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Abstract

Core-guided techniques have revolutionized Boolean satisfi-
ability approaches to optimization problems (MaxSAT), but
the process at the heart of these methods, strengthening
bounds on solutions by repeatedly adding cardinality con-
straints, remains a bottleneck. Cardinality constraints require
significant work to be re-encoded to SAT, and SAT solvers
are notoriously weak at cardinality reasoning. In this work,
we lift core-guided search to pseudo-Boolean (PB) solvers,
which deal with more general PB optimization problems
and operate natively with cardinality constraints. The cut-
ting planes method used in such solvers allows us to derive
stronger cardinality constraints, which yield better updates
to solution bounds, and the increased efficiency of objective
function reformulation also makes it feasible to switch repeat-
edly between lower-bounding and upper-bounding search.
A thorough evaluation on applied and crafted benchmarks
shows that our core-guided PB solver significantly improves
on the state of the art in pseudo-Boolean optimization.

1 Introduction
The Boolean satisfiability (SAT) problem plays a fasci-
nating dual role in computer science. Although it is an
archetypal hard problem—proven NP-complete in (Cook
1971; Levin 1973) and widely believed to be exponen-
tially hard in theory—at the same time it serves as the
modelling language for the conflict-driven clause learn-
ing (CDCL) SAT solvers (Bayardo Jr. and Schrag 1997;
Marques-Silva and Sakallah 1999; Moskewicz et al. 2001)
that have emerged over the last two decades as highly
practical tools for solving large-scale real-world problems
in a wide range of application areas (Biere et al. 2021).
This success has also led to exports of the conflict-driven
paradigm beyond SAT solving to, e.g., SAT-based opti-
mization (MaxSAT) (Fu and Malik 2006), pseudo-Boolean
(PB) optimization (Chai and Kuehlmann 2005; Sheini and
Sakallah 2006), constraint programming (CP) (Ohrimenko,
Stuckey, and Codish 2009; Stuckey 2010), and mixed integer
programming (MIP) (Achterberg 2007).

Our starting point in this work is the MaxSAT problem,
which differs from SAT in that some of the constraints are
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declared to be soft, but with associated penalties for vio-
lating them, and where the goal is to minimize the total
penalty of violated constraints. The core-guided approach
introduced by (Fu and Malik 2006) optimistically assumes
that this penalty is zero, and then tries to solve the result-
ing SAT problem under this assumption as described in (Eén
and Sörensson 2003). If this attempt fails, the solver returns
a core explaining why the assumption was too good to be
true, and such cores are repeatedly used to update the esti-
mate of the optimal solution and make new attempts with
revised assumptions. Such techniques play a crucial role for
the performance of modern MaxSAT solvers (Morgado et al.
2013), and have also been adapted to other paradigms such
as answer set programming (ASP) (Andres et al. 2012) and
constraint programming (Gange et al. 2020).

A technical barrier for efficient implementations of core-
guided search, however, is that the process of using cores
to strengthen bounds requires dealing with cardinality con-
straints. Such constraints are cumbersome to encode in the
low-level language of propositional logic, and the resolu-
tion method on which CDCL SAT solvers are based (Beame,
Kautz, and Sabharwal 2004) has severe limitations when it
comes to cardinality reasoning (Haken 1985), affecting even
core-guided approaches that use clauses to explain propaga-
tions by the cardinality constraints (Manquinho, Marques-
Silva, and Planes 2009; Alviano, Dodaro, and Ricca 2015).

Our Contribution The simple but crucial observation un-
derlying our work is that the MaxSAT problem of minimiz-
ing a weighted sum of penalties subject to constraints ex-
pressed in conjunctive normal form (CNF) is just a special
case of pseudo-Boolean optimization (also known as 0-1 in-
teger linear programming). An intriguing fact in this context
is that there are PB solvers that borrow the conflict-driven
paradigm from SAT but perform their reasoning using the
cutting planes method (Cook, Coullard, and Turán 1987).
Cardinality constraints are no problem for such solvers,
since they operate with even more general PB constraints,
and it is known that cutting planes applied to cardinality con-
straints is exponentially more powerful than resolution.

