
Declarative Local Search
for Predicate Logic

Tu-San Pham1(B), Jo Devriendt2, and Patrick De Causmaecker1

1 KU Leuven, Leuven, Belgium
san.pham@kuleuven.be

2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. In this paper we introduce a framework built on top of the
Knowledge Base System IDP, which allows local search heuristics to
be synthesized from their formal descriptions. It is introduced as a new
inference to solve optimization problems in IDP. To model a local search
heuristic, users need to specify its components, among which neighbour-
hood moves are the most important. Two types of neighbourhood moves,
namely standard moves and Large Neighbourhood Search moves, are
supported. A set of built-in local search heuristics are provided, allowing
users to combine neighbourhoods in different ways. We demonstrate how
the new local search inference can be used to complement the existing
solving mechanisms for logic programming.

Keywords: Heuristics · Local search · Knowledge representation ·
Predicate logic

1 Introduction

IDP (Imperative-Declarative Programming [2]) is a Knowledge Base System
(KBS) which consists of two main components: (i) a formal declarative language
that allows describing domain knowledge (as a knowledge base); and (ii) a set of
inference methods that allows solving a wide variety of tasks around a knowledge
base. Its language FO(·) is based on classical first-order logic (FO), extended
with inductive definitions, types, aggregates and arithmetics. In this paper, we
focus on IDP’s ability to solve combinatorial optimization problems, which is
provided through the inference method optimization using MiniSAT(ID) [3] as
the backend engine. As a CP-SAT-based solver, it shows limited performance on
many optimization problems, such as the assignment problem [4], or real-world
problems with large-sized instances. In the field of operational research, local
search heuristics have shown their ability to solve such problems successfully.

In this work, we introduce declarative local search, a framework that allows
specifying local search heuristics declaratively in IDP. Local search is provided
as a new inference method, serving as an alternative to solve optimization prob-
lems. To use the inference, beside a problem’s modelling, users need to specify

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 340–346, 2019.
https://doi.org/10.1007/978-3-030-20528-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_25


Declarative Local Search for Predicate Logic 341

necessary components of a local search heuristic, chief of which are the neigh-
bourhood moves. The initial idea was reported in [12] where only the modelling
of a single neighbourhood is supported. In this work, users can specify multi-
ple neighbourhoods and combine them in different ways using a set of built-in
heuristics and metaheuristics. Two types of moves are supported, namely stan-
dard moves and Large Neighbourhood Search moves. This work is similar in
spirit to [1], where neighbourhoods are declaratively modelled in the constraint
programming language MiniZinc [11]. The source code of the solver along with
all the modellings in this paper and experimental results can be found at [10].

Section 2 shortly introduces IDP, while the modelling of local search heuris-
tics is showcased in Sect. 3. In Sect. 4, we present how IDP is extended with a
local search back-end to synthesize local search heuristics. Section 5 concludes
the paper.

2 Modelling TSP in FO(·) with IDP

A thorough introduction to IDP and its language FO(·) can be found at
dtai.cs.kuleuven.be/software/idp. An IDP specification (or modelling) consists
of different components. The four most important components are: vocabularies
specifying the symbols and types used; theories specifying problem constraints;
structures representing both input data and feasible solutions; and terms for
objective functions. These are combined and reused through imperative code
written in the Lua scripting language [8]. As a running example we employ
the Travelling Salesman Problem (TSP), which consists of finding the shortest
Hamiltonian cycle of a given graph. A model for the TSP in IDP can be found
at goo.gl/TTv85c.

Example 1 (TSP). The four components of the TSP modelling are as follows:

– The vocabulary V specifying the parameters (Node, Distance, Depot),
whose values define a problem instance, and the decision variables (Path,
Reachable), whose values define a solution of the problem.

– The theory T built over V , specifying the problem’s constraints:

∀x : ∃!y : Path(x, y).
∀x : ∃!y : Path(y, x).
{ Reachable(Depot).

Reachable(x) ← ∃y : Reachable(y) ∧ Path(y, x).}
∀x : Reachable(x).

