
Watched Propagation of 0-1 Integer
Linear Constraints

Jo Devriendt1,2(B)

1 Lund University, Lund, Sweden
jo.devriendt@cs.lth.se

2 University of Copenhagen, Copenhagen, Denmark

Abstract. Efficient unit propagation for clausal constraints is a core
building block of conflict-driven clause learning (CDCL) Boolean satisfi-
ability (SAT) and lazy clause generation constraint programming (CP)
solvers. Conflict-driven pseudo-Boolean (PB) solvers extend the CDCL
paradigm from clausal constraints to 0-1 integer linear constraints, also
known as (linear) PB constraints. For PB solvers, many different prop-
agation techniques have been proposed, including a counter technique
which watches all literals of a PB constraint. While CDCL solvers have
moved away from counter propagation and have converged on a two
watched literals scheme, PB solvers often simultaneously implement dif-
ferent propagation algorithms, including the counter one.

The question whether watched propagation for PB constraints is more
efficient than counter propagation, is still open. Watched propagation is
inherently more complex for PB constraints than for clauses, and sev-
eral sensible variations on the idea exist. We propose a new variant of
watched propagation for PB constraints and provide extensive experi-
mental results to verify its effectiveness. These results indicate that our
watched propagation algorithm is superior to counter propagation, but
when paired with specialized propagation algorithms for clauses and car-
dinality constraints, the difference is fairly small.

1 Introduction

Although the Boolean satisfiability (SAT) problem is NP-complete [7,19] these
days so-called conflict-driven clause learning (CDCL) solvers [20,23] routinely
solve problems with up to millions of variables. Independently, a similar tech-
nique was developed for constraint programming (CP) solvers [2]. These solvers
learn a propositional disjunction (a clause) from each failing search branch, over
time accumulating huge databases of clauses that further constrain the search.
For example, if, during search, all but one literals of a clause are set to false, the
last remaining literal should be propagated to true.

To efficiently detect which clauses in the database propagate a literal, modern
SAT solvers settled on the watched literal propagation technique [23]. Its core
idea is to only watch two literals of a clause at a time, replacing these watches
when one or both are set to false. If no two non-falsified watches can be found,
the clause either propagates a literal, or it is falsified, indicating a search conflict.
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 160–176, 2020.
https://doi.org/10.1007/978-3-030-58475-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_10&domain=pdf
http://orcid.org/0000-0002-6346-3665
https://doi.org/10.1007/978-3-030-58475-7_10


Watched Propagation for PB 161

The conflict-driven paradigm has been transferred to linear pseudo-Boolean
(PB) solving , where solvers deal with linear inequalities over 0-1 integer vari-
ables, or PB constraints for short.1 Formulas of PB constraints are a straightfor-
ward generalization of the conjunctive normal form (CNF) used for SAT solvers.
Crucially, such conflict-driven PB solvers learn PB constraints instead of clauses
[6,14,18,28], which allows them to construct cutting planes proofs [8] instead of
the exponentialy weaker resolution proofs [4,9,10,25] underlying CDCL.

As the database of learned PB constraints grows during search, and as
conflict-driven PB search endeavors to make the learned constraints as strong
as possible, the propagation routine forms the main computational bottleneck
of PB solvers. Similar to CDCL SAT solvers, a hypothetical doubling the effi-
ciency of PB propagation could translate to almost halving the total run time
for conflict-driven PB solvers. Unlike CDCL SAT solvers however, conflict-driven
PB solvers have not settled on a dominant propagation scheme.

The Galena solver investigated a highly involved watched literal scheme for
PB constraints, but finally settled on a three-tiered approach where clauses and
cardinality constraints were handled with specialized watched propagation tech-
niques, but propagation of general PB constraints was done by counter prop-
agation, watching all literals at once [6]. The Pueblo solver initially employed
the same three-tiered approach [27], but later opted for a custom watched literal
scheme [28]. The Sat4J system also uses the three-tiered approach by default,
but has the option to use watched propagation for general PB constraints sim-
ilar to the Galena watched literal scheme [18]. Finally, the RoundingSat solver
employs watched propagation, sharing similarities with both the Pueblo and
original Galena approach, but adding its own twists [14].

Unsurprisingly, efficient watched PB propagation is still an open question:

PB solvers get slower when dealing with pseudo-Boolean constraints
because we have not yet found an efficient lazy data structure similar
to [. . . ] watched literals for those constraints. This is especially the case
for the cutting-planes-based solver because the number of pseudo-Boolean
constraints grows during the search [18].

In this paper, we propose a novel efficient watched PB propagation algorithm,
and contribute extensive experimental data to shed light on key issues. The
general conclusion is that watched PB propagation is more efficient than counter
propagation on its own, but that the difference between a counter-based and a
watched-based three-tiered approach is fairly small.

This paper continues with preliminaries in Sect. 2 followed by a description
of our proposed watched PB propagation algorithm in Sect. 3. Section 4 high-
lights differences and similarities with the approaches used by the above PB
solvers. Experimental results are presented in Sect. 5 and the paper concludes
with Sect. 6.

