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the authors show important results on tree-like Parameterized Resolution—a parameterized version of clas-
sical Resolution—and their gap complexity theorem implies lower bounds for that system.
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rameterized version of bounded-depth Frege. More precisely, we prove that the pigeonhole principle requires
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Resolution. This answers an open question posed in Dantchev et al. [2007]. In the opposite direction, we
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1. INTRODUCTION

Recently, Dantchev et al. [2007] introduced the framework of parameterized proof com-
plexity, an extension of the proof complexity approach of Cook and Reckhow [1979] to
parameterized complexity. One motivation for this is the quest for efficient algorithms
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solving fragments of classically hard problems [Downey and Fellows 1999; Flum and
Grohe 2003; Niedermeier 2006]. Since Resolution is very important for SAT solving, its
analogue in this context, Parameterized Resolution, combines these two approaches,
and its investigation might provide new insights into proof search for tractable frag-
ments of classically hard problems. Some results in this direction are already outlined
in the work of Gao [2009] where he analyzes the effect of the standard DPLL algo-
rithm on the problem of weighted satisfiability for random d-CNF. However, the study
of Parameterized Resolution and our understanding of the possible implications for
SAT-solving algorithms are still at a very early stage.

More generally, parameterized complexity is a branch of complexity theory where
problems are analyzed in a different way than in the classical approach: we say that
a problem is fixed-parameter tractable (FPT) with parameter k if any instance of size
n can be solved in time f (k)nO(1) for some computable function f of arbitrary growth.
In this setting, classically intractable problems may have efficient solutions for small
choices of the parameter, even if the total size of the input is large. Consider, for
example, the classical satisfiability problem of finding a truth assignment that sat-
isfies all clauses of a formula in conjunctive normal form. BOUNDED CNF SAT and
WEIGHTED CNF SAT are parameterized variants of CNF satisfiability in which the
satisfying assignment is required to have Hamming weight at most k or exactly k, re-
spectively. Many parameterized combinatorial problems can be naturally encoded in
BOUNDED CNF SAT or WEIGHTED CNF SAT: finding a vertex cover of size at most k,
finding a clique of size k, or finding a dominating set of size at most k. In the theory
of parameterized complexity, the hardness of all three problems is reflected by their
W[2]-completeness.

Parameterized complexity is a very well-developed and deep theory and, as for the
classical case, there are many open problems concerning the separation of parame-
terized complexity classes, such as FPT and W[P] (see Downey and Fellows [1999],
Flum and Grohe [2006], and Niedermeier [2006] for a comprehensive treatment of the
field).

Dantchev et al. [2007] laid the foundations to study complexity of proofs in a pa-
rameterized setting. The complementary problem of BOUNDED CNF SAT is that of
deciding parameterized contradictions PCon: it consists of all pairs (F, k) where F
is a propositional formula F which has no satisfying assignment of weight ≤ k. Af-
ter considering this notion of propositional parameterized tautologies, Dantchev et al.
[2007] introduced the concepts of parameterized proof systems and of fpt-bounded
proof systems (see Section 2 for a discussion). The main motivation behind the work
of Dantchev et al. [2007] was that of generalizing the classical approach of Cook and
Reckhow [1979] to the parameterized case and working towards a separation of param-
eterized complexity classes as FPT and W[2] by techniques developed in proof complex-
ity. In fact, we obtain an analogous result to the well-known Cook-Reckhow theorem
from Cook and Reckhow [1979]: a parameterized language L has an fpt-bounded proof
system if and only if L ∈ para-NP (Theorem 2.8).

In Dantchev et al. [2007], (tree-like) Parameterized Resolution was defined as a refu-
tation system for the set of parameterized contradictions. If (F, k) ∈ PCon is defined on
variables x1, . . . , xn then a (tree-like) Parameterized Resolution refutation of (F, k) is a
(tree-like) Resolution refutation of F∪{¬xi1 ∨· · ·∨¬xik+1 | 1 ≤ i1 < · · · < ik+1 ≤ n}. Thus,
in (tree-like) Parameterized Resolution, we have built-in access to all parameterized
clauses of the form ¬xi1 ∨ · · · ∨ ¬xik+1 . All these clauses are available in the system, but
when measuring the size of a derivation we only count those which actually appear
in the derivation. This concept can be straightforwardly generalized to an arbitrary
proof system P, be it dag-like or tree-like, that understands clauses and works with
lines.
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Dantchev et al. [2007] prove an extension of Riis’ gap theorem [Riis 2001] and
obtain a model theoretic classification for the complexity of tree-like Parameterized
Resolution refutations for parameterized contradictions originating as propositional
encodings of first-order formulas. In particular, their main result implies that tree-like
Parameterized Resolution is not fpt-bounded. A similar question for dag-like Param-
eterized Resolution was left open in Dantchev et al. [2007]. More specifically, they
asked if (the parameterized version of) the pigeonhole principle is hard for dag-like
Parameterized Resolution.

1.1. Our Contributions

We answer this question by proving that PHPn+1
n requires proofs of size n�(k) not only

in Parameterized Resolution but in the much stronger system of bounded-depth Frege.
Our result is in sharp contrast with Dantchev et al. [2007, Proposition 17] that gives
efficient proofs of PHPn+1

n in Parameterized Resolution using a more sophisticated en-
coding with auxiliary variables. We discuss these augmented proof systems in the final
Section 5.

