
On the Virtue of Succinct Proofs:
Amplifying Communication Complexity Hardness

to Time-Space Trade-offs in Proof Complexity

[Extended Abstract]

Trinh Huynh
Swiss Federal Institute of Technology (ETH)

8092 Zurich, Switzerland
trinh@inf.ethz.ch

Jakob Nordström
KTH Royal Institute of Technology

100 44 Stockholm, Sweden
jakobn@kth.se

ABSTRACT
An active line of research in proof complexity over the last
decade has been the study of proof space and trade-offs be-
tween size and space. Such questions were originally mo-
tivated by practical SAT solving, but have also led to the
development of new theoretical concepts in proof complexity
of intrinsic interest and to results establishing nontrivial re-
lations between space and other proof complexity measures.

By now, the resolution proof system is fairly well under-
stood in this regard, as witnessed by a sequence of papers
leading up to [Ben-Sasson and Nordström 2008, 2011] and
[Beame, Beck, and Impagliazzo 2012]. However, for other
relevant proof systems in the context of SAT solving, such
as polynomial calculus (PC) and cutting planes (CP), very
little has been known.

Inspired by [BN08, BN11], we consider CNF encodings of
so-called pebble games played on graphs and the approach
of making such pebbling formulas harder by simple syntactic
modifications. We use this paradigm of hardness amplifica-
tion to make progress on the relatively longstanding open
question of proving time-space trade-offs for PC and CP.
Namely, we exhibit a family of modified pebbling formulas
{Fn}∞n=1 such that:

• The formulas Fn have size Θ(n) and width O(1).

• They have proofs in length O(n) in resolution, which
generalize to both PC and CP.

• Any refutation in CP or PCR (a generalization of PC)
in length L and space s must satisfy s log L ' 4

√
n.

A crucial technical ingredient in these results is a new two-
player communication complexity lower bound for composed
search problems in terms of block sensitivity, a contribution
that we believe to be of independent interest.

Categories and Subject Descriptors: F.2.3[Analysis of
Algorithms and Problem Complexity]: Tradeoffs among Com-

c© ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 44th Annual ACM
Symposium on Theory of Computing (STOC ’12), pages 233–248, May
2012, New York City, New York, USA. http://doi.acm.org/10.
1145/1374376.1374478

plexity Measures; F.1.3[Computation by Abstract Devices]:
Complexity Measures and Classes —Relations among com-
plexity measures; I.2.3[Artificial Intelligence]: Deduction and
Theorem Proving; F.4.1[Mathematical Logic and Formal Lan-
guages]: Mathematical Logic —computational logic

General Terms: Theory

Keywords: Proof complexity, resolution, polynomial cal-
culus, PCR, cutting planes, size, length, space, trade-offs

1. INTRODUCTION
Ever since Cook’s landmark paper [29], the question of

how hard it is to prove formulas in propositional logic has
been a flagship problem in theoretical computer science.
While this problem is generally believed to be intractable
in the worst case, impressive algorithmic developments in
the last ten to fifteen years have led to so-called SAT solvers
that can deal with real-world problem instances with mil-
lions of variables. A somewhat surprising aspect of this
is that at the core, state-of-the-art SAT solvers today are
still based on the fairly simple Davis-Putnam-Logemann-
Loveland (DPLL) procedure [34, 35] from the early 1960s
augmented with clause learning [6, 48]; these programs are
also known as conflict-driven clause learning (CDCL) solvers.
Despite the fact that such solvers in effect search for proofs
in the relatively weak resolution proof system, for which
numerous exponential lower bounds are known, they have
dominated the international SAT competition [61] in recent
years.

The field of proof complexity, initiated by Cook and Reck-
how [30], also considers the hardness of proving proposi-
tional logic formulas, but from the slightly different (non-
constructive) angle of asking how succinct such proofs can
be, regardless of how hard or easy it is to find them. In its
most general form, a proof system for a language L is de-
fined as a predicate P (x, π), computable in time polynomial
in |x| and |π|, such that for all x ∈ L there is a string π (a
proof) such that P accepts the input (x, π), whereas for any
x 6∈ L it holds for all π that P rejects (x, π). A proof system
is said to be polynomially bounded if for every x ∈ L there
is a proof πx of size at most polynomial in |x|. A propo-
sitional proof system is a proof system for the language of
tautologies in propositional logic.

One important motivation for the study of proof complex-
ity is the problem of P vs. NP, in that [30] showed that one
way of establishing co-NP 6= NP, and hence P 6= NP, would

be to prove that there are no polynomially bounded propo-
sitional proof systems. This goal remains very distant, how-
ever, and it is probably fair to say that most current work
in proof complexity is primarily driven by other concerns.

One such concern is the connection to the SAT problem
and practical SAT solving. By studying proof systems that
are, or could potentially be, used by SAT solvers, one can
hope to gain a better understanding of the potential and
limitations of such solvers. There is a growing literature of
such papers, with [4, 15, 55] being a very subjective pick of
just three recent interesting examples.

The subject matter of the current paper, namely time-
space trade-offs in proof complexity, should be understood
as being mainly motivated by this latter reason. The two
main bottlenecks for modern SAT solvers are running time
and memory usage. By studying proof size/length, proof
space, and trade-offs between these two measures in different
proof systems, we want to understand how the important
resources of time and space are connected to one another
and whether they can be optimized simultaneously or have
to be traded for one another in SAT solvers using these proof
systems.1

Concluding this brief general discussion, let us mention
that some good starting points for a further study of proof
complexity in general are [8, 62], while the upcoming survey
[53] by the second author focuses specifically on time-space
trade-offs and related questions. Also, a recent, very com-
pehensive, reference on the SAT problem in practice is [19].

1.1 Previous Work
Any formula in propositional logic can be converted to a

CNF formula that is only linearly larger and is unsatisfiable
if and only if the original formula is a tautology. Therefore,
any sound and complete system for refuting unsatisfiable
CNF formulas can be considered as a general propositional
proof system. All proof systems considered in this paper are
of this type.

The resolution proof system already mentioned above was
introduced in [20] and began to be investigated in connec-
tion with automated theorem proving in the 1960s [34, 35,
60]. In resolution, one derives new disjunctive clauses from
the clauses of the original CNF formula until a contradiction
is reached. For this proof system, it is most straightforward
to prove bounds on the length of refutations, i.e., the num-
ber of clauses, rather than on the total size (the two mea-
sures are easily seen to be polynomially related). One of the
early break-throughs in proof complexity was the result by
Haken [39] that CNF formulas encoding the pigeonhole prin-
ciple (PHP formulas) require proofs of exponential length.
There have been a sequence of follow-up papers establishing
quantitatively stronger bounds for other formula families in,
for instance, [11, 18, 27, 64].

Motivated by the fact that memory usage is a major con-
cern in applied SAT solving, and by the question of whether
proof complexity could say anything interesting about this,
the study of proof space in resolution was initiated by Es-
teban and Torán in [37] and was later extended to a more
general setting by Alekhnovich et al. in [1]. Intuitively, the

1And this should not necessarily be considered to be just
wishful thinking—as a case in point, experimental work re-
ported in [42] seems to indicate that theoretical space com-
plexity in resolution is correlated with practical hardness for
CDCL solvers.

(clause) space of a resolution refutation is the maximal num-
ber of clauses one needs to keep in memory while verifying
the refutation. Perhaps somewhat surprisingly, it turns out
that one need never use more than linear clause space, and
a sequence of papers [1, 14, 37] have proven matching linear
lower bounds.

Another sequence of papers [50, 54, 16] involving the sec-
ond author clarified the relation between length and space,
showing that hardness with respect to space is “maximally
uncorrelated” with hardness with respect to length. More
formally, while it follows from [3] that small space complex-
ity implies the existence of short resolution refutations, it
was established in [16] that there exist explicit formulas that
are maximally easy with respect to length, having refuta-
tions in length O(n), but which are hard for space in that
their clause space complexity is Ω(n/ log n) (and this sepa-
ration is optimal).

Regarding trade-offs between length and space, some re-
sults in restricted settings were presented in [13, 51] and
strong trade-offs for full, unrestricted resolution were finally
obtained in [17] and even more recently in [9] for a different
range of parameters. In this context it should also be men-
tioned that for the more general k-DNF resolution proof sys-
tems [43], there have also been shown strong lower bounds
on length and space as well as length-space trade-offs in, for
instance, [17, 36, 63].

In polynomial calculus (PC) [28], clauses are interpreted
as multilinear polynomial equations over some field, which
in this paper we always take to be finite, and an unsatisfiable
CNF formula is refuted by showing that there is no common
root for the polynomials corresponding to the clauses. The
minimal refutation size of a formula in this proof system
turns out to be closely related to the total degree of the
polynomials appearing in the refutation [41], and a number
of strong lower bounds on proof size have been obtained by
proving degree lower bounds in, for instance, [2, 41, 59].

The treatment of negated and unnegated literals in PC
is asymmetric and means that wide clauses with literals of
the wrong sign can blow up to polynomial equations of ex-
ponential size. To get a cleaner, more symmetric theoret-
ical treatment of space, [1] introduced polynomial calculus
resolution (PCR) as a common extension of polynomial cal-
culus and resolution. Briefly, in PCR one adds an extra
set of parallel formal variables x′, y′, z′, . . . as well as axioms
specifing that x and x′ must always take opposite signs. In
this way, negated and unnegated literals can both be repre-
sented in a space-efficient fashion. In this stronger system,
[1] established nontrivial lower bounds on space measured
as the number of monomials, but only for formulas of un-
bounded width (namely, PHP formulas). It was only very
recently that [38] showed space lower bounds for formulas
of constant width, and there is still quite a large gap be-
tween the best known worst-case lower and upper bounds
even for PC. To the best of our knowledge, there have not
been any trade-off results shown for PC or PCR.

Initially, there was quite some excitement about polyno-
mial calculus since this proof system seemed to hold out the
promise of better SAT solvers than those based on resolu-
tion. This promise has failed to materialize so far, however.
There are PC-based solvers such as PolyBoRi [24], but in
general they seem to be an order of magnitude slower than
state-of-the-art CDCL solvers (although [25] reports that
PolyBoRi can be faster on certain industrial instances).