1 In general, PB constraints can be non-linear, but we restrict our attention to linear
PB constraints.



162 J. Devriendt

2 Preliminaries

Throughout this paper, we use the term pseudo-Boolean (PB) constraint to refer
to a 0–1 linear inequality. We identify 1 with true and 0 with false. A literal �
denotes either a variable x or its negation x, where x = 1−x. We assume without
loss of generality that all constraints

∑
i ci�i ≥ w are written in normalized

form, where literals �i are over pairwise distinct variables, coefficients ci are non-
negative integers, and w is a positive integer called the degree (of falsity). For
a constraint C, lits(C) denotes its set of literals, size(C) its number of literals,
and maxcf (C) its largest coefficient. A PB constraint C where maxcf (C) = 1 is
a cardinality constraint and a constraint with degree 1 is a clause.

A (partial) assignment ρ is a set of literals over pairwise distinct variables. A
literal � is assigned to true by an assignment ρ if � ∈ ρ, assigned to false or falsified
if � ∈ ρ, and is unassigned otherwise. The slack of a constraint C

.=
∑

i ci�i ≥ w
under a partial assignment ρ is

slack(C, ρ) = −w +
∑

�i �∈ρ

ci , (1)

i.e., the maximal value the left-hand side can attain under any partial assignment
ρ′ ⊇ ρ minus the degree. We say that ρ falsifies C if slack(C, ρ) < 0 and satisfies
C if for any ρ′ ⊇ ρ it holds that slack(C, ρ′) ≥ 0. A pseudo-Boolean formula ϕ
is a set of PB constraints. An assignment ρ is a solution to ϕ if ρ satisfies all
constraints in ϕ. A formula is satisfiable if it has a solution.

A sequence (e1, . . . , en) is a finite ordered collection of elements allowing
repetitions.2 In programming fashion, seq [i] denotes the ith element of seq . The
size of a sequence is denoted as size(seq). A tuple is a fixed size sequence with
named elements and tup.e refers to the element with name e of tuple tup.3

2.1 Conflict-Driven Pseudo-Boolean Solving

We present the bare essentials of conflict-driven PB solving necessary for the
discussions in this paper (referring the reader to, e.g., [5] for more details).
Conflict-driven PB solving is very similar to the CDCL algorithm for Boolean
satisfiability, but uses PB constraints instead of clauses.

The state of a PB solver can be abstractly represented by a tuple (ψ, ρ),
where ψ is a set of constraints called the constraint database and ρ is a sequence
of pairwise distinct literals representing the current assignment .4 Initially, ψ is
the input formula ϕ and ρ is the empty sequence ().

2 Common data structures for sequences are arrays, lists, and vectors.
3 Tuples abstract the record data type.
4 Slightly abusing notation, we defined an assignment as a set, but we often operate

on the current assignment ρ as a sequence, pushing and popping literals from the
back.



Watched Propagation for PB 163

Given a solver state, the search loop starts with a propagation phase, which
checks for any constraint C ∈ ψ whether it is falsified:

slack(C, ρ) < 0, (2)

or whether a literal �i, not yet assigned by ρ, in C with coefficient ci, is implied
by C under ρ:

slack(C, ρ) < ci with �i �∈ ρ, �i �∈ ρ. (3)

If condition (3) holds, C is falsified by ρ ∪ �i, so �i is implied by C under ρ.
Hence, ρ can be safely extended with the implied �i, which is called a propaga-
tion, while also saying that C propagates �i. Each propagation can enable new
propagations, continuing the propagation phase until condition (3) does not hold
for any constraint in the database ψ, or until condition (2) holds for at least one.

If condition (2) holds for some constraint, it is considered a conflict , and the
solver enters a conflict analysis phase. During this phase, the solver derives a
learned constraint that is a logical consequence of the input formula and would
have propagated a literal at some earlier state, preventing the same conflict from
happening. This new constraint is added to ψ, after which the solver backjumps
to the earlier state. Alternatively, if no conflict is detected, the solver extends ρ
by making a heuristic decision to assign some currently unassigned variable. In
either case, the solver continues with a new iteration of the search loop.

The PB solver reports unsatisfiability whenever it learns a constraint equiva-
lent to the trivial inconsistency 0 ≥ 1. If propagation does not lead to a conflict
and all variables have been assigned, the solver reports that the input formula is
satisfiable. Conflict-driven PB solvers, like their CDCL counterparts, frequently
backjump to the root search node, clearing the current assignment from any
decision literals and consequent propagations, which is called a restart.

In this paper, we focus on the propagation phase, ensuring that after each
decision and each backjump, the current assignment is extended with implied
literals until fixpoint, or until a conflict arises.

2.2 Counter Pseudo-Boolean Propagation

A straightforward propagation algorithm is the counter approach. It takes its
inspiration from early SAT propagation algorithms and eagerly computes the
slack of each constraint under changes to the current assignment ρ. I.e., each
time a literal � is pushed to resp. popped from ρ, due to decisions or propagations
resp. backjumps or restarts, each constraint C containing � has its slack decreased
resp. increased with the coefficient of � in C. When the slack of C is decreased,
condition (2) and (3) are checked as well to detect propagations and conflicts.

Example 1. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.= 3x+2y+z+w ≥ 3. Initially, ρ = (), so slack(C, ρ) = 4
and neither condition (2) or (3) hold.