In view of this, it might seem like an attractive, and even
obvious, proposition to combine pseudo-Boolean reasoning
with core-guided search. In practice, however, harnessing



the theoretical power of the cutting planes method in PB
solvers has turned out to be very challenging, to the ex-
tent that the best PB optimization solver NAPS (Sakai and
Nabeshima 2015) in the most recent PB Competition in
2016 (www.cril.univ-artois.fr/PB16/) instead
rewrites the input to CNF and runs a CDCL solver. One of
the problems with PB solvers is that the increased degree of
freedom make it hard to know how to best explore the search
space, and for the same reason it is not a priori obvious what
would be “the right way” of generalizing core-guided tech-
niques to a PB setting.

In this paper, we report on our work on designing algo-
rithms and heuristics for core-guided pseudo-Boolean solv-
ing. We implement different approaches in the state-of-the-
art PB solver ROUNDINGSAT (Elffers and Nordström 2018),
and perform an extensive evaluation on applied and crafted
benchmarks from different domains.

The one-sentence summary of our results is that adding
core-guided techniques dramatically improves the solver.
Core-guided search with clausal cores, as in SAT, already
enhances performance, but the cutting planes method also
allows the solver to derive stronger, non-clausal, cores.
These cores lead to better updates of the solution bounds,
meaning that the solver can zoom in faster on the optimal so-
lution. Even more strikingly, the fact that all cores and objec-
tive function reformulations can be expressed in the native
format of the solver means that there is very little overhead.
This makes it possible to go beyond core-boosting (Berg,
Demirović, and Stuckey 2019), which combines an initial
core-guided search phase with a longer upper-bounding lin-
ear search phase, and implement a fully hybrid mode that
switches repeatedly back and forth between core-guided
search and linear search at very little cost, similar to inter-
leaving in ASP (Alviano et al. 2015). This hybrid mode is
what gives the best performance overall.

We have also evaluated popular heuristics from
core-guided MaxSAT solvers such as using stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) during core-guided search, and fixing
the phase to that of the incumbent solution during linear
search (Demirović, Chu, and Stuckey 2018; Demirović and
Stuckey 2019) rather than using standard phase saving as
in (Pipatsrisawat and Darwiche 2007). Here the results are
not so clear-cut. How to set the phase does not seem to have
a decisive influence. Stratification and independent cores
have a much less positive impact than we expected—these
settings are good for some classes of benchmarks, but for
others they make performance notably worse (which is
particularly pronounced for independent cores).

Overall, adding core-guided search to ROUNDINGSAT
dramatically improves the solver, to the extent that it is now
better by a wide margin than the latest versions of both
NAPS (Sakai and Nabeshima 2015) and SAT4J (Le Berre
and Parrain 2010) for the PB Competition 2016 benchmarks.

2 Preliminaries
We start with a review of the basics of pseudo-Boolean
solving—this material is standard, and can be found, e.g.,
in (Buss and Nordström 2021). A literal ` over a Boolean

variable x is x itself or its negation x = 1− x, where vari-
ables take values 0 (false) or 1 (true) and where we de-
fine x = x for convenience. A pseudo-Boolean (PB) con-
straint C is a 0-1 integer linear inequality∑

iai`i ≥ B , (1)
which without loss of generality we always assume to be
in normalized form; i.e., all literals `i are over distinct vari-
ables and the coefficients ai and the degree (of falsity) B are
non-negative integers. A cardinality constraint is a PB con-
straint in normalized form where all coefficients are 1. We
use equality

∑
iai`i = B as syntactic sugar for the pair of

inequalities
∑
iai`i ≥ B and

∑
i − ai`i ≥ −B (but rewrit-

ten in normalized form).
The weakening rule weaken(C, `j) ≡

∑
i 6=j ai`i ≥

B − aj removes a literal `j from the constraint by sub-
tracting its coefficient from the right-hand side, and
weaken(C,L) for a set of literals L performs this oper-
ation for all `j ∈ L. The division rule divide(C, d) ≡∑
dai/de`i ≥ dB/de divides all coefficients and the degree

by d ∈ N+ and rounds up. The operation round2card(C)
computes a cardinality constraint over the literals in C with
the degree equal to the minimum number of literals that must
be set to true in order to satisfy C.

