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Abstract—Systems mixing Boolean logic and arithmetic have
been a long-standing challenge for verification tools such as SAT-
based bit-vector solvers. Though SAT solvers can be highly effi-
cient for Boolean reasoning, they scale poorly once multiplication
is involved. Algebraic methods using Gröbner basis reduction
have recently been used to efficiently verify multiplier circuits in
isolation, but generally do not perform well on problems involving
bit-level reasoning.

We propose that pseudo-Boolean solvers equipped with cutting
planes reasoning have the potential to combine the complemen-
tary strengths of the existing SAT and algebraic approaches while
avoiding their weaknesses.

Theoretically, we show that there are optimal-length cutting
planes proofs for a large class of bit-level properties of some well
known multiplier circuits. This scaling is significantly better than
the smallest proofs known for SAT and, in some instances, for
algebraic methods. We also show that cutting planes reasoning
can extract bit-level consequences of word-level equations in
exponentially fewer steps than methods based on Gröbner bases.

Experimentally, we demonstrate that pseudo-Boolean solvers
can verify the word-level equivalence of adder-based multiplier
architectures, as well as commutativity of bit-vector multipli-
cation, in times comparable to the best algebraic methods. We
then go further than previous approaches and also verify these
properties at the bit-level. Finally, we find examples of simple
nonlinear bit-vector inequalities that are intractable for current
bit-vector and SAT solvers but easy for pseudo-Boolean solvers.

Index Terms—Multiplier circuits, bit-vector arithmetic, ver-
ification, pseudo-Boolean solving, cutting planes, SAT solving,
Gröbner bases

I. INTRODUCTION

While there has been great progress in verification tools
since the 1980s, current methods still cannot efficiently deal
with problems that combine multiplication and Boolean op-
erations. These problems are encapsulated in the theory of
bit-vector arithmetic, which supports both common bit-level
operations like shifting and word-level arithmetic operations
like addition and multiplication of bit-vectors. Thus, bit-vector

formulas can express the behavior of a program or arithmetic
circuit in a natural, yet bit-precise, manner.

Though deciding bit-vector formulas is NEXPTIME-
complete in general [31], current bit-vector solvers are fairly
efficient on many problems arising in practice ([12], [18], [22],
[27], [38], [41], [47]). However, for instances that involve
multiplication these solvers must often rely on the bit-blasting
approach [32], which determines the satisfiability of a bit-
vector formula by converting it into an equisatisfiable CNF
formula to be fed into a conflict-driven clause learning (CDCL)
SAT solver ([4], [39], [42]).

While CDCL SAT solvers effectively handle bit-level op-
erations, they tend to perform poorly when multiplication is
involved, with running times scaling exponentially in the bit-
width on such problems ([8], [14], [30]). CDCL solvers are
based on resolution ([11], [46]), in the sense that a resolution
proof can be extracted from the execution trace for an unsat-
isfiable formula [5]. Thus, weaknesses of this proof system
impose hard limits on solver performance. Resolution is very
poor at tasks like counting [24] and mod-2 reasoning [52], and
though degree-2 multiplier identities were recently shown to
have polynomial-size proofs [7], these proofs are quite large.
To unlock the ability to solve even more complicated formulas
that mix bit-level reasoning with multiplication, we need to
fundamentally improve the back-end reasoning.

Two natural approaches for strengthening resolution-based
reasoning are embodied by the proof systems polynomial
calculus [16], which reasons with polynomials instead of
clauses, and cutting planes [17], which operates on 0-1 lin-
ear inequalities. Both of these proof systems can efficiently
simulate resolution, and can be exponentially stronger.

Computer algebra has recently emerged as a powerful tool
for verifying isolated gate-level multiplier circuits ([10], [15],
[36], [37], [44], [45], [50], [51], [54]). A major advantage of
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Gröbner basis methods, which perform algebraic reasoning
that is captured by the polynomial calculus proof system,
is that they operate with polynomials instead of disjunctive
clauses. This makes it possible to encode the correctness
of a multiplier with input bit-vectors x,y and output bit-
vector (xy) through the word-level specification equation:(∑n−1

i=0 2ixi

)(∑n−1
i=0 2iyi

)
−
(∑2n−1

i=0 2i(xy)i

)
= 0.

Unfortunately, for the non-algebraic parts of circuits, Gröbner
basis methods are typically orders of magnitude slower than
SAT solvers and scale poorly on general reasoning. We provide
an explanation for this by showing, drawing on [25], that
Gröbner basis methods require an exponential number of
steps to derive bit-level consequences of word-level properties.
Hence, these methods are unlikely to supplant the role of SAT
solvers for bit-vector arithmetic.

We propose instead that conflict-driven pseudo-Boolean
solvers [13] that take advantage of the cutting planes method
for 0-1 linear inequalities [17] have the potential to achieve
the “best of both worlds”, combining the strengths of Gröbner
basis methods for polynomials with the efficiency of CDCL
SAT solvers for Boolean reasoning. Cutting planes reasoning
can easily express word-level properties and does not suffer
the same obstacles as polynomial calculus, since only a linear
number of steps are needed to derive all of the individual bit-
equalities from a word-level equality.

An essential aspect of this approach in improving on SAT-
based methods is that one can express the correctness of 1-bit
adders, basic building blocks of arithmetic circuits, directly via
pairs of inequalities, instead of using sets of clauses, and one
can similarly directly express word-level properties of circuit
outputs. Together, these yield a higher-level fully precise form
of ”bit-blasting”.

The main theoretical contribution of this paper is the con-
struction of optimal, O(n2)-length cutting planes proofs for
a large class of n-bit ring identities, including commutativity
and distributivity. We emphasize that these identities can be
proven not only at the word level, but also for individual bits.