The first two lines represent the flow constraints. Line three and four feature
an inductive definition which defines the Reachable predicate, starting from
the depot, and inductively adding neighbouring nodes according to the links
present in Path. The last line then states that all nodes must belong to
Reachable, forming a subtour elimination constraint.

https://dtai.cs.kuleuven.be/software/idp
http://goo.gl/TTv85c


342 T.-S. Pham et al.

– The term Σ(x,y)∈PathDistance(x, y) represents the total travelling distance
and serves as objective function obj.

– A (partial) structure S describing parameter values.

3 Modelling Local Search Heuristics

Local search is a heuristic which iteratively applies local changes – known as
(neighbourhood) moves – on solutions to improve solution quality. In a sim-
ple descent search, a solution becomes the starting point of a new iteration
if it improves the current solution. Descent search ususally ends up in a local
optimum, which can be quite far away from optimality. Metaheuristics are local
search-based heuristics, which use some diversification techniques to escape from
local optima. In this paper, “local search heuristics” indicate both heuristics and
metaheuristics.

To model a local search algorithm in our framework, users first need to extend
the knowledge base with a moves modelling. These are then passed to IDP as
inputs to synthesize the desired local search algorithm – IDP is extended with
some “off-the-shelf” (meta) heuristic techniques to combine moves in various
ways. The following local search techniques are implemented: first improve-
ment search, best improvement search, Tabu search [7], Large Neighbourhood
Search [13] and Iterated Local Search [9]. Two types of moves are supported:
standard moves and Large Neighbourhood Search moves.

3.1 Standard Neighbourhood Moves

To model a standard move, the following information is crucial: (i) how to get
valid moves given a solution; (ii) how to compute a neighbour solution given a
move and a current solution; (iii) how to evaluate a move. To represent these
pieces of information, a user should add the following components to the specifi-
cation: (1) a vocabulary Vmove consisting of functions and predicates represent-
ing a move; (2) a query getValidMoves built over V , describing how to get valid
moves from a given solution; (3) a theory Tnext built over Vnext containing a
definition for a neigbhour solution given a solution and a move, with Vnext is the
vocabulary representing the neighbour solution; and (4) a query getDeltaObj cal-
culating the difference between the objective values of the current solution and
the neighbour solution resulting from a move.

Example 2. To illustrate the standard move modelling, we hereby model the
2-opt move for the TSP, where two edges are removed from the solution and
replaced by two new edges (see Fig. 1). To model the 2-opt move, an auxiliary
predicate Before represents the order of nodes appearing along the solution path.

{∀x : Before(x, x).
∀x, y : Before(x, y) ←Path(x, y) ∧ y �= Depot.

∀x, y : Before(x, y) ←∃z : Path(x, z) ∧ Before(z, y) ∧ z �= Depot.}



Declarative Local Search for Predicate Logic 343

Fig. 1. 2-opt move of the TSP

Vmove consists of 4 constants S1, E1, S2 and E2 representing the
four nodes involved in the 2-opt move. Vnext consists of the predicate
next Path(Node,Node), whose values define a neighbour solution. The 2-opt
move replaces two edges (S1, E1), (S2, E2) by (S1, S2), (E1, E2), and reverses
the segment from E1 to S2. This mapping is defined in the theory Tnext as
below:

{next Path(S1, S2).

next Path(E1, E2).

next Path(x, y) ← Path(x, y) ∧ Before(y, S1) ∧ y �= Depot.

next Path(x, y) ← Path(x, y) ∧ Before(E2, x) ∧ E2 �= Depot.

next Path(y, x) ← Path(x, y) ∧ Before(E1, x) ∧ Before(y, S2) ∧ y �= Depot.}

To complete the modelling, two queries are specified. Query getDeltaObj
evaluates a move by calculating the difference between the total travelling time
of the current solution and its neighbour: Δ = dS1S2 +dE1E2 − (dS1E1 +dS2E2).
Query getV alidMoves defines valid moves of a given solution, which are the
tuples of edges (S1, E1) and (S2, E2) appearing in this order on the solution
path.