164 J. Devriendt

If the solver decides x = 0, then ρ = (x), and counter propagation decreases
the slack with 3: slack(C, ρ) = 1. Now, condition (3) holds: slack(C, ρ) < 2 and
y �∈ ρ, y �∈ ρ. Hence, y is propagated and ρ = (x, y). No further slack decreases
are triggered, so counter propagation does not need to check whether condition
(2) or (3) hold.

The solver can now decide a new variable, say z = 0, so ρ = (x, y, z), at which
point counter propagation again decreases the slack of C with 1 to slack(C, ρ) =
0, and propagates w, leaving C satisfied by ρ. If the solver instead executes
a restart, the current assignment is reset to ρ = (), and counter propagation
increases the slack of C with 1 + 3 to its original value slack(C, ρ) = 4.

Unfortunately, counter propagation has the potential for a lot of overhead:

Example 2. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.= 3x + 2y + z +
∑1000

i=1 wi ≥ 3. Let the literals wi be
prioritized by the solver’s decision heuristic. Initially, slack(C, ρ) = 1003, which
decreases by 1 after each decision of some wi. For each of these thousand slack
decrements, condition (2) and (3) are never met, since as long as none of x, y
and z are falsified by the current assignment, slack(C, ρ) ≥ 3.

This phenomenon of large amounts of slack decrements (and increments dur-
ing backjumps) can occur in thousands of constraints simultaneously, consider-
ably slowing down the solver. The watched literal technique attempts to signifi-
cantly reduce the number of times the slack of a constraint is calculated.

3 Watched Pseudo-Boolean Propagation

Similar observations to those in Example 2 led to the development of watched
(literal) propagation in SAT solvers [23,30]. This watched approach has been
generalized to pseudo-Boolean solving [6,14,18,28]. The central idea of watched
PB propagation is to track (watch) for each constraint only a subset of its literals
– the watched literals. The subset is chosen sufficiently large to ensure that as
long as none of the watched literals are assigned to false, the constraint is not
propagating or conflicting. If one of the watches is assigned false, a search for
new non-falsified watches is triggered. If insufficient new watches are found, the
constraint may be propagating or conflicting, which is calculated only then.

More formally, we associate each constraint C with a set of watched literals
watches(C). For a constraint with watched literals, the watch slack of a con-
straint C

.=
∑

i ci�i ≥ w under a partial assignment ρ is

watchslack(C, ρ) = −w +
∑

�i �∈ρ,�i∈watches(C)

ci. (4)

Clearly, for any C, ρ and watches for C, watchslack(C, ρ) ≤ slack(C, ρ), and
watchslack(C, ρ) = slack(C, ρ) if all non-watched literals are falsified by ρ. Hence,
condition (2) and (3) will never hold (so C will not propagate or be conflicting)
if for some set of watches



Watched Propagation for PB 165

watchslack(C, ρ) ≥ maxcf (C). (5)

As a result, no exact slack needs to be calculated for constraints for which
condition (5) holds, and only by falsifying a watched literal can condition (5)
become violated. However, efficiently maintaining appropriate watched literal
sets during backjumps, decisions and propagations is a highly non-trivial matter.

To describe our proposed watched PB propagation algorithm in detail, we
abstract the state of a constraint C to a tuple (terms, w,wslk), where terms is
a sequence of terms, w a positive integer representing the degree, and wslk an
integer storing the watch slack of the constraint. The state of a term in terms is
abstractly represented by a tuple (coef , lit ,wflag) where coef is the coefficient of
the term, lit the literal, and wflag a flag denoting whether the literal is watched
for the constraint, i.e., whether lit ∈ watches(C). We fix terms to be sorted in
decreasing coefficient order, so maxcf (C) = C.terms[1] – the first term of C
contains its largest coefficient.

We also extend the abstraction of the solver state to a tuple (ψ, ρ, q,wlist),
where the propagation index q is an integer s.t. 0 ≤ q ≤ size(ρ)5, and the watch
list wlist is a function mapping literals to the set of constraints that currently
watch the literal combined with the index of the literal in the constraint’s term
list: (C, i) ∈ wlist(�) iff � ∈ watches(C) with � = C.terms[i].lit . We define
ρi .= (ρ[1], . . . , ρ[i]) as the subassignment up to index i, with 0 ≤ i ≤ size(ρ). The
propagation index indicates which part of the current assignment has already
been processed for propagation: constraints watching literals in ρ \ ρq will need
to be checked for propagation. Initially, q = 0.

3.1 Detailed Algorithm

We now have the necessary abstractions in place to describe our proposed
watched PB propagation algorithm in detail. For simplicity, we assume that
initially, none of the constraints C are propagating or conflicting, and that their
initial watched literals can be chosen to satisfy watchslack(C, ()) = C.wslk ≥
maxcf (C).

Procedures processWatches, propagate and backjump present the proposed
watched PB propagation algorithm.

Procedure processWatches iterates over all literals � in the current assign-
ment, adjusting the watch slack for each constraint C watching �, maintaining
the invariant that watchslack(C, ρq) = C.wslk . It subsequently checks whether
C can propagate (or is conflicting) by calling propagate for C. If C is conflict-
ing, it is returned. However, breaking out of the loop at line 5 leaves behind
a semi-processed set of constraints watching �. To repair this, processWatches
decreases the propagation index by one, and increases the watch slack for those
constraints still watching � that had their watch slack decreased.

