i,s_j),$$

where $d_A(s_i, s_j)$ is the pairwise distance between the rows containing strings s_i and s_j .

- Wang and Jiang '94 Non-metric
- Bonizzoni and Vedova '01 Specific metric (we build on their construction)
- Just '01 Many metrics

- Wang and Jiang '94 Non-metric
- Bonizzoni and Vedova '01 Specific metric (we build on their construction)
- Just '01 Many metrics

- Wang and Jiang '94 Non-metric
- Bonizzoni and Vedova '01 Specific metric (we build on their construction)
- Just '01 Many metrics

- Wang and Jiang '94 Non-metric
- Bonizzoni and Vedova '01 Specific metric (we build on their construction)
- Just '01 Many metrics

In particular it was unknown for the unit metric.

- Wang and Jiang '94 Non-metric
- Bonizzoni and Vedova '01 Specific metric (we build on their construction)
- Just '01 Many metrics

In particular it was unknown for the unit metric.

Here: All binary or larger alphabets under all metrics!

Independent R3 Set

Independent set in three regular graphs, i.e. all vertices have degree 3, is NP-hard.

Input: A three regular graph G = (V, E) and a integer c.

Output: "Yes" if there is an independent set $V' \subseteq V$ of size $\geq c$, otherwise "No".

Independent R3 Set

Independent set in three regular graphs, i.e. all vertices have degree 3, is NP-hard.

Input: A three regular graph G = (V, E) and a integer c.

Output: "Yes" if there is an independent set $V' \subseteq V$ of size $\geq c$, otherwise "No".

Reduction

Independent R3 Set

$$G = (V, E)$$
 c

$$\begin{array}{c} \mathrm{set} \ \mathrm{of} \ \mathrm{size} \geq c \\ V' \end{array}$$

SP-score

Set of strings
$$K$$

$$K$$

$$\text{matrix of cost} \leq K$$

Reduction

Independent R3 Set

G = (V, E)

set of size $\geq c$

SP-score

Set of strings

K

matrix of cost $\leq K$

	$egin{array}{c} v_1 \ 1 \ dots \ 1 \end{array}$	0 0 : : 0 0	v ₂ 1 : 1	0 0 : : 0 0	$egin{array}{c} v_3 \\ 1 \\ \vdots \\ 1 \end{array}$	0 0 : : 0 0	$egin{array}{c} v_4 \ 1 \ dots \ 1 \ \end{array}$	
			1 : 1					
0	0 1 0	0 10 0 0 0 10	1 0 0	0 0 0 10 0 0	0 0 0	0 0 0 0 0 0	0 0 1	0
0 0 0	0 0 0	0 0 0 0 0 0	1 1 0	0 10 0 0 0 0	0 0 1	0 0 0 10 0 10	0 0 0	

Gadgetering

- 1. Each vertex is represented by a column (n vertex columns).
- 2. c vertex columns are picked.
- 3. Each edge is represented by an edge string.

	${f v_1} \\ {f 1}$	0 0	$egin{array}{c} v_2 \\ 1 \end{array}$		$egin{pmatrix} v_i \ 1 \end{bmatrix}$		$egin{array}{c} v_n \ 1 \end{array}$	
	:	: : 0 0	:	: :	: 1		: 1	
	1	0 0	1		1			
			: 1		1			
0	0 1 0	0 10 0 0 0 10	1 0 0	0 0 0 10 0 0	0 0 0	0 0 0 0 0 0	0 0 1	0
0 0 0	0	0 0 0 0 0 0	1 1	0 10 0 0 0 0	0	0 0 0 10 0 10	0	

Template strings → **Vertex columns**

We add **very** many template strings:

$$T = (10^b)^{n-1}$$
1

v_1		v_2		v_i	 v_n	
1	0 0	1		1	 1	
i	: :	÷	: :	÷	 ÷	
1	0 0	1		1	 1	

Fact: Identical strings are aligned identically in an optimal alignment.

Pick strings $\rightarrow V' \subseteq V$

We add **very** many pick strings: $P = 1^c$.

v_1		v_2		v_i	 v_n	
1	0 0	1		1	 1	
:	: :	÷	: :	:	 :	
1	0 0	1		1	 1	
		1		1		
		:		:		
		1		1		

Fact: c vertex columns are picked since this is the alignment with least missmatches.

