
Monotone Circuit Lower Bounds from Resolution∗

Ankit Garg

Microsoft Research

USA

Mika Göös

Harvard University

USA

Pritish Kamath

MIT

USA

Dmitry Sokolov

KTH Royal Institute of Technology

Sweden

ABSTRACT
For any unsatisfiable CNF formula F that is hard to refute in the

Resolution proof system, we show that a gadget-composed version

of F is hard to refute in any proof system whose lines are com-

puted by efficient communication protocols—or, equivalently, that

a monotone function associated with F has large monotone circuit

complexity. Our result extends to monotone real circuits, which

yields new lower bounds for the Cutting Planes proof system.

CCS CONCEPTS
• Theory of computation→ Computational complexity and
cryptography;

KEYWORDS
Circuit complexity, proof complexity

ACM Reference Format:
Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. 2018. Mono-

tone Circuit Lower Bounds from Resolution. In Proceedings of 50th Annual

ACM SIGACT Symposium on the Theory of Computing (STOC’18). ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3188745.3188838

1 APPETIZER
Dag-like communication protocols [38, 44, 50], generalizing the

usual notion of tree-like communication protocols [30, 34, 39], pro-

vide a useful abstraction to study two kinds of objects in complexity

theory:

• Monotone circuits. Let f be a monotone boolean function.

The monotone circuit complexity of f can be characterized in

the language of dag-like protocols. Namely, it equals the least

size of a dag-like protocol that solves themonotone Karchmer–

Wigderson (mKW) search problem associated with f .

• Propositional proofs. Let F be a CNF contradiction (an

unsatisfiable CNF formula). Lower bounds for the Resolu-

tion refutation size (aka length) complexity of F—or indeed

∗
The full version of this work is available online at [16]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188838

lower bounds for any propositional proof system whose lines

are computed by efficient communication protocols—can be

proved via dag-like protocols. Namely, a lower bound is given

by the least size of a dag-like protocol that solves a certain

CNF search problem associated with F .

In this paper, we prove a query-to-communication lifting the-
orem that escalates lower bounds for a dag-like query model (es-

sentially Resolution) to lower bounds for dag-like communication

protocols. In particular, this yields a new technique to prove size

lower bounds for monotone circuits and several types of proof

systems (including Cutting Planes).

The result can be interpreted as a converse to monotone feasible

interpolation [10, 32], which is a popular method to prove refutation

size lower bounds for proof systems (such as Resolution and Cutting

Planes) by reductions to monotone circuit lower bounds. A theorem

of this type was conjectured by Beame, Pitassi, and Huynh [5, §6].

We also note that lifting theory for deterministic tree-like protocols—

with applications to monotone formula size, tree-like refutation

size, and size–space tradeoffs—has been developed in quite some

detail [11, 13, 19, 20, 27, 40, 52]. We import techniques from this

line of work into the dag-like setting.

We formalize our result in Section 3 after we have carefully

defined our dag-like models in Section 2.

2 DAG-LIKE MODELS
We define all computational models as solving search problems,

defined by a relation S ⊆ I×O for some finite input and output sets

I and O. On input x ∈ I the search problem is to find some output

in S(x) B {o ∈ O : (x ,o) ∈ S}. We always assume S is total so that

S(x) , ∅ for all x ∈ I. We also define S−1(o) B {x ∈ I : (x ,o) ∈
S}. For applications, the two most important examples of search

problems, one associated with a monotone function f : {0, 1}n →
{0, 1}, another with an n-variable CNF contradiction F =

∧
i Di

(where Di are disjunctions of literals), are as follows.

mKW search problem Sf :
input: a pair (x ,y) ∈ f −1(1) × f −1(0)
output: a coordinate i ∈ [n] such that xi > yi

CNF search problem SF :
input: an n-variable truth assignment z ∈ {0, 1}n

output: clause D of F unsatisfied by z, i.e., D(z) = 0

902

https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov

⊥

(x2)

(x1 ∨ x2) (¬x1 ∨ x2) (¬x2)

Resolve x2

Resolve x1

Resolution proof : Bottom-up definition

⊤

(¬x2)

x2 = 0

(¬x1 ∧ ¬x2)

x1 = 0

(x1 ∧ ¬x2)

x1 = 1

(x2)

x2 = 1

Query x2

Query x1

Conjunction-dag : Top-down definition

Figure 1: Two equivalent ways to view a Resolution refutation, illustrated in the tree-like case (see [30, §18.2] for more discus-
sion of the tree-like case).

2.1 Abstract Dags
We work with a top-down definition of dag-like models. A version

of the following definition (with a specialized F) was introduced

by [44] and subsequently simplified in [38, 50].

Top-down definition. Let F be a family of functions I → {0, 1}.

An F -dag solving S ⊆ I × O is a directed acyclic graph of fan-out

≤ 2 where each node v is associated with a function fv ∈ F (we

call f −1v (1) the feasible set for v) satisfying the following:

(1) Root: There is a distinguished root node r (fan-in 0), and

fr ≡ 1 is the constant 1 function.

(2) Non-leaves: For each non-leaf node v with children u,u ′

(perhaps u = u ′), we have f −1v (1) ⊆ f −1u (1) ∪ f −1u′ (1).

(3) Leaves: Each leaf node v is labeled with an output ov ∈ O
such that f −1v (1) ⊆ S−1(ov).

The size of an F -dag is its number of nodes. If we specialize S to

be a CNF search problem SF , the above specializes to the familiar

definition of refutations in a proof system whose lines are negations

of functions in F . Here is that dual definition, specialized to S = SF .

Bottom-up definition. Let G be a family of functions {0, 1}n →

{0, 1}. (To match up with the top-down definition, one should take

G B {¬f : f ∈ F }.) A (semantic) G-refutation of an n-variable
CNF contradiction F is a directed acyclic graph of fan-out ≤ 2

where each node (or line) v is associated with a function дv ∈ G
satisfying the following:

(1) Root: There is a distinguished root node r (fan-in 0), and

дr ≡ 0 is the constant 0 function.

(2) Non-leaves: For each non-leaf node v with children u,u ′

(perhaps u = u ′), we have д−1v (1) ⊇ д−1u (1) ∩ д
−1
u′ (1).

(3) Leaves: Each leaf nodev is labeled with a clause D of F such

that д−1v (1) ⊇ D−1(1).

2.2 Concrete Dags
We now instantiate the abstract model for the purposes of commu-

nication and query complexity.

Rectangle-dags (dag-like protocols). Consider a bipartite input

domain I B X × Y so that Alice holds x ∈ X, Bob holds y ∈ Y,
and let F be the set of all indicator functions of (combinatorial)

rectangles over X ×Y (sets of the form X ×Y with X ⊆ X, Y ⊆ Y).
Call such F -dags simply rectangle-dags. For a search problem S ⊆
X × Y × O we define its rectangle-dag complexity by

rect-dag(S) B least size of a rectangle-dag that solves S .

In circuit complexity, a straightforward generalization of the

Karchmer–Wigderson depth characterization [31] shows that the

monotone circuit complexity of any monotone function f equals

rect-dag(Sf); see [38, 50].
In proof complexity, a useful-to-study semantic proof system

is captured by Fc -dags solving CNF search problems SF where Fc
is the family of all functions X × Y → {0, 1} (where X × Y =

{0, 1}n corresponds to a bipartition of the n input variables of SF)
that can be computed by tree-like protocols of communication

cost c , say for c = polylog(n). Such a proof system can simulate

other systems (such as Resolution and Cutting Planes with bounded

coefficients), and hence lower bounds against Fc -dags imply lower

bounds for other concrete proof systems. Moreover, any Fc -dag can

be simulated by a rectangle-dag with at most a factor 2
c
blow-up

in size, and hence we do not lose much generality by studying only

rectangle-dags.