3.2 LNS Moves

Large Neighbourhood Search (LNS) [13] allows exploring a large neighbourhood
of a solution by alternating a destroy and a recreate phase to gradually improve
the objective value. In the destroy phase, a part of the solution is destroyed,
resulting in a partial solution which is then repaired in the recreate phase.
Destroying the “bad quality” parts of a solution is more likely to lead to a
better solution in the recreate phase. Therefore, we support users to model the
destroy phase in LNS moves, while the recreate phase is handled by the solver.

To get an intuition on how the destroy phase should be modelled, let us
consider an example of the nurse scheduling problem (NSP) where shifts are
assigned to nurses, subject to more complex constraints. An example of a mean-
ingful LNS move for the NSP is to destroy the schedules of two, often randomly
selected, nurses whose preferences are violated, and then reschedule them in the
recreate phase. To model this move, users should be allowed to specify which
parts of the solution can be destroyed (e.g. shift assignments to nurses whose
preferences are violated).



344 T.-S. Pham et al.

With that intuition in mind, an LNS move can be modelled in our framework
by specifying: (i) random variables – symbols which the framework can randomly
interpret with (tuples of) values (domain elements); (ii) the set of valid inter-
pretations to the random variables; and (iii) which parts of the solution should
be destroyed given the selected values for the random variables. The first piece
of information (i) is encoded in a vocabulary Vmove while (ii) is given through
a query getRandomVars. By solving the query, possible options for the values
to the random variables are obtained, from which the solver selects randomly.
Given the chosen values to the random variables, users then can specify parts
of the solution to be destroyed through (iii) the query getMoves. Besides a user-
defined LNS move, the framework also supports automatic LNS moves, where
parts of the solution to be destroyed are chosen randomly. An example of an
LNS move modelling of the running example of the TSP is presented below.

Example 3. Each solution of the TSP is a Hamiltonian path that visits all
vertices of the graph. Let say users want to destroy a part of this path, from
node S to node E, given that S appears before E in the path starting from
the depot. Vocabulary Vmove then consists of two constants S and E. S and E
are random factors, which are chosen at each iteration of the algorithm. Query
getRandomVars specifies valid values of S and E:

{s, e | Before(s, e) ∧ s �= e ∧ e �= Depot}

Given the chosen values of S and E, the part to be removed from the solution
in the destroy phase of the LNS is the path from S to E, which is encoded in
query getMove:

{x, y | Before(S, x) ∧ Before(y,E)}

4 Metaheuristics Framework

In this section, we explain how the descent first improvement search (FI) with a
single standard move is synthesized in IDP. The synthesis of other local search
algorithms with standard moves is straightforward given the description of FI
while the synthesis of the LNS is straightforward from the description of LNS
moves in Sect. 3.2.

Let us first recall the components of the modelling. A problem’s modelling
consists of a vocabulary V , a theory T , a query getObjVal and a term obj.
Each neighbourhood move modelling consists of a vocabulary Vmove, a query
getValidMoves, a theory Tnext , and finally a query getDeltaObj . Given an input
instance, we let IDP execute its model expansion inference to obtain the first
feasible solution, which will serve as the initial point of our FI search. At each
iteration, a set of valid neighbourhood moves Ω from the current solution s is
achieved by solving the query getValidMoves, using IDP’s query solving infer-
ence. Each move ω ∈ Ω is then evaluated by solving the query getDeltaObj on sω,
where sω is a joined structure between the current solution s and the move ω. If



Declarative Local Search for Predicate Logic 345

the obtained delta objective improves the solution, the corresponding neighbour
solution is created by applying model expansion on sω over theory Tnext , which
contains a definition applying the move to the current solution. This neighbour-
ing solution is the starting point of the next iteration, until a stopping criterion
is met and the best solution found is returned.