As our second contribution, we investigate classes of parameterized contradictions
that have short refutations in tree-like Parameterized Resolution. The notion of ker-
nelization plays an important role in the theory of parameterized complexity to design
fpt-algorithms. Here we propose a notion of core for parameterized proof complexity:
the core of a parameterized contradiction (F, k) is a subset of clauses F′ ⊆ F whose
size is bounded by a function of k only, and such that (F′, k) is still a parameterized
contradiction. We observe that if a formula has a core, then it can be efficiently refuted
in tree-like Parameterized Resolution with a refutation of size independent of the size
of F. As an immediate consequence, several examples of formulas hard for tree-like
Resolution are instead efficiently refutable in the parameterized case: pebbling con-
tradictions, linear ordering principles, graph pigeonhole principles, and colorability
principles. But sometimes a core of a formula is not explicit or immediate to find. In
Theorem 4.2 we prove that contradictions of bounded width have a core and thus very
efficient tree-like Parameterized Resolution refutations.

Is the existence of a core a necessary condition for a parameterized contradiction to
have an fpt-bounded refutation in tree-like Parameterized Resolution? A trivial coun-
terexample to this conjecture is made by the CNF (x1∨x2 ∨· · ·∨xn)∧¬x1 ∧ · · ·∧¬xn, but
this is a bit of a cheating since the CNF itself has a poly-size tree-like refutation. We
include a much more interesting example (Proposition 4.5) of a parameterized contra-
diction, a version of the linear ordering principle, that has fpt-refutations in tree-like
Parameterized Resolution without having a core.

1.2. Techniques and Proof Methods

Our lower bound for the pigeonhole principle is a rather simple application of the
method of random restrictions introduced in proof complexity by Haken [1985] in his
seminal paper. But our choice of parameters is totally different and allows us to kill
with the restriction any small prescribed set of parameterized axioms. While the tech-
nique is routine, it nonetheless seems to be its first application in the context of pa-
rameterized complexity, be it computational or proof complexity.

Gao [2009] suggested to use a standard DPLL algorithm to find refutations of
certain random parameterized d-CNFs. Here we prove that bounded width CNFs
have a core and hence are efficiently refutable in tree-like Parameterized Resolution
(Theorem 4.2). The core of our argument is the interpretation of a classical parame-
terized algorithm for vertex cover as a DPLL procedure. This results in a very simple
algorithm.
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1.3. Organization of the Article

The remaining part of the article is organized as follows. Section 2 contains all prelim-
inary notions and definitions concerning fixed-parameter tractability, parameterized
proof systems, and Parameterized Resolution. In Section 3, we show that Parame-
terized Bounded-depth Frege has no fpt-bounded refutations for the pigeonhole prin-
ciple. Section 4 concentrates on upper bounds: we introduce the notion of a core and
prove that parameterized contradictions of bounded width have efficient tree-like refu-
tations. We also present a variant of the linear ordering principle that possesses an
efficient tree-like refutation but does not have a core. We conclude in Section 5 with a
brief discussion, an outline of future directions and some open problems.

2. PARAMETERIZED PROOF COMPLEXITY

2.1. Fixed-Parameter Tractability

A parameterized language is a language L ⊆ �∗ × N, where � is a finite alphabet. For
an instance (x, k), we call k the parameter of (x, k). A parameterized language L is
fixed-parameter tractable if L has a deterministic decision algorithm running in time
f (k)|x|O(1) for some computable function f . The class of all fixed-parameter tractable
languages is denoted by FPT.

Besides FPT there is a wealth of complexity classes containing problems which are
not believed to be fixed-parameter tractable. The most prominent classes lie in the
weft hierarchy forming a chain

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ para-NP .

The classes of the weft hierarchy are usually defined as the closure of a canonical
problem under fpt-reductions. For W[2] this canonical problem is WEIGHTED CNF
SAT containing instances (F, k) with a propositional formula F in CNF and a parame-
ter k ∈ N. WEIGHTED CNF SAT asks whether F has a satisfying assignment of weight
exactly k, where the weight of an assignment α, denoted as w(α), is the number of
variables that α assigns to 1. Instead of asking for an assignment α with w(α) = k we
can also ask for α with w(α) ≤ k and still get the W[2]-complete problem BOUNDED
CNF SAT (cf. Dantchev et al. [2007]). We include the full proof for this claim.

PROPOSITION 2.1 [DANTCHEV ET AL. 2007]. BOUNDED CNF SAT is W[2]-
complete.

PROOF. We first prove that BOUNDED CNF SAT is in W[2] and then that it is W[2]-
hard. The first statement is obvious: consider a CNF F(x1, . . . , xn) and a parameter k.
Introduce new (dummy) variables y1, . . . , yk. Then the formula F(x1, . . . , xn, y1, . . . , yk)
has a satisfying assignment of weight k if and only if F(x1, . . . , xn) has a satisfying
assignment of weight at most k. This yields an fpt-reduction from BOUNDED CNF
SAT to WEIGHTED CNF SAT, which implies that BOUNDED CNF SAT is in W[2].

W[2]-hardness of BOUNDED CNF SAT is shown via the converse reduction. Let
(F, k) be the input, where F is a CNF in variables x1, . . . , xn. Consider the following
CNF ψ which in addition to x1, . . . , xn uses new variables yi, j for i ∈ [n] and j ∈ [k]:∨

i

yi, j for any j ∈ [k]

¬yi, j ∨ ¬yi′, j for any i 
= i′ ∈ [n] and j ∈ [k]
¬yi, j ∨ ¬yi, j′ for any i ∈ [n] and j 
= j′ ∈ [k]
yi,1 ∨ yi,2 ∨ · · · ∨ yi,k ∨ ¬xi for any i ∈ [n]
¬yi, j ∨ xi for any i ∈ [n] and j ∈ [k].
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Formula ψ is satisfiable if and only if there is a set of k indices in [n] matched with
[k]. Variable xi is true if and only if i is in this set. Thus, any satisfying assign-
ment for ψ has weight 2k. The fpt-reduction from WEIGHTED CNF SAT to BOUNDED
CNF SAT is given by (F, k) �→ (F ∧ ψ, 2k). This proves that BOUNDED CNF SAT is
W[2]-hard.

