
i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 233 — #1 i
i

i
i

i
i

Handbook of Satisfiability
Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh
IOS Press, 2020
c© 2020 Sam Buss and Jakob Nordström. All rights reserved.

233

Chapter 7

Proof Complexity and SAT Solving
Sam Buss and Jakob Nordström

7.1. Introduction

The satisfiability problem (SAT) — i.e., to determine whether a given a formula in
propositional logic has a satisfying assignment or not — is of central importance
to both the theory of computer science and the practice of automatic theorem
proving and proof search. Proof complexity — i.e., the study of the complexity
of proofs and the difficulty of searching for proofs — joins the theoretical and
practical aspects of satisfiability.

For theoretical computer science, SAT is the canonical NP-complete problem,
even for conjunctive normal form (CNF) formulas [Coo71, Lev73]. In fact, SAT
is very efficient at expressing problems in NP in that many of the standard NP-
complete problems, including the question of whether a (nondeterministic) Turing
machine halts within n steps, have very efficient, almost linear time, reductions to
the satisfiability of CNF formulas.1 A popular hypothesis in the computational
complexity community is the Strong Exponential Time Hypothesis (SETH), which
says that any algorithm for solving CNF SAT must have worst-case running
time (roughly) 2n on instances with n variables [IP01, CIP09]. This hypothesis
has been widely studied in recent years, and has served as a basis for proving
conditional hardness results for many other problems. In other words, CNF SAT
serves as the canonical hard decision problem, and is frequently conjectured to
require exponential time to solve.

In contrast, for practical theorem proving, CNF SAT is the core method for
encoding and solving problems. On one hand, the expressiveness of CNF formulas
means that a large variety of problems can be faithfully and straightforwardly
translated into CNF SAT problems. On the other hand, the message that SAT
is supposed to be hard to solve does not seem to have reached practitioners of
SAT solving; instead, there has been enormous improvements in performance in
SAT algorithms over the last decades. Amazingly, state-of-the-art algorithms for
deciding satisfiability — so-called SAT solvers — can routinely handle real-world

1Formally, these reductions run in quasilinear time, i.e. time at most n(logn)k for some
constant k. For these quasilinear time reductions of the Turing machine halting problem to
CNF SAT, see [Sch78, PF79, Rob79, Rob91, Coo88].

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 234 — #2 i
i

i
i

i
i

234 Chapter 7. Proof Complexity and SAT Solving

instances involving hundreds of thousands or even millions of variables. It is a
dramatic development that SAT solvers can often run in (close to) linear time!

Thus, theoreticians view SAT as being infeasible, while practitioners view
it as being (often) feasible. There is no contradiction here. First, it is possible
construct tiny formulas with just a few hundred variables that are totally beyond
reach for even the best of today’s solvers. Conversely, the large instances which
are solved by SAT solvers are based on problems that seem to be “easy” in
some sense, although they are very large. However, we currently lack a good
theoretical explanation for what makes these problems “easy”. Most SAT solvers
are general-purpose and written in a very generic way that does not seem to
exploit special properties of the underlying problem. Nonetheless, although SAT
solvers will sometimes fail miserably, they succeed much more frequently than
might be expected. This raises the questions of how practical SAT solvers can
perform so well on many large problems and of what distinguishes problems that
can be solved by SAT solvers from problems that cannot.

The best current SAT solvers are based on conflict-driven clause learning
(CDCL) [MS99, MMZ+01].2 Some solvers also incorporate elements of algebraic
reasoning (e.g., Gaussian elimination) and/or geometric reasoning (e.g., linear in-
equalities), or use algebraic or geometric methods as the foundation rather than
CDCL. Another augmentation of CDCL that has attracted much interest is ex-
tended resolution (ER). How can we analyze the power of such algorithms? Our
best approach is to study the underlying methods of reasoning and what they are
able or unable to do in principle. This leads to the study of proof systems such
as resolution, extended resolution, Nullstellensatz, polynomial calculus, cutting
planes, et cetera. Proof complexity , as initiated in modern form by [CR79, Rec75],
studies these system mostly from the viewpoint of the complexity of static, com-
pleted proofs. With a few exceptions (perhaps most notably automatability3 as
defined in [BPR00]), research in proof complexity ignores the constructive, algo-
rithmic aspects of SAT solvers. Nonetheless, proof complexity has turned out to
be a very useful tool for studying practical SAT solvers, in particular, because
it is a way to obtain mathematically rigorous bounds on solver performance.
Lower bounds on the complexity of proofs in a proof systems show fundamen-
tal limitations on what one can hope to achieve using SAT solvers based on the
corresponding method of reasoning. Conversely, upper bounds can be viewed as
indications of what should be possible to achieve using a method of reasoning, if
only proof search using this method could be implemented efficiently enough.