The cutting planes proof system, or CP for short, was
introduced in [32]. In a CP-refutation clauses of a formula
are translated to linear inequalities, or hyperplanes, and the
formula is refuted by showing that the polytope defined by
these hyperplanes does not have any zero-one integer points
(corresponding to satisfying assignments). Cutting planes
is an intriguing proof system in that we only know of one
superpolynomial lower bound on length [57] (improving on
a bound [21] in a somewhat restricted setting). It is natural
to define the line space of a CP-refutation to be the max-
imal number of linear inequalities that need to be kept in
memory simultaneously during the refutation. Just as for
monomial space in PCR, line space in CP is easily seen to
be a generalization of clause space in resolution and is hence
upper bounded by the clause space complexity. As far as
we are aware, no space lower bounds are known for cutting
planes.

Cutting planes is known to be exponentially stronger than
resolution, and so it would be very interesting if efficient
CP-based SAT solvers could be built. But although there
do exist some SAT solvers that use cutting planes (see, for
instance, [45, 46] and references therein) again it seems they
have a hard time competing with resolution-based solvers.

1.2 Our Results
As discussed above, there is a wealth of results on space

lower bounds and time-space trade-offs for resolution and
even k-DNF resolution, and it is probably fair to say that
these are by now reasonably well understood proof systems.
When it comes to polynomial calculus, polynomial calculus
resolution, and cutting planes, the situation is very different.
As far as we are aware no trade-offs have been known. Also,
for cutting planes there seem to exist no space lower bounds
whatsoever, and for polynomial calculus/PCR the current
state of knowledge regarding space lower bounds is quite
limited as well.

In this paper, we report length-space trade-off results that
apply for both polynomial calculus resolution and cutting
planes (and that concern formulas of bounded width).

Theorem 1. There are k-CNF formulas {Fn}∞n=1 of size
Θ(n) that can be refuted in length O(n) in resolution, poly-
nomial calculus (and hence also PCR) and Cutting Planes,
but for which the following holds:

• Any PCR-refutation of Fn in length L and monomial
space s must satisfy s log L = Ω

`
4
√

n
´
.

• Any CP-refutation of Fn in length L and line space s
must satisfy s log L log(s log L) = Ω

`
4
√

n / log2 n
´
.

The formulas used in Theorem 1 are a particular flavour
of so-called pebbling contradictions, which is a well-studied
family of CNF formulas in proof complexity. A nice technical
feature of the results that is worth pointing out is that the
bounds are actually slightly stronger than stated above—
they hold also for semantic versions of the proof systems
(as defined in [1]), where anything that is implied by the
current memory configuration can be derived immediately
in one step regardless of the syntactic rules (which makes
the systems exponentially stronger with respect to length).

The trade-offs in Theorem 1 are obtained by studying the
concept of critical block sensitivity of search problems, which
is a new notion generalizing the well-studied block sensitivity

of (Boolean) functions and which will be formally defined in
Section 4. We prove that lower bounds on the critical block
sensitivity of the search problem associated with a CNF
formula—i.e., given an assignment, finding a clause falsified
by it—can be amplified to lower bounds on length-space
trade-offs in PCR and CP (and also to lower bound on tree-
like length in CP). Our techniques are inspired by the joint
work of the first author with Beame and Pitassi [10], but
also crucially use a new result in communication complexity
that we believe should merit independent interest. Namely,
we obtain the first strong randomized communication com-
plexity lower bounds for lifts of search problems in terms of
critical block sensitivity. We refer to Section 3, where we
define lifting of search problems and consistent randomized
communication protocols, for a more precise statement of
the next theorem. Informally, however, let us just say for
now that the communication problem of solving the lift of
a given search problem on m input bits is defined by giv-
ing Alice an array of n > m bits and Bob an m-subset of
{1, . . . , n} and asking them to solve the search problem in
question on m particular bits of Alice’s input as selected by
Bob’s index set.

Theorem 2 (Informal). If S⊆{0, 1}m×Q is a search
problem over input domain {0, 1}m and output range Q and
the critical block sensitivity of S is at least s, then any con-
sistent randomized (and hence also any deterministic) two-
party protocol solving G = Lift (S) requires Ω(s) bits of com-
munication.

Returning to our proof complexity trade-offs in Theo-
rem 1, we want to mention that interestingly, and intrigu-
ingly, it is not quite clear whether this theorem provides
trade-offs in a strict sense. The issue is that to be able to
speak about a “true” trade-off between length and space,
we would also like the formulas to have space complexity
smaller than the lower bound on the right-hand side of the
inequalitites in Theorem 1. However, it is not known how
to refute these formulas in space less than O(

√
n). And in

fact, given the structure of the formulas it is also hard to
see why there should be a trade-off at all in the sense that
larger proof length would somehow help to bring down the
proof space.

Even more intriguingly, the bounds in Theorem 1 closely
parallel the result obtained for resolution in 2002 by Ben-
Sasson (journal version in [13]), where it was shown for
a similar family of formulas that a trade-off on the form
s log L = Ω(n/ log n) must hold for any resolution refutation
in length L and clause space s. Six years later, the factor
log L was shown to be an artifact of the proof technique and
was removed in a joint paper by Ben-Sasson and the second
author [16] to obtain an unconditional space lower bound
Ω(n/ log n) as mentioned above.

It is very tempting to conjecture that the situation should
be the same for polynomial calculus resolution and cutting
planes, so that Theorem 1 should be understood as provid-
ing “conditional space lower bounds” from which we should
strive to remove the log L factor. If this could be done, it
would imply that the combinatorics of pebbling on graphs
is very robust, in that the properties of a concrete problem
instance survives even the transformation of being (a) en-
coded as a CNF formula, (b) then translated from CNF
into polynomial equations or linear inequalities, and (c) fi-
nally subjected to general-purpose propositional proof sys-

tems for reasoning in terms of such polynomial equations or
linear equalities. The implication would be that no matter
how polynomial calculus or cutting planes would try to work
with these syntactic objects, which are very distinct from the
graphs in terms of which they were generated, there would
be no way to use less space than the lower bounds apply-
ing for pebbling strategies for the original graphs. And this
would in turn open up the possibility of obtaining strong
trade-off results for PCR and CP from pebbling time-space
trade-offs along the lines of [17].

Before obtaining the results in this paper, we considered
it very much unclear whether anything along those lines
should have been expected to hold, but Theorem 1 does seem
to provide fairly strong circumstantial evidence supporting
such hypotheses. We are currently not able to prove this,
however, but neither do we know of any formal obstacles to
carrying out such a program.

1.3 Outline of This Paper
The rest of this paper is organized as follows. We start

by presenting some standard proof complexity preliminaries
in Section 2. In Section 3, we then give a more detailed
overview of our proof complexity trade-off results, and de-
scribe the key concepts used in the proofs. In the end,
this boils down to proving communication complexity lower
bounds, and we discuss this separately in Section 4 and give
an outline of that part of the argument. For the full proof
of the communication complexity result, however, we refer
the reader to the full-length version of this paper. Finally,
in Section 5, we make some concluding remarks and men-
tion a few of the many fascinating problems in this area that
remain open.

2. SOME PROOF COMPLEXITY PRELIM-
INARIES

For x a Boolean variable, a literal over x is either the
variable x itself, called a positive literal over x, or its nega-
tion, denoted ¬x or x and called a negative literal over x.
A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals, and
a term T = a1 ∧ · · · ∧ ak is a conjunction of literals. Be-
low we will think of clauses and terms as sets, so that the
ordering of the literals is inconsequential and that, in partic-
ular, no literals are repeated. A clause (term) containing at
most k literals is called a k-clause (k-term). A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses, and a DNF
formula is a disjunction of terms. We will think of CNF and
DNF formulas as sets of clauses and terms, respectively. A
k-CNF formula is a CNF formula consisting of k-clauses,
and a k-DNF formula consists of k-terms.

The variable set of a clause C, denoted Vars(C), is the
set of Boolean variables over which there are literals in C,
and we write Lit(C) to denote the set of literals in C. The
variable and literal sets of a term are similarly defined and
these definitions are extended to CNF and DNF formulas
by taking unions. If V is a set of Boolean variables and
Vars(C) ⊆ V we say C is a clause over V and similarly
define terms, CNF formulas, and DNF formulas over V .

We write α, β to denote truth value assignments. Truth
value assignments are functions to {0, 1}, where we identify
0 with false and 1 with true. We have the usual semantics
that a clause is true under α, or satisfied by α, if at least one
literal in it is true, and a term is true if all literals evaluate

to true. We write ⊥ to denote the empty clause without lit-
erals that is false under all truth value assignments. A CNF
formula is satisfied if all clauses in it are satisfied, and for a
DNF formula we require that some term should be satisfied.
In general, we will not distinguish between a formula and
the Boolean function computed by it.

If C is a set of Boolean functions we say that an assignment
satisfies C if and only if it satisfies every function in C. For
D, C two sets of Boolean functions over a set of variables V ,
we say that D implies C, denoted D � C, if and only if every
assignment α : V 7→ {0, 1} that satisfies D also satisfies C.
In particular, D � ⊥ if and only if D is unsatisfiable or
contradictory , i.e., if no assignment satisfies D. If a CNF
formula F is unsatisfiable but for any clause C ∈ F it holds
that the clause set F \ {C} is satisfiable, we say that F is
minimally unsatisfiable.

We say that a proof system is sequential if a proof π in
the system is a sequence of lines π = {L1, . . . , Lτ} of some
prescribed syntactic form depending on the proof system
in question, where each line is derived from previous lines
by one of a finite set of allowed inference rules. Following
the exposition in [37], we view a proof as similar to a non-
deterministic Turing machine computation, with a special
read-only input tape from which the clauses of the CNF for-
mula F being refuted (the axioms) can be downloaded and a
working memory where all derivation steps are made. Then
the length of a proof is essentially the time of the computa-
tion and space measures memory consumption. The follow-
ing definition is a straightforward generalization of [1].