Conjunction-dags (essentially Resolution). Consider the n-bit in-
put domain I B {0, 1}n and let F be the set of all conjunctions

of literals over the n input variables. Call such F -dags simply

conjunction-dags. We define the width of a conjunction-dag Π as

the maximum width of a conjunction associated with a node of Π.
For a search problem S ⊆ {0, 1}n × O we define

conj-dag(S) B least size of a conjunction-dag that solves S,

w(S) B least width of a conjunction-dag that solves S .

In the context of CNF search problems S = SF , conjunction-dags
are equivalent to Resolution refutations; see also Figure 1. Indeed,

conj-dag(SF) is just the Resolution refutation size complexity of F ,
andw(SF) is the Resolution width complexity of F [8].

903

Monotone Circuit Lower Bounds from Resolution STOC’18, June 25–29, 2018, Los Angeles, CA, USA

(a) (b) (c) (d)

Figure 2:We show lifting theorems for dags whose feasible sets are (a) rectangles or (b) triangles. It remains open (see Section 9)
to prove any lower bounds for explicitmKW/CNF search problemswhen the feasible sets are (c) block-diagonal, which a special
case of (d) intersections of 2 triangles.

The complexity measures introduced so far are related as follows;

here S ′ is any two-party version of S obtained by choosing some

bipartition X ×Y = {0, 1}n of the input domain of S :

rect-dag(S ′) ≤ conj-dag(S) ≤ nO (w (S)). (1)

The first inequality holds because each conjunction can be simu-

lated by a rectangle. The second inequality holds since there are

at most nO (w) many distinct width-w conjunctions, and we may

assume wlog that any f ∈ F is associated with at most one node

in an F -dag (any incoming edge to a node v can be rewired to the

lowest node u, in topological order, such that fv = fu).

3 OUR RESULTS
Our first theorem is a characterization of the rectangle-dag com-

plexity for composed search problems of the form S ◦ дn . Here
S ⊆ {0, 1}n×O is an arbitraryn-bit search problem, andд : X×Y →
{0, 1} is some carefully chosen two-party gadget that helps to dis-

tribute each input bit of S between the two parties. More precisely,

S ◦ дn ⊆ Xn × Yn × O is the search problem where Alice holds

x ∈ Xn , Bob holds y ∈ Yn
, and their goal is to find some o ∈ S(z)

for z B дn (x ,y) = (д(x1,y1), . . . ,д(xn ,yn)).
Our concrete choice for a gadget is the usualm-bit index function

Indm : [m] × {0, 1}m → {0, 1} mapping (x ,y) 7→ yx . For large
enoughm, we show that the bounds (1) are tight.

Theorem 1. Letm = m(n) B nδ for a large enough constant δ .
For any S ⊆ {0, 1}n × O,

rect-dag(S ◦ Indnm) = nΘ(w (S)).

Implications. The primary advantage of such a lifting theorem is

that we obtain, in a generic fashion, a large class of hard (explicit)

monotone functions and CNF contradictions. Indeed, let us see an

example of how to apply our theorem. We can start with any n-
variablek-CNF contradiction F of Resolution widthw , and conclude

from Theorem 1 that the composed problem S ′ B SF ◦ Ind
n
m has

rectangle-dag complexitynΘ(w). Thenwe can use known reductions
to translate S ′ back to a mKW/CNF search problem. We recall such

reductions in Section 8, but the upshot will be that:

− S ′ reduces to Sf ′ where f
′
is some N -bit monotone function

with N B nO (k).

− S ′ reduces to SF ′ where F
′
is some nO (1)-variable 2k-CNF

contradiction.

A disadvantage, stemming from the large gadget sizem = poly(n),
is that we get at best (using w = Θ(n)) a monotone circuit lower

bound of exp(N ε) for a small constant ε > 0. This falls especially

short of the current best record of exp(N 1/3−o(1)) shown for an

explicit monotone function by Harnik and Raz [24]. For this rea-

son (and others), it is an important open problem to develop a

lifting theory for gadgets of sizem = O(1). In particular, an optimal

2
Ω(N)

lower bound would follow from an appropriate constant-

size-gadget version of Theorem 1; see Section 8 for details.

Techniques. We use tools developed in the context of tree-like

lifting theorems, specifically from [18, 21]. These tools allow us

to relate large rectangles in the input domain of S ◦ Indnm with

large subcubes in the input domain of S ; see Section 4. Given these

tools, the proof of Theorem 1 is relatively short (two pages). The

proof is extremely direct: from any rectangle-dag of size nd solving

S ◦ Indnm we extract a width-O(d) conjunction-dag solving S .
Classical works on monotone circuit lower bounds have typi-

cally focused on specific monotone functions [1, 3, 22, 42, 48] and

more generally on studying the power of the underlying proof

methods [2, 9, 43, 45, 49, 51]. A notable exception is Jukna’s crite-

rion [29], recently applied in [14, 26], which is a general sufficient

condition for a monotone function to require large monotone cir-

cuit complexity. Our perspective is seemingly even more abstract,

as our result is phrased for arbitrary search problems (not just of

mKW/CNF type). However, it remains unclear exactly how the

power of our methods compare with the classical techniques; for

example, can our result be rephrased in the language of Razborov’s

method of approximations?

3.1 Extension: Monotone Real Circuits
Triangle-dags. Consider a bipartite input domain I B X × Y

and let F be the set of all indicator functions of (combinatorial)

triangles over X ×Y; here a triangle T ⊆ X ×Y is a set that can be

written as T = {(x ,y) ∈ X × Y : aT (x) < bT (y)} for some labeling

of the rows aT : X → R and columns bT : Y → R by real numbers;

see Figure 2b. In particular, every rectangle is a triangle. Call such

F -dags simply triangle-dags. For a search problem S ⊆ X ×Y × O

904

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov

we define

tri-dag(S) B least size of a triangle-dag that solves S .

Hrubeš and Pudlák [25] showed recently that the monotone real

circuit complexity of an f equals tri-dag(Sf). Monotone real cir-

cuits [23, 36] generalize monotone circuits by allowing the wires

to carry arbitrary real numbers and the binary gates to compute

arbitrary monotone functions R × R→ R. The original motivation

to study such circuits, and what interests us here, is that lower

bounds for monotone real circuits imply lower bounds for the Cut-

ting Planes proof system [12]. In our language, semantic Cutting

Planes refutations are equivalent to L-dags solving CNF search

problems, where L is the family of linear threshold functions (each

f ∈ L is defined by some (n + 1)-tuple a ∈ Rn+1 so that f (x) = 1

iff

∑
i ∈[n] aixi > an+1).

Our second theorem states that Theorem 1 holds more generally

with rectangle-dags replaced with triangle-dags. The proof is how-

ever more involved than the proof for Theorem 1.

Theorem 2. Letm = m(n) B nδ for a large enough constant δ .
For any S ⊆ {0, 1}n × O,

tri-dag(S ◦ Indnm) = nΘ(w (S)).

A pithy corollary is that if we start with any CNF contradic-

tion F that is hard for Resolution and compose F with a gadget

(as described in Section 8), the formula becomes hard for Cut-

ting Planes. Previously, only few examples of hard contradictions

were known for Cutting Planes, all proved via feasible interpola-

tion [14, 23, 26, 36]. A widely-asked question has been to improve

this state-of-the-art by developing alternative lower bound meth-

ods; see the surveys [6, §4] and [47, §5]. In particular, Jukna [30,

Research Problem 19.17] asked to find a more intuitive “combinato-

rial” proof method “explicitly showing what properties of [contra-

dictions] force long derivations.” It is unclear how “combinatorial”

our method is, but at least it does afford a simple intuition: the

hardness is simply borrowed from the realm of Resolution (where

we understand very well what makes formulas hard).