We want to stress, though, that the tight connections to proof complexity
come with a price. Since proof complexity studies what reasoning can be achieved
by a method in principle, ignoring the algorithmic challenge of actually imple-
menting such reasoning, it becomes very hard to say anything meaningful about
satisfiable formulas. In principle, it is very hard to rule out that a solver could
simply zoom in on a satisfying assignment right away, and this will of course
only take linear time. For unsatisfiable formulas, however, a (complete) solver
will have to certify that there is no satisfying assignment, and for many SAT

2A similar technique for constraint satisfaction problems (CSPs) was independently devel-
oped in [BS97].

3Automatability is sometimes also called automatizability.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 235 — #3 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 235

solving methods used in practice this is a computational task that is amenable
to mathematical analysis. This article, therefore, will focus almost exclusively on
unsatisfiable formulas. This is, admittedly, a severe limitation, but it is dictated
by the limitations of our current mathematical knowledge. There has been some
work on proof complexity of satisfiable formulas by reducing this to problems
about unsatisfiable subformulas (e.g., in [AHI05]), but the literature here is very
limited. Having said this, we want to point out that the setting of unsatisfiable
formulas is nevertheless very interesting, since in many real-world applications
proving unsatisfiability is the objective, and conventional wisdom is that such
instances are often the hardest ones.

This chapter is intended as an overview of the connection between SAT solv-
ing and proof complexity aimed at readers who wish to become more familiar
with either (or both) of these areas. We focus on the proof systems underlying
current approaches to SAT solving. Our goal is first to explain how SAT solvers
correspond to proof systems and second to review some of the complexity results
known for these proof systems. We will discuss resolution (corresponding to basic
CDCL proof search), Nullstellensatz and polynomial calculus (corresponding to
algebraic approaches such as Gröbner basis computations), cutting planes (cor-
responding to pseudo-Boolean solving), extended resolution (corresponding to the
DRAT proof logging system used for CDCL solvers with pre-/inprocessing), and
will also briefly touch on Frege systems and bounded-depth Frege systems.

We want to emphasize that we do not have space to cover more than a
small part of the research being done in proof complexity. Some useful mate-
rial for further reading are the survey articles [BP98a, Seg07] and the recent
book [Kra19]. Additionally, we would like to mention the authors’ own surveys
[Bus99, Bus12, Nor13]. The present chapter is adapted from and partially over-
laps with the second author’s survey [Nor15], but has been thoroughly rewritten
and substantially expanded with new material.

7.1.1. Outline of This Survey Chapter

The rest of this chapter is organized as follows. Section 7.2 presents a quick
review of preliminaries. We discuss the resolution proof system and describe the
connection to CDCL SAT solvers in Section 7.3, and then give an overview of some
of the proof complexity results known for resolution in Section 7.4. In Section 7.5
we consider the algebraic proof systems Nullstellensatz and polynomial calculus,
and also briefly touch on algebraic SAT solving. In Section 7.6 we move on to
the geometric proof system cutting planes and the connections to conflict-driven
pseudo-Boolean solving, after which we give an overview of what is known in
proof complexity about different flavours of the cutting planes proof system in
Section 7.7. We review extended resolution and DRAT in Section 7.8, and then
continue to Frege and extended Frege proof systems and bounded-depth Frege
systems in Sections 7.9 and 7.10. Section 7.11 gives some concluding remarks.

7.2. Preliminaries

We use the notation [n] = {1, 2, . . . , n} for n a positive integer. We write N =
{0, 1, 2, 3, . . .} to denote the set of all natural numbers and N+ = N \ {0} for the

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 236 — #4 i
i

i
i

i
i

236 Chapter 7. Proof Complexity and SAT Solving

set of positive integers.

7.2.1. Propositional Logic

A Boolean variable x ranges over values true and false; unless otherwise stated,
we identify 1 with true and 0 with false. A literal a over a Boolean variable x is
either the variable x itself (a positive literal) or its negation x (a negative literal).
We define x = x. It will sometimes be convenient to use the alternative notation
xσ, σ ∈ {0, 1}, for literals, where x1 = x and x0 = x. (In other words, xσ is the
literal that evaluates to true under the assignment x = σ.)