Like in the classical duality between tautologies and satisfiability, the complement
of BOUNDED CNF SAT is a complete problem for coW[2]:

Definition 2.2 [Dantchev et al. 2007]. A parameterized contradiction is a pair (F, k)
consisting of a propositional formula F, given as a CNF, and k ∈ N such that F has no
satisfying assignment of weight ≤ k. We denote the set of all parameterized contradic-
tions by PCon.

For an in-depth treatment of notions from parameterized complexity we refer to the
monographs [Downey and Fellows 1999; Flum and Grohe 2006; Niedermeier 2006].

2.2. Parameterized Proof Systems

We start with discussing the general definition of a parameterized proof system given
by Dantchev et al. [2007].

Definition 2.3 [Dantchev et al. 2007]. A parameterized proof system for a parame-
terized language L ⊆ �∗ × N is a function P : �∗ × N → �∗ × N such that rng(P) = L
and P(x, k) can be computed in time f (k)|x|O(1) with some computable function f .

The purpose of the second argument in P remains a little bit unclear to us since all
natural proof systems we can think of do not have this feature. Thus, we propose the
following simplification.

Definition 2.4. A proof system for a parameterized language L ⊆ �∗ × N is a
polynomial-time computable function P : �∗ → �∗ × N such that rng(P) = L.

Now we would like to show that both versions are even formally equivalent in the
sense that a parameterized language has a proof system in which all strings possess
“short” proofs if and only if it has a parameterized proof system with this property.
First we have to formalize the notion of “short”. In the framework of Dantchev et al.
[2007] it goes as follows.

Definition 2.5 [Dantchev et al. 2007]. A parameterized proof system P for a param-
eterized language L is fpt-bounded if there exist computable functions f and g such
that every (x, k) ∈ L has a P-proof (y, k′) with |y| ≤ f (k)|x|O(1) and k′ ≤ g(k).

Again, our analogue is simpler.

Definition 2.6. A proof system P for a parameterized language L is fpt-bounded if
there exists a computable function f such that every (x, k) ∈ L has a P-proof of size at
most f (k)|x|O(1).

Recall that by the theorem of Cook and Reckhow [1979], the class of all languages
with polynomially bounded proof systems coincides with NP. To obtain a similar result
in the parameterized world, we use the following parameterized version of NP.

Definition 2.7 [Flum and Grohe 2003]. The class para-NP contains all parameter-
ized languages that can be decided by a nondeterministic Turing machine in time
f (k)|x|O(1) for a computable function f .
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THEOREM 2.8. Let L ⊆ �∗ × N be a parameterized language. Then, the following
statements are equivalent:

(1) There exists an fpt-bounded proof system for L.
(2) There exists an fpt-bounded parameterized proof system for L.
(3) L ∈ para-NP.

PROOF. For the implication 1 ⇒ 2, let P be an fpt-bounded proof system for L. Then,
the system P′ defined by P′(y, k) = P(y) is an fpt-bounded parameterized proof system
for L.

For the implication 2 ⇒ 3, let P be an fpt-bounded parameterized proof system for
L such that every (x, k) ∈ L has a P-proof (y, k′) with |y| ≤ f (k)p(|x|) and k′ ≤ g(k) for
some computable functions f, g and some polynomial p. Let M be a Turing machine
computing P in time h(k)q(n) with computable h and a polynomial q. Then L ∈ para-NP
by the following algorithm: on input (x, k) we guess a proof (y, k′) with |y| ≤ f (k)p(|x|)
and k′ ≤ g(k). Then, we verify that P(y, k′) = (x, k) in time h(k′)q(|y|) which by the
choice of (y, k′) yields an fpt running time. If the test is true, then we accept the input
(x, k), otherwise, we reject.

For the implication 3 ⇒ 1, let L ∈ para-NP and let M be a nondeterministic Turing
machine for L running in time f (k)p(n) where f is computable and p is a polynomial.
Then, we define the following proof system P for L:

P(x, k, w) =
{

(x, k) if w is an accepting computation of M on input (x, k)
(x0, k0) otherwise,

where (x0, k0) ∈ L is some fixed instance. Clearly, P can be computed in poly-
nomial time. Moreover, P is fpt-bounded as every (x, k) ∈ L has a P-proof of size
O( f (k)p(|x|)).

We remark that the resulting transformation of an fpt-bounded parameterized proof
system into an fpt-bounded proof system for the same language is constructive.

2.3. Parameterized Versions of Ordinary Proof Systems

A literal is a propositional variable or a negated variable; a clause is a set of literals.
The width of a clause is the number of its literals. A clause is interpreted as the
disjunction of its literals and a set of clauses as the conjunction of the clauses. Hence
clause sets correspond to formulas in CNF.

The system of Parameterized Resolution was introduced by Dantchev et al. [2007].
Parameterized Resolution is a refutation system for the set PCon of parameterized
contradictions (cf. Definition 2.2). Given a set of clauses F in variables x1, . . . , xn
with (F, k) ∈ PCon, a Parameterized Resolution refutation of (F, k) is a Resolution
refutation of

F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1 | 1 ≤ i1 < · · · < ik+1 ≤ n}. (1)

Thus, in Parameterized Resolution, we have built-in access to all clauses of the form
¬xi1∨ · · ·∨¬xik+1 . We call these clauses parameterized axioms. All parameterized axioms
are available in the system, but when measuring the size of a derivation we only count
those which appear in the derivation. Note that Parameterized Resolution is actually
a proof system for PCon in the sense of Definition 2.4, that is, verification proceeds in
polynomial time. This definition allows the following straightforward generalization.