4 SUBCUBES FROM RECTANGLES
In this section, as preparation, we recall some technical notions

from [18, 21] concerning the index gadget д B Indm . Namely,

writing G B дn : [m]n × {0, 1}mn → {0, 1}n for n copies of д, we
explain how large rectangles in G’s domain are related with large

subcubes in G’s codomain.

4.1 Structured Rectangles
For a partial assignment ρ ∈ {0, 1, ∗}n we let free ρ B ρ−1(∗)
denote its free coordinates, and fix ρ B [n]r free ρ denote its fixed

coordinates. The number of fixed coordinates |fix ρ | is thewidth of ρ.
Width-d partial assignments are naturally in 1-to-1 correspondence

with width-d conjunctions: for any ρ we define Cρ : {0, 1}
n →

{0, 1} as the width-|fix ρ | conjunction that accepts an x ∈ {0, 1}n

iff x is consistent with ρ. Thus C−1ρ (1) = {x ∈ {0, 1}
n

: xi =

ρi for all i ∈ fix ρ} is a subcube. We say that R ⊆ [m]n × {0, 1}mn

is ρ-like if the image of R under G is precisely the subcube of n-bit

strings consistent with ρ, that is, in short,

R is ρ-like ⇐⇒ G(R) = C−1ρ (1).

For a random variable x we let H∞(x) B minx log(1/Pr[x = x])
denote the usual min-entropy of x . When x ∈ [m]J for some index

set J , we write xI ∈ [m]
I
for the marginal distribution of x on a

subset I ⊆ J of coordinates. For a set X we use the boldface X to

denote a random variable uniformly distributed over X .

Definition 1 ([18, 21]). A rectangle R B X ×Y ⊆ [m]n × {0, 1}mn

is ρ-structured if

(1) X
fix ρ is fixed, and every z ∈ G(R) is consistent with ρ, that

is, G(R) ⊆ C−1ρ (1).
(2) X

free ρ is 0.9-dense: for every nonempty I ⊆ free ρ, XI has

min-entropy rate ≥ 0.9, that is, H∞(XI) ≥ 0.9 · |I | logm.

(3) Y is large enough: H∞(Y) ≥ mn − n3.

Lemma 3 ([17, 21]). Every ρ-structured rectangle is ρ-like.

In this work we need a slight strengthening of Lemma 3: for a

ρ-structured R, there is a single row of R that is already ρ-like. The
proof is given in the full version [16].

Lemma 4. Let X × Y be ρ-structured. There exists an x ∈ X such

that {x} × Y is ρ-like.

4.2 Rectangle Partition Scheme
We claim that, given any rectangle R B X × Y ⊆ [m]n × {0, 1}mn

,

we can partition most ofX ×Y into ρ-structured subrectangles with
|fix ρ | bounded in terms of the size of X × Y . Indeed, we describe
a simple 2-round partitioning scheme from [21] below; see also

Figure 3. In the 1st round of the algorithm, we partition the rows

as X =
⊔
i X

i
where each X i

will be fixed on some blocks Ii ⊆ [n]
and 0.95-dense on the remaining blocks [n]r Ii . In the 2nd round,

each X i × Y is further partitioned along columns so as to fix the

outputs of the gadgets on coordinates Ii .

Rectangle Scheme

Input: R = X × Y ⊆ [m]n × {0, 1}mn
.

Output: A partition of R into subrectangles.

1: 1st round: Iterate the following for i = 1, 2, . . . , until X be-

comes empty:

(i) Let Ii ⊆ [n] be a maximal subset (possibly Ii = ∅) such that

XIi has min-entropy rate < 0.95, and let αi ∈ [m]
Ii
be an

outcome witnessing this: Pr[XIi = αi] > m
−0.95 |Ii |

(ii) Define X i B
{
x ∈ X : xIi = αi

}
(iii) Update X ← X r X i

2: 2nd round: For each part X i
and γ ∈ {0, 1}Ii , define Y i,γ B

{y ∈ Y : дIi (αi ,yIi) = γ }

3: return
{
Ri,γ B X i × Y i,γ : Y i,γ , ∅

}
All the properties of Rectangle Scheme that we will subsequently

need are formalized below; see also Figure 3. For terminology, given

a subset A′ ⊆ A we define its density (inside A) as |A′ |/|A|. The
proof of the following lemma is postponed to Section 7.

905

Monotone Circuit Lower Bounds from Resolution STOC’18, June 25–29, 2018, Los Angeles, CA, USA

X

Y

Xerr

Yerr

(a) (b)

Figure 3: (a) Rectangle Scheme partitions R = X × Y first along rows, then along columns. (b) Rectangle Lemma illustrated:
most subrectangles are ρ-structured for low-width ρ, except some error parts (highlighted in figure) that are contained in few
error rows/columns Xerr, Yerr.

Rectangle Lemma. Fix any parameter k ≤ n logn. Given a rec-

tangle R ⊆ [m]n × {0, 1}mn
, let R =

⊔
i R

i
be the output of Rec-

tangle Scheme. Then there exist “error” sets Xerr ⊆ [m]
n
and Yerr ⊆

{0, 1}mn
, both of density ≤ 2

−k
(inside their respective sets), such

that for each i , one of the following holds:

• Structured case: Ri is ρi -structured for some ρi of width at

most O(k/logn).

• Error case: Ri is covered by error rows/columns, i.e., Ri ⊆
Xerr × {0, 1}

mn ∪ [m]n × Yerr.

Finally, a query alignment property holds: for every x ∈ [m]n r
Xerr, there exists a subset Ix ⊆ [n] with |Ix | ≤ O(k/logn) such that

every “structured” Ri intersecting {x} × {0, 1}mn
has fix ρi ⊆ Ix .

5 LIFTING FOR RECTANGLE-DAGS
In this section we prove the nontrivial direction of Theorem 1: Let

Π be a rectangle-dag solving S ◦G of size nd for some d . Our goal
is to show thatw(S) ≤ O(d).

5.1 Game Semantics for Dags
For convenience (and fun), we use the language of two-player com-

petitive games, introduced in [4, 37], which provide an alternative

way of thinking about conjunction-dags solving S ⊆ {0, 1}n × O.
The game involves two competing players, Explorer and Adversary,

and proceeds in rounds. The state of the game in each round is

modeled as a partial assignment ρ ∈ {0, 1, ∗}n . At the start of the
game, ρ B ∗n . In each round, Explorer makes one of two moves:

− Query a bit: Explorer specifies an i ∈ free ρ, and Adversary

responds with a bit b ∈ {0, 1}. The state ρ is updated by

ρi ← b.
− Forget a bit: Explorer specifies an i ∈ fix ρ, and the state is

updated by ρi ← ∗.

An important detail is that Adversary is allowed to chooseb ∈ {0, 1}
freely even if the i-th bit was queried (with response different

from b) and subsequently forgotten during past play. The game

ends when a solution to S can be inferred from ρ, that is, when
C−1ρ (1) ⊆ S−1(o) for some o ∈ O.

Explorer’s goal is to end the game while keeping the width of the

game state ρ as small as possible. Indeed, Atserias and Dalmau [4]

prove thatw(S) is characterized (up to an additive ±1) as the least

w such that the Explorer has a strategy for ending the game that

keeps the width of the game state at mostw throughout the game.

(A similar characterization exists for dag size [37].) Hence our goal

becomes to describe a Explorer-strategy for S such that the width of

the game state never exceedsO(d) regardless of how the Adversary

plays.

5.2 Simplified Proof
To explain the basic idea, we first give a simplified version of the

proof: We assume that all rectangles R involved in Π—call them the

original rectangles—can be partitioned errorlessly into ρ-structured
subrectangles for ρ of width O(d). That is, invoking Rectangle

Scheme for each original R, we assume that

(∗) Assumption: All subrectangles in the partition R =
⊔
i R

i

output by Rectangle Scheme satisfy the “structured” case of

Rectangle Lemma for k B 2d logn.

In Section 5.3 we remove this assumption by explaining how the

proof can be modified to work with some error rows/columns.