Definition 3 (Refutation). For a sequential propo-
sitional proof system P, a P-configuration D is a set of
lines L of the syntactic form prescribed by P. A sequence of
configurations {D0, . . . , Dτ} is a P-derivation from a CNF
formula F if D = ∅ and for all t ∈ [τ], the set Dt is obtained
from Dt−1 by one of the following derivation steps:

Axiom Download Dt = Dt−1 ∪{LC}, where LC is the en-
coding of a clause C ∈ F in the syntactic form pre-
scribed by the proof system (an axiom).

Inference Dt = Dt−1 ∪ {L} for some L inferred by one of
the inference rules for P from a set of assumptions
L1, . . . , Lm ∈ Dt−1.

Erasure Dt = Dt−1 \ {L} for some L ∈ Dt−1.

A P-refutation π : F `⊥ of a CNF formula F is a derivation
π = {D0, . . . , Dτ} such that D0 = ∅ and ⊥ ∈ Dτ , where ⊥ is
the representation of contradiction (e.g. for resolution and
R(k)-systems the empty clause without literals).

If every line L in a derivation is used at most once be-
fore being erased (though it can possibly be rederived later),
we say that the derivation is tree-like. This corresponds to
changing the inference rule so that L1, . . . , Ld must all be
erased after they have been used to derive L.

To every refutation π we can associate a DAG Gπ, with
the lines in π labelling the vertices and with edges from the
assumptions to the consequence for each application of an
inference rule. There might be several different derivations
of a line L during the course of the refutation π, but if so we
can label each occurrence of L with a time-stamp when it
was derived and keep track of which copy of L is used where.
Using this representation, a refutation π can be seen to be
tree-like if Gπ is a tree.

Definition 4 (Size, length and space). For a given
measure of size S(L) for lines L in P-derivations (which we
usually think of as the number of symbols in L, but other
definitions can also be appropriate depending on the con-
text), the size of a P-derivation π is the sum of the sizes
of all lines in a derivation, where lines that appear multi-
ple times are counted with repetitions (once for every vertex
in Gπ). The length of a P-derivation π is the number of
axiom downloads and inference steps in it, i.e., the number
of vertices in Gπ.2 For a space measure SpP(D) defined for
P-configurations, the space of a derivation π is defined as
the maximal space of a configuration in π.

If π is a refutation of a formula F in size S and space
s, then we say that F can be refuted in size S and space
s simultaneously. Similarly, F can be refuted in length L
and space s simultaneously if there is a P-refutation P with
L(π) = L and Sp(π) = s.

We define the P-refutation size of a formula F , denoted
SP(F `⊥), to be the minimum size of any P-refutation of
it. The P-refutation length LP(F ` ⊥) and P-refutation
space SpP(F ` ⊥) of F are analogously defined by taking
the minimum with respect to length or space, respectively,
over all P-refutations of F .

When the proof system in question is clear from context,
we will drop the subindex in the proof complexity measures.

Let us next give formal definitions of the proof systems
that will be of interest in this paper. Below, the notation
G1 · · · Gm

H
means that if G1, . . . , Gm have been

derived previously in the proof (and are currently in mem-
ory), then we can infer H.

Definition 5 (k-DNF resolution). The k-DNF res-
olution proof systems are a family of sequential proof systems
R(k) parameterized by k ∈ N+. Lines in a k-DNF-resolution
refutation are k-DNF formulas and we have the following
inference rules (where G, H denote k-DNF formulas, T, T ′

denote k-terms, and a1, . . . , ak denote literals):

k-cut
(a1∧· · ·∧ak′) ∨G a1 ∨ · · · ∨ ak′ ∨H

G ∨ H
, k′ ≤ k.

∧-introduction
G ∨ T G ∨ T ′

G ∨ (T ∧ T ′)
, |T ∪ T ′| ≤ k.

∧-elimination
G ∨ T

G ∨ T ′
for any T ′ ⊆ T.

Weakening
G

G ∨ H
for any k-DNF formula H.

For standard resolution, i.e., R(1), the k-cut rule simpli-
fies to the resolution rule

B ∨ x C ∨ x
B ∨ C

(2.1)

for clauses B and C. We refer to (2.1) as resolution on
the variable x and to B ∨ C as the resolvent of B ∨ x and
C ∨ x on x. Clearly, in resolution the ∧-introduction and

2The reader who so prefers can instead define the length of
a derivation π = {D0, . . . , Dτ} as the number of steps τ in
it, since the difference is at most a factor of 2. We have
chosen the definition above for consistency with previous
papers defining length as the number of lines in a listing of
the derivation.

∧-elimination rules do not apply. It can also be shown that
the weakening rule never needs to be used in resolution refu-
tations, but it can be convenient to allow it to simplify some
technical arguments in proofs.

For R(k)-systems, the length measure is as defined in Def-
inition 4, and for space we get the two measures formula
space and total space depending on whether we consider the
number of k-DNF formulas in a configuration or all liter-
als in it, counted with repetitions. For standard resolution
there are two more space-related measures that will be rel-
evant, namely width and variable space. For clarity, let us
give an explicit definition of all space-related measures for
resolution that will be of interest.

Definition 6 (Resolution width and space). The
width W(C) of a clause C is the number of literals in it,
and the width of a CNF formula or clause configuration is
the size of a widest clause in it. The clause space (as the
formula space measure is known in resolution) Sp(C) of a
clause configuration C is |C|, i.e., the number of clauses
in C, the variable space VarSp(C) is |Vars(C)|, i.e., the
number of distinct variables mentioned in C, and the total
space TotSp(C) is

P
C∈C|C|, i.e., the total number of literals

in C counted with repetitions.
The width or space of a refutation π is the maximum that

the corresponding measures attain over any clause configu-
ration C ∈ π, and taking the minimum over all resolution
refutations of a CNF formula F , we can define the width
WR(F `⊥) = minπ:F ` 0{W(π)} of refuting F , and anal-
ogously the clause space SpR(F `⊥) = minπ:F ` 0{Sp(π)},
variable space VarSpR(F `⊥) = minπ:F ` 0{VarSp(π)}, and
total space TotSpR(F `⊥) = minπ:F ` 0{TotSp(π)} of refut-
ing F .

When studying and comparing the complexity measures
for resolution in Definition 6, as was noted in [1] it is prefer-
able to prove the results for k-CNF formulas, i.e., formulas
where all clauses have size upper-bounded by some constant.
This is so since the width and space measures can “misbe-
have” rather artificially for formula families of unbounded
width (see [51, Section 5] for a discussion of this). Since ev-
ery CNF formula can be rewritten as an equivalent formula
of bounded width by using auxiliary variables, it therefore
seems natural to insist that the formulas under study should
have width bounded by some constant.

The cutting planes proof system, or CP for short, was
introduced in [32]. Here, clauses are translated to linear
inequalities—for instance, x ∨ y ∨ z gets translated to x +
y+(1−z) ≥ 1, i.e., x+y−z ≥ 0—and these linear inequalities
are then manipulated to derive a contradiction.

Definition 7 (Cutting planes). Lines in a cutting
planes proof are linear inequalities with integer coefficients.
The derivation rules are as follows:

Variable axioms
x ≥ 0

and −x ≥ −1
for all x.

Addition

P
aixi ≥ A

P
bixi ≥ BP

(ai + bi)xi ≥ A + B

Multiplication

P
aixi ≥ AP

caixi ≥ cA
for a positive integer c.

Division

P
caixi ≥ AP

aixi ≥ dA/ce
for a positive integer c.

A CP-refutation ends when the inequality 0 ≥ 1 has been
derived. The cutting planes measures we will focus on in this
paper are the length measure and the line space measure, the
latter of which is the number of linear inequalities that are
kept simultaneously on the blackboard during the refutation.

Line space in cutting planes is easily seen to be a general-
ization of clause space in resolution, and since cutting planes
can simulate resolution proofs it follows that the line space
complexity of a formula in cutting planes is upper-bounded
by its clause space complexity in resolution.

The k-DNF resolution proof systems are logic-based sys-
tems in the sense that they manipulate logic formulas, and
cutting planes is an example of a geometric proof systems
where clauses are treated as geometric objects. We will also
be interested in two algebraic proof systems in this paper.
The first of these is polynomial calculus (PC), which was in-
troduced in [28] under the name of “Gröbner proof system.”
In a PC-refutation, clauses are interpreted as multilinear
polynomials. For instance, the requirement that the clause
x ∨ y ∨ z should be satisfied gets translated to the equation
(1− x)(1− y)z = 0 or xyz− xz− yz + z = 0, and we derive
contradiction by showing that there is no common root for
the polynomial equations corresponding to all the clauses.3

Definition 8 (Polynomial calculus). In a polyno-
mial calculus proof, lines are multivariate polynomial equa-
tions p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F.
It is customary to omit “= 0” and only write p. The deriva-
tion rules are as follows, where α, β ∈ F, p, q ∈ F[x, y, z, . . .],
and x is any variable:

Boolean axioms
x2 − x

(forcing 0/1-solutions).

Linear combination
p q

αp + βq

Multiplication
p
xp

A PC-refutation ends when 1 has been derived (i.e., 1 = 0).
The size of a PC-refutation is defined as the total number of
monomials in the refutation, the length of a refutation is the
number of polynomial equations, and the (monomial) space
is the maximal number of monomials in any configuration
(counted with repetitions). Another important measure is the
degree of a refutation, which is the maximal (total) degree
of any monomial.

The representation of a clause
Wn

i=1 xi as a PC-polynomial
is

Qn
i=1(1 − xi), which means that the number of monomi-

als is exponential in the clause width. This problem arises
only for positive literals, however—a large clause with only
negative literals is translated to a single monomial. This is
a weakness of monomial space in polynomial calculus when
compared to clause space in resolution. In order to obtain
a cleaner, more symmetric treatment of proof space, in [1]
the proof system polynomial calculus resolution (PCR) was
introduced as a common extension of polynomial calculus

3In fact, from a mathematical point of view it seems more
natural to think of 0 as true and 1 as false in polynomial
calculus, so that the unit clause x gets translated to x = 0.
For simplicity and consistency in this paper, however, we
stick to thinking about x = 1 as meaning that x is true and
x = 0 as meaning that x is false.

and resolution. The idea is to add an extra set of parallell
formal variables x′, y′, z′, . . . so that positive and negative
literals can both be represented in a space-efficient fashion.