A PB formula is a conjunction F =
∧
j Cj of PB con-

straints. Note that a clause `1 ∨ · · · ∨ `k is equivalent to
the constraint `1 + · · ·+ `k ≥ 1, so formulas in conjunctive
normal form (CNF) are special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from liter-
als to { 0, 1 }, where we write ρ(x) = ρ(x) = ∗ if x is not
in the domain of ρ and define ρ(x) = 1− ρ(x) otherwise. If
ρ is partial, then it is also referred to as a restriction, and the
restricted constraint C�ρ is obtained by substituting values
for all assigned variables and adjusting the degree appropri-
ately, i.e.,

C�ρ =
∑
ρ(`i)=∗ai`i ≥ B −

∑
ρ(`i)=1ai . (2)

For a PB formula F =
∧
j Cj we define F�ρ =

∧
j Cj�ρ.

The constraint C is satisfied by ρ if
∑
ρ(`i)=1 ai ≥ B,

(or, equivalently, if the restricted constraint (2) has a non-
positive degree and hence is trivial). A PB formula is satis-
fied by ρ if all constraints in it are, in which case it is satisfi-
able and ρ is a solution. If there is no satisfying assignment,
the formula is unsatisfiable.

A constraint C is said to unit propagate the literal ` un-
der ρ if C�ρ cannot be satisfied unless ` 7→ 1. During unit
propagation on F under ρ, we extend ρ iteratively by any
propagated literals ` 7→ 1 until an assignment ρ′ is reached
under which no constraint C ∈ F is propagating, or under
which some constraintC propagates a literal that has already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C in
this case, and ρ′ is called a conflicting assignment.

A pseudo-Boolean optimization problem consists of a PB
formula F and an objective function O ≡

∑m
i=1 ai`i + co.

We will abuse notation slightly and write (a, `) ∈ O to ob-
tain coefficient-literal pairs from the objective. Given an as-
signment ρ we write ρ(O) to denote the value of the objec-
tive function under ρ. Without loss of generality we assume



that all coefficients in the objective are positive and that we
want to minimize the objective function. An optimal solu-
tion is a satisfying assignment for F with minimum objec-
tive value ρ(O) among all solutions.

Let Vars(F ) (Lits(F )) denote the variables (literals) ap-
pearing in F and analogously for O. Given a PB optimiza-
tion problem, a fresh variable is a variable that does not ap-
pear in the formula or the objective function.

The idea of linear search, a widely used approach for PB
optimization, is to find a solution ρ to the formula F , after
which the constraint O ≤ ρ(O)− 1 (in normalized form) is
added to F . This can be repeated until F turns unsatisfiable,
at which point the solution last found is the optimal solution.

Core-guided MaxSAT Solving Maximum satisfiability
(MaxSAT) can be viewed as a PB optimization problem with
a CNF formula, but many MaxSAT solvers use not only lin-
ear search but also core-guided approaches that work as fol-
lows (expressed in pseudo-Boolean notation).

Given an objective function O, we build a set of assump-
tions A = Lits(O) and solve the formula F ∪ {`i | `i ∈ A}.
There are two cases: either we find a solution (which must
be optimal, since the objective value is zero under A) or
the problem is unsatisfiable. In the latter case, the solver
can be made to return a subset κ ⊆ A of the assump-
tion that force unsatisfiability. This subset κ, treated as a
clause

∑
`∈κ ` ≥ 1, is called an unsatisfiable core, and is

implied by F since one of the assumptions must be fal-
sified in any solution. Core-guided methods then reformu-
late the problem to take this information into account, de-
ducing that the objective value must be at least amin =
min`i∈κ ai. The OLL method (Andres et al. 2012; Morgado,
Dodaro, and Marques-Silva 2014) introduces new Boolean
variables zj that represent the (lower bounds of the) sum
1 +

∑
j zj =

∑
`∈κ `, and essentially rewrites the objective

to O + amin(1 +
∑
j zj −

∑
`∈κ `). This is a new MaxSAT

problem, for which we can repeat the procedure described
above again. The whole process terminates when a solution
is found, which is guaranteed to be optimal since it assigns
zero to all literals in the rewritten objective function.

3 Overview of the Optimization Algorithm
The general idea of our PB optimization approach is shown
in Algorithm 1, which uses an incremental PB solver. The
interface to the solver is similar to that of an incremental
SAT solver (Eén and Sörensson 2003) and has two methods,
one for adding constraints and one for solving the problem.
The solve method solve(A) also takes a (potentially empty)
set of literals A and returns either sat(ρ) where ρ is a full
assignment satisfying the added constraints and the assump-
tions A; or unsat(C) where C is a PB constraint implied
by the added constraints that is falsified by the assumptions.
We call this constraint a core. Note that in contrast to the
MaxSAT setting described in Section 2, such a core can now
be an arbitrary, non-clausal PB constraint.