Overview. We extract a width-O(d) Explorer-strategy for S by

walking down the rectangle-dag Π, starting at the root. For each

original rectangle R that is reached in the walk, we maintain a

ρ-structured subrectangle R′ ⊆ R chosen from the partition of R.
Note that ρ will have width O(d) by our choice of k . The intention
is that ρ will record the current state of the game. There are three

issues to address: (1) Why is the starting condition of the game met?

(2) How do we take a step from a node of Π to one of its children?

(3) Why are we done once we reach a leaf?

(1) Root case. At start, the root ofΠ is associated with the original

rectangle R = [m]n × {0, 1}mn
comprising the whole domain. The

partition of R computed by Rectangle Scheme is trivial: it contains

a single part, the ∗n -structured R itself. Hence we simply maintain

the ∗n-structured R ⊆ R, which meets the starting condition for

the game.

906

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov

(2) Internal step. This is the crux of the argument: Supposing

the game has reached state ρR′ and we are maintaining some ρR′-
structured subrectangle R′ ⊆ R associated with an internal node

v , we want to move to some ρL′-structured subrectangle L′ ⊆ L
associated with a child of v . Moreover, we must keep the width of

the game state at most O(d) during this move.

Since R′ C X ′ × Y ′ is ρR′-structured, we have from Lemma 4

that there exists some x∗ ∈ X ′ such that {x∗} × Y ′ is ρR′-like. Let
the two original rectangles associated with the children of v be

L0 and L1. Let
⊔
i L

i
b be the partition of Lb output by Rectangle

Scheme. By query alignment in Rectangle Lemma, there is some

I∗b ⊆ [n], |I
∗
b | ≤ O(d), such that all Lib that intersect the x∗-th row

are ρi -structured with fix ρi ⊆ I∗b . As Explorer, we now query the

input bits in coordinates J B (I∗
0
∪ I∗

1
) r fix ρR′ (in any order)

obtaining some response string z J ∈ {0, 1}
J
from the Adversary.

As a result, the state of the game becomes the extension of ρR′ by
z J , call it ρ

∗
, which has width |fix ρ∗ | = |fix ρR′ ∪ J | ≤ O(d).

R′

L1
L0 Y ′

X ′
x∗

(x∗,y∗)

Note that there is some y∗ ∈ Y ′ (and hence (x∗,y∗) ∈ R′ ⊆
L0∪L1) such thatG(x∗,y∗) is consistent with ρ∗; indeed, the whole
row {x∗}×Y ′ is ρR′-like and ρ

∗
extends ρR′ . Suppose (x

∗,y∗) ∈ L0;
the case of L1 is analogous. In the partition of L0, let L

′
be the

unique part such that (x∗,y∗) ∈ L′. Note that L′ is ρL′-like for some

ρL′ that is consistent with G(x∗,y∗) and fix ρL′ ⊆ I∗
0
(by query

alignment). Hence ρ∗ extends ρL′ . As Explorer, we now forget all

queried bits in ρ∗ except those queried in ρL′ .
We have recovered our invariant: the game state is ρL′ and we

maintain a ρL′-structured subrectangle L′ of an original rectangle

L0. Moreover, the width of the game state remained O(d).

(3) Leaf case. Suppose the game state is ρ and we are maintaining

an associated ρ-structured subrectangle R′ ⊆ R corresponding to

a leaf node. The leaf node is labeled with some solution o ∈ O
satisfying R′ ⊆ (S ◦G)−1(o), that is, G(R′) ⊆ S−1(o). But G(R′) =
C−1ρ (1) by Lemma 3 so that C−1ρ (1) ⊆ S−1(o). Therefore the game

ends. This concludes the (simplified) proof.

5.3 Accounting for Error
Next, we explain how to get rid of the assumption (∗) by accounting
for the rows and columns that are classified as error in Rectangle

Lemma for k B 2d logn. The partitioning of Π’s rectangles is done
more carefully: We sort all original rectangles in reverse topological

order R1,R2, . . . ,Rnd from leaves to root, that is, if Ri is a descen-
dant of Rj then Ri comes before Rj in the order. Then we process

the rectangles in this order:

Initialize cumulative error sets X ∗
err
= Y ∗

err
B ∅. Iterate for i =

1, 2, . . . ,nd rounds:

(1) Remove from Ri the rows/columns X ∗
err

, Y ∗
err

. That is, update

Ri ← Ri r
(
X ∗
err
× {0, 1}mn ∪ [m]n × Y ∗

err

)
.

(2) Apply the Rectangle Scheme for Ri . Output all resulting
subrectangles that satisfy the “structured” case of Rectan-

gle Lemma for k B 2d logn. (All non-structured subrectan-

gles are omitted). Call the resulting error rows/columns Xerr

and Yerr.

(3) Update X ∗
err
← X ∗

err
∪ Xerr and Y

∗
err
← Y ∗

err
∪ Yerr.

In words, an original rectangle Ri is processed only after all of its

descendants are partitioned. Each descendant may contribute some

error rows/columns, accumulated into sets X ∗
err

, Y ∗
err

, which are

deleted from Ri before it is partitioned. The partitioning of Ri will
in turn contribute its error rows/columns to its ancestors.

We may now repeat the proof of Section 5.2 verbatim using only

the structured subrectangles output by the above process. That is, we

still maintain the same invariant: when the game state is ρ, we
maintain a ρ-structured R′ (output by the above process) of an

original R. We highlight only the key points below.

(1) Root case. The cumulative error at the end of the process is

tiny: X ∗
err

, Y ∗
err

have density at most nd · n−2d ≤ 1/4 by a union

bound over all rounds. In particular, the root rectangle Rnd (with

errors removed) still has density ≥ 1/2 inside [m]n × {0, 1}mn
, and

so the partition output by Rectangle Scheme is trivial, containing

only the ∗n -structured Rnd itself. This meets the starting condition

for the game.

(2) Internal step. By construction, the cumulative error sets shrink

when we take a step from a node to one of its children. This means

that our error handling does not interfere with the internal step:

each structured subrectangle R′ of an original rectangle R is wholly

covered by the structured subrectangles of R’s children.

(3) Leaf case. This case is unchanged.

6 LIFTING FOR TRIANGLE-DAGS
In this section we prove the nontrivial direction of Theorem 2: Let

Π be a triangle-dag solving S ◦G of size nd for some d . Our goal is
to show thatw(S) ≤ O(d).

The proof is conceptually the same as for rectangle-dags. The

only difference is that we need to replace Rectangle Scheme (and

the associated Rectangle Lemma) with an algorithm that partitions

a given triangle T ⊆ [m]n × {0, 1}mn
into subtriangles that behave

like conjunctions.

6.1 Triangle Partition Scheme
We introduce a triangle partitioning algorithm, Triangle Scheme.

Its definition is given in the full version [16]. For now, we only need

its high-level description: On input a triangle T , Triangle Scheme

outputs a disjoint cover

⊔
i R

i ⊇ T where Ri are rectangles. This
induces a partition of T into subtriangles T ∩ Ri . Each (non-error)

rectangle Ri is ρi -structured (for low-width ρi) and is associated

with a ρi -structured “inner” subrectangle Li ⊆ Ri satisfying Li ⊆

907

Monotone Circuit Lower Bounds from Resolution STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Li T ∩ Ri

Ri

Figure 4: Structured case of Triangle Lemma: The subtrian-
gle T ∩ Ri is sandwiched between two ρi -structured rectan-
gles Li and Ri .

T ∩Ri ⊆ Ri ; see Figure 4. HenceT ∩Ri is ρi -like, as it is sandwiched
between two ρi -like rectangles.

More formally, all the properties of Triangle Scheme that we will

subsequently need are formalized below (note the similarity with

Rectangle Lemma); see the full version [16] for the proof.