Given this declarative local search framework, a user can easily mix-and-
match several modelled neighborhoods and (meta) heuristics. For example, we
modelled a set of neighbourhood moves, including three standard moves and
2 LNS moves, for the running example TSP, from which we synthesized no
less than 15 local search heuristics [10]: 9 local search configurations based on
first improvement, best improvement and tabu search for each standard move; 2
LNS configurations corresponding to two LNS moves; and 4 ILS configurations
with different combination of simple local search configurations. We also ran a
preliminary experiment comparing our framework to two black box approaches:
IDP’s minimization inference and optimization with clingo [6], both in their
default settings. These early results demonstrate the fast prototyping potential
of the framework: most of our local search heuristics outperformed IDP and
clingo, especially two among the four ILS configurations result in a less than
10% average deviation from optimality, which is 7 or 8 times better than the
two logic solvers. These results indicate that declarative local search could be a
good complement to existing logic solvers.

5 Conclusion

In this paper, we propose a local search framework that synthesizes local search
heuristics from their formal, declarative descriptions in predicate logic. Local
search is introduced as an alternative back-end for IDP to solve optimization
problems. The framework is illustrated by the modelling of local search heuristics
for the TSP and some preliminary experiments are conducted.

A thorough experimental analysis of our declarative approach is to be per-
formed in the future. Further work also includes extending the framework to
allow more flexibility in metaheuristics modelling. The combination between
user-defined neighbourhoods and automatically generated neighbourhoods [5] is
also interesting.

Acknowledgements. This research was supported by Swedish Research Council
grant 2016-00782, FWO research grant G.0922.13, and KU Leuven project C24/17/012.

References

1. Björdal, G., Flener, P., Pearson, J., Stuckey, P.J., Tack, G.: Declarative local-
search neighbourhoods in MiniZinc. In: Tsoukalas, L.H., Grégoire, É., Alamaniotis,
M. (eds.) IEEE 30th International Conference on Tools with Artificial Intelligence,
ICTAI 2018, 5–7 November 2018, Volos, Greece, pp. 98–105. IEEE (2018). https://
doi.org/10.1109/ICTAI.2018.00025

https://doi.org/10.1109/ICTAI.2018.00025
https://doi.org/10.1109/ICTAI.2018.00025


346 T.-S. Pham et al.

2. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: the IDP system. In: Declarative Logic Programming,
pp. 279–323. Association for Computing Machinery and Morgan & Claypool (2018)

3. De Cat, B., Bogaerts, B., Devriendt, J., Denecker, M.: Model expansion in the
presence of function symbols using constraint programming. In: 25th International
Conference on Tools with Artificial Intelligence, 4–6 November 2013, USA, pp.
1068–1075 (2013)

4. Devriendt, J.: Exploiting symmetry in model expansion for predicate and proposi-
tional logic. Ph.D. thesis, Informatics Section, Department of Computer Science,
Faculty of Engineering Science, February 2017

5. Devriendt, J., De Causmaecker, P., Denecker, M.: Transforming constraint pro-
grams to input for local search. In: The Fourteenth International Workshop on
Constraint Modelling and Reformulation, pp. 1–16 (2015)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP+ control:
preliminary report. arXiv preprint arXiv:1405.3694 (2014)

7. Glover, F., Laguna, M.: Tabu search. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 2093–2229. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4613-0303-9 33

8. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua - an extensible extension
language. Soft.: Pract. Exp. 26(6), 635–652 (1996)

9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

10. Modelling and instances (2019). https://github.com/tusanpham/
DeclarativeLocalSearch

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

12. Pham, T.-S., Devriendt, J., De Causmaecker, P.: Modelling local search in a knowl-
edge base system. In: Daniele, P., Scrimali, L. (eds.) New Trends in Emerging
Complex Real Life Problems. ASS, vol. 1, pp. 415–423. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00473-6 44

13. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

http://arxiv.org/abs/1405.3694
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/0-306-48056-5_11
https://github.com/tusanpham/DeclarativeLocalSearch
https://github.com/tusanpham/DeclarativeLocalSearch
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-030-00473-6_44
https://doi.org/10.1007/3-540-49481-2_30

	Declarative Local Search for Predicate Logic
	1 Introduction
	2 Modelling TSP in FO() with IDP
	3 Modelling Local Search Heuristics
	3.1 Standard Neighbourhood Moves
	3.2 LNS Moves

	4 Metaheuristics Framework
	5 Conclusion
	References