In each iteration, Algorithm 1 will refine either the lower
or upper bound. If a solution is found a constraint is added
that only allows strictly better solutions. If a core is returned

Algorithm 1 PB Optimization with Core Extraction.
1: procedure OPTIMIZE(F ,O)
2: lb← 0; ub←∞; O′ ← O
3: solver.add(F )
4: while ub− lb > 0 do
5: pick set of assumption literals A ⊆ Lits(O′)
6: result← solver.solve({`i | `i ∈ A})
7: if result ≡ sat(ρ) then
8: ub← ρ(O)
9: . improves best solution by at least 1

10: solver.add(O < ub)
11: else . unsatisfiable under assumptions
12: let result ≡ unsat(C)
13: lb← improveBound(O′, C)
14: . improves lower bound by at least 1
15: E ← encoding for reformulation variables
16: O′ ← reformulate(O′, E)
17: solver.add(E)
18: return ub

we will reformulate the objective function so that the best
known lower bound is the constant part of the objective and
so that all coefficients remain non-negative.
Example 1. To illustrate Algorithm 1, suppose we want to
minimize x1 + x2 + x3 + x4 subject to x1 + x2 + 2x5 ≥ 2
and x3+x4−2x5 ≥ 0. If we start by assuming all variables
to false, the solver obtains the core x1+x2+x3+x4 ≥ 2 by
adding the two constraints in the formula together. This core
gives us a lower bound of 2. Next we introduce new variables
z1, z2 that encode the value of the sum of the xi variables by
adding the constraint z1 + z2 + 2 = x1 + x2 + x3 + x4 to
the solver. Note that this equality represents a reformulation
z1+z2+2 of the objective function, so we can now continue
by minimizing this reformulated objective z1+z2+2, which
contains the just derived lower bound 2 as constant term.
Suppose we perform the next iteration without assumptions
and let us say the solver produces a solution with objective
value 3. We add the constraint x1 + x2 + x3 + x4 < 3 and
continue. Because the gap between best solution and lower
bound is 1 the solver will terminate in the next iteration by
finding an optimal solution.

This example also demonstrates the advantages of using
a PB solver. Firstly, the produced cores are not clauses but
more general PB constraints, thanks to which we can obtain
larger increases in the lower bound. Secondly, it is very easy
to add the upper bound after a solution is found, because
the upper bound is represented as a single constraint that the
solver can handle natively. Finally, the PB solver can employ
strong reasoning based on the cutting planes proof system.

To fully utilize the potential of combining PB optimiza-
tion with core-guided search we need to overcome multiple
challenges: How do we extract cores? How can we guaran-
tee a sound reformulation for arbitrary PB cores? How do
we avoid introducing huge numbers of variables during re-
formulation that would slow down the solver? How do we
choose the set of assumptions? We will discuss these ques-
tions in what follows.



4 Contributions
Lifting Incremental Solving to PB Incremental PB solv-
ing is similar to incremental SAT solving, but there are more
degrees of freedom to core extraction, which we explore in
this section. Similar to SAT, we detect unsatisfiability with
respect to the assumptions when a learned constraint L is
generated that causes a conflict after propagating the as-
sumptions. All literals in L which were falsified by prop-
agation can be systematically eliminated from L to generate
a pseudo-Boolean core constraint C.

One difference from MaxSAT is that a PB core constraint
can still contain non-assumption literals. These can be safely
eliminated by weakening. The resulting decision literal core
is a PB constraint only involving assumption literals. An-
other difference is that it could be that a valid core constraint
is encountered before all falsified non-assumption literals
have been eliminated. If so, we can stop core extraction im-
mediately and weaken all non-assumption literals to obtain
a constraint that we will call an early core. Both of these
scenarios arise fairly frequently.

Postprocessing the Core to a Cardinality Constraint
The cores obtained from the solver will in general be arbi-
trary PB constraints. It turns out to simplify matters (as we
will explain later) to round this constraint to a cardinality
core constraint. In general, a PB constraint C ≡

∑
ai`i ≥

B can imply multiple cardinality constraints, so we need to
choose how to round. This is another example of a question
that does not arise in MaxSAT solving. We consider two op-
tions: (a) the cardinality constraint that maximizes the lower
bound increase; and (b) the shortest implied clause.