To check whether a constraint is conflicting or propagating, propagate first
attempts to find non-falsified non-watched literals to use as watches, in the

5 In MiniSAT [13] parliance, q is the qhead .



166 J. Devriendt

Procedure. propagate(constraint C, integer idx )
External data: watch list wlist , current assignment ρ
Result: OK if C is not falsified, otherwise CONFLICT

1 i ← 1
2 while i ≤ size(C) and C.wslk < maxcf (C) do
3 � ← C[i ].lit

4 if � �∈ ρ and C[i ].wflag = 0 then
5 C[i ].wflag = 1
6 wlist(�) ← wlist(�) ∪ {(C, i)}
7 C.wslk ← C.wslk + C[i ].coef

8 i ← i + 1

9 if C.wslk ≥ maxcf (C) then
10 C[idx ].wflag = 0
11 wlist(C[idx ].lit) ← wlist(C[idx ].lit) \ {(C, idx)}
12 return OK

13 if C.wslk < 0 then return CONFLICT
14 j ← 1
15 while j ≤ size(C) and C.wslk < C[j ].coef do
16 � ← C[j ].lit

17 if � �∈ ρ and � �∈ ρ then ρ.push(�)
18 j ← j + 1

19 return OK

loop at line 2. If a sufficient amount of watches is found such that C.wslk ≥
maxcf (C), no propagation or conflict occurs, the old watch can be discarded at
lines 10 and 11, and the routine returns. If all non-falsified literals are employed
as watches, yet the watch is still less than zero, the constraint is conflicting, which
is returned at line 13. Finally, if the watch slack is non-negative but less than
the largest coefficient, the constraint may propagate unassigned literals, which
is checked in the loop at line 14. Recall that the terms of a constraint are sorted
in decreasing coefficient order, allowing the loop at line 14 to conclude when
C.wslk < C[j ].coef , avoiding a full linear scan. In case C.wslk < maxcf (C), the
constraint keeps watching the falsified literal. This allows procedure backjump
to increase the watch slack of a constraint during backjumps, to a point where
C.wslk ≥ maxcf (C) without searching for new watches.

3.2 An Extensive Example

Example 3. As in Example 2, consider a freshly initialized solver where the input
formula consists only of the constraint C

.= 3x + 2y + z +
∑1000

i=1 wi ≥ 3. Let the
initial watches for C be {x, y, z}, and hence, watchslack(C, ρq) = C.wslk = 3.
Let the literals w1 to w997 be prioritized by the solver’s decision heuristic, so
the current assignment ρ is incrementally extended by deciding the literals w1 to
w997, and after each decision, procedure processWatches is called, incrementing
q to 997. As no constraint watches any wi, propagate is never called.



Watched Propagation for PB 167

Procedure. processWatches
External data: database ψ, current assignment ρ, propagation index q, watch

list wlist
Result: OK if no constraint is falsified, otherwise a falsified constraint

1 while q < size(ρ) do
2 q ← q + 1
3 � ← ρ[q]
4 visited ← ∅
5 foreach (C, idx) ∈ wlist(�) do
6 visited ← visited ∪ {(C, idx)}
7 C.wslk ← C.wslk − C[idx ].coef
8 if propagate(C, idx)= CONFL then
9 q ← q − 1

10 foreach (C′, idx ′) ∈ visited ∩ wlist(�) do
11 C′.wslk ← C′.wslk + C′[idx ′].coef
12 return C

13 return OK

Procedure. backjump(integer s)
External data: database ψ, assignment ρ, propagation index q

1 while size(ρ) > s do
2 � ← ρ[size(ρ)]
3 if q = size(ρ) then
4 q ← q − 1

5 foreach (C, idx) ∈ wlist(�) do
6 C.wslk ← C.wslk + C[idx ].coef

7 ρ.pop()

Let x be the 998st decision, leading to ρ = (w1, . . . , w997, x). processWatches
increases q to 998, and as x is watched by C, decreases C.wslk to 0 and calls
propagate(C, 1). propagate iterates over C, picking w998, w999 and w1000 as new
watches in the loop at line 2. After exiting the loop, the watch slack has increased
to C.wslk = 3, so C.wslk ≥ maxcf (C) and x is dropped as watch at lines 10 and
11. The watched literals for C now are watches(C) = {y, z, w998, w999, w1000}.

Let z be the 999th literal decision, leading to ρ = (w1, . . . , w997, x, z). Run-
ning processWatches increases q to 999, and as z is watched by C, decreases
C.wslk to 2 and calls propagate(C, 3). propagate cannot find further watches,
so 0 ≤ C.wslk < maxcf (C) and the while loop at line 14 looks for literals to
propagate. The only literal for which C.wslk < C[j ].coef , x, is already assigned
to false, so no literals can be propagated, and both ρ and watches(C) remain
unchanged.

Let w998 be the next literal decision, leading to ρ = (w1, . . . , w997, x, z, w998).
processWatches increases q to 1000, and as w998 is watched, decreases C.wslk
to 1 and calls propagate(C, 1001). propagate cannot find further watches, so



168 J. Devriendt

0 ≤ C.wslk < maxcf (C) and the while loop at line 14 checks which literals
can be propagated. The only literals for which C.wslk < C[j ].coef are x and
y. The latter is still unassigned, so it is propagated at line 17. Returning to
processWatches, ρ = (w1, . . . , w997, x, z, w998, y), so q = 1000 < size(ρ) = 1001
– the loop at line 5 continues. q is incremented to 1001, but as y is not watched
by C, propagate is not called again.