Definition 9 (Polynomial calculus resolution).
The lines in a PCR-derivation are polynomials over the ring
F[x, x′, y, y′, z, z′, . . .], where as before F is some field. We
have all the axioms and rules of PC plus the following ax-
ioms:

Complementarity
x + x′ − 1

for all pairs (x, x′).

Size, length, and degree are defined as for polynomial calcu-
lus, and the (monomial) space of a PCR-refutation is again
the maximal number of monomials in any PCR-configuration
counted with repetitions.4

The point of the complementarity rule is to force x and x′

to have opposite values in {0, 1}, so that they encode com-
plementary literals. This means one can potentially avoid
an exponential blow-up in size measured in the number of
monomials (and thus also for space). Our running example
clause x∨ y∨ z is rendered as x′y′z in PCR. In PCR, mono-
mial space is a natural generalization of clause space since
every clause translates into a monomial as just explained.

In general, the admissible inferences in a proof system
according to Definition 3 are defined by a set of syntactic
inference rules. In what follows, we will also be interested
in a strengthened version of this concept, which was made
explicit in [1].

Definition 10 (Syntactic and semantic proofs).
We refer to proofs according to Definition 3, where each new
line L has to be inferred by one of the inference rules for P,
as syntactic proofs. If instead any line L that is semanti-
cally implied by the current configuration can be derived in
one atomic step, we talk about a semantic proof.

Clearly, semantic proofs are at least as strong as syntac-
tic ones, and they are easily seen to be superpolynomially
stronger with respect to length for any proof system where
superpolynomial lower bounds are known. This is so since a
semantic proof system can download all axioms in the for-
mula one by one, and then deduce contradiction in one step
since the formula is unsatisfiable. Therefore, semantic ver-
sions of proof systems are mainly interesting when we want
to reason about space or the relationship between space and
length. But if we can prove lower bounds not just for syn-
tactic but even semantic versions of proof systems, this of
course makes these bounds much stronger.

Let us finally remark that although the measure of total
space, considering the total number of symbols in memory, is
perhaps a priori the most natural one, most papers on proof
space have focused on space measured as the number of lines
in memory (e.g., clauses, k-DNF formulas, or inequalities).
However, as observed in [1], for strong enough proof systems,
this “line space” measure is no longer interesting since just
one unit of memory can contain a big AND of all formulas
derived so far. The“line space”measure makes perfect sense
for resolution and k-DNF resolution, and seems to do so also
for cutting planes. For PC/PCR, however, measuring just

4We remark that in [1] space was defined as the number of
distinct monomials (i.e., not counted with repetitions), but
we find this restriction to be somewhat arbitrary.

the number of polynomial equations is not very meaningful,
since every equation can be of exponential size and encode
very much information. Instead, the natural generalization
of clause space is monomial space.

3. OVERVIEW OF PROOF COMPLEXITY
TRADE-OFFS

In this section, we describe which ingredients go into our
results stated in Section 1.2 and how these results are proven.
Our goal is to give an accessible high-level outline of the
proofs, but still make clear what the main technical points
in the arguments are and how they fit together. Briefly,
the structure of our argument is as follows (where italicized
words are concepts that we will make precise below):

1. We construct a family of CNF formulas of constant
width by lifting so-called pebbling contradictions de-
fined over pyramid graphs.

2. We then show that efficient refutations of these formu-
las, i.e., refutations in short length and small space, in
polynomial calculus resolution or cutting planes give
rise to efficient protocols for a certain two-party com-
munication complexity problem. Although this is a
fairly straightforward argument, we are not aware of
this line of reasoning having been used before to prove
time-space trade-offs in proof complexity.

3. Finally, we prove that this communication complexity
problem is hard, so there cannot exist too good proto-
cols. This is where essentially all of the work in this
paper is, and where Theorem 2 comes into the picture.

Putting all of this together, Theorem 1 follows. The proof
of this theorem is given in Section 3.4.

3.1 Lifting
The idea behind lifting (a term coined in [33]) is that we

can take a base function f over some domain and extend it to
a function over tuples from the same domain by combining
it with a selector function that determines on which coor-
dinates from the tuples f should be evaluated. The formal
definition unfortunately turns out to be slightly involved,
but it is absolutely crucial for our argument and so we start
by making this definition precise.

Given a function f : {0, 1}m 7→ Q for some range Q and
an integer ` > 0, the lift of length ` of f is defined to be
the function Lift`(f) : {0, 1}m×` × [`]m 7→ Q such that for
any bit-vector {xi,j}i∈[m],j∈[`] and any y ∈ [`]m, the function
evaluated on these arguments is

Lift`(f)(x, y) = f(x1,y1 , x2,y2 , . . . , xm,ym) (3.1)

(in words, the vector y selects which coordinates of the x-
vector should be fed to f).

Let S be any search problem defined as a subset of A×Q
for some input domain A and output range Q; that is, on
any input a ∈ A, the problem is to find some q ∈ Q such that
(a, q) ∈ S. If A = {0, 1}m and ` > 0 is any integer, we define
the lift of length ` of S to be a new search problem Lift`(S) ⊆
{0, 1}m×`× [`]m×Q with input domain {0, 1}m×`× [`]m and
output range Q such that for any bit-vector {xi,j}i∈[m],j∈[`],

any y ∈ [`]m and any q ∈ Q, it holds that

(x, y, q) ∈ Lift`(S) if and only if`
(x1,y1 , x2,y2 , . . . , xm,ym), q

´
∈ S . (3.2)

Lifted CNF formulas, as first introduced in [10], are con-
structed in the following way.

Definition 11 (Lift of CNF formula [10]). Given
any CNF formula F consisting of clauses C1, . . . , Cm over
variables u1, . . . , un, and any integer ` > 0, the lift of length
` of F is a CNF formula Lift`(F) over 2`n variables de-
noted by {xi,j}i∈[n],j∈[`] (main variables) and {yi,j}i∈[n],j∈[`]

(selector variables), consisting of the following clauses:

• For every i ∈ [n], an auxiliary clause

yi,1 ∨ yi,1 ∨ · · · ∨ yi,` . (3.3)

• For every clause Ci ∈ F , where Ci = ui1 ∨ · · · ∨ uis ∨
uis+1 ∨ · · · ∨ uis+t for some i1, . . . , is+t ∈ [n], and for

every tuple (j1, . . . , js+t) ∈ [`]s+t, a main clause

yi1,j1
∨ xi1,j1 ∨ · · · ∨ yis,js

∨ xis,js ∨ yis+1,js+1
∨

xis+1,js+1 ∨ · · · ∨ yis+t,js+t
∨ xis+t,js+t . (3.4)

Let us elaborate on what Definition 11 means. The pur-
pose of the auxiliary clauses in (3.3) is to make sure that
in every block of variables {yi,j | 1 ≤ j ≤ `} at least one
of the selector y-variables is true. Noting that every pair
yi,j ∨ xi,j in a main clause (3.4) is equivalent to an implica-
tion yi,j → xi,j , we can rewrite (3.4) as

(yi1,j1 → xi1,j1) ∨ · · · ∨ (yis+t,js+t → xis+t,js+t) . (3.5)

What this boils down to is that for every clause Ci, the
auxiliary clauses encode that there is at least one choice of
selector variables yi,j which are all true, and for this choice
of selector variables the xi,j-variables will play the role of the
ui-variables, giving us back the original clause Ci. It is easily
verified that F is unsatisfiable if and only if G = Lift`(F) is
unsatisfiable, and if F is a k-CNF formula with m clauses,
then G is a max(2k, `)-CNF formula with at most m`k + n
clauses.

3.2 Pebbling Contradictions and Pyramids
Pebbling is a tool for studying time-space relationships

by means of a game played on directed acyclic graphs. This
game models computations where the execution is indepen-
dent of the input and can be performed by straight-line pro-
grams. Pebble games were originally devised for studying
programming languages and compiler construction, but have
later found a broad range of applications in computational
complexity theory. In the last decade, there has been re-
newed study of pebbling in the context of proof complexity.
An excellent survey of pebbling up to ca 1980 is [56], and
some more recent developments are covered in the second
author’s upcoming survey [52].

The way pebbling results have been used in proof com-
plexity has mainly been by studying so-called pebbling con-
tradictions as defined in [18]. These are CNF formulas en-
coding the pebble game played on a DAG G by postulating
the sources to be true and the sink to be false, and speci-
fying that truth propagates through the graph according to
the pebbling rules.

Definition 12 (Pebbling contradiction). Let G be
a DAG with sources S and a unique sink z. Identify every
vertex v ∈ V (G) with a propositional logic variable v. The
pebbling contradiction over G, denoted PebG, is the con-
junction of the following clauses:

• for all s ∈ S, a unit clause s (source axioms),

• For all non-sources v with predecessors pred(v), the
clause

W
u∈pred(v) u ∨ v (pebbling axioms),

• for the sink z, the unit clause z (sink axiom).

If the DAG G has n vertices and maximal indegree d,
the formula PebG is a minimally unsatisfiable (1+d)-CNF
formula with n + 1 clauses over n variables.

In this paper, we will focus on pebbling contradictions
over pyramid graphs. For an example of such a pebbling
contradiction, see the CNF formula in Figure 1(b) defined
in terms of the graph in Figure 1(a). For completeness, the
formal definition of a pyramid graph is as follows.

Definition 13 (Pyramid). The pyramid graph Πh of
height h is a layered DAG with h + 1 levels, where there is
one vertex on the highest level (the sink z), two vertices on
the next level et cetera down to h + 1 vertices at the lowest
level 0. The ith vertex at level L has incoming edges from
the ith and (i + 1)st vertices at level L− 1.