Triangle Lemma. Fix any parameter k ≤ n logn. Given a triangle
T ⊆ [m]n × {0, 1}mn

, let

⊔
i R

i
be the output of Triangle Scheme.

Then there exist “error” sets Xerr ⊆ [m]
n
and Yerr ⊆ {0, 1}

mn
, both

of density ≤ 2
−k

(inside their respective sets), such that for each i ,
one of the following holds:

• Structured case: Ri is ρi -structured for some ρi of width at

most O(k/logn). Moreover, there exists an “inner” rectangle

Li ⊆ T ∩ Ri such that Li is also ρi -structured.

• Error case: Ri is covered by error rows/columns, i.e., Ri ⊆
Xerr × {0, 1}

mn ∪ [m]n × Yerr.

Finally, a query alignment property holds: for every x ∈ [m]n r
Xerr, there exists a subset Ix ⊆ [n] with |Ix | ≤ O(k/logn) such that

every “structured” Ri intersecting {x} × {0, 1}mn
has fix ρi ⊆ Ix .

6.2 Simplified Proof
As in the rectangle case, we give a simplified proof assuming no er-

rors. That is, invoking Triangle Scheme for each triangleT involved

in Π, we assume that

(†) Assumption: All rectangles in the cover

⊔
i R

i ⊇ T output

by Triangle Scheme satisfy the “structured” case of Triangle

Lemma for k B 2d logn.

The argument for getting rid of the assumption (†) is the same as

in the rectangle case, and hence we omit that step—one only needs

to observe that removing cumulative error rows/columns from a

triangle still leaves us with a triangle.

Overview. As before, we extract a width-O(d) Explorer-strategy
for S by walking down the triangle-dag Π, starting at the root. For

each triangle T of Π that is reached in the walk, we maintain a

ρ-structured inner rectangle L ⊆ T . Here ρ (of width O(d) by the

choice of k) will record the current state of the game. There are the

three steps (1)–(3) to address, of which (1) and (3) remain exactly

the same as in the rectangle case. So we only explain step (2), which

requires us to replace the use of Rectangle Lemma with the new

Triangle Lemma.

(2) Internal step. Supposing the game has reached state ρL and

we are maintaining some ρL-structured inner rectangle L ⊆ T
associated with an internal node v , we want to move to some

ρL̃-structured inner rectangle L̃ ⊆ T̃ associated with a child of v .
Moreover, we must keep the width of the game state at most O(d)
during this move.

Since L C X ′ ×Y ′ is ρL-structured, we have from Lemma 4 that

there exists some x∗ ∈ X ′ such that {x∗} × Y ′ is ρL-like. Let the
two triangles associated with the children of v beT0 andT1, so that
L ⊆ T0 ∪T1.

Let

⊔
i R

i
b be the rectangle cover ofTb output by Triangle Scheme.

By query alignment in Triangle Lemma, there is some I∗b ⊆ [n],

|I∗b | ≤ O(d), such that all Rib that intersect the x∗-th row are ρi -

structured with fix ρi ⊆ I∗b . As Explorer, we now query the input

bits in coordinates J B (I∗
0
∪ I∗

1
)r fix ρL (in any order) obtaining

some response string z J ∈ {0, 1}
J
from the Adversary. As a result,

the state of the game becomes the extension of ρL by z J , call it ρ
∗
,

which has width |fix ρ∗ | = |fix ρL ∪ J | ≤ O(d).
Note that there is somey∗ ∈ Y ′ (and hence (x∗,y∗) ∈ L ⊆ T0∪T1)

such that G(x∗,y∗) is consistent with ρ∗; indeed, the whole row
{x∗} × Y ′ is ρL-like and ρ∗ extends ρL . Suppose (x

∗,y∗) ∈ T0; the
case of T1 is analogous. In the rectangle covering of T0, let R be

the unique part such that (x∗,y∗) ∈ R. Note that R is ρR -like for
some ρR that is consistent withG(x∗,y∗) and fix ρR ⊆ I∗

0
(by query

alignment). Hence ρ∗ extends ρR . As Explorer, we now forget all

queried bits in ρ∗ except those queried in ρR . Also we move to the

inner rectangle L̃ ⊆ R promised by Triangle Lemma that satisfies

L̃ ⊆ T0 and is ρL̃ = ρR structured.

We have recovered our invariant: the game state is ρL̃ and we

maintain a ρL̃-structured subrectangle L̃ of a triangle T0. Moreover,

the width of the game state remained O(d).

7 PARTITIONING RECTANGLES
In this section, we prove Rectangle Lemma. We use repeatedly the

following simple fact about min-entropy.

Fact 5. Let X be a random variable and E an event. Then H∞(X |
E) ≥ H∞(X) − log 1/Pr[E].

The proof is more-or-less implicit in [18, 21]. We start by record-

ing a key property of the 1st round of Rectangle Scheme.

Claim 6. Each part X i
obtained in 1st round of Rectangle Scheme

satisfies:

− Blockwise-density: X i
[n]rIi

is 0.95-dense.

− Relative size: |X>i | ≤ mn−0.05 |Ii |
where X>i B

⋃
j≥i X

i
.

Proof. By definition, X i = (X>i |X>i
Ii
= αi). Suppose for

contradiction that X i
[n]rIi

is not 0.95-dense. Then there is some

nonempty subset K ⊆ [n]r Ii and an outcome β ∈ [m]K violating

the min-entropy condition, namely Pr[X i
K = β] > m−0.95 |K | . But

this contradicts the maximality of Ii since the larger set Ii ∪K now

908

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov

violates the min-entropy condition for X>i
:

Pr[X>i
Ii∪K

= αiβ] = Pr[X>i
Ii
= αi] · Pr[X i

K = β]

> m−0.95 |Ii | ·m−0.95 |K | = m−0.95(|Ii∪K |) .

This shows the first property. For the second property, apply Fact 5

for X i = (X>i |X>i
Ii
= αi) to find that H∞(X i) ≥ H∞(X>i) −

0.95|Ii | logm. On the other hand, since X i
is fixed on Ii , we have

H∞(X i) ≤ (n− |Ii |) logm. Combining these two inequalities we get

H∞(X>i) ≤ (n − 0.05|Ii |) logm, which yields the second property.

�

Proof of Rectangle Lemma. IdentifyingYerr,Xerr.WedefineYerr B⋃
i,γ Y

i,γ
subject to |Y i,γ | < 2

mn−n2

. To bound the size of Yerr, we
claim that there are at most (4m)n possible choices of i,γ . Indeed,
each X i

is associated with a unique pair (Ii ⊆ [n],αi ∈ [m]
Ii),

and there are at most 2
n
choices of Ii and at mostmn

choices of

corresponding αi . Also, for each X i
, there are at most 2

n
possible

assignments to γ ∈ {0, 1}Ii . For each i,γ , we add at most 2
mn−n2

columns to Yerr. Thus, Yerr has density at most (4m)n · 2−n
2

< 2
−k

inside {0, 1}mn
.

We define Xerr B
⊔
i X

i
subject to |Ii | > 20k/logm. Let i be the

least index with |Ii | > 20k/logm so that Xerr ⊆ X>i
. By Claim 6,

|X>i | ≤ mn−0.05 |Ii | < mn · 2−k since |Ii | > 20k/logm. In other

words, X>i
, and hence Xerr, has density at most 2

−k
inside [m]n .

Structured vs. error. Let Ri,γ B X i ×Y i,γ , where Xi is associated
with (Ii ,αi), be a rectangle not contained in the error rows/columns.

By definition of Xerr, Yerr, this means |Y i,γ | ≥ 2
mn−n2

(so that

H∞(Y i,γ) ≥ mn − n2) and |Ii | ≤ 20k/logm. We have from Claim 6

that X i
[n]rIi

is 0.95-dense. Hence, Ri,γ is ρi -structured where ρi

equals γ on Ii and consists of stars otherwise.