Edge strings

Property: If there is an edge (v_i, v_j) then both v_i and v_j can not be part of the independent set.

$$E_{ij} = {{0}^{s}}({{00}^{b}})^{i-1} {10}^{b-s} ({{00}^{b}})^{j-i-1} {10}^{b} ({{00}^{b}})^{n-j-1} {00}^{s}$$

		v_1		v_i		v_j		v_n	
		1	0 0	1		1		1	
		:	: :	:		:		:	
		1	0 0	1		1		1	
good	0^{s}	0	0 0	1	010^{s-1}	0	0 0	0	
good		0	0 0	0	0^{s-1} 1 0	1	0 0	0	0^{s}
bad	0^s	0	0 0	1	− s 0	1	0 0	0	0^s

Independent set $\geq c \Leftrightarrow \mathsf{Alignment} \leq K$

$$K = (n - c)\gamma b^{2} + b(n - 1)\beta b^{2} + (s\beta + n\alpha)bm + (c\alpha + (s + b(n - 1) + n - c - 2)\beta + 2\gamma)bm - 3cb(\alpha + \gamma - \beta) + (s\beta + 2\alpha)m^{2}$$

Independent set $\geq c \Leftrightarrow \mathsf{Alignment} \leq K$

- 1. Remember three regular graph. So there are atmost three ones in each vertex column.
- 2. If a column with only two ones is picked then there is a missmatch extra for each pick string (\Rightarrow score > K).

- 1. Atmost three ones in each vertex column.
- 2. Pick strings pick columns with most ones.

- 1. Atmost three ones in each vertex column.
- 2. Pick strings pick columns with most ones.

- 1. Atmost three ones in each vertex column.
- 2. Pick strings pick columns with most ones.

- 1. Atmost three ones in each vertex column.
- 2. Pick strings pick columns with most ones.

Star Alignment

SP-score not a good model of evolution.

Star Alignment

SP-score not a good model of evolution.

Input: k strings $s_1 \dots s_k$ s_2 s_1 Output: string c minimizing $\sum_i \mathtt{d}(c,s_i)$ s_4 s_3

Star Alignment

SP-score not a good model of evolution.

Input: k strings
$$s_1 \dots s_k$$
 s_2 s_1 Output: string c minimizing $\sum_i \operatorname{d}(c,s_i)$ s_4 s_3

Symbol distance metric \Longrightarrow Pairwise alignment distance metric

Star Alignment is a special case of Steiner Star in a metric space.

Earlier results - Star Alignment

- Wang and Jiang '94 Non-metric APX-complete
- Li, Ma, Wang '99 Constant number gaps, NP-hard and PTAS
- Sim and Park '01 Specific metric NP-hard

Earlier results - Star Alignment

- Wang and Jiang '94 Non-metric APX-complete
- Li, Ma, Wang '99 Constant number gaps, NP-hard and PTAS
- Sim and Park '01 Specific metric NP-hard

Earlier results - Star Alignment

- Wang and Jiang '94 Non-metric APX-complete
- Li, Ma, Wang '99 Constant number gaps, NP-hard and PTAS
- Sim and Park '01 Specific metric NP-hard

Earlier results - Star Alignment

- Wang and Jiang '94 Non-metric APX-complete
- Li, Ma, Wang '99 Constant number gaps, NP-hard and PTAS
- Sim and Park '01 Specific metric NP-hard

Here: All binary or larger alphabets under all metrics!

Vertex Cover

$$G = (V, E)$$

Star Alignment

Set of strings

minimum cover

minimum string

$$\leftrightarrow$$
 $c = DDCDD$

Star Alignment

$$G = (V, E)$$

$$\longrightarrow$$

Set of strings

minimum cover

minimum string

$$\leftrightarrow$$
 $c = DDCDD$

Star Alignment

$$G = (V, E)$$

$$\longrightarrow$$

G = (V, E) \rightarrow Set of strings

minimum cover

$$\leftrightarrow$$
 $c = DDCDD$

$$C_V$$
 - Only 1's.

$$G = (V, E)$$

G = (V, E) \rightarrow Set of strings

minimum cover

minimum string

$$\leftrightarrow$$
 $c = DDCDD$

$$C_V$$
 - Only ${f 1's}$

$$C_V$$
 - Only **1**'s. C_\emptyset - Only **0**'s.

Construction Idea

$$(E,G) \rightarrow c = DDCDD$$

$$(E, S_{ab}) \rightarrow c = \text{vertex cover}$$

 $G \longrightarrow \text{minimum cover}$

String minimizing $\sum_i \mathtt{d}(c,s_i) \leftrightarrow \mathsf{minimum}$ cover

$$E = DDC_VDD \qquad G = DDC_\emptyset DD$$
 Differ only in the vertex positions.

$$E = DDC_VDD \qquad \qquad G = DDC_\emptyset DD$$
 Differ only in the vertex positions.