To make the connection back to Definition 11, in Fig-
ure 2 we present the lift of length 2 of the CNF formula
in Figure 1(b), with the auxiliary clauses at the top of the
left column followed by the main clauses one by one, listed
for all tuples of selector indices (with the only difference
that since the variables in this formula are u, v, w, x, y, z
rather than u1, . . . , un, we denote the main variables by
xu,j1 , xv,j2 , xw,j3 , et cetera, rather than xi1,j1 , xi2,j2 , . . .).
We will refer to the main clauses in Figure 1(b) as source ax-
ioms, pebbling axioms, and sink axioms, respectively, when
they have been obtained by lifting of the corresponding ax-
ioms in the pebbling contradiction.

We remark that the process of lifting formulas is similar
to, but different from, the substitution used in [17], where
some (fixed) function f(x1, . . . , x`) is substituted for every
variable x and the resulting formula is expanded out to CNF
again using De Morgan’s laws. Although we believe that
lifted pebbling formulas should share many of the properties
of substitution pebbling formulas, the proofs in [17] would
require modifications to work for lifted formulas, and we
have not studied in any detail if and how such modifications
could be made.

3.3 Two-Player Communication Complexity
The basic two-player model of communication complexity

suffices for our purposes in this paper. We briefly review this
model below and refer to [44] for further details and formal
definitions.

For any function f : X × Y 7→ Q, where X and Y are
some domains and Q is some range, in the communication
problem of computing f Alice is given an input x ∈ X, Bob
is given an input y ∈ Y , and they are required to compute
f(x, y) minimizing the communication between them. Sim-
ilarly, for any search problem S ⊆ X × Y × Q, where X
and Y are some input domains and Q is some output range,
the communication problem solving S is one in which Alice

is given x ∈ X, Bob is given y ∈ Y , and they are required to
communicate to find some q such that (x, y, q) ∈ S. The cost
of a communication protocol is the maximum number of bits
communicated on any input. The deterministic communi-
cation complexity of a function f (or a search problem S) is
the minimum cost of any communication protocol solving f
(or S, respectively).

We are also concerned with randomized communication,
in which each player has access to a private infinite source
of random bits5 and the messages can depend on both the
input and the random bits. We say that a randomized com-
munication protocol solves a function f (or a search prob-
lem S) with error ε if on any input, the protocol outputs a
correct answer with probability at least 1− ε over the ran-
dom choices. Note that in a search problem, an input may
have more than one correct output, and the protocol is al-
lowed to output different correct outputs depending on the
random choices. The randomized communication complex-
ity with error ε of a function f (or a search problem S) is
the minimum cost of any randomized protocol with error ε
solving f (or S, respectively).

A key notion for this paper is that a randomized communi-
cation protocol is said to solve a search problem consistently
if on any input assignment, the protocol outputs a unique
correct output with probability at least 3/4 over its random
choices.

Probabilistic errors in randomized protocols can be re-
duced by a small blow-up in communication cost as stated
next.

Proposition 14. For any 0 < ε′ < ε < 1/2, if there
exists a randomized protocol Π with communication cost c
and error ε to compute a function f , then there exists a
randomized protocol Π′ with cost O(c · logε ε′) and error ε′

to compute f .

The proof is standard and we omit the details. The idea is
to repeat the protocol Π O(logε ε′) times and take a majority
vote. The analysis uses Chernoff bounds.

3.4 Leveraging Communication Complexity to
Obtain Proof Complexity Trade-offs

Let us now provide formal lemmas implementing the steps
in the argument outlined at the beginning of this section.

Given any CNF formula G, the (falsified clause) search
problem for G is the problem of finding, given any truth
value assignment α, a clause C ∈ G falsified by α. We de-
note this problem by Gsearch . The next lemma says that if
a CNF formula G has a polynomial calculus resolution refu-
tation (or cutting planes refutation, respectively) in simul-
taneous short length and small space, then there is a small
deterministic (or randomized, respectively) two-player pro-
tocol that solves Gsearch for any truth assignment and any
partition of the variables between Alice and Bob. We re-
mark that this lemma holds also for the stronger semantic
versions of these proof systems in the sense of Definition 10.

Lemma 15. Let G be any CNF formula over n variables,
and suppose that each of these variables is given to either
one of Alice and Bob. Then the followings holds:

5Here“private”means that one player cannot see the random
bits of the other. There is also a public-coin randomized
communication model [44], but it is not our concern in this
paper.

z

x y

u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)

∧ z

(b) Pebbling contradiction PebΠ2 .

Figure 1: Pebbling contradiction for the pyramid graph Π2.

(yu,1 ∨ yu,2) ∧ (yv,1 ∨ xv,1 ∨ yw,1 ∨ xw,1 ∨ yy,1 ∨ xy,1)

∧ (yv,1 ∨ yv,2) ∧ (yv,1 ∨ xv,1 ∨ yw,1 ∨ xw,1 ∨ yy,2 ∨ xy,2)

∧ (yw,1 ∨ yw,2) ∧ (yv,1 ∨ xv,1 ∨ yw,2 ∨ xw,2 ∨ yy,1 ∨ xy,1)

∧ (yx,1 ∨ yx,2) ∧ (yv,1 ∨ xv,1 ∨ yw,2 ∨ xw,2 ∨ yy,2 ∨ xy,2)

∧ (yy,1 ∨ yy,2) ∧ (yv,2 ∨ xv,2 ∨ yw,1 ∨ xw,1 ∨ yy,1 ∨ xy,1)

∧ (yz,1 ∨ yz,2) ∧ (yv,2 ∨ xv,2 ∨ yw,1 ∨ xw,1 ∨ yy,2 ∨ xy,2)

∧ (yu,1 ∨ xu,1) ∧ (yv,2 ∨ xv,2 ∨ yw,2 ∨ xw,2 ∨ yy,1 ∨ xy,1)

∧ (yu,2 ∨ xu,2) ∧ (yv,2 ∨ xv,2 ∨ yw,2 ∨ xw,2 ∨ yy,2 ∨ xy,2)

∧ (yv,1 ∨ xv,1) ∧ (yx,1 ∨ xx,1 ∨ yy,1 ∨ xy,1 ∨ yz,1 ∨ xz,1)

∧ (yv,2 ∨ xv,2) ∧ (yx,1 ∨ xx,1 ∨ yy,1 ∨ xy,1 ∨ yz,2 ∨ xz,2)

∧ (yw,1 ∨ xw,1) ∧ (yx,1 ∨ xx,1 ∨ yy,2 ∨ xy,2 ∨ yz,1 ∨ xz,1)

∧ (yw,2 ∨ xw,2) ∧ (yx,1 ∨ xx,1 ∨ yy,2 ∨ xy,2 ∨ yz,2 ∨ xz,2)

∧ (yu,1 ∨ xu,1 ∨ yv,1 ∨ xv,1 ∨ yx,1 ∨ xx,1) ∧ (yx,2 ∨ xx,2 ∨ yy,1 ∨ xy,1 ∨ yz,1 ∨ xz,1)

∧ (yu,1 ∨ xu,1 ∨ yv,1 ∨ xv,1 ∨ yx,2 ∨ xx,2) ∧ (yx,2 ∨ xx,2 ∨ yy,1 ∨ xy,1 ∨ yz,2 ∨ xz,2)

∧ (yu,1 ∨ xu,1 ∨ yv,2 ∨ xv,2 ∨ yx,1 ∨ xx,1) ∧ (yx,2 ∨ xx,2 ∨ yy,2 ∨ xy,2 ∨ yz,1 ∨ xz,1)

∧ (yu,1 ∨ xu,1 ∨ yv,2 ∨ xv,2 ∨ yx,2 ∨ xx,2) ∧ (yx,2 ∨ xx,2 ∨ yy,2 ∨ xy,2 ∨ yz,2 ∨ xz,2)

∧ (yu,2 ∨ xu,2 ∨ yv,1 ∨ xv,1 ∨ yx,1 ∨ xx,1) ∧ (yz,1 ∨ xz,1)

∧ (yu,2 ∨ xu,2 ∨ yv,1 ∨ xv,1 ∨ yx,2 ∨ xx,2) ∧ (yz,2 ∨ xz,2)

∧ (yu,2 ∨ xu,2 ∨ yv,2 ∨ xv,2 ∨ yx,1 ∨ xx,1)

∧ (yu,2 ∨ xu,2 ∨ yv,2 ∨ xv,2 ∨ yx,2 ∨ xx,2)

Figure 2: Lifted formula Lift2
`
PebΠ2

´
of length 2 obtained from the pebbling contradiction over Π2.

• If G has a (semantic) PCR-refutation in monomial
space s and length L, then there is a deterministic pro-
tocol of cost O(s log L) bits for Gsearch .

• If G has a (semantic) CP-refutation in line space s
and length L, then there is a consistent randomized
protocol of cost O(s log L log2 n log(s log L)) bits with
error 1/4 for Gsearch .

Proof. In one line, the proof is that Alice and Bob will
use the refutation of G to do binary search for a falsified
clause.

In a little bit more detail, suppose Alice and Bob are given
their two parts of an assignment α. Fix a refutation π =
{D0, D1, . . . , DL} as in the statement of the lemma, where
as before D0 = ∅ and ⊥ ∈ DL. For ease of notation, suppose
the length L of the refutation is actually the total number
of derivation steps including erasures, as discussed in the
footnote in Definition 4 (which is a very minor technicality).

Alice and Bob consider the configuration DL/2 in the refu-
tation at time L/2 and with joint efforts (involving some
communication, which we will discuss shortly) evaluate the
truth value of DL/2 under the assignment α. If DL/2 is
true under α, they continue their search in the subderiva-
tion {DL/2, D1, . . . , DL}. If DL/2 is false, the search contin-
ues in the first half of the refutation {D0, D1, . . . , DL/2} Note
that D0 = ∅ evaluates to true by default, and since ⊥ ∈ DL

this configuration evaluates to false, and the binary search is
carried out so as to maintain that the first configuration in
the current subderivation under consideration evaluates to
true and the last one evaluates to false. Hence, after log L
steps Alice and Bob find a t ∈ [L] such that Dt−1 is true
under α but Dt is false. Since the proof system is sound, the
derivation step to get from Dt−1 to Dt cannot have been an
inference or erasure, but must be a download of some axiom
clause C ∈ G. This clause C must be false under α, and so
Alice and Bob give C as their answer.