Definition 2.9. Let P : �∗ → Con be an ordinary proof system for the language Con
of all (ordinary) CNF contradictions. We define the parameterized version P̂ of P by
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letting P̂(F, k, x) = (F, k) whenever P(x) is an arbitrary subset of the set of axioms (1).
If P(x) does not have this form, P̂(F, k, x) outputs something trivial.

The only specific proof system we would like to comment on is tree-like Parameter-
ized Resolution (as it will be needed in Section 4). As explained in Dantchev et al.
[2007], a tree-like Parameterized refutation of (F, k) can equivalently be described as
a Boolean decision tree. A Boolean decision tree for (F, k) is a binary tree where in-
ner nodes are labeled with variables from F and leafs are labeled with clauses from
F or parameterized clauses ¬xi1 ∨ · · · ∨ ¬xik+1 . Each path in the tree corresponds to a
partial assignment where a variable x gets value 0 or 1 according to whether the path
branches left or right at the node labeled with x. The condition on the decision tree
is that each path α must lead to a clause which is falsified by the assignment corre-
sponding to α. Therefore, a Boolean decision tree solves the search problem for (F, k)
which, given an assignment α, asks for a clause falsified by α. It is easy to verify that
each tree-like Parameterized Resolution refutation of (F, k) yields a Boolean decision
tree for (F, k) and vice-versa, where the size of the Resolution proof equals the number
of nodes in the decision tree.

An embarrassing fact about Parameterized Proof Complexity (brought to our atten-
tion by an anonymous referee of a previous version of this article) is that, as defined in
Definition 2.9, P̂ is never bounded for some dull reasons.

Example 2.10. Let (F, k) be the parameterized contradiction in which F is the set
of positive clauses {x1,1 ∨ . . . ∨ x1,n, . . . , xk+1,1 ∨ · · · ∨ xk+1,n}. Then in order to make this
set even semantically invalid, one has to append to it all nk+1 parameterized axioms of
the form ¬x1, j1 ∨ . . . ∨ ¬xk+1, jk+1 .

Obviously, this is not the kind of phenomena we want to study (and not the kind of
methods we want to develop) so we have to try to somehow isolate such pathological
examples. One approach (borrowed from circuit complexity) would be simply to declare
some parameterized contradictions “natural”, “interesting” or “explicit” without giving
precise definitions or even revealing exact reasons for this classification. Another pos-
sibility (that we adopt in this article) is to formally restrict the set of contradictions we
are interested in.

Definition 2.11. A parameterized contradiction (F, k) is strong if F itself is a con-
tradiction. A proof system P for the set PCon is weakly fpt-bounded if there exists a
computable function f such that every strong (F, k) ∈ PCon has a P-proof of size at
most f (k)|F|O(1).

One reason to introduce this restriction is that many “interesting” contradictions are
strong. In fact, the only exception we are aware of (even if it is the one that inspired
almost all material in Section 4) is the vertex cover problem.

On a more philosophical level, the concept of a strong parameterized contradiction
intends to capture the idea that the new knowledge provided by parameterized axioms
should be rather thought of as a helper or an additional feature made available to
already existing DPLL algorithms rather than being the prime source of the validity
of the statement.

Finally, we are not aware of any analogue of Example 2.10 for strong parameterized
contradictions.

Yet another possibility to get rid of this example is to try to encode parameterized ax-
ioms in (1) in a more economical way (so that their number stays small), possibly using
some auxiliary variables. For Parameterized Resolution, this possibility was discussed
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already in Dantchev et al. [2007], and we continue this discussion in a broader context
in Section 5.

3. PARAMETERIZED BOUNDED-DEPTH FREGE IS NOT WEAKLY FPT-BOUNDED

The pigeonhole principle PHPn+ 1
n uses variables xi, j with i ∈ [n+ 1] and j ∈ [n], indicat-

ing that pigeon i goes into hole j. PHPn+1
n consists of the clauses∨

j∈[n]

xi, j for all pigeons i ∈ [n + 1]

and ¬xi1, j ∨ ¬xi2, j for all choices of two distinct pigeons i1, i2 ∈ [n + 1] and a hole j ∈ [n].
Let Fd be the fragment of the Frege system over de Morgan basis {¬,∧,∨} that

operates with formulas of logical depth at most d.

THEOREM 3.1. For any fixed d, k ≥ 0 and all sufficiently large n, any refutation of(
PHPn+1

n , k
)

in F̂d, the parameterized version of Fd, requires size ≥ nk/5.

Note that d does not appear in the final bound at all (although it implicitly appears
in the bound assumed in the “sufficiently large” premise).

PROOF. Choose uniformly at random a set I of n−√
n pigeons and match them with

a set Jof n−√
n uniformly chosen holes. Such partial matching f induces the following

natural partial assignment of the variables of PHPn+1
n :

xi, j = 1 whenever i ∈ I and f (i) = j,
xi, j = 0 whenever i ∈ I and f (i) 
= j,
xi, j = 0 whenever j ∈ J and there exist i′ 
= i such that f (i′) = j, and
xi, j = � otherwise.

We claim that with nonzero probability such partial assignment satisfies all pa-
rameterized axioms used in the refutation, as long as there are at most nk/5 of them.
(Notice that we do not care if such assignment falsifies unused parameterized axioms.)
Before proving this claim, we show how the theorem follows.