While O
(
n2
)
-length polynomial calculus proofs are known

for some of these properties at the word level [29], this
algebraic method cannot efficiently extract the bit-equalities.
As a consequence, for example, the best known polynomial
calculus proof for the bit-level property “the middle bit of xy
equals the middle bit of yx” is still the O

(
n5 log n

)
-length

resolution proof given by [7], which is much larger than our
O
(
n2
)
-length cutting planes proof.

These ring identities appeared previously as testbed in-
stances representing the gap between word-level and bit-
level methods of reasoning. For example, it was observed in
2016 that proving the commutativity of a multiplier circuit
is already intractable for SAT solving at 16 bits [9]. While
bit-vector solvers try to overcome this shortcoming of SAT
by implementing word-level preprocessing and inprocessing,
the verification of larger systems containing multiplication and
bit-logic (that appear for instance, in cryptography) remains a

key weakness. The ability to verify these ring identities at the
bit level, rather than through preprocessing, is a good test for
the potential of any method for verifying these more complex
systems.

Experimentally, we are able to use pseudo-Boolean solvers
to verify the word-level equivalence of several different mul-
tiplier circuits of up to 256 bits in similar times to those of
the best algebraic methods. We find that these solvers can be
particularly efficient at extracting all of the bit-level equalities
from a word-level equality, which neither CDCL solvers nor
Gröbner basis reduction can do efficiently.

We also show that pseudo-Boolean solvers can be used to
efficiently verify a number of bit-vector inequalities combin-
ing multiplication with bit-wise operations. In contrast, these
inequalities are much harder or intractable for the top bit-
vector solvers Boolector ([12], [43]), Z3 [18], Yices2 [19] and
CVC4 [2]. Our examples demonstrate some of the potential
of pseudo-Boolean solvers for reasoning with nonlinear, bit-
precise systems that are out of reach of current methods.
These bit-vector inequalities are inspired by the combinations
of arithmetic and bit-wise operations that naturally arise in
embedded systems or high-performance computation, where
“bit hacks” can be used to implement methods such as absolute
value or “reverse the bits in a byte” (see [1] and [26]) and more
complicated mixtures of arithmetic and bit-wise operations are
used in cryptographic and hashing computations.

II. NOTATION AND PRELIMINARIES

We write the i-th entry of a bit-vector x as a Boolean
variable xi. We typically refer to circuits by the output bit-
vectors that they produce — for example we use C to refer
to both a circuit and its output bit-vector, depending on the
context. Often we write this output bit-vector in terms of
the inputs, so that a multiplier circuit denoted by xy is
understood to take input bit-vectors x,y and output a bit-
vector labeled xy. We label the internal variables of a circuit C
using the superscript C, for example: tCi,j .

Definition Given a set of polynomials Φ over a set of vari-
ables {x1, x2, . . . , xn} and a field K, a polynomial calculus
refutation of Φ is a sequence of polynomials ending with the
polynomial 1 such that each line is either in Φ or is derived
from the previous lines using the inference rules of linear
combination and multiplication by a monomial m:

p q

αp+ βq
(α, β ∈ K),

p
m · p .

The polynomials x2 − x are also included as axioms for
each variable x so that it only takes Boolean values. The
polynomial p is interpreted to mean the equation p = 0.

Definition Given a set of 0-1 linear inequalities Φ over a set of
variables {x1, x2, . . . , xn}, a cutting planes refutation of Φ is
a sequence of 0-1 linear inequalities ending with the inequality
0 ≥ 1 such that each line is either in Φ or is derived from
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the previous lines using the inference rules of positive linear
combination ∑

i aixi ≥ b
∑
i a
′
ixi ≥ b′∑

i(αai + βbi)xi ≥ αb+ βb′

where α, β ≥ 0, and the division rule∑
i(c · ai)xi ≥ b∑
i aixi ≥

⌈
b
c

⌉ .

The literal axioms −x ≥ −1 and x ≥ 0 are also included for
each variable x. Throughout this paper we will use “=” as
shorthand for the two equivalent “≤,≥” inequalities.

A. A polynomial calculus lower bound for bit-extraction

The bit-extraction lower bound discussed in the introduction
follows directly from the following polynomial calculus lower
bound for subset-sum equations due to Impagliazzo, Pudlak
and Sgall.

Theorem II.1 ([25]). Let c1, . . . , cn be nonzero real numbers
such that no subset sums to the real number m. Then the
equation m −

∑n
i=1 cixi = 0 has no polynomial calculus

refutation of degree dn/2e in the field of real numbers.

Theorem II.2 ([25]). Suppose that Φ is a set of polynomials of
degree at most

√
n, where n is the number of variables appear-

ing in Φ. Let d denote the minimum refutation degree of Φ, and
M denote the minimum number of monomials in a refutation
of Φ, and assume that M ≥ 3. Then M ≥ exp

(
(d− 1)2/4n

)
We combine Theorems II.1 and II.2 to demonstrate the weak-
ness of polynomial calculus in extracting bit-level properties
from word-level ones.

Corollary II.3. For a fixed integer k, any polynomial calculus
refutation of the system of two polynomials:

f :=

n−1∑
i=0

2i(si − s′i)

g := sk − s′k − 1

contains at least en/4−1 ≈ 20.36n monomials.

Proof. Define the polynomial f ′ :=
∑
i6=k 2i(si − s′i) + 2k.

Observe that Theorem II.1 gives us a degree lower bound of
n − 1 on refutations of the polynomial {f ′}. Theorem II.2
translates this into a monomial size lower bound of en/4−1.
The reduction below lifts this lower bound on {f ′} to the
polynomials {f, g}.