Now all that remains is to discuss how much communica-
tion is needed to evaluate a configuration in the refutation.
For PCR, Alice and Bob can just look at all the monomials
in the the current configuration D, say m1, m2, . . . , ms′ for
s′ ≤ s. For each monomial mi, Alice evaluates the part mA

i

containing her variables and Bob the part mB
i containing his,

they communicate the values with a constant number of bits
(since the field is finite), and multiply to get mi = mA

i ·mB
i .

There are at most s monomials, so the total communication
for the configuration is O(s), and then they both know the
truth value of the configuration. Note also that the commu-
nication clearly is deterministic.

For cutting planes, the same argument applies, except
that to check the truth of each line, we have to do a ran-
domized protocol. Fortunately, this can be achieved with
communication cost O(log2 n) with constant error as shown
in Lemma 5 in [40] (also in [12]). Applying a standard re-
duction of randomized error by a small blow-up in com-
munication cost as in Proposition 14, we can make the er-
ror sufficiently small, say 1

4s log L
, with communication cost

O
`
log2 n log(s log L)

´
for each line check. Thus, by a union

bound, except with probability 1/4, all s log L line checks
in the protocol are done correctly, and hence the protocol
outputs a unique answer. In this way we obtain a consistent
randomized protocol. The lemma follows.

Given Lemma 15, in order to prove Theorem 1, we need
to find a family of CNF formulas whose search problem has

large communication complexity. This is achieved by the
following lemma.

Lemma 16. Let
˘
PebΠh

¯∞
h=1

denote the family of peb-
bling contradictions over pyramid graphs of height h, and
let Gh = Lift3

`
PebΠh

´
. Then any consistent randomized

(and hence also any deterministic) two-party protocol solv-

ing the search problem associated with Gh requires Ω
`√

h
´

bits of communication, where Alice receives the x-variables
and Bob receives the y-variables in Gh.

We remind the reader that for purposes of illustration, a
lift of length 2 of a pyramid pebbling contradiction can be
found in Figure 2.

To prove Lemma 16, we first need to establish the commu-
nication complexity lower bound stated in Theorem 2. We
discuss in more detail in Section 4 how to prove this theo-
rem, but the reader is referred to the full-length version for a
complete proof. Taking Lemma 16 on faith for the time be-
ing, however, we can now prove our main proof complexity
result.

Theorem 1 (restated). There is a family of k-CNF for-
mulas {Fn}∞n=1 of size Θ(n) that can be refuted in length
O(n) in resolution, polynomial calculus (and hence also poly-
nomial calculus resolution) and cutting planes, but for which
the following holds:

• For any PCR-refutation of the formula Fn in simulta-
neous length L and monomial space s it must hold that
s log L = Ω

`
4
√

n
´
.

• For any CP-refutation of the formula Fn in simul-
taneous length L and line space s it must hold that
s log L log(s log L) = Ω

`
4
√

n / log2 n
´
.

Proof. We set Fn = Lift3
`
PebΠh

´
for h = Θ(

√
n), since

pebbling contradictions over pyramids have size quadratic
in the pyramid height. The lower bounds follow by looking
at the communication protocols constructed from purported
refutations of Fn in Lemma 15 and applying the lower bound
in Lemma 16.

It remains to prove the upper bound. This is fairly stan-
dard, and we will not go into too much details. The proof
closely follows similar proofs in, e.g., [17]. The idea is that
we look at a black pebbling strategy for pyramid graphs (or
for any DAG over which we have defined a pebbling contra-
diction). For pyramids, there are black pebbling strategies
in linear time and space Θ(h). Then we build a resolu-
tion proof that simulates this pebbling strategy step by step
to refute a lifted pyramid pebbling contradiction of length
length ` for any ` = O(1) (in particular, for ` = 3).

We maintain the invariant that when a vertex v is pebbled,
we derive yv,i∨xv,i for all i ∈ [`]. In this way, when we get to
the sink z, the clauses yz,i ∨xz,i together with the auxiliary
clause yz,1 ∨ · · · ∨ yz,` and the sink axioms yz,i ∨ xz,i for all
i ∈ [`] immediately yield a contradiction. The base case for
the inductive argument are the source vertices, for which
these clauses are just the source axioms. Consider a non-
source vertex w and suppose for concreteness that it has
exactly two immediate predecessors u and v. When a black
pebble is placed on w, the vertices u and v must also have
black pebbles on them by the rules of the pebble game, and
so by induction we have the clauses yu,i∨xu,i and yv,i∨xv,i

in memory for all i ∈ [`]. Download the pebbling axioms

yu,h∨xu,h∨yv,i∨xv,i∨yw,j ∨xw,j for all h, i, j ∈ [`], as well
as the auxiliary clauses yu,1 ∨ · · · ∨ yu,` and yv,1 ∨ · · · ∨ yv,`.
Then it is not hard to verify that all of these clauses together
imply yw,j ∨ xw,j for all j ∈ [`], and by the implicational
compleness of resolution there must then exist a derivation
of these clauses. Since the number of variables involved is
constant, this derivation has constant length, width, and
space (and it is possible to do much better than the trivial
upper bounds one gets from this argument, but we are not
interested in optimizing constants here).

Thus, every step in the pebbling can be simulated in con-
stant length and with constant extra clause space, so sim-
ulating the whole pebbling yields a resolution refutation in
length O(n) and clause space O

`√
n

´
. Since this resolution

refutation also has width O(1), it can be simulated in CP
and PC (and hence also PCR) with at most a constant factor
blow-up in length and space.

We remark that for the same family of formulas {Fn}∞n=1

in Theorem 1, we can show that any tree-like semantic CP
refutation of this formula must have length L such that
L log L = exp(Ω(4

√
n/ log2 n)). This is shown by the same

proof as for Theorem 1, except that we use the reduction
from small tree-like semantic CP proof to small consistent
randomized communication protocol for search problems as
presented in [10] (and which can also be found implicitly
in [12, 40]). To our knowledge, this is the first result show-
ing that semantic tree-like CP cannot polynomially simulate
resolution. A separation between syntactic tree-like CP and
resolution was shown in [22] using the so-called interpolation
method, which is not known to be applicable to semantic CP.

4. OBTAINING COMMUNICATION COM-
PLEXITY LOWER BOUNDS

In order to prove Lemma 16, we show a new communica-
tion complexity lower bound for the falsified clause search
problems of CNF formulas. More generally, we show that
if S is a search problem with a certain property, then the
communication complexity of another search problem which
is obtained by lifting S (using length ` ≥ 3) is large. This
is stated in Theorem 2 and is our main technical contribu-
tion, and we consider this to be an interesting new result in
communication complexity in its own right.

Before going into a more detailed discussion of Theorem 2,
we need to define formally the concepts that we will use.
Let us start by recalling the well-known notion of block
sensitivity of (usually Boolean) functions as introduced by
Nisan [49], and then generalize this notion for search prob-
lems. Let f : {0, 1}m 7→ Q be any function to some range Q.
For an input α ∈ {0, 1}m and a subset B ⊆ [m], we say that
f is sensitive to B on α if f(α) 6= f

`
αB

´
, where αB is

obtained from α by flipping all bits in B. The block sensi-
tivity of f on α, denoted bs(f, α), is the maximum number
s of pairwise disjoint blocks B1, . . . Bs ⊆ [m] such that f is
sensitive to each Bi on α. For any subset of assignments
A′ ⊆ {0, 1}m, we define the block sensitivity over A′ of f ,
denoted bs

`
f, A′

´
, as

bs
`
f, A′

´
= max

α∈A′
bs(f, α) . (4.1)

Thus, the well-known notion of block sensitivity of f is the
block sensitivity of f over the full set of assignments {0, 1}m.

Let S ⊆ A×Q be any search problem with input domain A
and output range Q. If A = {0, 1}m, we say that a function
f : {0, 1}m 7→ Q solves or satisfies the search problem S if
on any input α ∈ {0, 1}m it holds that

`
α, f(α)

´
∈ S. A

critical input α for a search problem S ⊆ {0, 1}m×Q is one
with a unique q ∈ Q such that (α, q) ∈ S. This brings us to
the concept of critical block sensitivity of search problems,
which plays a key role in this paper and which we therefore
highlight in a formal definition.

Definition 17. The block sensitivity of a search problem
S ⊆ {0, 1}m ×Q over A′ ⊆ {0, 1}m, is defined as

bs
`
S, A′

´
= min{bs

`
f, A′

´
| f : {0, 1}m 7→ Q solves S}

(or in words, bs
`
S, A′

´
is the minimum block sensitivity over

A′ of any function f satisfying S). If A′ = {0, 1}m, we
simply write bs(S) = bs(S, A′). We will be mostly interested
in the set of all critical inputs of S ⊆ {0, 1}m × Q, which
we denote Ac, and we define bscrit(S) = bs(S, Ac) to be the
critical block sensitivity of S.

Note that if S is a function, then bscrit(S) reduces to the
usual notion of block sensitivity of functions. We are now
ready to give a more precis formal statement of Theorem 2.

Theorem 18 (Formal version of Theorem 2). Let
S ⊆ {0, 1}m × Q be any search problem over input domain
{0, 1}m and range Q. Then it holds for any ` ≥ 3 that any
consistent randomized (and hence also any deterministic)
two-party protocol solving G = Lift`(S) requires Ω(bscrit(S))
bits of communication, where Alice receives the x-variables
and Bob receives the y-variables in G.

We remark that for any search problem S, there is a sim-
ple deterministic two-player protocol solving G = Lift3(S)
with communication cost O(D(S)), where D(S) is the deter-
ministic decision tree complexity of S. This protocol works
by simply simulating the decision tree. It can also be proven
that bs(S) = Ω

`
D(S)1/3/ log2|Q|

´
by a simple extension of

an analogous inequality for Boolean functions [7]. Thus, if
we could replace Ω(bscrit(S)) in the lower bound in The-
orem 18 by Ω(bs(S)), that would yield a stronger lower
bound, which would be within a polynomial of the simple
upper bound mentioned above. We are not able to prove
nor disprove such a bound, however, so this remains an in-
teresting open question.