The refutation, restricted with such assignment, does not contain parameterized
axioms anymore. Thus it is a classical Fd-refutation for the restricted formula, which
in turn is equivalent (up to a re-indexing of pigeons and holes) to PHP

√
n+1√
n . Such

refutation must be of size at least 2ncd [Krajı́ček et al. 1995; Pitassi et al. 1993] for
some cd > 0, thus bigger than nk/5 if n is sufficiently large. This concludes the proof.

The missing part is to show that the probabilistic choice of the partial matching
realizes the desired properties with positive probability. Consider a parameterized
axiom ¬xi1, j1 ∨ . . . ∨ ¬xik+1, jk+1 . If there are two equal indexes ja and jb for a 
= b , then
such axiom is just a weakening of a standard clause of the pigeonhole principle and
does not need any special treatment.

We can now focus on a parameterized axiom in which exactly k + 1 holes are repre-
sented: the probability that such axiom fails to be satisfied is the probability that all
xil, jl are either true or unassigned for 1 ≤ l ≤ k + 1. Let J0 = { j1, . . . , jk+1} be the set of
all holes represented in our axiom. The probability that the support J of our random
restriction contains at most k/2 of them (and hence the complement to J that has size√

n contains at least k/2 of them) is bounded by(
k + 1
k/2

)
·
( n−k/2√

n−k/2

)
( n√

n

) ≤ 2k+1n−k/4.
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And, conditioned by the event |J∩ J0| ≥ k/2, the probability that every hole ja ∈ J∩ J0
is sent by the matching f to the right pigeon ia (so that xia, ja is not set to 0) is at most
(n − k/2)−k/2. Thus, the overall probability that our random partial assignment does
not satisfy an individual parameterized axiom is bounded by

2k+1n−k/4 + (n − k/2)−k/2
< n−k/5 (2)

for sufficiently large n. By the union bound, if our refutation has size ≤ nk/5, then for
at least one particular choice of f the corresponding assignment satisfies all parame-
terized axioms actually used in the refutation. As we already observed, this concludes
the proof.

The same proof works for weaker versions of the pigeonhole principle, like func-
tional or onto, and it works for nonconstant depth d up to �(log log n) (cf. Pitassi et al.
[1993, Corollary 11]). If we consider Parameterized Resolution instead of parame-
terized bounded-depth Frege, our proof applies also to the pigeonhole principle with
arbitrarily many pigeons.

THEOREM 3.2. For any fixed k ≥ 0 and all sufficiently large n and any m > n, any
parameterized Resolution refutation of (PHPm

n , k) requires size ≥ nk/5.

PROOF. As in the proof of Theorem 3.1, we uniformly choose at random a set I of
n − √

n pigeons and match them with a set J of n − √
n uniformly chosen holes. This

partial matching is naturally associated with a partial assignment that restricts the
formula PHPm

n to a formula PHPm−n+
√

n√
n . This formula requires Resolution refutations

of size 2n�(1)
[Raz 2004; Razborov 2004], which is asymptotically bigger than nk/5.

The rest of the proof is identical to that of Theorem 3.1, with the only difference that
now the bound (2) becomes 2k+1n−k/4 + (m − k/2)−k/2. But this is less than 2k+1n−k/4 +
(n − k/2)−k/2 as m > n.

It is remarkable that this lower bound does not depend on the number of pi-
geons. This contrasts with classical Resolution, where we have the following anti-
monotonicity: for n + 1 pigeons there is a lower bound of 2�(n), as shown in Haken
[1985], while for the case of infinitely many pigeons1 the smallest Resolution refuta-
tion has length between 2�( 3√n) and 2O(

√
n log n) (see Buss and Pitassi [1997], Razborov

et al. [2002], Raz [2004], and Razborov [2004]).

4. CORES AND SMALL REFUTATIONS

The notion of kernelization plays an important role in the theory of parameterized
complexity. A kernelization for a parameterized language L is a polynomial-time pro-
cedure A : �∗ × N → �∗ × N such that for each (x, k)

(1) (x, k) ∈ L if and only if A(x, k) ∈ L and
(2) if A(x, k) = (x′, k′), then k′ ≤ k and |x′| ≤ f (k) for some computable function f

independent of |x|.
It is clear that if a parameterized language admits a kernelization then it is fixed-

parameter tractable. The converse is also true for decidable languages (cf. Flum and
Grohe [2006]). For parameterized proof complexity, we suggest a similar notion of core
for parameterized contradictions.

1This formula has infinite length, but its smallest refutation has finite length since it uses a finite number of
initial clauses. Notice that any PHPm

n refutation of length L mentions at most L pigeons, thus the Resolution
complexity of PHP∞

n is equal to that of PHPm
n for some value of m.
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Definition 4.1. A core for a set � ⊆ PCon of parameterized contradictions is a map-
ping which maps every (F, k) ∈ � to a subset F′ ⊆ F of clauses satisfying the following
conditions:

(1) F′ contains at most f (k) variables and
(2) (F′, k) is a parameterized contradiction,

where f is a computable function depending only on the mapping.

Note that we do not impose any a priori restrictions on the complexity of the map-
ping itself.

We will sometimes abuse terminology by saying that a set of clauses F′ ⊆ F is a core
of F when it is clear from the context that F is a member of a family of parameterized
contradictions and that F′ can be chosen for any k and any F in that family.

Clearly, any k + 1 positive clauses of width f (k) and with pairwise disjoint sets of
variables make a core that we will call a trivial core (cf. Example 2.10). It is very
easy to come up with many parameterized contradictions (pebbling contradictions, col-
orability, sparse pigeonhole principle etc.) that possess trivial cores.