Maximal lower bound increase Given a cardinality core∑
`∈X ` ≥ B, let a` > 0 be the coefficient of the literal ` in

the objective function to be minimized. The increase in the
lower bound caused by this core isB ·min`∈X a`. To find the
best such core, we weaken all literals with small coefficients
and evaluate the resulting rounded cardinality constraint in
terms of lower bound increase as described in Algorithm 2.

Algorithm 2 Computation of cardinality constraint implied
by C with maximal lower bound increase.

1: procedure MAXLOWERBOUNDINCREASE(C,O)
2: lb+ ← 0
3: repeat
4:

∑
`∈X ` ≥ B ← round2card(C)

5: m← min`∈X a`
6: if B ·m > lb+ then
7: lb+ ← B ×m
8: R←

∑
`∈X ` ≥ B

9: C ← weaken(C, {` | (m, `) ∈ O})
10: until B ≤ 0
11: return R

Example 2. Consider the core C ≡ 3x1 + 3x2 + 2x3 +
x4 + x5 ≥ 7 with objective 7x1 + 3x2 + 9x3 + 6x4 + 7x5.
Then round2card(C) = x1 + x2 + x3 + x4 + x5 ≥ 3. We

compute m = 3 and set lb+ = 9. We then weaken C to
obtain 3x1 + 2x3 + x4 + x5 ≥ 4, which can be rounded to
R ≡ x1 + x3 + x4 + x5 ≥ 2. We compute m = 6 and set
lb+ = 12 storing R as the current best. We then weaken C
obtaining 3x1 + 2x3 + x5 ≥ 1, which yields the cardinality
constraint x1 + x3 + x5 ≥ 1. We compute m = 7 but lb+
does not increase. We weaken C to obtain 2x3 ≥ −3, at
which point the loop is exited and R is returned.

Minimal Size Clause We construct a minimal size clause
from C by weakening literals with the smallest coefficients
until the degree is no greater than any remaining coefficient,
after which we can construct a clause by division with the
greatest coefficient amax.
Example 3. As in Example 2, consider the core C ≡ 3x1+
3x2 + 2x3 + x4 + x5 ≥ 7. Then we can weaken x5, x4 and
x3 to obtain 3x1 + 3x2 ≥ 3, with the remaining coefficients
at least the weakened degree. The resulting shortest clause
is divide(3x1 + 3x2 ≥ 3, 3) or x1 + x2 ≥ 1.

Objective Reformulation After we obtained a cardinality
constraint

∑
`∈X ` ≥ B from a core, we reformulate the ob-

jective function such that the new lower bound is reflected
in the constant part of the objective. Broadly speaking, we
follow the OLL approach (Andres et al. 2012; Morgado, Do-
daro, and Marques-Silva 2014) in MaxSAT solving, but with
the crucial difference that there is no re-encoding of car-
dinality constraints to clauses. Instead, we introduce fresh
variables zi and add to the solver constraint database sum
encoding constraints∑

`∈X ` = B +
∑|X|
i=B+1 zi (3)

representing the sum of the literals in the core in unary, as
well as ordering constraints zi ≥ zi+1 to enforce that zi is
true if and only if

∑
`∈X ` ≥ i holds. Here it is important

to observe that if we had a general PB constraint in (3), we
could be forced to introduce an exponential number of vari-
ables. Using (3), we can reformulate the objective function
as ∑

(a,`)∈O

a`+ co (4a)

=
∑

(a,`)∈O

a`+ co +m(
∑
`∈X

`)−m(
∑
`∈X

`) (4b)

(3)
=

∑
(a,`)∈O

a`+ co +m(B +

|X|∑
i=B+1

zi)−m(
∑
`∈X

`) , (4c)

where m is the smallest coefficient in the objective function
of literals in X . In this way, we ensure that

∑
(a,`)∈O a` −

m(
∑
`∈X `) still only has non-negative coefficients. This in

turn means that the constant term co +mB in the reformu-
lated objective function is the new lower bound. Note that
it is always possible to rewrite the objective function in this
way, because we only assume to false literals that appear
in the current reformulated objective function. Furthermore,
every reformulation strictly increases the lower bound, so
we will will eventually reach an optimal lower bound.