Query alignment. For each x ∈ [m]n r Xerr, we define Ix = Ii
where X i

is the unique part that contains x . It follows that any
ρ-structured rectangle that intersects the x-th row is of the form

X i × Y i,γ and hence has fix ρ = Ii . Since X i * Xerr, we have

|Ii | ≤ O(k/logn). �

8 TRANSLATING BETWEEN mKW/CNF
In this section, for exposition, we recall some known reductions

between mKW and CNF search problems. These reductions can be

combined with our main theorems to yield applications in proof

and monotone circuit complexity (as outlined in Section 3).

Certificates. The key property of an n-bit search problem S ⊆
{0, 1}n × O that facilitates an efficient reduction to a mKW/CNF

search problem is having a low certificate (aka nondeterministic)

complexity. A certificate for (x ,o) ∈ S is a partial assignment ρ ∈
{0, 1, ∗}n such that x is consistent with ρ and o is a valid output

for every input consistent with ρ; in short, x ∈ C−1ρ (1) ⊆ S−1(o). A

certificate for x is a certificate for (x ,o) ∈ S for some o ∈ S(x). The
certificate complexity of x is the least width of a certificate for x .
The certificate complexity of S is the maximum over all x ∈ {0, 1}n

of the certificate complexity of x .
For any search problem S one can associate a “certification”

search problem Scert: on input x to S , output a certificate for x
in S . Algorithmically speaking, such an Scert is clearly at least as

hard as S : if we solve Scert by finding a certificate for (x ,o) ∈ S , we
can solve S by outputting o.

CNF search ⇔ low certificate complexity. For any k-CNF contra-
diction F , the associated CNF search problem SF has certificate

complexity at most k . Conversely [35], for any total search problem

S ⊆ {0, 1}n × O, we can construct a k-CNF contradiction F , where
k is the certificate complexity of S , such that SF is a type of certifica-

tion problem for S (and hence at least as hard as S). Namely, we can

pick a collection C of width-k certificates, one for each x ∈ {0, 1}n .
The k-CNF formula F is then defined as

∧
ρ ∈C ¬Cρ .

Gadget composition. For the purposes of query complexity, there

are two ways to represent the first argument x ∈ [m] to the index

function Indm : [m] × {0, 1}m as a binary string. The simplest is

to write x as a logm-bit string. Under this convention, Indm has

certificate complexity logm + 1. If S ⊆ {0, 1}n × O has certificate

complexity k , the composed problem S ◦ Indnm has certificate com-

plexity k(logm + 1) (by composing certificates). For applications,

this means that if we start with a k-CNF contradiction F , we may

reduce SF ◦ Ind
n
m to solving SF ′ where F ′ is a k(logm + 1)-CNF

contradiction over O(mn) variables.
A better representation [5, 13], which does not blow up the

certificate complexity (or CNFwidth), is to write x as anm-bit string

of Hamming weight 1 (the index of the unique 1-entry encodes

x ∈ [m]). Under this convention, Indnm : {0, 1}m × {0, 1}m → {0, 1}

becomes a partial function of certificate complexity 2. Hence, if S
has certificate complexity k , the partial composed problem S ′ B
S ◦ Indnm has certificate complexity 2k .

Moreover, the partial problem S ′ can be extended into a total

problem Stot without making it any easier to solve for rectangle-

dags. Indeed, we introduce new variables/certificates allowing us to

say that an input (x ,y) to S ′ is trivially solved with output ⊥ < O,
if for some i ∈ [n], xi ∈ {0, 1}

m
is not of Hamming weight 1.

Specifically, Alice will receive new input bits x ′ ∈ ({0, 1}m)n (in

addition to the original x ∈ ({0, 1}m)n) and we say that an Alice

input xx ′ is good if for each i ∈ [n], the string x ′i ∈ {0, 1}
m
describes

a non-decreasing sequence

0 = x ′i,1 ≤ x ′i,2 ≤ · · · ≤ x ′i,m ≤ x ′i,m+1 B 1

(the last value being hardcoded by convention), and moreover

xi, j = 1 iff x ′i, j < x ′i, j+1. Note that if xx ′ is not good, there is

a width-3 certificate witnessing this. Our total search problem

Stot ⊆ {0, 1}
2mn × {0, 1}mn × (O ∪ {⊥}) is defined by all these

width-3 certificates (for output ⊥) together with all the original

certificates of S ′. To see that Stot is at least as hard as S
′
for rectangle-

dags, we note that for any input (x ,y) to S ′, Alice can compute a

unique x ′ so that xx ′ is good. Now any output o ∈ Stot(xx
′,y) is

also such that o ∈ S ′(x ,y).
In summary, we can reduce (in the context of rectangle-dags)

SF ◦ Ind
n
m to solving SF ′ where F

′
is a 2k-CNF contradiction over

O(mn) variables.

mKW problems. A rectangle R ⊆ X × Y is monochromatic for

a search problem S ⊆ X × Y × O if R ⊆ S−1(o) for some o ∈
O. The nondeterministic communication complexity of S is the

logarithm of the least number of monochromatic rectangles that

cover the whole input domain X × Y. If S has nondeterministic

909

Monotone Circuit Lower Bounds from Resolution STOC’18, June 25–29, 2018, Los Angeles, CA, USA

communication complexity logN , then by a standard reduction (e.g.,

[15, Lemma 2.3]) S reduces to Sf for some monotone f : {0, 1}N →
{0, 1}.

Consider a composed search problem SF ◦ д
n
obtained from a

k-CNF contradiction with ℓ clauses. Its nondeterministic commu-

nication complexity is at most log ℓ + k · (logm + 1); intuitively,

it takes log ℓ bits to specify an unsatisfied clause C , and logm + 1
bits to verify the output of a single gadget, and there are k gadgets

relevant to C . Suppose for a moment that a version of Theorem 1,

proving a 2
Ω(w)

lower bound, held for a gadget of constant size

m = O(1). Then we could lift any of the known CNF contradic-

tions with parameters k = O(1), ℓ = O(n), w = Ω(n), to obtain

an explicit monotone function on N = Θ(n) variables, with essen-

tially maximal monotone circuit complexity 2
Ω(N)

. This gives some

motivation to further develop lifting tools for small gadgets.

9 OPEN PROBLEMS
If the long line of work on tree-like lifting theory is of any indication,

there should be much to explore also in the dag-like setting. We

propose a few concrete directions.

Can our methods be extended to prove lower bounds for dags

whose feasible sets are intersections of k triangles for k ≥ 2? See

Figure 2. This would imply lower bounds for proofs systems such

as width-k Resolution over Cutting Planes [33] and Resolution over

linear equations [28, 41].

Question 1. Prove a lifting theorem for F -dags where F B {inter-
sections of k triangles}.

One of the most important open problems (e.g., [47, §5]) re-

garding semi-algebraic proof systems that manipulate low-degree

polynomials—whereF is, say, degree-d polynomial threshold functions—

is to prove lower bounds on their dag-like refutation length (tree-

like lower bounds are known [7, 19]). Since degree-d polynomials

can be efficiently evaluated by (d + 1)-party number-on-forehead

(NOF) protocols, one might hope to prove a dag-like NOF lifting

theorem. However, we currently lack a good understanding of NOF

lifting even in the tree-like case. We believe the first necessary step

should be to settle the following (a two-party analogue of which

was proved in [18]).

Question 2. Prove a nondeterministic lifting theorem for NOF pro-

tocols.

The proof of Theorem 1, which extracts awidth-O(d) conjunction-

dag from a size-nd rectangle-dag, has the additional property of

preserving the dag depth (up to an O(d) factor). This raises the
question of whether one could investigate size–depth tradeoffs for

monotone circuits via lifting.

Question 3. Does there exist, for any d ≥ 1, an f : {0, 1}n →

{0, 1} computable with monotone circuits of size nd such that any

subexponential-size monotone circuit computing f has depth nΩ(d)?