The interesting questions here seem to be the following.

(1) Do there exist “natural” parameterized contradictions that possess only non-trivial
cores? And do we have a “parameterized automatizability”, that is, is it easy to find
a core once we know that it exists?

(2) Do there exist “natural” parameterized contradictions that, contrary to the situ-
ation in computational complexity, have fpt-bounded refutations despite the fact
that they do not have any core at all?

In the following, we are trying to address both questions.
For Question (1), our motivating example is the vertex cover problem. A vertex cover

for a graph G is a set C ⊆ V(G) such that for any {u, v} ∈ E(G) either u ∈ C or v ∈ C or
both. To determine whether G has a vertex cover of size at most k there is a well-known
[Downey and Fellows 1999, Chapter 3] fixed parameter tractable algorithm (here the
parameter is k). This algorithm is based on the following observation: if a vertex is not
in C, then all its neighbors must be in C. The algorithm is a simple recursive procedure
which focuses on an arbitrary vertex u, and on its neighbors v1, . . . , vl: if neither G \{u}
has a vertex cover of size k−1 nor G \ {u, v1, . . . , vl} has a vertex cover of size k− l, then
G has no vertex cover of size k.

This is interpretable as a parameterized DPLL procedure on the 2-CNF FG =∧
{u,v}∈E(G)(xu ∨ xv) where xu indicates whether u ∈ C. The DPLL procedure fixes

an arbitrary variable xu and branches on it. When xu = 1, then the DPLL al-
gorithm proceeds with analyzing FG �xu=1 which is equal to FG\{u}. When xu = 0,
then xv1 = 1, . . . , xvl = 1 by unit propagation. Thus, the DPLL proceeds on formula
FG �{xu=0,xv1 =1,...,xvl =1} = FG\{u,v1,...,vl}. If at any point the DPLL has more than k variables
set to one, it stops and backtracks.

And now we establish a far-reaching generalization of this example.

THEOREM 4.2. If F is a CNF of width d and (F, k) is a parameterized contradiction,
then (F, k) has a tree-like Parameterized Resolution refutation of size O(dk+1). Moreover,
there is an algorithm that for any (F, k) either finds such tree-like refutation or finds a
satisfying assignment for F of weight ≤ k. The algorithm runs in time O(|F| · k · dk+1).

PROOF. Assume (F, k) is a parameterized contradiction. We want to find a refutation
for F with parameter k (i.e. , at most k variables can be set to true). We first consider
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a clause C = x1 ∨ x2 ∨ . . . ∨ xl where l ≤ d with all positive literals. Such clause exists
because otherwise the full zero assignment would satisfy F.

By induction on k, we will prove that (F, k) has a parameterized tree-like refutation
of size at most 2 · ∑k+1

i=0 di − 1. For k = 0, the clauses {¬xi}l
i=1 are parameterized axioms

of the system, thus C is refutable in size at most 1 + 2l ≤ 1 + 2d.
Now consider k > 0. For any 1 ≤ i ≤ l, let Fi be the restriction of F obtained by

setting xi = 1. Each (Fi, k − 1) is a parameterized contradiction, otherwise (F, k) would
not be. By inductive hypothesis (Fi, k − 1) has a tree-like refutation of size at most
s = 2

∑k
i=0 di − 1. This refutation can be turned into a tree-like derivation of ¬xi from

(F, k) (by appending this literal to every clause in the derivation). Now we can derive
all ¬xi for 1 ≤ i ≤ l and refute clause C. Such refutation has length 1+l+ls ≤ 1+d+ds =
2 · ∑k+1

i=0 di − 1.
By inspection of the proof, it is clear that the refutation can be computed by a simple

procedure which at each step looks for a clause C with only positive literals, and builds
a refutation of (F, k) recursively by: building l refutations of (Fi, k − 1); turning them
in l derivations (F, k) � ¬xi; and resolving against C. This procedure can be easily
implemented in the claimed running time.

So far, we considered (F, k) to be a parameterized contradiction. If that is not the
case, then the algorithm fails. It can fail in two ways: (a) it does not find a clause with
only positive literals; (b) one of (Fi, k − 1) is not a parameterized contradiction. The
algorithm will output the full zero assignment in case (a) and {xi = 1} ∪ α in case (b),
where α is an assignment witnessing (Fi, k − 1) 
∈ PCon. By induction, we can show
that on input (F, k) this procedure returns a satisfying assignment of weight ≤ k.

A related result was obtained by Chen and Flum [2008, Theorem 12]. Notice
that while BOUNDED CNF SAT and WEIGHTED CNF SAT are both W[2]-complete,
BOUNDED d-CNF SAT is in FPT and WEIGHTED d-CNF SAT is known to be W[1]-
complete. This means that reducing the case of exact weight to bounded weight (see
the proof of Proposition 2.1) requires large clauses unless FPT = W[1]. We state two
interesting consequences of Theorem 4.2.

COROLLARY 4.3. For each d ∈ N, the set of all parameterized contradictions in
d-CNF has a core.

PROOF. The refutations constructed in Theorem 4.2 contain O
(
dk

)
initial clauses in

O
(
dk+1

)
variables. These clauses form a core.

The following corollary expresses some restricted form of automatizability (cf. also
the discussion in Section 5).

COROLLARY 4.4. If � ⊆ PCon has a core, then there exists an fpt-algorithm that on
input (F, k) ∈ � returns both a core and a refutation of (F, k).

PROOF. Let � have a core of size f (k). Then the core only contains clauses of width
≤ f (k). On input (F, k), we run the algorithm of Theorem 4.2 on the CNF formula
consisting of all clauses of F with width ≤ f (k). This yields a core together with its
refutation.