Lazy Variable Encodings One problematic issue with the
objective function reformulation as described above is that
every new reformulation can introduce many fresh variables,
and as the number of new variables increases this can slow
down the solver in future incremental calls. To alleviate this,
one can introduce the zi variables lazily, i.e., only when they
are needed. Observe that in view of the ordering constraints
zi ≥ zi+1 we know that setting zk to false forces zi to false
for all i > k as well. Hence, we do not need the variables
zi for i > k when assuming zk as false. (This observation
was also made in the context of incremental re-encoding of
cardinality constraints to clauses in (Martins et al. 2014).)

To obtain a lazy encoding we take the sum encoding (3)
and remove variables in a safe manner. Assume we only
want to introduce variables up to zk. Then we can write the
equality in (3) as two inequalities∑|X|

i=B+1 zi ≤
∑
`∈X `−B ≤

∑|X|
i=B+1 zi . (5)

For the lower bound on the left we can just omit the vari-
ables zi, i > k, because this will only make the lower bound
smaller. For the upper bound on the right we compensate for
the removed variables by increasing the coefficient of zk.
This leads to the lazy sum encoding∑k

i=B+1 zi ≤
∑
`∈X `−B ≤

≤
∑k−1
i=B+1 zi + (|X| − k + 1)zk . (6)

If we also want to remove zi for i < k, we can do so in the
upper bound on the right by replacing them with 1, and in
the lower bound on the left we increase the coefficient of zk
so that the correct bound is implied for zk = 1. This results
in the lazy reified encoding

(k −B)zk ≤
∑
`∈X `−B ≤
≤ (k −B − 1) + (|X| − k + 1)zk . (7)

Note that if zk = 0, this simplifies to B ≤
∑
`∈X ` ≤ k−1,

and if zk = 1 to k ≤
∑
`∈X ` ≤ |X| as desired.

When a core is found, we still use the sum encoding (3) to
reformulate the objective. This is implemented by maintain-
ing an implicit representation of the reformulated objective
function, storing for each core the factor used for reformula-
tion as well as the number of variables that have not yet been
introduced due to laziness. Instead of adding constraints as
in (3) to the solver database, we only add the lazy encod-
ing for a single variable. Due to other cores this variable can
disappear from the reformulated objective and at this point
we add the next variable and the corresponding lazy encod-
ing to the solver. In case of the lazy sum encoding the solver
can delete constraints that were introduced for variables with
smaller index.

Utilizing the Upper Bound A further improvement can
be achieved if an upper bound u ∈ N is known for the literals
in the core, i.e.,

∑
`∈X ` ≤ u. Such an upper bound means

that we do not need to introduce all zi variables but only
variables up to i = min(u, |X|).

Hybrid Search The simplest strategy for choosing the as-
sumptions is to not set any assumptions at all, which results
in pure linear search. If the set of assumptions is non-empty,
we refer to this as core-guided search. Since adding upper
and lower bound constraints can be achieved with very low
overhead in a native pseudo-Boolean setting, we explore a
hybrid search variant where we switch back and forth be-
tween running the solver with and without assumptions, try-
ing to roughly balance the time spent on linear and core-
guided search, respectively (measuring not running time,
however, but different statistics such as number of literals in-
vestigated during unit propagation, in order make the solver
deterministic for reproducibility purposes).

5 Experiments
We have implemented the core-guided techniques dis-
cussed in Section 4 in the pseudo-Boolean solver ROUND-
INGSAT (Elffers and Nordström 2018) and we have evalu-
ated our implementation on four benchmark sets (converted
to the standard OPB format used for PB solvers as needed):
• PB16: OPT-SMALL-INT benchmarks from the most re-

cent PB Competition in 2016.
• MIP: 0-1 integer linear programming optimization prob-

lems from MIPLIB.
• KNAP: Knapsack benchmarks from (Pisinger 2005).
• CRAFT: Some crafted combinatorial benchmarks.
For comparing against other PB solvers, the PB16 bench-
marks are the main target. We also study MIP and KNAP be-
cause they are two quite challenging sets of benchmarks for
PB solvers, as observed in (Devriendt, Gleixner, and Nord-
ström 2021). Finally, the crafted benchmarks are inspired by
(Elffers et al. 2018; Vinyals et al. 2018), but have been gen-
erated with larger parameters so as to be more challenging.
This allows us to “stress-test” the solvers by exposing them
to problems that provably require sophisticated reasoning.