Razborov [46] has recently obtained related results for Resolu-

tion, but the parameters in his construction seem not to be good

enough for a direct application of Theorem 1.

ACKNOWLEDGMENTS
We thank Jakob Nordström for extensive feedback on an early draft

of this work. We also thank Toniann Pitassi, Thomas Watson, and

anonymous STOC reviewers for comments.

PK was funded in part by NSF grants CCF-1650733 and IIS-1741137.

REFERENCES
[1] Noga Alon and Ravi Boppana. 1987. The monotone circuit complexity of

Boolean functions. Combinatorica 7, 1 (1987), 1–22. https://doi.org/10.1007/
BF02579196

[2] Kazuyuki Amano and Akira Maruoka. 2004. The Potential of the Approximation

Method. SIAM J. Comput. 33, 2 (2004), 433–447. https://doi.org/10.1137/
S009753970138445X

[3] Alexander Andreev. 1985. On a method for obtaining lower bounds for the

complexity of individual monotone functions. Doklady Akademii Nauk USSR 281,

2 (1985), 1033–1037.

[4] Albert Atserias and Víctor Dalmau. 2008. A combinatorial characterization of

resolution width. J. Comput. System Sci. 74, 3 (2008), 323–334. https://doi.org/
10.1016/j.jcss.2007.06.025

[5] Paul Beame, Trinh Huynh, and Toniann Pitassi. 2010. Hardness Amplification in

Proof Complexity. In Proceedings of the 42nd Symposium on Theory of Computing

(STOC). ACM, 87–96. https://doi.org/10.1145/1806689.1806703
[6] Paul Beame and Toniann Pitassi. 2001. Propositional Proof Complexity: Past,

Present, and Future. In Current Trends in Theoretical Computer Science: En-

tering the 21st Century. World Scientific, 42–70. https://doi.org/10.1142/
9789812810403_0001

[7] Paul Beame, Toniann Pitassi, and Nathan Segerlind. 2007. Lower Bounds for

Lovász–Schrijver Systems and Beyond Follow from Multiparty Communication

Complexity. SIAM J. Comput. 37, 3 (2007), 845–869. https://doi.org/10.1137/
060654645

[8] Eli Ben-Sasson and Avi Wigderson. 2001. Short Proofs Are Narrow—Resolution

Made Simple. J. ACM 48, 2 (2001), 149–169. https://doi.org/10.1145/375827.
375835

[9] Christer Berg and Staffan Ulfberg. 1999. Symmetric Approximation Arguments

for Monotone Lower Bounds Without Sunflowers. Computational Complexity 8,

1 (1999), 1–20. https://doi.org/10.1007/s000370050017
[10] Maria Bonet, Toniann Pitassi, and Ran Raz. 1997. Lower Bounds for Cutting

Planes Proofs with Small Coefficients. The Journal of Symbolic Logic 62, 3 (1997),

708–728. https://doi.org/10.2307/2275569
[11] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay.

2017. Simulation Theorems via Pseudorandom Properties. Technical Report. arXiv.

arXiv:1704.06807

[12] William Cook, Collette Coullard, and György Turán. 1987. On the complexity of

cutting-plane proofs. Discrete Applied Mathematics 18, 1 (1987), 25–38. https:
//doi.org/10.1016/0166-218X(87)90039-4

[13] Susanna de Rezende, Jakob Nordström, and Marc Vinyals. 2016. How Limited

Interaction Hinders Real Communication (and What It Means for Proof and

Circuit Complexity). In Proceedings of the 57th Symposium on Foundations of

Computer Science (FOCS). IEEE, 295–304. https://doi.org/10.1109/FOCS.2016.
40

[14] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. 2017. Ran-

dom CNFs are Hard for Cutting Planes, In Proceedings of the 58th Symposium

on Foundations of Computer Science (FOCS). Proceedings of the 58th Symposium

on Foundations of Computer Science (FOCS). https://doi.org/10.2307/2275569
[15] Anna Gál. 2001. A Characterization of Span Program Size and Improved Lower

Bounds for Monotone Span Programs. Computational Complexity 10, 4 (2001),

277–296. https://doi.org/10.1007/s000370100001
[16] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitrt Sokolov. 2017. Monotone

Circuit Lower Bounds from Resolution. Technical Report TR17-175. Electronic

Colloquium on Computational Complexity (ECCC). https://eccc.weizmann.
ac.il/report/2017/175/

[17] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. 2017. Query-

to-Communication Lifting for P
NP

. In Proceedings of the 32nd Computational

Complexity Conference (CCC). Schloss Dagstuhl, 12:1–12:16. https://doi.org/10.
4230/LIPIcs.CCC.2017.12

[18] Mika Göös, Shachar Lovett, Raghu Meka, ThomasWatson, and David Zuckerman.

2016. Rectangles Are Nonnegative Juntas. SIAM J. Comput. 45, 5 (2016), 1835–1869.

https://doi.org/10.1137/15M103145X
[19] Mika Göös and Toniann Pitassi. 2014. Communication Lower Bounds via Critical

Block Sensitivity. In Proceedings of the 46th Symposium on Theory of Computing

(STOC). ACM, 847–856. https://doi.org/10.1145/2591796.2591838
[20] Mika Göös, Toniann Pitassi, and Thomas Watson. 2015. Deterministic Communi-

cation vs. Partition Number. In Proceedings of the 56th Symposium on Foundations

910

https://doi.org/10.1007/BF02579196
https://doi.org/10.1007/BF02579196
https://doi.org/10.1137/S009753970138445X
https://doi.org/10.1137/S009753970138445X
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1016/j.jcss.2007.06.025
https://doi.org/10.1145/1806689.1806703
https://doi.org/10.1142/9789812810403_0001
https://doi.org/10.1142/9789812810403_0001
https://doi.org/10.1137/060654645
https://doi.org/10.1137/060654645
https://doi.org/10.1145/375827.375835
https://doi.org/10.1145/375827.375835
https://doi.org/10.1007/s000370050017
https://doi.org/10.2307/2275569
http://arxiv.org/abs/1704.06807
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1109/FOCS.2016.40
https://doi.org/10.1109/FOCS.2016.40
https://doi.org/10.2307/2275569
https://doi.org/10.1007/s000370100001
https://eccc.weizmann.ac.il/report/2017/175/
https://eccc.weizmann.ac.il/report/2017/175/
https://doi.org/10.4230/LIPIcs.CCC.2017.12
https://doi.org/10.4230/LIPIcs.CCC.2017.12
https://doi.org/10.1137/15M103145X
https://doi.org/10.1145/2591796.2591838

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov

of Computer Science (FOCS). IEEE, 1077–1088. https://doi.org/10.1109/FOCS.
2015.70

[21] MikaGöös, Toniann Pitassi, and ThomasWatson. 2017. Query-to-Communication

Lifting for BPP. In Proceedings of the 58th Symposium on Foundations of Computer

Science (FOCS). IEEE. To appear.

[22] Armin Haken. 1995. Counting Bottlenecks to Show Monotone P , NP. In Pro-

ceedings of the 36th Symposium on Foundations of Computer Science (FOCS). 36–40.

https://doi.org/10.1109/SFCS.1995.492460
[23] Armin Haken and Stephen Cook. 1999. An Exponential Lower Bound for the

Size of Monotone Real Circuits. J. Comput. System Sci. 58, 2 (1999), 326–335.

https://doi.org/10.1006/jcss.1998.1617
[24] Danny Harnik and Ran Raz. 2000. Higher Lower Bounds on Monotone Size.