4.1. The Linear Ordering Principle

Let us now turn to Question (2), that is whether the existence of a core is a necessary
condition for a parameterized contradiction to have an fpt-bounded refutation in tree-
like Parameterized Resolution.
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A trivial counterexample to this conjecture is made by the CNF (x1 ∨ x2 ∨ · · · ∨
xn) ∧ ¬x1 ∧ · · · ∧ ¬xn. A more interesting example—a version of the linear ordering
principle—is discussed here.

The linear ordering principle LO P claims that any linearly ordered set has a min-
imal element. Its propositional formulation can be described as follows. It has the
variables (xi, j | i, j ∈ [n], i 
= j) with the intended meaning that xi, j is false if i precedes
j in the ordering and is true if j precedes i. The axioms are given by:

LOP:

¬xi, j ∨ ¬x j,i for every i, j (Antisymmetry)
¬xi, j ∨ ¬x j,k ∨ xi,k for every i, j, k (Transitivity)∨
j∈[n]\{i}

xi, j for every i (Predecessor)

xi, j ∨ x j,i for every i, j (Totality)

Totality axioms provide a trivial core: take two disjoint sets A , B ⊆ [n], |A| = |B| =
k+1. Then the totality axioms xi, j∨ x j,i for i ∈ A, j ∈ B form a core over 2k+2 variables.
Thus, this principle is not good for our purposes.

We, however, can modify it to the following version LOP∗ by restricting to the vari-
ables xi, j for i < j. In particular, the full true assignment represents the linear order
(n, n − 1, n − 2, . . . , 2, 1) while the full false assignment represents (1, 2, . . . , n − 2, n −
1, n). This representation will help in the proof of Proposition 4.5.

LOP∗
n is obtained by substituting in LOPn any occurrence of x j,i for j > i with ¬xi, j.

In this way all totality and antisymmetry clauses vanish, and transitivity translates
according to relative ranks of the involved indexes. Thus, we obtain the clauses

¬xi, j ∨ ¬x j,k ∨ xi,k for all i < j < k (Transitivity 1)
xi, j ∨ x j,k ∨ ¬xi,k for all i < j < k (Transitivity 2)∨
j<i

¬x j,i ∨
∨
i< j

xi, j for all i (Predecessor)

The alternative formulation LOP∗ does not have a core because all clauses of
bounded width are satisfiable by the all zero assignment which represents a total
order. Also, neither LOPn nor LOP∗

n have a poly-size tree-like resolution refutation
(that can be seen, e.g., by inspecting the proof of Bonet and Galesi [2001] that estab-
lished this in the absence of totality axioms). Nevertheless, LOP∗ admits fpt-bounded
tree-like refutations.

PROPOSITION 4.5. LOP∗
n has fpt-bounded tree-like refutations in Parameterized

Resolution.

PROOF. The idea of the refutation is that for any total order either the least element
is among 1, . . . , k + 1 or there is an element less than all of them. In the latter case,
there are at least k+1 inversions with respect to the canonical order (i.e., k+1 variables
are set to 1). In the language of decision trees the proof boils down to querying all the
variables which deal with the first k + 1 elements, and then to compare any other
element with the smallest among the first k + 1.

Let (LOP∗
n, k) be the given instance and assume, without loss of generality, that

k ≤ n. We are going to derive LOP∗
k+1 from (LOP∗

n, k) in polynomial length. This con-
cludes the proof of the theorem because LOP∗

k+1 has O(k2) variables and consequently
has a tree-like refutation of length 2O(k2).
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To obtain LOP∗
k+1 we have to derive∨

1≤ j<i

¬x j,i ∨
∨

i< j≤k+1

xi, j

for any 1 ≤ i ≤ k + 1. Without loss of generality, we discuss the case i = 1, which
requires simpler notation, the other k cases are analogous.

Our goal then is to derive
∨

1< j≤k+1 x1, j. For any l > k + 1 consider the following
clauses: the first is an axiom of Parameterized Resolution, the others are transitivity
axioms.

¬x1,l ∨ ¬x2,l ∨ . . . ∨ ¬xk+1,l (3)
x1,2 ∨ x2,l ∨ ¬x1,l (4)
x1,3 ∨ x3,l ∨ ¬x1,l (5)

...
x1,k+1 ∨ xk+1,l ∨ ¬x1,l (6)

By applying Resolution between clause (3) and the transitivity clauses, we obtain

x1,2 ∨ x1,3 ∨ · · · ∨ x1,k+1 ∨ ¬x1,l. (7)

We just proved that if 1 is the least index among the first k + 1, then no index above
k + 1 can be less than 1, otherwise there would be at least k + 1 true variables. The pre-
decessor constraint for 1 contains the literal x1,l for every l; thus applying Resolution
between that and clause (7) for every l > k + 1 yields

∨
1< j≤k+1 x1, j.

We obtained the predecessor axiom for index 1 in LOP∗
k+1 by a derivation of size

O(kn). With k + 1 such deductions we obtain LOP∗
k+1. As the whole refutation of LOP∗

n

has length O(k2n) + 2O(k2), it is fpt-bounded.

5. DISCUSSION AND OPEN PROBLEMS

Is the parameterized proof system P̂ from Definition 2.9 the most natural way to define
the parameterized analogue of P? The answer depends on the original proof system
P, of course. The main (unspoken) reason why Dantchev et al. [2007] defined it in this
way is simply because weak proof systems cannot directly talk about the weight of the
input. Let us first discuss two familiar systems that are strong enough to overcome
this limitation: Frege and Cutting Planes.