As hardware we used AMD Opteron 6238 nodes having
6 cores and 16 GiB of memory running Ubuntu 16.04.7.
Each run was executed as a single thread on a node (leav-
ing 5 cores unused to avoid timing issues due to compe-
tition for memory resources) with a 5000 second time-out
limit. Binary, source code and detailed experimental results
are available online (Devriendt et al. 2020).

Contribution of Core-Guided PB Techniques In order
to investigate the impact of the different core-guided tech-
niques we have developed for PB solving, we started by
running extensive experiments with a large number of differ-
ent settings to identify a good base configuration. Guided by
these experiments, we chose a configuration that will be re-
ferred to as HYBRID in what follows. It uses hybrid solving
interleaving core-guided and linear search phases, chooses
the cardinality core that yields the largest increase of the
lower bound for the objective function, and reformulates the
objective using the lazy reified encoding. We then investi-
gated three technical novelties of PB core-guided search:

1. non-clausal cores (comparing with HYBRIDCLAUSAL
deriving clausal cores instead of cardinality cores),



PB16 MIP KNAP CRAFT
(1600) (291) (783) (985)

HYBRID 968 78 306 639
HYBRIDCLAUSAL 937 75 298 618
HYBRIDNONLAZY 936 70 186 607
HYBRIDCLNONL 917 67 203 612
ROUNDINGSAT 853 75 341 309
COREGUIDED 911 61 43 595
COREBOOSTED 959 80 344 580
SAT4J 773 61 373 105
NAPS 896 65 111 345
SCIP 1057 125 765 642

Table 1: Number of instances solved to optimality for state-
of-the-art solvers and ROUNDINGSAT core-guided variants.

2. lazy reformulation of the objective function (comparing
with non-lazy reformulation in HYBRIDNONLAZY),

3. hybrid optimization with repeated switches back and forth
between core-guided search and linear search (compared
to linear search as in standard ROUNDINGSAT, pure
COREGUIDED, and COREBOOSTED approaches).

We want to stress that the language of PB inequalities gives
native support for an efficient implementation of this kind
of approaches, in contrast to CNF. The top seven configu-
rations of Table 1 shows that all three new features listed
above significantly improve PB solver performance.

In more detail, Figure 1 provides a scatter plot of the num-
ber of cores needed to prove optimality for the configura-
tion HYBRID as compared to the version HYBRIDCLAUSAL
with clausal cores, except that to get as clear a comparison
as possible the plots are for pure core-guided search with
these solvers—adding linear search does not change the con-
clusions, but just makes the plot more fuzzy. Clearly, in the
non-clausal settings fewer cores are needed.

In Figure 2 we study the number of new variables in-
troduced by HYBRID as compared to the version HYBRID-
NONLAZY that eagerly introduces all new variables in one
go when the objective is reformulated. For many instances
the lazy approach introduces orders of magnitude less vari-
ables, and this effect is especially pronounced for knapsack
instances. We studied the two different lazy encodings (lazy
sum and lazy reified) but did not see any significant differ-
ences in performance between the two—what is important is
to avoid non-lazy reformulation. It is worth noting that even
the weakest core-guided configuration HYBRIDCLNONL
with clausal cores and non-lazy reformulations is clearly
better than the original ROUNDINGSAT solver on the PB16
benchmarks, so core-guided search in itself is powerful.

The theoretical benchmarks in CRAFT give us a possi-
bility to peek inside the solver, as it were, by exposing it to
formulas expressing different combinatorial principles and
thus requiring different forms of sophisticated reasoning. It
is striking that on these benchmarks we see the clearest gains
from the core-guided techniques.

Overall, a clear message is that adding core-guided tech-
niques provides a dramatic boost for PB solving. And even

Figure 1: Number of cores during search for non-clausal
(x-axis) versus clausal (y-axis) cores for instances solved by
both approaches (but using pure core-guided optimization).

though the simplest version of core-guided search, with-
out exploiting PB-specific techniques, can already provide
major gains for some domains compared to the non-core-
guided solver, our further PB optimizations help signifi-
cantly to give more consistent performance improvements.