In Proceedings of the 32nd Symposium on Theory of Computing (STOC). ACM,

378–387. https://doi.org/10.1145/335305.335349
[25] Pavel Hrubeš and Pavel Pudlák. 2017. A note on monotone real circuits. Technical

Report TR17-048. Electronic Colloquium on Computational Complexity (ECCC).

https://eccc.weizmann.ac.il/report/2017/048/
[26] Pavel Hrubeš and Pavel Pudlák. 2017. Random formulas, monotone circuits, and

interpolation. In Proceedings of the 58th Symposium on Foundations of Computer

Science (FOCS). To appear.

[27] Trinh Huynh and Jakob Nordström. 2012. On the Virtue of Succinct Proofs:

Amplifying Communication Complexity Hardness to Time–Space Trade-Offs in

Proof Complexity. In Proceedings of the 44th Symposium on Theory of Computing

(STOC). ACM, 233–248. https://doi.org/10.1145/2213977.2214000
[28] Dmitry Itsykson and Dmitry Sokolov. 2014. Lower Bounds for Splittings

by Linear Combinations. In Proceedings of the 39th Mathematical Foundations

of Computer Science (MFCS). Springer, 372–383. https://doi.org/10.1007/
978-3-662-44465-8_32

[29] Stasys Jukna. 1997. Finite Limits andMonotone Computations: The Lower Bounds

Criterion. In Proceedings of the 12th Computational Complexity Conference (CCC).

302–313. https://doi.org/10.1109/CCC.1997.612325
[30] Stasys Jukna. 2012. Boolean Function Complexity: Advances and Frontiers. Algo-

rithms and Combinatorics, Vol. 27. Springer.

[31] Mauricio Karchmer and Avi Wigderson. 1988. Monotone circuits for connectivity

require super-logarithmic depth. In Proceedings of the 20th Symposium on Theory

of Computing (STOC). ACM, 539–550. https://doi.org/10.1145/62212.62265
[32] Jan Krajíček. 1997. Interpolation Theorems, Lower Bounds for Proof Systems,

and Independence Results for Bounded Arithmetic. Journal of Symbolic Logic 62,

2 (1997), 457–486. https://doi.org/10.2307/2275541
[33] Jan Krajíček. 1998. Discretely ordered modules as a first-order extension of the

cutting planes proof system. Journal of Symbolic Logic 63, 4 (1998), 1582–1596.

https://doi.org/10.2307/2586668
[34] Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge

University Press.

[35] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. 1995. Search

Problems in the Decision Tree Model. SIAM Journal on Discrete Mathematics 8, 1

(1995), 119–132. https://doi.org/10.1137/S0895480192233867

[36] Pavel Pudlák. 1997. Lower Bounds for Resolution and Cutting Plane Proofs and

Monotone Computations. The Journal of Symbolic Logic 62, 3 (1997), 981–998.

https://doi.org/10.2307/2275583
[37] Pavel Pudlák. 2000. Proofs as Games. The American Mathematical Monthly 107,

6 (2000), 541–550. https://doi.org/10.2307/2589349
[38] Pavel Pudlák. 2010. On extracting computations from propositional proofs

(a survey). In Proceedings of the 30th Foundations of Software Technology and

Theoretical Computer Science (FSTTCS), Vol. 8. Schloss Dagstuhl, 30–41. https:
//doi.org/10.4230/LIPIcs.FSTTCS.2010.30

[39] Anup Rao and Amir Yehudayoff. 2017. Communication Complexity. In prepara-

tion.

[40] Ran Raz and Pierre McKenzie. 1999. Separation of the Monotone NC Hierarchy.

Combinatorica 19, 3 (1999), 403–435. https://doi.org/10.1007/s004930050062
[41] Ran Raz and Iddo Tzameret. 2008. Resolution over linear equations and

multilinear proofs. Annals of Pure and Applied Logic 155, 3 (2008), 194–224.

https://doi.org/10.1016/j.apal.2008.04.001
[42] Alexander Razborov. 1985. Lower bounds on the monotone complexity of some

Boolean functions. Doklady Akademii Nauk USSR 285 (1985), 798–801.

[43] Alexander Razborov. 1989. On the Method of Approximations. In Proceedings of

the 21st Symposium on Theory of Computing (STOC). 167–176. https://doi.org/
10.1145/73007.73023

[44] Alexander Razborov. 1995. Unprovability of lower bounds on circuit size in

certain fragments of bounded arithmetic. Izvestiya of the RAN (1995), 201–224.

Issue 1.

[45] Alexander Razborov. 1997. On Small Size Approximation Models. In The

Mathematics of Paul Erdös I. Springer, 385–392. https://doi.org/10.1007/
978-3-642-60408-9_28

[46] Alexander Razborov. 2016. A New Kind of Tradeoffs in Propositional Proof

Complexity. J. ACM 63, 2 (2016), 16:1–16:14. https://doi.org/10.1145/2858790
[47] Alexander Razborov. 2016. Proof Complexity and Beyond. SIGACT News 47, 2

(2016), 66–86. https://doi.org/10.1145/2951860.2951875
[48] Benjamin Rossman. 2014. The Monotone Complexity of k -Clique on Random

Graphs. SIAM J. Comput. 43, 1 (2014), 256–279. https://doi.org/10.1137/
110839059

[49] Janos Simon and Shi-Chun Tsai. 1997. A Note on the Bottleneck Counting

Argument. In Proceedings of the 12th Computational Complexity Conference (CCC).

297–301. https://doi.org/10.1109/CCC.1997.612324
[50] Dmitry Sokolov. 2017. Dag-Like Communication and Its Applications. In Proceed-

ings of the 12th Computer Science Symposium in Russia (CSR). Springer, 294–307.

https://doi.org/10.1007/978-3-319-58747-9_26
[51] AviWigderson. 1993. The FusionMethod for Lower Bounds in Circuit Complexity.

In Combinatorics, Paul Erdős is Eighty. János Bolyai Mathematical Society, 453–

468.

[52] Xiaodi Wu, Penghui Yao, and Henry Yuen. 2017. Raz–McKenzie Simulation with

the Inner Product Gadget. Technical Report TR17-010. Electronic Colloquium

on Computational Complexity (ECCC). https://eccc.weizmann.ac.il/report/
2017/010/

911

https://doi.org/10.1109/FOCS.2015.70
https://doi.org/10.1109/FOCS.2015.70
https://doi.org/10.1109/SFCS.1995.492460
https://doi.org/10.1006/jcss.1998.1617
https://doi.org/10.1145/335305.335349
https://eccc.weizmann.ac.il/report/2017/048/
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1109/CCC.1997.612325
https://doi.org/10.1145/62212.62265
https://doi.org/10.2307/2275541
https://doi.org/10.2307/2586668
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.2307/2275583
https://doi.org/10.2307/2589349
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.1007/s004930050062
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1145/73007.73023
https://doi.org/10.1145/73007.73023
https://doi.org/10.1007/978-3-642-60408-9_28
https://doi.org/10.1007/978-3-642-60408-9_28
https://doi.org/10.1145/2858790
https://doi.org/10.1145/2951860.2951875
https://doi.org/10.1137/110839059
https://doi.org/10.1137/110839059
https://doi.org/10.1109/CCC.1997.612324
https://doi.org/10.1007/978-3-319-58747-9_26
https://eccc.weizmann.ac.il/report/2017/010/
https://eccc.weizmann.ac.il/report/2017/010/

	Abstract
	1 Appetizer
	2 Dag-like Models
	2.1 Abstract Dags
	2.2 Concrete Dags

	3 Our Results
	3.1 Extension: Monotone Real Circuits

	4 Subcubes From Rectangles
	4.1 Structured Rectangles
	4.2 Rectangle Partition Scheme

	5 Lifting for Rectangle-dags
	5.1 Game Semantics for Dags
	5.2 Simplified Proof
	5.3 Accounting for Error

	6 Lifting for Triangle-dags
	6.1 Triangle Partition Scheme
	6.2 Simplified Proof

	7 Partitioning Rectangles
	8 Translating between mKW/CNF
	9 Open Problems
	Acknowledgments
	References