We show that a length l polynomial calculus refutation
of the polynomials {f, g} may be converted into a length
l refutation of the polynomial {f ′} without increasing the
number of monomials in each line as follows: First notice that
the polynomials f, f ′ are equivalent modulo the polynomial
g = sk − s′k − 1. Given a PC refutation of {f, g}, we reduce
each line by g (which effectively sets sk = 1 and s′k = 0), only
reducing the number of monomials, to produce a refutation of
{f ′}.

As a consequence of this corollary, polynomial calculus cannot
derive sk = s′k from the first equation using fewer than
en/4−1 monomials. In comparison, cutting planes has small
derivations that produce all of the bit-equalities.

Proposition II.4. There is an O(n)-length cutting planes
derivation of all n bit-equalities si = s′i from the equation∑n−1
i=0 2isi −

∑n−1
i=0 2is′i = 0.

Proof. We extract the individual bit-equalities in the low-to-
high sequence s0 = s′0, s1 = s′1, . . . sn−1 = s′n−1. Recall
that in cutting planes, the equation

∑n−1
i=0 2isi−

∑n−1
i=0 2is′i =

0 is represented by two inequalities. Take the inequality∑n−1
i=0 2isi −

∑n−1
i=0 2is′i ≥ 0, and use the literal axioms on

s0, s
′
0 to get

∑n−1
i=1 2isi −

∑n−1
i=1 2is′i ≥ −1. Divide this by 2

to get
∑n−1
i=1 2i−1si −

∑n−1
i=1 2i−1s′i ≥ 0. Finally, use linear

combination to multiply this by 2 and add it to the equation∑n−1
i=0 2is′i −

∑n−1
i=0 2isi ≥ 0 to obtain the result s′i − si ≥ 0.

A symmetric derivation gives si − s′i ≥ 0.

B. Adder and multiplier circuit constructions

Definition A ring identity L = R denotes a pair of ring
expressions L,R that can be transformed into each other using
commutativity, distributivity and associativity.

To prove that a given ring identity L = R holds for
some choice of circuit implementations for + and ×, we use
these implementations to build a circuit L representing the
expression L and another circuit R for the expression R. The
goal of our cutting planes proofs is to show that the resulting
output bit-vectors L,R are equal bit-by-bit, i.e., that Li = Ri
holds for every i.

Circuits for addition and multiplication

The circuits that we will consider are built using adders that
output, in binary, the sum of three input bits. A (1-bit) adder
is encoded as follows:

Definition For an adder A with inputs a0, a1, a2, the outputs
c, d are determined by the equation a0 +a1 +a2−2c−d = 0.
We call c the carry-bit and d the sum-bit.

In our circuits, each variable belongs to a column, i. The
variables in column i have a weight of 2i. Each adder is also
assigned to a column. An adder A belonging to the i-th column
takes three input bits from column i and outputs a sum-bit
into column i and a carry-bit into column i+ 1. The equation
associated with A ensures that the weight of its outputs is
equal to the weight of its inputs.

a) Ripple-Carry Adder: Figure 1 shows the design of a
ripple-carry adder x + y, which takes in two bitvectors x,y
and outputs their sum in binary.

b) Multiplier circuits: Figure 2 shows the design of
an array multiplier and our labeling of the internal circuit
variables. The first phase of an array multiplier is a common
part of many multiplier designs: the circuit computes a tableau
of partial products ti,j = xi ∧ yj for each pair of input bits xi
and yj . In the second phase, n ripple-carry adders are arranged
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Fig. 1. A 4-bit ripple-carry adder adding x,y. Each box represents a full
adder with incoming arrows and the labels in the boxes representing inputs
and outgoing arrows representing outputs.

Fig. 2. 3-bit array multiplier.

in a grid-like fashion in order to sum the n rows of the tableau.
A closely related variant of the array multiplier is the diagonal
multiplier, shown in Figure 3, which routes its carry bits to
the next row instead of the same row.

Wallace-tree multipliers sum the tableau by arranging a
network of adders in a tree-like structure. This log-depth
structure reduces the number of rows in the tableau to 2, then
uses an adder circuit to compute the final sum. In hardware
implementations, this final stage adder is typically a carry-
lookahead adder, so that the full multiplier has logarithmic
depth. However, carry-lookahead adders use non full-adder
components, which will lie outside the scope of this paper.
The Wallace-tree multipliers in this paper will use ripple-carry
adders for this final stage, so that the multiplier contains only
full adder components.

III. ARRAY MULTIPLIER COMMUTATIVITY IN O(n2) STEPS

In this section, we give O(n2)-length derivations for the
word-level equivalence of the output bit-vectors xy and yx for
both polynomial calculus and cutting planes. For polynomial
calculus, this proof was, in essence, previously written down
in [44].

Swapping the order of inputs x,y to a multiplier has the
effect of reversing the order of tableau values in each column.
In particular we have the equalities txyi,j = tyxj,i between tableau
variables. The next lemma shows that from these bit-level
equalities we can derive the word-level equality of the output
bit-vectors xy and yx using only O(n2) linear combination
steps. As both polynomial calculus and cutting planes can
carry out such steps (recall that cutting planes represents “=”
using two inequalities), they can both perform this proof.

Lemma III.1. Suppose that we have two n-bit array multipli-
ers xy and yx implementing the two sides of the commutativ-
ity relation xy = yx. Further, suppose that we are given the

Fig. 3. 3-bit diagonal multiplier.

n2 equalities between the tableau variables txyi,j = tyxj,i . Then
there is a derivation in degree 1 and length 3n2 + 1 of the
equation

∑n−1
i=0 2i(xy)i −

∑n−1
i=0 2i(yx)i = 0 that only uses

linear combinations.