One can observe, however, that it is often the case in the
literature (e.g., in the case of the lower bounds for resolu-
tion proven in [23, 39]) that lower bounds are obtained by
studying only critical assignments. In such cases, if the deci-
sion tree complexity of solving a search problem S restricted
to critical inputs is large, then this can be taken to suggest
that bscrit(S) should also be large. And indeed, the second
key ingredient that we use together with Theorem 18 in our
proof of Lemma 16 is the following lemma, saying that the
search problem for pyramid pebbling contradictions (which
can easily be shown to have large decision tree complex-
ity even when restricted to critical inputs) has large critical
block sensitivity.

Lemma 19. Let {PebΠh
}∞h=1 be the family of pebbling con-

tradictions over pyramid graphs of height h. Then the crit-
ical block sensitivity of the search problem for the formula
PebΠh

is Ω
`√

h
´
.

We refer to the full-length version of the paper for the
proofs of Theorem 18 and Lemma 19. Let us just mention
here, however, that the proof of Theorem 18 is a new appli-
cation of the information-theoretic approach in two-player
communication complexity as presented in [5, 26]. To the
best of our knowledge, this is the first time such an approach
has been used to derive strong, general communication lower
bounds for a search problem.

To conclude this section, let us discuss some previous work
related to Theorem 18 and in this way give some background
and motivation for our new result. Although Theorem 18
is certainly not the first in the literature that shows strong
communication lower bounds for search problems related to
CNF formulas, previous results do not suffice for our pur-
poses in this paper. One such result was proved by Raz
and McKenzie [58] and improved by Bonet et al. [22], who
showed that for a certain broad class of search problems
S ⊆ {0, 1}m×Q (in particular, the search problem S for any
CNF formula F), the deterministic6 communication com-
plexity of Lift`(S) is essentially D(S) provided that ` ≥ m14.
Although this lower bound is tight, it requires polynomially
large length `. Thus, the lifted CNF formula Lift`(F) does
not have bounded width, and may not be refutable in poly-
nomial length in resolution. Moreover, deterministic com-
munication complexity lower bounds do not suffice for us to
derive length-space tradeoffs for CP.

Strong (and non-consistent) randomized communication
complexity for the search problems of some families of CNF
formulas were also known previously. In [40], Impagliazzo
et al. proved one such two-player lower bound for a spe-
cific family of CNF formulas. However, this formula family
have clauses of polynomially large width. In [12], Beame et
al. proved a strong multiparty randomized communication
lower bounds in the so-called number-on-the-forehead model
for a search problem of another family of formulas (namely,
Tseitin formulas over certain expander graphs with a non-
trivial modification). Similarly to the last result, this family
of formulas also have unbounded (logarithmic) width. Fur-
thermore, the formulas in both of these results are known
to require exponential refutation length in resolution, and
no polynomial-size refutations are known for them in PCR
or CP. Since the formulas in these results must be carefully
chosen for the techniques to be applicable, it is not known
whether previous techniques yield lower bounds for any for-
mulas that do not suffer from the aforementioned drawbacks.

Therefore, although on the face of it it might look straight-
forward to apply Lemma 15 with previously known com-
munication complexity results to obtain strong length-space
trade-offs for PCR and/or CP, such trade-offs would have
several shortcomings. In particular, the formulas would all
have unbounded width, and also we would not know any
upper bounds showing that these formulas actually have
polynomial-size refutations. But in Theorem 18, for the first
time7 we are able to give a consistent8 randomized two-

6Bonet et al. [22] actually proved the result for the model of
real communication complexity which is stronger than de-
terministic communication complexity. However this model
is nothing we are concerned with in this paper.
7We remark that an easier and more direct way to obtain
our results in Theorem 1 would have been to apply the ideas
in [10] (in particular, Theorem 3.6 in that paper). However,
we have recently found a serious problem in the key Lemma
3.5 in [10], and therefore we cannot use this approach.
8We want to pointout that it is necessary to restrict our at-

player communication lower bound for search problems in
terms of their general characteristics (critical block sensitiv-
ity) and apply this lower bound to the search problem of a
family of CNF formulas which have constant width and are
refutable in polynomial length in resolution.

5. CONCLUDING REMARKS
In this paper, we report the first time-space trade-offs

for polynomial calculus, polynomial calculus resolution, and
cutting planes. We want to point out that the results are
in a sense slightly more general in that the only property of
the proof systems that we use to show our trade-off results
is that the correctness of each inferred line in a refutation
can be checked by a small two-player communication proto-
col, and so our results also hold for any other proof system
with this property. We interpret our results to suggest that
lifted pebbling formulas should inherit time-space trade-offs
properties from the graphs in terms of which they are de-
fined, which if true would mean that the black-white pebble
game in [31] could be used to obtain strong(er) trade-offs in
these proof systems (as was done for resolution and k-DNF
resolution in [17]).

Despite the amount of research focused on the space mea-
sure in proof complexity over the last decade, it seems fair to
argue that space is still not a very well understood concept,
and many fascinating (and basic) questions remain open.
We highlight some such questions below.

Proving optimal lower bounds on the monomial space of
refuting (preferably bounded-width) CNF formulas in PCR,
or at least in polynomial calculus, is a problem that has been
open for a while but might be more accessible now given
recent advances in [38]. Establishing lower bounds on line
space in cutting planes seems harder, since here nothing is
known. However, as we have already mentioned, we believe
that our results suggest that appropriate flavours of pebbling
formulas should be hard with respect to space in all of these
proof systems. If this could be proven, the next step would
be to see if pebbling time-space trade-offs also carry over to
PCR and/or cutting planes, analogously to what happens
for resolution and k-DNF resolution.

It seems natural to expect that PCR and cutting planes
should both be stronger than resolution with respect to
space, but as far as we are aware this is open. Thus, it
would be interesting to separate PCR from resolution with
respect to space by finding a k-CNF formula that has low
monomial space complexity in PCR but large clause space
complexity in resolution, and similarly for CP with respect
to resolution.

Another fairly longstanding open question, as mentioned
in [1, 14] and other papers, is to prove superlinear lower
bounds on total space (measured in the size of the formula)
for resolution refutations of some family of k-CNF formulas
(or even CNF formulas of unbounded width).

Concluding our discussion of open questions in proof com-
plexity related to the current paper, it is hard to avoid men-
tioning the well-known problem of proving lower bound on

tention to consistent randomized protocols in order to get
strong lower bounds in Theorem 18 (i.e., polynomially re-
lated to the deterministic decision tree complexity of the
search problem). This is because for some search prob-
lems, exponential separations are known between determin-
istic and (non-consistent) randomized decision tree complex-
ity [47].

proof size for cutting planes. This proof system remains very
poorly understood, and it seems like a very interesting, but
possibly also very challenging, open problem to prove that,
for instance, random k-CNF formulas or Tseitin formulas
require CP-proofs of exponential size.

Finally, let us also discuss some interesting questions in
communication complexity that arise from our work on The-
orem 2. An obvious open question is to improve the lower
bound in that theorem. In particular, a lower bound in terms
of the (non-critical) block sensitivity of the search problem
would not only give a lower bound that is polynomial re-
lated to the simple upper bound in terms of decision tree
complexity, but would also produce a general “black-box”
hardness amplification result in proof complexity based on
our approach, in the sense that lower bounds on the rank
(also known as depth) in resolution for any CNF formula F
would turn into into space-length tradeoffs in PCR and CP
for the formula Lift (F).

Another related problem is to gain more understanding
of the critical block sensitivity of search problems. For in-
stance, is the critical block sensitivity always polynomially
related to the block sensitivity for any search problem? If
this were true, it would imply the same hardness amplifica-
tion result as mentioned above.

Acknowledgements
The first author performed part of this work while visit-
ing KTH Royal Institute of Technology supported by the
foundations Johan och Jakob Söderbergs stiftelse, Stiftelsen
Längmanska kulturfonden, and Helge Ax:son Johnsons stif-
telse. The research of the second author was supported by
Swedish Research Council grant 621-2010-4797 and by the
European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement no 279611.

The authors would like to thank Arkadev Chattopadhyay
for several enjoyable (and above all illuminating) discussions
during the weeks spent jointly at KTH Royal Institute of
Technology. We are also grateful to the anonymous referees
for several comments that helped to improve the presenta-
tion of this paper.

6. REFERENCES
[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and

A. Wigderson. Space complexity in propositional
calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version appeared
in STOC ’00.

[2] M. Alekhnovich and A. A. Razborov. Lower bounds
for polynomial calculus: Non-binomial case.
Proceedings of the Steklov Institute of Mathematics,
242:18–35, 2003. Available at http://people.cs.
uchicago.edu/~razborov/files/misha.pdf.
Preliminary version appeared in FOCS ’01.

[3] A. Atserias and V. Dalmau. A combinatorial
characterization of resolution width. Journal of
Computer and System Sciences, 74(3):323–334, May
2008. Preliminary version appeared in CCC ’03.

[4] A. Atserias, J. K. Fichte, and M. Thurley.
Clause-learning algorithms with many restarts and
bounded-width resolution. Journal of Artificial

Intelligence Research, 40:353–373, Jan. 2011.
Preliminary version appeared in SAT ’09.

[5] Z. Bar-Yossef, T. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. Journal
of Computer and System Sciences, 68(4):702–732,
June 2004. Preliminary version appeared in FOCS ’02.

[6] R. J. Bayardo Jr. and R. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In
Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI ’97), pages 203–208, July
1997.

[7] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and
R. de Wolf. Quantum lower bounds by polynomials.
Journal of the ACM, 48(4):778–797, 2001.

[8] P. Beame. Proof complexity. In S. Rudich and
A. Wigderson, editors, Computational Complexity
Theory, volume 10 of IAS/Park City Mathematics
Series, pages 199–246. American Mathematical
Society, 2004.

[9] P. Beame, C. Beck, and R. Impagliazzo. Time-space
tradeoffs in resolution: Superpolynomial lower bounds
for superlinear space. In Proceedings of the 44th
Annual ACM Symposium on Theory of Computing
(STOC ’12), May 2012. To appear.