An interesting question is how to balance lower-bounding
search using core-guided solving and upper-bounding linear
search. As can be seen in Table 1, pure core-guided search
(COREGUIDED) is not universally beneficial, and for KNAP
even the hybrid mode is clearly not helpful compared to sim-
ple linear search. But it is interesting that our configuration
COREBOOSTED with 10% core-boosting (Berg, Demirović,
and Stuckey 2019) shows that a little bit of core-guided
search can also help on these benchmarks. Overall, our new
hybrid mode, switching repeatedly between core-guided and
linear search, is the best. Importantly, this is not just an ef-
fect of hybrid providing a portfolio, as it were, of pure core-
guided and pure linear search. For the crafted benchmarks,
we verified that the hybrid solver even beats a parallel ver-
sion where pure core-guided and pure linear search get to
run side by side, each with a 5000 second time-out.

We have also evaluated the popular heuristics stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) from the core-guided MaxSAT lit-
erature. Figure 3 shows the effects of turning on
stratification (HYBRIDSTRAT) and independent cores
(HYBRIDSTRATIND) for the PB16 benchmarks. Looking
at all benchmarks, switching on both stratification and in-
dependent cores helps for MIP and KNAP but does not
change much for PB16 and is terrible for CRAFT. Strati-
fication alone seems never to be a bad idea—we could have
included it in our base configuration HYBRID and the con-



Figure 2: Number of new variables during search for lazy
(x-axis) versus non-lazy (y-axis) objective reformulation for
instances solved by both approaches.

clusions would not really have changed—but using indepen-
dent cores can cause real problems for the wrong kind of
benchmarks, which is especially clear for CRAFT. We are
currently unable to explain why this is so.

Comparison to State of the Art In addition to comparing
our core-guided PB solver to the original ROUNDINGSAT
version, we evaluate two other PB solvers that performed
well in the PB16 Competition as well as one MIP solver:
• SAT4J (Le Berre and Parrain 2010) commit c091d768.

We use the Both strategy that essentially runs a CDCL
solver and a cutting-planes-based PB solver in parallel.1

• NAPS (Sakai and Nabeshima 2015) commit 7aaa54f4.
We use the bignum version as suggested to us by the au-
thors. In contrast to ROUNDINGSAT and SAT4J, NAPS
does not use cutting-planes-based reasoning but instead
re-encodes the input to CNF and runs a CDCL solver.

• SCIP (Gamrath et al. 2020) version 7.0.0 using SOPLEX
version 5.0.0 as LP solver, with presolving support of PA-
PILO 1.0 but without symmetry detection.

We present the results of this comparison in Table 1. Figure 3
gives a more detailed picture of the PB16 benchmarks.

Overall, our core-guided PB solver HYBRID decisively
beats ROUNDINGSAT, SAT4J, and NAPS, with the notable
exception that the dual-threaded version of SAT4J is best for
KNAP benchmarks.

Sadly, PB solvers still struggle to compete with MIP
solvers such as SCIP, and addressing this shortcoming

1This dual-threaded approach gets twice the CPU time of the
other solvers, but we kept it so that our core-guided PB solvers
would compete against the best version of SAT4J for each instance.

Figure 3: Cumulative plot for PB16 benchmarks.

seems to be the most interesting challenge for future re-
search. One important factor to note is that presolving is a
very important part of MIP performance, whereas current
cutting-planes-based PB solvers essentially have no prepro-
cessing. A natural approach would be to integrate the PA-
PILO presolver with a cutting-planes-based PB solver and
see what happens to performance. Another direction would
be to combine core-guided solving with the use of linear pro-
gramming relaxations, which is another core component of
MIP solvers, and where the results in (Devriendt, Gleixner,
and Nordström 2021) look promising. Already now, though,
the results for some of the benchmarks in CRAFT show that
there are problems that PB solvers solve very efficiently but
that are beyond MIP solvers such as SCIP.

6 Concluding Remarks
In this work, we extend the resolution-based core-guided ap-
proach to pseudo-Boolean solvers using cutting planes rea-
soning, and show that this leads to dramatic improvements.
The fact that PB solvers have native handling of PB con-
straints make them a very good fit for core-guided search.

Our work opens several directions for future work. One
important problem is to find better strategies for balanc-
ing the lower- and upper-bounding phases in our hybrid ap-
proach for PB solvers. Independent core extraction is an-
other technique that seems worth studying more closely—
it has been successful for MaxSAT and CP solvers, but we
see no such clear gains, and on the contrary this approach is
largely detrimental for crafted instances. Finally, we would
like to understand why MIP solvers are often (though not al-
ways!) much better than the best core-guided PB approach.
Since preprocessing and LP relaxations are important com-
ponents in MIP solvers, employing these techniques in PB
core-guided search may be one key to further gains.
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