Proof. We first derive two “conservation of weight” equations
for the circuits xy and yx that state that the total weight of
a multiplier’s output bits is the same as the total weight of
its tableau bits. We obtain these by adding up the adder con-
straints, weighting them so that the internal circuit variables
cancel. For an adder in column i corresponding to a constraint
a0 + a1 + a2 − 2c − d = 0, this weighting simply scales the
constraint up by a factor of 2i. Once all the n2 adder equations
for an array multiplier xy have been summed together, we will
arrive at an equation stating that the weight of tableau variables
txyi,j is the same as the weight of the output variables xy. After
repeating the same steps for the multiplier yx, we arrive at
the two equations( n−1∑

i,j=0

2i+jtxyi,j

)
−
( 2n−1∑

i=0

2i(xy)i

)
= 0

( n−1∑
i,j=0

2i+jtyxj,i

)
−
( 2n−1∑

i=0

2i(yx)i

)
= 0

having used 2n2 linear combination steps. We then use a total
of n2 further derivation steps to replace tyxj,i by txyi,j for each
pair i, j ∈ [0, n−1] in the latter equation. Finally, we subtract
the two equations to finish the derivation.

Theorem III.2. There is a polynomial calculus derivation in
length 4n2 + 1, and also a cutting planes derivation in length
14n2 + 2, of the equation

∑n−1
j=0 2i(xy)i−

∑n−1
j=0 2i(yx)i = 0

from the array multiplier circuits xy and yx.

Proof. Given the previous lemma, to complete our derivation
we need to obtain the tableau equalities txyi,j = tyxj,i . In
polynomial calculus, we get each equality with one subtraction
step with the equations txyi,j = xiyj and tyxj,i = yjxi. So
deriving these equalities takes an additional n2 polynomial
calculus steps.

In cutting planes, it takes 3 linear inequalities (clauses) to
represent a constraint txyi,j = xiyj . From these, we can derive
that txyi,j = tyxj,i in eight steps. Hence, deriving the tableau
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equalities takes 8n2 cutting planes steps. Afterwards, it takes
two cutting planes steps to carry out each of the 3n2+1 linear
combination steps of Lemma III.1.

In cutting planes we can use proposition II.4 to
prove bit-level equality from the equation

∑n−1
i=0 2i(xy)i −∑n−1

i=0 2i(yx)i = 0, which gives the following corollary.

Corollary III.3. There is a length-O(n2) cutting planes
derivation yielding all of the 2n equalities (xy)i = (yx)i from
the array multiplier circuits xy and yx.

For other ring identities such as distributivity, we no longer
have straightforward equalities between the tableau variables
on either side of the identity. For distributivity, the natural
generalization of these tableau variable equalities contains
nonlinear terms. Before we give our cutting planes proofs, we
introduce the (k, d)-cutting planes proof system in the next
section as a convenient way to work with nonlinear terms
within cutting planes.

IV. (k, d)-CUTTING PLANES PROOFS

Our cutting planes multiplier proofs will be written in a
more convenient format that allows for a limited number of
nonlinear terms in each inequality. Although cutting planes
proofs only allow the use of linear inequalities, we will also be
able to efficiently represent a large class of nonlinear Boolean
inequalities using sets of linear inequalities.

Definition We say that a polynomial inequality φ on the
Boolean variables X is (k, d)-nonlinear if is written in the
form

`(X) +
k∑
i=1

`imi ≥ b

where `(X) is an integer linear form (i.e., `(X) =
∑
i cixi),

each ` ∈ {`1, . . . , `k} is a non-negative integer linear form
(i.e., ` =

∑
i cixi and each ci ≥ 0), each mi is a degree at

most d − 1 monomial with coefficient +1 or −1, containing
only variables disjoint from `i, and lastly, b is an integer.

We emphasize that this proof system distinguishes between
inequalities φ and φ′ that are semantically equivalent, but
are syntactically different due to different factorizations. For
example, the inequality (x1+x2)y1 ≥ b is not considered to be
the same as the inequality x1y1+x2y1 ≥ b. The first inequality
is (1, 2)-nonlinear while the second is (2, 2)-nonlinear. In sim-
ulating (k, d)-nonlinear inequalities by ordinary linear ones,
these two inequalities will be represented by two different
(though semantically equivalent) sets of linear inequalities.

Definition Let CP+(k,d) denote the (k, d)-cutting planes
proof system. Each line is a (k, d)-nonlinear inequality on a
set of Boolean variables {xi}. Its rules are as follows. The
literal axioms are the same as in CP: for each variable xi
we have xi ≥ 0 and −xi ≥ −1. The division rule and linear
combination rule from CP generalize as one would expect.
Writing `(X) =

∑
i(c · ai)xi:

∑
i(c · ai)xi +

∑
i(c · `i)mi ≥ b∑

i aixi +
∑
i `imi ≥ d bce

And for any α, β ∈ N, as long as the result is (k, d)-
nonlinear:∑

i `imi + `(X) ≥ b,
∑
j `
′
jm
′
j + `′(X) ≥ b′∑

i α`imi + α`(X) +
∑
j β`

′
jm
′
j + β`′(X) ≥ αb+ βb′

The factoring rule is that if the (k, d)-nonlinear inequality
φ contains two terms `m, `′m with the same monomial m,
then we can factor these into term (`+ `′)m. Syntactically:

`(X) +
∑
i `imi + `m+ `′m ≥ b

`(X) +
∑
i `imi + (`+ `′)m ≥ b

.

The distributing rule is the reverse of the factoring rule,
except we can only distribute “one at a time”. For example,
rewriting (10y1 + 8y2)x1x2x3 → 10y1x1x2x3 + 8y2x1x2x3
would require 8 applications of the distributing rule below. For
a non-negative linear form ` =

∑
i cixi, where each ci ≥ 0,

define max(`) =
∑
i ci. Because of a technical detail related

to the simulation size, we require that the two inequalities
max(`) ≥ ` ≥ 0 have been derived from the literal axioms
before making this inference:

`(X) +
∑
i `imi + (`+ yr)mp ≥ b max(`) ≥ ` ≥ 0

`(X) +
∑
i `imi + `mp + yrmp ≥ b

.