[10] P. Beame, T. Huynh, and T. Pitassi. Hardness
amplification in proof complexity. In Proceedings of
the 42nd Annual ACM Symposium on Theory of
Computing (STOC ’10), pages 87–96, June 2010.

[11] P. Beame, R. Karp, T. Pitassi, and M. Saks. The
efficiency of resolution and Davis-Putnam procedures.
SIAM Journal on Computing, 31(4):1048–1075, 2002.
Preliminary versions of these results appeared in
FOCS ’96 and STOC ’98.

[12] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds
for Lovász–Schrijver systems and beyond follow from
multiparty communication complexity. SIAM Journal
on Computing, 37(3):845–869, 2007. Preliminary
version appeared in ICALP ’05.

[13] E. Ben-Sasson. Size space tradeoffs for resolution.
SIAM Journal on Computing, 38(6):2511–2525, May
2009. Preliminary version appeared in STOC ’02.

[14] E. Ben-Sasson and N. Galesi. Space complexity of
random formulae in resolution. Random Structures
and Algorithms, 23(1):92–109, Aug. 2003. Preliminary
version appeared in CCC ’01.

[15] E. Ben-Sasson and J. Johannsen. Lower bounds for
width-restricted clause learning on small width
formulas. In Proceedings of the 13th International
Conference on Theory and Applications of
Satisfiability Testing (SAT ’10), volume 6175 of
Lecture Notes in Computer Science, pages 16–29.
Springer, July 2010.

[16] E. Ben-Sasson and J. Nordström. Short proofs may be
spacious: An optimal separation of space and length
in resolution. In Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS ’08), pages 709–718, Oct. 2008.

[17] E. Ben-Sasson and J. Nordström. Understanding space
in proof complexity: Separations and trade-offs via
substitutions. In Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS ’11), pages

401–416, Jan. 2011. Full-length version available at
http://eccc.hpi-web.de/report/2010/125/.

[18] E. Ben-Sasson and A. Wigderson. Short proofs are
narrow—resolution made simple. Journal of the ACM,
48(2):149–169, Mar. 2001. Preliminary version
appeared in STOC ’99.

[19] A. Biere, M. J. H. Heule, H. van Maaren, and
T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, Feb. 2009.

[20] A. Blake. Canonical Expressions in Boolean Algebra.
PhD thesis, University of Chicago, 1937.

[21] M. Bonet, T. Pitassi, and R. Raz. Lower bounds for
cutting planes proofs with small coefficients. In
Proceedings of the 27th Annual ACM Symposium on
Theory of Computing (STOC ’95), pages 575–584,
May 1995.

[22] M. L. Bonet, J. L. Esteban, N. Galesi, and
J. Johannsen. On the relative complexity of resolution
refinements and cutting planes proof systems. SIAM
Journal on Computing, 30(5):1462–1484, 2000.
Preliminary version appeared in FOCS ’98.

[23] M. L. Bonet and N. Galesi. Optimality of size-width
tradeoffs for resolution. Computational Complexity,
10(4):261–276, Dec. 2001. Preliminary version
appeared in FOCS ’99.

[24] M. Brickenstein and A. Dreyer. PolyBoRi: A
framework for Gröbner-basis computations with
Boolean polynomials. Journal of Symbolic
Computation, 44(9):1326–1345, Sept. 2009.

[25] M. Brickenstein, A. Dreyer, G.-M. Greuel, M. Wedler,
and O. Wienand. New developments in the theory of
Gröbner bases and applications to formal verification.
Journal of Pure and Applied Algebra,
213(8):1612–1635, Aug. 2009.

[26] A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao.
Informational complexity and the direct sum problem
for simultaneous message complexity. In Proceedings of
the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’01), pages 270–278, Oct.
2001.

[27] V. Chvátal and E. Szemerédi. Many hard examples for
resolution. Journal of the ACM, 35(4):759–768, Oct.
1988.

[28] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the
Groebner basis algorithm to find proofs of
unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing
(STOC ’96), pages 174–183, May 1996.

[29] S. A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing (STOC ’71),
pages 151–158, 1971.

[30] S. A. Cook and R. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic
Logic, 44(1):36–50, Mar. 1979.

[31] S. A. Cook and R. Sethi. Storage requirements for
deterministic polynomial time recognizable languages.
Journal of Computer and System Sciences,
13(1):25–37, 1976.

[32] W. Cook, C. R. Coullard, and G. Turán. On the

complexity of cutting-plane proofs. Discrete Applied
Mathematics, 18(1):25–38, Nov. 1987.

[33] M. David, T. Pitassi, and E. Viola. Improved
separations between nondeterministic and randomized
multiparty communication. ACM Transactions on
Computation Theory, 1:5:1–5:20, Sept. 2009.

[34] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Communications of the
ACM, 5(7):394–397, July 1962.

[35] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the ACM,
7(3):201–215, 1960.

[36] J. L. Esteban, N. Galesi, and J. Messner. On the
complexity of resolution with bounded conjunctions.
Theoretical Computer Science, 321(2-3):347–370, Aug.
2004. Preliminary version appeared in ICALP ’02.

[37] J. L. Esteban and J. Torán. Space bounds for
resolution. Information and Computation,
171(1):84–97, 2001. Preliminary versions of these
results appeared in STACS ’99 and CSL ’99.

[38] Y. Filmus, M. Lauria, J. Nordström, N. Thapen, and
N. Zewi. Space complexity in polynomial calculus. In
Proceedings of the 27th Annual IEEE Conference on
Computational Complexity (CCC ’12), June 2012. To
appear.

[39] A. Haken. The intractability of resolution. Theoretical
Computer Science, 39(2-3):297–308, Aug. 1985.

[40] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper
and lower bounds for tree-like cutting planes proofs.
In Proceedings of the 9th Annual IEEE Symposium on
Logic in Computer Science (LICS ’94), pages 220–228,
July 1994.

[41] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds
for the polynomial calculus and the Gröbner basis
algorithm. Computational Complexity, 8(2):127–144,
1999.

[42] M. Järvisalo, A. Matsliah, J. Nordström, and
S. Živný. Relating proof complexity measures and
practical hardness of SAT. Submitted, 2012.

[43] J. Kraj́ıček. On the weak pigeonhole principle.
Fundamenta Mathematicae, 170(1-3):123–140, 2001.

[44] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, 1997.

[45] D. Le Berre and A. Parrain. On extending SAT
solvers for PB problems. In 14th RCRA workshop
Experimental Evaluation of Algorithms for Solving
Problems with Combinatorial Explosion (RCRA ’07),
July 2007. Available at http://pst.istc.cnr.it/
RCRA07/articoli/P14-leberre-parrain-RCRA07.pdf.

[46] D. Le Berre, A. Parrain, and O. Roussel. The long
way from conflict driven clause learning to conflict
driven constraint learning. In Guangzhou Symposium
on Satisfiability and its applications, Sept. 2004.
Available at http://www.cril.univ-artois.fr/
spip/publications/kanton04.pdf.

[47] L. Lovász, M. Naor, I. Newman, and A. Wigderson.
Search problems in the decision tree model. SIAM
Journal on Discrete Mathematics, 8(1):119–132, 1995.
Preliminary version appeared in FOCS ’91.

[48] J. P. Marques-Silva and K. A. Sakallah. GRASP—a
new search algorithm for satisfiability. In Proceedings

of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227,
Nov. 1996.

[49] N. Nisan. CREW PRAMs and decision trees. SIAM
Journal on Computing, 20:999–1007, Dec. 1991.

[50] J. Nordström. Narrow proofs may be spacious:
Separating space and width in resolution. SIAM
Journal on Computing, 39(1):59–121, May 2009.
Preliminary version appeared in STOC ’06.

[51] J. Nordström. A simplified way of proving trade-off
results for resolution. Information Processing Letters,
109(18):1030–1035, Aug. 2009. Preliminary version
appeared in ECCC report TR07-114, 2007.

[52] J. Nordström. New wine into old wineskins: A survey
of some pebbling classics with supplemental results.
Manuscript in preparation. To appear in Foundations
and Trends in Theoretical Computer Science. Current
draft version available at
http://www.csc.kth.se/~jakobn/research/, 2012.

[53] J. Nordström. Pebble games, proof complexity and
time-space trade-offs. Logical Methods in Computer
Science, 2012. To appear. Available at
http://www.csc.kth.se/~jakobn/research/.

[54] J. Nordström and J. H̊astad. Towards an optimal
separation of space and length in resolution (Extended
abstract). In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC ’08),
pages 701–710, May 2008.

[55] K. Pipatsrisawat and A. Darwiche. On the power of
clause-learning SAT solvers as resolution engines.
Artificial Intelligence, 175:512–525, Feb. 2011.
Preliminary version appeared in CP ’09.

[56] N. Pippenger. Pebbling. Technical Report RC8258,
IBM Watson Research Center, 1980. Appeared in
Proceedings of the 5th IBM Symposium on
Mathematical Foundations of Computer Science,
Japan.

[57] P. Pudlák. Lower bounds for resolution and cutting
plane proofs and monotone computations. Journal of
Symbolic Logic, 62(3):981–998, Sept. 1997.

[58] R. Raz and P. McKenzie. Separation of the monotone
NC hierarchy. Combinatorica, 19(3):403–435, Mar.
1999. Preliminary version appeared in FOCS ’97.

[59] A. A. Razborov. Lower bounds for the polynomial
calculus. Computational Complexity, 7(4):291–324,
Dec. 1998.

[60] J. A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23–41,
Jan. 1965.

[61] The international SAT Competitions.
http://www.satcompetition.org.

[62] N. Segerlind. The complexity of propositional proofs.
Bulletin of Symbolic Logic, 13(4):482–537, Dec. 2007.

[63] N. Segerlind, S. R. Buss, and R. Impagliazzo. A
switching lemma for small restrictions and lower
bounds for k-DNF resolution. SIAM Journal on
Computing, 33(5):1171–1200, 2004. Preliminary
version appeared in FOCS ’02.

[64] A. Urquhart. Hard examples for resolution. Journal of
the ACM, 34(1):209–219, Jan. 1987.