Finally, let the solver backjump to the root by calling backjump(0). First,
literal y is unassigned, which is not watched by C (even though its negation y
is) so its watch slack is not updated. Then, w998 is unassigned, which is watched
by C, so C.wslk is incremented to 2. Next, z is unassigned, which is watched by
C, so C.wslk is incremented to 3. At this point, q decreased from 1001 to 998.
For the remaining 998 iterations, no further adjustments to C.wslk are needed,
as none of its watches {y, z, w998, w999, w1000} are falsified.

3.3 Algorithm Analysis

The following two invariants underpin the soundness and completeness of our
approach. Short proof sketches are available online [12].

Lemma 4 (Watch slack invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk = watchslack(C, ρq) (6)

Lemma 5 (Watch set invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk < maxcf (C) ⇒ ∀� ∈ lits(C) \ watches(C) : � ∈ ρ (7)

for a constraint C if the argument of backjump is chosen in such a way that for
all constraints C where C.wslk < maxcf (C), either all of its falsified watches
become unassigned, or none of its non-watched literals become unassigned.

To maintain the watch set invariant, the solver has to take care where to back-
jump. Withholding detail, the well-known technique of partitioning the current
assignment in contiguous decision levels and backjumping over each level as a
whole maintains the watch set invariant.

Lemma 6. If the watch set and watch slack invariants hold, calling the proce-
dure processWatches (calling propagate) propagates literal �i with coefficient
ci in constraint C only if it is unassigned and slack(C, ρ) < ci, and reports that
C is conflicting only if slack(C, ρ) < 0. I.e., processWatches is sound.

Lemma 7. Assuming the watch set and watch slack invariant hold, if the pro-
cedure processWatches (calling propagate) returns OK, no conflicting con-
straint under ρ exists, and no further propagations under ρ are possible. I.e.,
processWatches is complete.



Watched Propagation for PB 169

3.4 Two Optimizations

The datastructures needed for our proposed algorithm are fairly simple and
should have a linear memory footprint and take (amortized) constant time for
each operation. However, a performance bottleneck resides in the loops at lines
2 and 15 in propagate. E.g., Example 3 frequently iterates over the full size of
the constraint to find new watches, even though it was clear no new watches
were available. By reducing the time spent in those loops or even avoiding to
enter them at all, we can improve efficiency.

First observe that when calling propagate because ρ[q] is watched by C, if
C.wslk < maxcf (C) holds at the end of the loop at line 2, all potential watches
have been exhausted per the watch set invariant. Hence, when calling propagate
for ρ[q′] with q′ > q without backjumping over q, the loop at line 2 can be
skipped. To detect this situation, we check whether C.wslk + C[idx ].coef <
maxcf (C). If it holds, there was an earlier call to propagate that exited the
loop at line 2 with C.wslk < maxcf (C), so the loop can now be safely skipped.6

Next observe that, for a given constraint, any literal that is checked to become
a watch by the loop at line 2, but that was not available as watch because it
was falsified or already a watch (line 4 fails), can only become available as watch
after a backjump occurs, since without a backjump the current assignment is
only extended. Similarly, literals checked to be propagated by the loop at line
15 cannot be propagated later without a backjump occurring. To exploit this,
we permanently store the indices i and j of the loops at lines 2 and 15 for each
constraint (e.g., C.i and C.j ) and only reset them to 0 if a backjump happened.
The latter condition is simple to check: keep a global variable (e.g., bkjmps) that
increments by 1 at each backjump. For each constraint, check whether the global
bkjmps matches a local copy C.lastbkjmp that is set at each propagate call.

Procedure propagateOpt extends propagate with these two optimizations.
Remark that as a result of these optimizations, in between backjumps, all calls
to propagateOpt with a given constraint C, perform only O(size(C)) operations
in aggregate.

4 Related Work

A PB propagation algorithm closely related to our work is that of the Pueblo
solver [28]. It also sorts the terms of a constraint in decreasing coefficient order
and checks for propagation if the slack over the watched literals of the constraint
is less than the maximum coefficient of the constraint. However, except in the
case of a conflicting constraint, it does not keep falsified literals as watch, as
per propagate. It also does not update the watch slack during backjumps, as
per backjump. Hence, it is not clear how Pueblo would restore the watches in
the restart scenario described at the end of Example 3.7 Also, Pueblo does not

6 Note that this first optimization depends on the watch set invariant, and thus on an
appropriate backjump scheme.

7 After inquiring with the authors, the source code of Pueblo no longer seems available.



170 J. Devriendt

Procedure. propagateOpt(constraint C, integer idx )
External data: watch list wlist , current assignment ρ, backjump count bkjmps
Result: OK if C is not falsified, otherwise CONFLICT

1 if C.lastbkjmp < bkjmps then
2 C.i ← 1
3 C.j ← 1
4 C.lastbkjmp ← bkjmps

5 if C.wslk + C[idx ].coef ≥ maxcf (C) then
6 while C.i ≤ size(C) and C.wslk < maxcf (C) do
7 � ← C[C.i ].lit