The multiplication rule permits the multiplication of an in-
equality φ by a variable z, provided that the resulting inequal-
ity φz is (k, d)-nonlinear. Decomposing `(X) = `(X)+ −
`(X)− into a sum of positive terms `(X)+ and negative terms
`(X)−:

`(X)+ − `(X)− +
∑
i `imi ≥ b

`(X)+ z − `(X)− z +
∑
i `imiz − bz ≥ 0

.

Theorem IV.1. Fix a pair of positive integers k ≥ 1 and
d ≥ 2. The cutting planes proof system CP p-simulates the
CP+(k,d) proof system. In particular, a CP+(k,d) proof of s
lines can be simulated by a cutting planes proof of at most
(k + 4)dks lines.

The idea of the proof of Theorem IV.1 is to find a tight set of
at most d linear upper bounds for each degree d nonlinear term.
To simulate an inequality with k nonlinear terms of degree at
most d, we use the set of at most dk linear inequalities obtained
by plugging in every combination of upper bounds for each
nonlinear term. The full details of this simulation can be found
in [34].

V. OPTIMAL CUTTING PLANES MULTIPLIER PROOFS

In the previous proof of commutativity, we were able to
give cutting planes proofs without including nonlinear terms.
However, when giving proofs for distributivity and other
larger identities, nonlinear terms are difficult to avoid. This
is where the (k, d)-cutting planes format is convenient for
expressing O(n2) length cutting planes proofs of distributivity.
We generalize these proofs for distributivity to obtain O(n2)
length proofs for a large class of degree two ring identities.
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In the first half of these proofs, we sum up the adder-
constraints in each ripple-carry adder circuit x + y to derive
the “conservation of weight” equation

∑
i 2i(xi + yi) =∑

i 2i(x + y)i, and also in each multiplication circuit xy to
derive the “conservation of weight” equation

∑
i,j 2i+jtxyi,j =∑

i 2i(xy)i.
This section focuses on the second half of the proof, where

the goal is to show that both sides hold equal weight in
their multiplier tableau variables. The idea is to derive an
equation ρ(i, j) relating the (i, j)-th tableau entry of each
multiplier. Fixing j and summing these equations along i gives
an equation ρ(j) relating the j-th rows of each multiplier.
Finally, adding together the equations ρ(j) yields the desired
equation for the full multiplier tableaus.

A. Distributivity

Theorem V.1. There is a length O(n2) CP proof that the
circuits (x+y)z and xz+yz for length n bit-vectors x,y, z
have equal outputs.

Proof. We will give a length O(n2) proof in CP+(5,2). By
Theorem IV.1, this implies that there is an equivalent cutting
planes proof that is only a constant factor larger. We begin
with the following lemma, which gives a small derivation that
the weight of the j-th row of the multiplier (x + y)z is the
same as the combined weight of the j-th rows of multipliers
xz and yz.

Lemma V.2. For each j ∈ [0, n − 1] there is a length
O(n) derivation in CP+(5,2) of the equality ρ(j), defined as:∑n
i=0 2i+j ·t(x+y)zi,j =

∑n−1
i=0 2i+j ·(txzi,j+t

yz
i,j). from the circuits

(x + y)z and xz + yz.

Proof. Fix j ∈ [0, n−1]. We give a constant length derivation
for each cell-wise constraint ρ(i, j), defined for i ∈ [1, n− 1]
as

t
(x+y)z
i,j = txzi,j + tyzi,j + cx+yi−1 zj − 2cx+yi zj

and defined for i = 0 and i = n the same way, absent the
non-existing variables cx+y−1 , cx+yn , txzn,j and tyzn,j . Adding up
the constraints ρ(i, j) will yield ρ(j).

Start with the equation xi+yi+ cx+yi−1 −2cx+yi − (x+y)i =
0, given by the i-th adder in the ripple-carry adder (x + y).
Multiplying this equation by zj , we obtain the (5, 2)-nonlinear
equation xizj + yizj + cx+yi−1 zj − 2cx+yi zj − (x + y)izj = 0.

Substituting in the tableau variables t(x+y)zi,j , txzi,j , t
yz
i,j gives us

ρ(i, j).
To derive ρ(j) we add together the constraints ρ(i, j) so that

the carry terms telescope: We start with ρ(n, j). Use linear
combination to derive the equation 2ρ(n, j) + ρ(n− 1, j):

2t
(x+y)z
n,j + t

(x+y)z
n−1,j = txzn−1,j + tyzn−1,j + cx+yn−1zj .

Repeating this step for ρ(n−2, j), . . . , ρ(0, j) gives ρ(j).

The rest of the proof combines equations ρ(j) given by
Lemma V.2 with the conservation of weight equations. We first

observe that combining the conservation of weight equations
gives us, in a constant number of steps, the two equations

2n∑
i=0

2i · (xz + yz)i =
n−1∑
j=0

n−1∑
i=0

2i+j · (txzi,j + tyzi,j) (1)

2n∑
i=0

2i · ((x+ y)z)i =
n−1∑
j=0

n∑
i=0

2i+j · t(x+y)zi,j . (2)

Sum all of the equalities ρ(j) to derive the equation ρ, stating
that both sides have equal weight in their tableau variables:∑
i,j 2i+j ·(txzi,j+t

yz
i,j) =

∑
i,j 2i+j ·t(x+y)zi,j . Combine this with

equations 1 and 2 to obtain the final result:
∑
i 2i ·(xz+yz)i =∑

i 2i · ((x+ y)z)i.