Many such pairs will vote for the canonical structure.

$$E = DDC_VDD \qquad G = DDC_\emptyset DD$$
 Differ only in the vertex positions.

Many such pairs will vote for the canonical structure.

Vote even in the vertex positions!

$$E = DDC_VDD \qquad G = DDC_\emptyset DD$$
 Differ only in the vertex positions.

Many such pairs will vote for the canonical structure.

$$\Rightarrow$$
 c = DDCDD

Edge (v_a, v_b) add two strings

$$E = DDC_VDD \qquad S_{ab} = C_aDC_b$$

$$S_{ab} = C_a D C_b$$

		$\mathbf{v_1}$	• • •	$\mathbf{v}_{\mathbf{a}}$	• • •	$\mathbf{v_b}$	• • •	$\mathbf{v_n}$	
$C_a =$	• • •	0	• • •	1	• • •	0	• • •	0	• • •

Edge (v_a, v_b) add two strings

$$E = DDC_VDD \qquad S_{ab} = C_aDC_b$$

$$S_{ab} = C_a D C_b$$

		_				~	• • •		
$C_b =$	• • •	0	• • •	0	• • •	1	• • •	0	• • •

Edge
$$(v_a, v_b)$$
 add two strings
$$E = DDC_VDD \qquad \qquad S_{ab} = C_aDC_b$$

E votes ${f 1}$ in all vertex positions.

Edge
$$(v_a, v_b)$$
 add two strings

$$E = DDC_VDD$$

$$S_{ab} = C_a D C_b$$

E votes ${f 1}$ in all vertex positions. D D C D D S_{ab} votes ${f 0}$ in all except vertex C_a D C_b position a or b. C_a D C_b

Edge
$$(v_a, v_b)$$
 add two strings

$$E = DDC_VDD$$
 $S_{ab} = C_aDC_b$

$$S_{ab} = C_a D C_b$$

Either vertex v_a or vertex v_b is part of the cover.

Minimal String ← Minimum Cover

$$(E,G) \rightarrow c = DDCDD$$

$$(E, S_{ab}) \rightarrow c = \text{vertex cover}$$

Minimal String ← Minimum Cover

$$(E,G) \rightarrow c = DDCDD$$

$$(E, S_{ab}) \rightarrow c = \text{vertex cover}$$

 $G = DDC_{\emptyset}DD$ penalizes each **1** in vertex positions.

Minimal String ← Minimum Cover

$$(E,G) \rightarrow c = DDCDD$$

$$(E, S_{ab}) \rightarrow c = \text{vertex cover}$$

 $G = DDC_{\emptyset}DD$ penalizes each **1** in vertex positions.

String minimizing $\sum_i d(c, s_i) \leftrightarrow \min$ mum cover

Tree Alignment (given phylogeny)

STAR ALIGNMENT not a good model of evolution.

Tree Alignment (given phylogeny)

STAR ALIGNMENT not a good model of evolution.

Input: k strings $s_1 \dots s_k$

phylogeny T

Output: strings $p_1 \dots p_{k-1}$

$$\min \sum_{(a,b) \in \mathrm{E}(T)} \mathrm{d}(a,b)$$

Tree Alignment (given phylogeny)

STAR ALIGNMENT not a good model of evolution.

Input: k strings $s_1 \dots s_k$

phylogeny T

Output: strings $p_1 \dots p_{k-1}$

$$\min \sum_{(a,b) \in \mathsf{E}(T)} \mathsf{d}(a,b)$$

Symbol distance metric \Longrightarrow Pairwise alignment distance metric

Tree Alignment is a special case of Steiner Tree in a metric space.

Construction Idea

Same idea as for STAR ALIGNMENT.

Overview and Open problems

Problem	Here	Approx
SP-score	all metrics	2-approx [GPBL]
Star Alignment	all metrics	2-approx
Tree Alignment	all metrics	PTAS [WJGL]
(given phylogeny)		

Overview and Open problems

Problem	Here	Approx
SP-score	all metrics	2-approx [GPBL]
Star Alignment	all metrics	2-approx
Tree Alignment (given phylogeny)	all metrics	PTAS [WJGL]

Consensus Patterns	NP-hard	PTAS [LMW]
Substring Parsimony	NP-hard	PTAS [\approx WJGL]

Acknowledgments

My advisor Prof. Jens Lagergren

Prof. Benny for hosting me

Thanks!