8 if � �∈ ρ and C[C.i ].wflag = 0 then
9 C[C.i ].wflag = 1

10 wlist(�) ← wlist(�) ∪ {(C, C.i)}
11 C.wslk ← C.wslk + C[C.i ].coef

12 C.i ← C.i + 1

13 if C.wslk ≥ maxcf (C) then
14 C[idx ].wflag = 0
15 wlist(C[idx ].lit) ← wlist(C[idx ].lit) \ {(C, idx)}
16 return OK

17 if C.wslk < 0 then return CONFLICT
18 while C.j ≤ size(C) and C.wslk < C[C.j ].coef do
19 � ← C[C.j ].lit

20 if � �∈ ρ and � �∈ ρ then ρ.push(�)
21 C.j ← C.j + 1

22 return OK

implement the optimizations described in Sect. 3.4, and does not store the index
of a watched literal of a constraint in the watch lists, which might lead to a
linear lookup overhead or require a cache-inefficient associative array.

Before Pueblo, work on the Galena solver [6] also prompted PB propagation
investigation. It uses a watched propagation scheme where the number of watches
of a constraint depends on a dynamic maximum coefficient amax of the literals
currently not assigned to true. This minimizes the number of watched literals, but
according to [27], two thirds of the run time of the Galena propagation procedure
is spent updating amax for each constraint. Because of this, it was proposed to
keep amax fixed to the highest coefficient (i.e., maxcf (C)), but Galena eventually
settled on a three-tiered approach with watched propagation only for clauses and
cardinality constraints, and counter propagation for general PB constraints [6].

The more recent Sat4J uses this three-tiered approach by default, but pro-
vides the option to enable a less efficient watched propagation [18].

Finally, the RoundingSat solver [14] implements a watched propagation algo-
rithm which, as in our approach, uses a static maximum coefficient to calculate
the number of needed watches and keeps watching falsified literals, but swaps
watched literals to the front of the constraint [26]. This makes calculating the
watch slack after every call relatively efficient, as only the watched literals in



Watched Propagation for PB 171

the front of the constraint need to be iterated over, rendering the update of the
watch slack during backjumps obsolete. As the watch swaps alter the order of
the literals of the constraint, the index of a watched literal cannot be stored in
the watchlist, as in our approach, and is recalculated during watch slack calcu-
lation. To check for propagating literals, RoundingSat again always iterates over
all watched literals. However, the number of watches of a PB constraint can grow
linearly in the size of the constraint, which leads to a potentially large overhead
for constraints that require lots of watches.

On the CP side, to the best of our knowledge, the constraint in the global
constraint catalog most closely related to PB constraints is sum set [29], which
constrains an integer variable V to take the sum of a variable subset of a set
of values. In the special case where V is constrained only by one fixed bound,
sum set is equivalent to a PB constraint. The propagator for sum set in the CP
solver Gecode [15] relies on counter propagation, though the comparison is not
fully fair as not only literals have to be propagated, but bounds on V as well.

5 Experimental Evaluation

To experimentally evaluate our proposed propagation algorithm, we imple-
mented it in the RoundingSat PB solver [26]. Source code, a binary, and raw
experimental data are available online [12]. As hardware we used AMD Opteron
6238 nodes having 6 cores and 16 GiB of memory each. Each run was executed
as a single thread on a node with a 5000 s timeout limit.

To make a sufficiently broad comparison, we present experiments on instances
from the linear small coefficient decision and optimization tracks from the most
recent PB competition [24], referred to as PB16dec and PB16opt. Addition-
ally, we investigate 0-1 integer linear programming instances from the MIPLIB
libraries [1,3,16,17,21,22]. Since these sets contain few decision instances, we
also created decision versions of the optimization problems. For this, we con-
structed a first instance by replacing the objective function f with a constraint
stating that f should be at least the best known value, and a second where
f should be strictly better. As RoundingSat can currently only deal with inte-
ger coefficients of magnitude at most 109, some of the instances were rescaled
and rounded. We refer to the corresponding MIPLIB decision and optimization
problems as MIPLIBdec and MIPLIBopt. These instances are available online [11].

5.1 Two Optimizations to Watched PB Propagation

Let’s start with a simple question: how effective are the two optimizations
described in Sect. 3.4? For this, we implemented in RoundingSat watched prop-
agation per Procedure propagate (watch) and per Procedure propagateOpt
(watch-opt), and compare the propagation speed defined as the total propa-
gations performed divided by the solve time. As watch and watch-opt do not
differ in the order in which propagations happen, the runs for both watch and



172 J. Devriendt

watch-opt have the same conflict and decision counts and any difference in prop-
agation speed is solely due to algorithmic efficiency. Figure 1 plots the result
for the instances that were solved by both watch and watch-opt within resource
limits and took at least 1 s to solve. The result is clear: the optimizations can
increase the propagation speed by an order of magnitude and never incur signif-
icant overhead.

5.2 Expensive Backjumps?

One advantage of watched propagation in SAT solvers is that no work needs
to be done during backjumps, a feature preserved by the original propagation
implementation of RoundingSat . Our approach updates the watch slack dur-
ing backjumps, though only for those constraints C that have falsified watches,
which only happens if C.wslk < maxcf (C). Figure 2 plots the number of times
watch-opt looked up a constraint when backjumping over a falsified watched
literal (line 6 in backjump and 11 in processWatches) versus the number of
times it looked up a constraint during propagation of a watch (lines 7 and 8 in
processWatches), for instances solved within resource limits.