Notice that we only used the structure of the multipliers
(x + y)z, xz and yz to derive the conservation of weight
equations relating the sum of tableau variables to the output
of the multiplier. The above proof is thereby compatible with
any integer multiplier for which we can efficiently derive these
conservation of weight equations. For example, we obtain
O(n2) length proofs for Wallace tree multipliers using a final
stage ripple-carry adder. In comparison, the best prior proof
known for, say, checking that the middle pair of bits of an array
multiplier and a Wallace tree multiplier are equal, was the
quasi-polynomial size nO(logn) resolution proof given in [6].

Reversing the order of multiplier inputs only has the effect
of permuting the order of tableau variables, so the above proof
also immediately generalizes to identities like z(x + y) =
zx+ xz that mix distributivity and commutativity.

B. 2-Colorable identities

In this section we state some theorems that we can obtain
by generalizing the ideas behind the proofs for the identity
(x + y)z = xz + yz to provide O(n2) length cutting planes
proofs for larger instances of distributivity. The proofs of these
theorems may be found in [34].

Theorem V.3. Let x1,x2, . . . ,xs and y1,y2, . . . ,ys′

be length n bit-vectors. Define the circuit L as
(x1 + x2 + . . .+ xs)(y1 + y2 + . . .+ ys′). Also define
the circuit R as

(∑
α,β xαyβ

)
, representing the fully

expanded version of L. There is a length O(n2) cutting
planes proof that circuits L and R have equal outputs.

Theorem V.3 gives us O(n2) cutting planes proofs for fixed
ring identities that can be written as sum of independent bit-
vector distributing or factoring steps. However, there exist
identities such as x(y + z) + wz = xy + (x + w)z which
cannot be decomposed into a sum of independent distributing
and factoring components. Nevertheless, we can still give an
O(n2) length proof of this identity. We define the notion of
a 2-colorable degree two identity to identify the general class
of ring identities for which our technique can derive O(n2)
length proofs.

Definition Let L = R be a degree two ring identity. A 2-
coloring for L = R is an assignment of either the color red or
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blue to each bit-vector, with multiplicity (so a bit-vector may
appear twice with different colors), such that: (1) each bit-
vector in a sub-expression (x1 +x2 + . . .+xr) has the same
color as the bit-vector representing the sub-expression, (2)
two sub-expressions that are multiplied together have opposite
colors, and (3) the colored version of L = R, where a blue
input bit-vector colored blue xi is distinguished from its red
counterpart xi, is still a valid ring identity.

For example, (x + y)z = xz + zy has the 2-coloring
(x + y)z = xz+ zy. The more general form of distributivity
in Theorem V.3 clearly always has an 2-coloring. Lastly,
the identity x(y + z) + wz = xy + z(x + w) has the 2-
coloring x(y + z) + wz = xy + z(x + w). An example of
an identity without a 2-coloring is x(y + z) + w(x + y) =
y(x + w) + x(z + w).

Theorem V.4. Let L = R be a 2-colorable degree two ring
identity on length n bit-vectors x1, . . . ,xs. There is a length
O(n2) cutting planes proof that the circuits L and R have
equivalent outputs.

VI. EXPERIMENTS

The goal of our experiments was to evaluate the potential
of using cutting planes solvers to reason with mixtures of
multiplication and bit-level logic. Such problems are a key
weakness of using a SAT-based approach to “bit-blasting”.
We found several types of problems where pseudo-Boolean
solvers performed well out-of-the-box. These include checking
the word-level equivalence, commutativity, or correctness of
different multipliers, extracting bit-equalities from word-level
equalities, and verifying nonlinear bit-vector inequalities.

In our experiments, we used an Intel Core i7-6700K CPU at
4.00GHz with a memory limit of 8GB. The wall-clock time
limit was set to 1200 seconds. We list experiment times in
seconds (wall-clock time) and write TO if the time limit of
1200 seconds was exceeded. Our benchmarks are available
at [35].

We used two pseudo-Boolean solvers, each equipped with
a different form of cutting planes reasoning. The first, Sat4j-
CP [33], employs saturation in its conflict analysis. The
second solver, RoundingSat [21], [48], instead uses division;
we used the new multi-precision version of the solver for
which we could also log and separately verify the derivations
it used.

Our experiments focused on integer multipliers with n-bit
inputs and 2n bits of output. We report results on three
different circuits to represent multiplication: array, diagonal,
and Wallace-tree multipliers with final stage ripple-carry adder.
As noted in the introduction, we directly represent the adder
constraints as two inequalities instead of as a set of clauses
and define a “spec-equation multiplier” without a circuit by
simply using the specification equation

n−1∑
i,j=0

2i+jtxyi,j −
2n−1∑
i=0

2i(xy)i = 0

TABLE I
Time to prove equivalences between multipliers using Sat4j and

RoundingSat. We give the time to prove equivalence the word-level, the time
to extract the individual bits of the word-level equivalence, and the sum of

these gives the total time to prove bit-level equivalence. We compare
performance to the algebraic approach of [28]

. Sat4j-CP RoundingSat
Instance n Word-level Extract Bit-level

32 6 1 7
array 64 8 6 14

x · y = y · x 128 25 41 66
256 171 158 329

32 7 1 8
diagonal 64 7 6 13

x · y = y · x 128 25 41 66
256 172 158 330

32 6 1 7
array 64 18 6 24

spec-eqn 128 135 41 176
256 TO N/A TO
32 4 1 5

diagonal 64 18 6 24
spec-eqn 128 129 41 170

256 TO N/A TO
32 2 1 3

diagonal 64 5 6 11
≡ array 128 16 41 57

256 102 158 260
Gröbner [28]

Instance n Word-level Extract Bit-level
32 1 N/A N/A

gate-array 64 3 N/A N/A
x · y = y · x 128 27 N/A N/A

256 273 N/A N/A
32 1 N/A N/A

gate-array 64 2 N/A N/A
spec-eqn 128 14 N/A N/A

256 136 N/A N/A

Pseudo-Boolean benchmarks with array, diagonal, or spec-eqn used our
generator. Gate-level array multipliers were generated by Boolector [43].