The problem of getting super-polynomial lower bounds for the Frege proof system F
is one of the biggest open problems in Logic and Theoretical Computer Science. Lower
bounds for its parameterized version F̂ seem even harder to achieve for strong contra-
dictions (as we just add new axioms). A similar conclusion remains true if we combine
all parameterized axioms into one (using, e.g., Buss [1987]) but allow arbitrary param-
eterized contradictions, not necessarily strong.

The case of Cutting Planes (CP) is way more interesting. First of all, we do not seem
to know lower bounds even for the “canonical” version ĈP:

Question 5.1. Is ĈP weakly fpt-bounded?

This, of course, is yet another reflection of the mysterious status of this proof system:
the only known lower bounds for it are based on very indirect methods (interpolation,
see Bonet et al. [1997] and Pudlák [1997]) and no direct, combinatorial proof is cur-
rently known. And if we try to generalize the methods from Bonet et al. [1997] and
Pudlák [1997] (at least in a straightforward way), then we immediately arrive at a
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problem in parameterized circuit complexity that seems to be widely open (at least, we
do not see how known methods can be applied to it).

Question 5.2. Find an explicit partial monotone function (a.k.a. a monotone prom-
ise problem) f : [n]≤k → {0, 1} defined on inputs of Hamming weight ≤ k that does not
possess monotone circuits of size f (k)nO(1).

Note that the problem of finding (say) a
√

k-clique does become easy in this context.
For weaker proof systems, Dantchev et al. [2007, Section 4] proposed to use auxiliary

variables. Their suggestion was to add new “pigeonhole variables” pi, j (i ∈ [n], j ∈ [k])
and “pigeonhole clauses”

¬xi ∨
∨
j∈[k]

pi, j for all i ∈ [n] (Pigeon clauses)

¬pi1, j ∨ ¬pi2, j for all i1 
= i2 ∈ [n], j ∈ [k], (Hole clauses),

where x1, . . . , xn are the original variables. Remarkably, they proved that the pigeon-
hole principle has fpt-bounded refutations in this version of Parameterized Resolution.

The disturbing Example 2.10 turns into an instance of PHPk+1
k with large “metapi-

geons” that has an fpt-bounded proof (e.g., the straightforward adaption of the rectan-
gular proof from Razborov et al. [2002, Example 1]). Thus, following Dantchev et al.
[2007], we ask the following.

Question 5.3. Is Parameterized Resolution with auxiliary variables fpt-bounded?

Let us now point out that there is an interesting and well-studied class of contra-
dictions for which the difference between these two encodings disappears, and these
are independent set principles. Following Beame et al. [2007], let G be a graph [n] in
which vertices are split into k subsets V1, . . . , Vk of size n/k each called blocks. The
principle αblock(G, k) encodes the fact that G has a block-respecting independent set of
size k; it has the variables xv (v ∈ [n]) and the axioms

¬xu ∨ ¬xv for all (u, v) ∈ E(G) (Edge clauses)∨
v∈ Vi

xv for all i ∈ [k] (Block clauses)

(¬xu ∨ ¬xv) for all u 
= v in the same block (1–1 clauses).

The fact that all satisfying assignments have at most k ones is already built in this
principle: all parameterized axioms are subsumed by the 1–1 clauses above. Auxiliary
clauses in the sense of Dantchev et al. [2007] (both pigeon and holes) also do not help to
reduce the refutation size, as witnessed by the following substitution of the pigeonhole
variables:

pv, j �→
{

0 if v 
∈ V j

xv if v ∈ V j.

Thus, we are also asking the following specific form of Question 5.3.

Question 5.4. Do the principles αblock(G, k) always have fpt-bounded Resolution
refutations as long as the graph G does not contain block-respecting independent sets
of size k?

One good candidate for a lower bound here would be Erdős-Rényi random graphs
G(n, p) for an appropriately chosen value of p. A lower bound for these formulas has
been recently proved for tree-like Resolution by Beyersdorff et al. [2011a].
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Let us recall that a proof system P is automatizable if there exists an algorithm
which for a tautology F with a P-proof of size S finds a P-proof for F of size at
most SO(1) and runs in time SO(1). Alekhnovich and Razborov [2008] proved that if
(classical) Resolution or tree-like Resolution were automatizable, then W[P] would
coincide with FPR, the randomized version of FPT. Eventually the derandomization
in Eickmeyer et al. [2008] improved the result so that under the same automatizability
assumptions W[P] would coincide with FPT. On the other hand, tree-like Resolution
is quasi-polynomially automatizable (see, e.g., Beame et al. [2002]).

We point out that the concept of quasi-polynomial automatizability is meaningless
in the context of Parameterized Resolution, because every (F, k) ∈ PCon with |F| = n
has a refutation of size c · ( n

k+1

)
for some constant c. If k ≤ log n, this is smaller than

nlog n; otherwise,
( n

k+1

) ≤ 2(k+1)2
which is fpt with respect to k.

On the contrary, the concept of polynomial automatizability can be extended to pa-
rameterized proof systems in an obvious way. Thus, we ask the following.

Question 5.5. Is (tree-like) Parameterized Resolution, with or without auxiliary
variables, fpt-automatizable or fpt-automatizable w.r.t. strong contradictions? That
is, does there exist an algorithm that for any (strong) parameterized contradiction
(F, k) ∈ PCon outputs its refutation within time f (k)SO(1), where S is the minimal
possible size of a parameterized refutation of (F, k)?

Naturally, unconditional results of this sort are completely out of reach for the mo-
ment, so we are willing to allow here any reasonable complexity assumption (that will
most likely reside in the realm of parameterized complexity itself ).
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