Backjump lookups happen frequently, but never more than propagation
lookups. Often, backjump lookups happen significantly less than propagation
lookups, up to two orders of magnitude. The median number of backjump watch
lookups is also less than half the median of propagation watch lookups. As back-
jump lookups perform few operations compared to propagation lookups, the
resulting overhead does not seem to induce a performance bottleneck.

Fig. 1. Propagations per second for
watch and watch-opt .

Fig. 2. Watch lookups for watch-opt .



Watched Propagation for PB 173

Fig. 3. Propagations per second for old
and watch-opt .

Fig. 4. Propagations per second for
counter and watch-opt .

5.3 Performance Evaluation

To evaluate the performance of our approach, we compare watch-opt to:

– counter : an implementation of PB counter propagation (see Sect. 2.2)
– old : the original propagation algorithm of RoundingSat (see Sect. 4)
– counter-cc: counter , but clauses and cardinality constraints are handled with

specialized watched propagation routines – the three-tiered approach default
in Sat4J (see Sect. 4)

– old-cc: three-tiered old with the same specialized routines
– watch-opt-cc: three-tiered watch-opt with the same specialized routines

Figures 3, 4, 5 and 6, compare the propagation speed of watch-opt to the
above alternatives, based on the instances succesfully solved by the compared
approaches within resource limits and taking at least 1 s to solve. Table 1 presents
the total number of succesfully solved instances by each approach.

Often, the propagation speed of watch-opt is orders of magnitude faster than
of old and counter , with the reverse being true only infrequently. This translates
to significantly more solved instances compared to old and counter . The special-
ized propagation for clauses and cardinality constraints improves performance
in general, with most -cc configurations solving more instances than their coun-
terparts. watch-opt-cc solves the most instances overall, while counter-cc seems
to profit most from the specialized routines, almost fully closing the gap with
watch-opt-cc. The propagation speed plots in Figs. 5 and 6 tell a similar tale:
old-cc propagates significantly slower than watch-opt-cc, but it becomes harder
to judge that watch-opt-cc propagates faster. The geometric means of their prop-
agation speed in Fig. 6 still give the edge to watch-opt-cc.



174 J. Devriendt

Fig. 5. Propagations per second for
old-cc and watch-opt-cc.

Fig. 6. Propagations per second for
counter-cc and watch-opt-cc.

Table 1. Solved instance counts for different propagation implementations

old counter watch-opt old-cc counter-cc watch-opt-cc

PB16dec (1783) 1429 1385 1451 1444 1456 1472

MIPLIBdec (556) 182 196 203 187 204 205

PB16opt (1600) 820 846 854 825 862 854

MIPLIBopt (291) 69 76 77 71 75 79

To explain the relative difference between old/old-cc and counter/counter-
cc, it is useful to characterize when counter and old accrue the most overhead. A
counter algorithm induces most overhead for constraints with low watch count
as continually updating the high slacks for these constraints is often unnec-
essary. Inversely, old incurs more overhead for constraints that have a rela-
tively high number of watches, as its eager recalculation of watch indices, watch
slacks, and propagating watches, are linear operations in the number of watches.
Since clauses and low-degree cardinality constraints are frequently generated
constraints with low watch counts, this can explain why counter profits a lot
more from the specialized propagation routines than old .

We conclude that watch-opt is indeed more efficient than its counter counter-
part. However, adding specialized clause and cardinality constraint propagation
into the mix strongly diminishes its advantage – counter-cc, the Sat4J default
approach, is definitely a close second.

6 Conclusion

We present an optimized watched propagation algorithm for PB or 0-1 integer
linear constraints. Our experiments indicate it is more efficient than counter



Watched Propagation for PB 175

propagation used by Sat4J and the watched propagation used by RoundingSat .
Hence, our approach seems a good candidate to replace PB counter propagation
with PB watched propagation, though the performance gains are moderate in
the three-tiered setting. Nonetheless, the results are sufficiently convincing to
consider watch-opt-cc as a new default propagation algorithm for RoundingSat .

An interesting avenue to speed up PB propagation would be to pinpoint
which PB constraints propagate more efficiently with a counter approach and
which favor the watched approach. Maybe those constraints which most of the
time have a relatively large number of watched literals are better off with the
counting approach? Other future work may reconsider the idea of Galena: track
the largest coefficient of non-true literals to reduce the number of watches for
a constraint. Our work can also prove useful to improve CP propagators for
constraints closely related to PB constraints, such as the sum set constraint.
Finally, the order in which constraints propagate strongly influences what a
conflict-driven solver will learn. Prioritizing certain types of constraints during
propagation may yield better learned constraints.

Acknowledgments. The Swedish National Infrastructure for Computing (SNIC) at
the High Performance Computing Center North (HPC2N) at Ume̊a University provided
computational resources. The author is supported by the Swedish Research Council
grant 2016-00782.

We are grateful to Emir Demirovic, Jan Elffers, Stephan Gocht, Daniel Le Berre
and Jakob Nordström for discussions on PB propagation.