TABLE II
Time to prove equivalences with Wallace tree multipliers using Sat4j and

RoundingSat.

. Sat4j-CP RoundingSat
Instance n Word-level Extract Bit-level

16 1 1 2
Wallace 32 5 1 6

x · y = y · x 48 TO N/A TO
64 TO N/A TO
16 1 N/A N/A

Wallace 32 5 N/A N/A
≥ spec-eqn 48 65 N/A N/A

64 360 N/A N/A
16 1 1 2

array 32 2 1 3
≡ Wallace 48 45 3 48

64 41 6 47

along with the partial product constraints txyi,j = xiyj . In
these two ways, the pseudo-Boolean format allows us to “bit-
blast” multiplication, along with other word-level functions,
to a higher-level description than CNF while maintaining full
bit-precision.

Our first set of experiments, presented in Table I, uses
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the pseudo-Boolean solvers Sat4j-CP and RoundingSat to
verify the word-level and bit-level equivalence of different
multiplier circuits. More precisely, we use Sat4j-CP to prove
an equation of the form

∑
i 2i(si − s′i) = 0 stating that

the total weight of the outputs s, s′ is the same for the
two multipliers. Then we have RoundingSat deduce, from
this equation, each equality si = s′i individually in order
to prove equivalence at the bit-level. Performance on bit-
extraction scaled particularly well with the right choice of
pseudo-Boolean solver, as shown in Table III, which also
includes a comparison with the theoretical lower bound we
showed for algebraic methods. Using these two steps, we
can efficiently check the commutativity of array, diagonal,
and Wallace-tree multipliers, as well as several equivalences
between array, diagonal, and spec-equation multipliers. We can
also check some of these properties of Wallace-tree multipliers
for up to 32 or 64 bits.

An important step for showing word-level equivalence was
to do some basic pre-processing to find equivalent partial
products (txyi,j variables). Adding these equivalences was key
to obtaining efficient solve times in Sat4j-CP. In contrast,
we found that adding these equivalences did not help SAT-
based solvers. We note that most bit-vector solvers, and many
SAT solvers, already perform similar pre-processing to find
equivalent variables; current pseudo-Boolean solvers based on
cutting planes do not yet have such pre-processing.

To provide some context for these results, we compared the
performance of our pseudo-Boolean approach to the algebraic
approach of [28], which is currently the fastest method for
verifying these properties. We replicated their verification of
the commutativity and correctness of a simple gate-level array
multiplier “btor”, generated by Boolector, by using their tool,
AMulet, in our environment to obtain the solve times at the
bottom of Table I. We note that AMulet, is also capable
of similarly fast solve times for more complicated gate-level
multipliers such as Booth-encoded Wallace-tree multipliers.
We direct interested readers to [28] for further experiments
using the algebraic approach to verify commutativity, cor-
rectness, and equivalence of these other gate-level multiplier
architectures.

Current pseudo-Boolean solvers have limited reasoning ca-
pabilities for these lower level multipliers. In particular, these
solvers degenerate to SAT-based reasoning when given a CNF
input. Our focus is not so much on verifying a large spectrum
of multiplier circuits as on bit-vector solving, where we are
free to choose the most efficient way to represent bit-vector
multiplication.

We see that for simple array and diagonal multipliers,
our approach (on adder-level multipliers) achieves comparable
times to the algebraic approach (on gate-level multipliers) for
proving commutativity and word-level equivalence. Further-
more, we are able to efficiently extract each of the individual
bit-level equalities that a word-level equality implies.

For Wallace-tree multipliers with a final stage ripple-carry
adder (wt-rca), we could check its equivalence with an array
for 64 bits within 1 minute. We could also check commutativ-

TABLE III
Time in seconds to prove the equality s0 = s′0 from the equation∑n−1

i=0 2i(si − s′i) = 0 for the cutting planes solvers RoundingSat (RS) and
Sat4j-CP, compared to the SAT-based solvers Sat4j-Res and NaPS [49]. We

also compare with the polynomial calculus lower bound given by
Corollary II.3.

n RS Sat4j-CP Sat4j-Res NaPS #monomials
12 .001 7 .4 .1 7
16 .001 TO 3 2 20
20 .001 81 39 54
24 .001 TO 208 148
28 .002 Error 403
32 .002 1096
64 .009 3× 106

128 .04 2× 1013

256 .2 2× 1027

512 .4 1× 1055

ity for 32 bits in 5 seconds. However, we hit time-out on larger
instances of 48 or 64 bits. We were also unable to completely
verify the equivalence of a wt-rca and spec equation multiplier
for 32-bit instances, though we could show that the the output
of the wt-rca is at least as large as the output of the spec
equation in 5 seconds. We see that Sat4j-CP has a harder time
with these more complicated multiplier architectures.

Our other experiments, presented in Table IV, use the solver
RoundingSat to verify some nonlinear bit-vector inequalities
involving untruncated multiplication and the operations “|” for
bit-wise OR, “&” for bit-wise AND. We use these bit-wise
operations to apply the bit masks “| k” and “&k”, where k is
set to the constant alternating bit-string (10)(n/2). (This value
was an arbitrary choice that contains a mix of 1s and 0s;
we observed similar performance across all solvers with other
values of k.) The inequalities listed follow from thinking of
“|” and “&” as, respectively, computing the bit-wise maximum
and minimum of their inputs.