References

1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4),
361–372 (2006). https://doi.org/10.1016/j.orl.2005.07.009, http://www.zib.de/
Publications/abstracts/ZR-05-28/

2. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), pp. 203–208 (1997)

3. Bixby, R., Ceria, S., McZeal, C., Savelsbergh, M.: An updated mixed integer pro-
gramming library: MIPLIB 3.0 (1998)

4. Blake, A.: Canonical expressions in Boolean algebra. Ph.D. thesis, University of
Chicago (1937)

5. Buss, S., Nordström, J.: Proof complexity and SAT solving. In: Handbook of Satisfi-
ability, 2nd edn. (2020, to appear). Draft version. http://www.csc.kth.se/∼jakobn/
research/

6. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 24(3), 305–317 (2005). Preliminary ver-
sion in DAC 2003

7. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158
(1971)

8. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Appl. Math. 18(1), 25–38 (1987)

https://doi.org/10.1016/j.orl.2005.07.009
http://www.zib.de/Publications/abstracts/ZR-05-28/
http://www.zib.de/Publications/abstracts/ZR-05-28/
http://www.csc.kth.se/~jakobn/research/
http://www.csc.kth.se/~jakobn/research/


176 J. Devriendt

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5(7), 394–397 (1962)

10. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

11. Devriendt, J.: Miplib 0–1 instances in OPB format (2020). https://doi.org/10.
5281/zenodo.3870965

12. Devriendt, J.: Online Repository for “Watched Propagation of 0–1 Integer Linear
Constraints” (2020). https://doi.org/10.5281/zenodo.3952444

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

14. Elffers, J., Nordström, J.: Divide and conquer: towards faster pseudo-Boolean solv-
ing. In: Proceedings of the 27th International Joint Conference on Artificial Intel-
ligence (IJCAI 2018), pp. 1291–1299 (2018)

15. Gecode: Generic constraint development environment. https://www.gecode.org/
16. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer

programming library. Technical report, Optimization Online (2019). http://www.
optimization-online.org/DB HTML/2019/07/7285.html

17. Koch, T., et al.: MIPLIB 2010. Math. Programm. Comput. 3(2), 103–163 (2011).
https://doi.org/10.1007/s12532-011-0025-9, http://mpc.zib.de/index.php/MPC/
article/view/56/28

18. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59–64 (2010)

19. Levin, L.A.: Universal sequential search problems. Problemy peredachi informatsii
9(3), 115–116 (1973). (in Russian). http://mi.mathnet.ru/ppi914

20. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). Preliminary version in
ICCAD 1996

21. MIPLIB 2.0 (1996). http://miplib2010.zib.de/miplib2/miplib2.html
22. MIPLIB 2017 (2018). http://miplib.zib.de
23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-

neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001), pp. 530–535 (2001)

24. Pseudo-Boolean competition 2016 (2016). http://www.cril.univ-artois.fr/PB16/
25. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM

12(1), 23–41 (1965)
26. RoundingSat. https://gitlab.com/miao research/roundingsat
27. Sheini, H.M., Sakallah, K.A.: Pueblo: a modern pseudo-Boolean SAT solver. In:

Proceedings of the Design, Automation and Test in Europe Conference (DATE
2005), pp. 684–685 (2005)

28. Sheini, H.M., Sakallah, K.A.: Pueblo: a hybrid pseudo-Boolean SAT solver. J.
Satisfiability Boolean Model. Comput. 2(1–4), 165–189 (2006). Preliminary version
in DATE 2005

29. Global constraint catalog: sum set. https://sofdem.github.io/gccat/gccat/Csum
set.html

30. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. Autom. Rea-
soning 24(1), 277–296 (2000). https://doi.org/10.1023/A:1006351428454, https://
doi.org/10.1023/A:1006351428454

https://doi.org/10.5281/zenodo.3870965
https://doi.org/10.5281/zenodo.3870965
https://doi.org/10.5281/zenodo.3952444
https://doi.org/10.1007/978-3-540-24605-3_37
https://www.gecode.org/
http://www.optimization-online.org/DB_HTML/2019/07/7285.html
http://www.optimization-online.org/DB_HTML/2019/07/7285.html
https://doi.org/10.1007/s12532-011-0025-9
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://mpc.zib.de/index.php/MPC/article/view/56/28
http://mi.mathnet.ru/ppi914
http://miplib2010.zib.de/miplib2/miplib2.html
http://miplib.zib.de
http://www.cril.univ-artois.fr/PB16/
https://gitlab.com/miao_research/roundingsat
https://sofdem.github.io/gccat/gccat/Csum_set.html
https://sofdem.github.io/gccat/gccat/Csum_set.html
https://doi.org/10.1023/A:1006351428454
https://doi.org/10.1023/A:1006351428454
https://doi.org/10.1023/A:1006351428454

	Watched Propagation of 0-1 Integer Linear Constraints
	1 Introduction
	2 Preliminaries
	2.1 Conflict-Driven Pseudo-Boolean Solving
	2.2 Counter Pseudo-Boolean Propagation

	3 Watched Pseudo-Boolean Propagation
	3.1 Detailed Algorithm
	3.2 An Extensive Example
	3.3 Algorithm Analysis
	3.4 Two Optimizations

	4 Related Work
	5 Experimental Evaluation
	5.1 Two Optimizations to Watched PB Propagation
	5.2 Expensive Backjumps?
	5.3 Performance Evaluation

	6 Conclusion
	References