We compare RoundingSat’s performance on these inequal-
ities against the bit-vector solvers Boolector, Yices2, Z3 and
CVC4. Our inputs to these bit-vector solvers used the word-
level format SMT-LIB2 [3] to allow for full use of word-
level reasoning and other non-SAT capabilities. We found
that these bit-vector solvers (with the exception of Boolector)
generally exceeded the time limit at 20 bits. On the other hand,
when we “bit-blasted” multiplication using the spec-equation,
RoundingSat outperformed all of the bit-vector solvers, with
the exception of last inequality (x | k)(y+1) ≥ ky+x, where
Boolector won out by a few bits.

VII. CONCLUSIONS & DIRECTIONS

In this paper, we have described a new approach to deciding
nonlinear bit-vector formulas: include 1-bit adders among the
set of essential building blocks along with the usual Boolean
operations and express properties using pseudo-Boolean for-
mulas rather than CNF formulas during “bit-blasting”. We
have shown, both experimentally and in principle, how pseudo-
Boolean solvers based on cutting planes reasoning, when
given these new bit-blasted formulas, can achieve levels of
performance comparable to, or better than, the best alterna-
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TABLE IV
Time to prove bit-vector inequalities containing both multiplication and

bit-level operations. We compare RoundingSat (RS), Boolector 3.2.0 (Btor),
Z3 4.8.7, Yices 2.6.2 and CVC4.

Inequality n RS Btor Z3 Yices2 CVC4
16 17 14 21 31 44
20 11 136 TO TO TO

(x | k)z ≥ kz 24 16 TO
28 501
32 TO
16 .06 10 15 172 31
20 .5 117 1154 TO TO

kz ≥ (x&k)z 24 .7 TO TO
28 .6
32 .6
16 .2 14 22 31 44
20 7 TO TO TO TO

(x | k)z ≥ (x&k)z 24 2
28 629
32 TO
16 .008 19 43 114 50
20 .05 351 TO TO TO

(x | z)(z | k) ≥ kx 24 .1 TO
28 .2
32 .2
16 .04 10 32 100 48
20 .07 243 TO TO TO

kx ≥ (x&z)(z&k) 24 .1 TO
28 23
32 7

(x | k)(y + 1) 16 .4 25 29 38 118
≥ ky + x 20 TO 342 TO TO TO

24 TO

Bit-vector k is the value (10)(n/2). & is bit-wise AND, | is bit-wise OR.

tive methods on a number of natural multiplier verification
examples.

In particular, we have given O
(
n2
)
-length cutting planes

proofs for a broad class of properties of multipliers, matching
the optimal efficiency of the best Gröbner basis algorithms
for these properties at the word level, while also being
able to extract bit-level properties. Importantly, Gröbner basis
algorithms are not known to be able to extract such bit-
level properties efficiently: We have shown that such methods
require exponential time to extract bit-level consequences from
word-level properties.

An interesting open question is whether polynomial size
cutting planes proofs can be found for degree three identities
such as associativity. Although word-level associativity has an
O(n2) length proof in polynomial calculus, this cannot be used
to show the individual bit-level equalities.

We also have shown experimentally that for several of
these properties on inputs of up to 256 bits — namely, com-
mutativity, correctness, and equivalence — pseudo-Boolean
solvers can achieve performance comparable to that of the
best algebraic solvers at the word-level, and, in contrast to
algebraic methods, also solve these problems at the bit-level.

Finally, we have experimentally verified a number of crafted
bit-vector inequalities, each involving a mixture of multi-
plication and bit-wise operations and have shown that our
pseudo-Boolean approach can achieve much better verification
performance than several of the best current bit-vector solvers.

The idea of using pseudo-Boolean solving for verifying
nonlinear bit-vector formulas appears not to have been ex-
plored previously. One possible explanation for this is that
when pseudo-Boolean solvers are run purely on CNF inputs,
their reasoning collapses to that of CDCL SAT solvers, only
much less efficient ones because of the more involved data
structures and algorithms required in the pseudo-Boolean case.
Our use of 1-bit adders as fundamental structures is critical to
achieving the performance that we obtain.

Conflict-driven pseudo-Boolean solvers are still at a rela-
tively early stage of development, especially compared to the
25+ years of concerted effort directed at optimizing Gröbner
basis algorithms and CDCL solvers. In particular, there is
quite some variation in the different forms of conflict analysis
methods used, and some of these methods have been shown
to be quite weak. In fact, many solvers, such as NaPS [49]
and Open-WBO [40], do not use any cutting planes reasoning
and instead reduce the problem to SAT. Other shortcomings
in the cutting planes reasoning used in current solvers are
discussed in ([20], [23], [53]). In our experiments, different
conflict analysis methods worked best on different problems.
For example, we found that the saturation-based solver Sat4j-
CP worked much better than RoundingSat for checking word-
level equalities. On the other hand, the division-based solver
RoundingSat significantly outperformed Sat4j-CP when tasked
with extracting bit-equalities, and also for checking bit-vector
inequalities. This is in contrast with CDCL solvers where the
best ideas for conflict analysis have largely converged on a
single method that is used by all of the currently best solvers.

We view this work as providing a “call to arms” for pseudo-
Boolean solver development, focusing especially on features
that will be useful in verification of these kinds of bit-vector
problems. In particular, though our experiments validate the
pseudo-Boolean approach in principle, none of the solvers we
used allowed us to verify the properties for which we provided
more complex cutting planes proofs in Section V. Thus, there
is substantial scope for developing new methods and heuristics
for pseudo-Boolean solving that can carry out much more of
this cutting planes reasoning in practice.
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