A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals over distinct variables.
The empty clause, with k = 0, is denoted ⊥. By convention, clauses are not
tautological ; i.e., do not contain any variable and its negation. A clause C ′ sub-
sumes another clause C if every literal from C ′ also appears in C. In this case,
C ′ is at least a strong a clause as C. A k-clause is a clause that contains at most
k literals. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. F is a
k-CNF formula if it consists of k-clauses. We think of clauses and CNF formulas
as sets: the order of elements is irrelevant and there are no repetitions.4

The width of a clause is the number of literals in it. Thus, a k-clause has
width at most k. In the rest of this chapter, k is assumed to be some arbitrary
but fixed constant unless stated otherwise. There is a standard way to turn any
CNF formula F into 3-CNF by converting every clause

a1 ∨ a2 ∨ · · · ∨ aw (7.1a)

of width w > 3 into the set of w−2 many 3-clauses

{a1 ∨ a2 ∨ y2} ∪ {yj−1 ∨ aj ∨ yj | 3 ≤ j < w− 1} ∪ {yw−2 ∨ aw−1 ∨ aw} , (7.1b)

where the yj ’s denote new variables. This conversion to 3-CNF often does not
change much from a theoretical point of view (however, there are some exceptions
to this rule, which we will discuss in the relevant context).

We typically use N to denote the size of a formula F , namely the total
number of occurrences of literals in F . (For a k-CNF formula with k = O(1),
N may instead denote the number of clauses in F ; this differs from the size of F
by at most a constant factor.)

A truth assignment is any mapping from variables to truth values 0 or 1. We
allow truth assignments to be partial , i.e., with some variables left unassigned. A
truth assignment is total if it assigns values to all variables under consideration.
We represent a (partial) truth assignment ρ as the set of literals set to true by ρ.
We write ρ (xσ) = 1 if xσ ∈ ρ, and ρ (xσ) = 0 if x1−σ ∈ ρ. If ρ does not assign
any truth value to x, we write ρ (xσ) = ∗. The assignment ρ satisfies a clause C
provided it sets at least one literal of C true; it falsifies C provided it sets every
literal in C false. It satisfies a formula F provided it satisfies every clause in F .

A formula F is satisfiable provided some assignment satisfies it; otherwise it
is unsatisfiable. We say that a formula F logically implies a clause C if every
total truth assignment ρ which satisfies F also satisfies C. In this case, we write
F � C. Since ⊥ is unsatisfiable, F � ⊥ is equivalent to F being unsatisfiable.

4It can be noted, though, that some SAT solvers implement formulas as multisets of clauses.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 237 — #5 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 237

7.2.2. Proof Systems

The principal task of a SAT solver is to determine whether a given formula F is
satisfiable or unsatisfiable. When F is satisfiable, there is always a short proof
of its satisfiability; namely, a satisfying truth assignment. Establishing that F is
unsatisfiable is generally done using some kind of proof system; proof complexity
studies the complexity of the possible proofs in different proof systems.

In what follows, we give a high-level mathematical description of what a
formal proof system is. Later sections will focus in more detail on concrete proof
systems that are relevant in the context of SAT solving, and these sections can
be read independently without appreciating all of the finer details below.

In the most general setting of proof complexity, one focuses on some lan-
guage L, i.e., an (infinite) set of strings over some (finite) alphabet of symbols,
and studies the complexity of proving that a given string x is in the set L. In this
abstract setting, a proof system for L is a binary predicate P(x, π) that takes as
input two strings x and π, is computable (deterministically) in time polynomial
in the sizes |x| and |π| of the inputs, and has two key properties:

Completeness: for all x ∈ L there is a string π (a proof) for which P(x, π)
evaluates to true;

Soundness: for all x 6∈ L it holds for all strings π that P(x, π) evaluates to
false.

Intuitively, completeness means that all valid statements are provable, whereas
soundness means that no fake proofs of invalid claims are accepted.

Informally, the strength of a proof system is measured by how small proofs it
can produce. The size of a formula or proof is equal to the number of symbols it
contains. The ideal scenario would be to have a proof system where all theorems
can be proven with at most a polynomial blow-up in size of the proof compared to
the size of the input. Formally, a proof system is said to be polynomially bounded
if for every x ∈ L there is a proof πx for x that has size at most polynomial in |x|.

It is common to measure the relative strengths of proof systems in terms of
the lengths of their proofs. Suppose P and P ′ are proof systems. We say that P ′
polynomially simulates P if, for all x ∈ L, the size of the shortest P ′-proof of x is
polynomially bounded by the size of the shortest P-proof of x.5

In the context of this survey, we will mostly focus on proving unsatisfiability
of CNF formulas. This means that we will deal with proof systems for the formal
language L consisting of all unsatisfiable CNF formulas. In this context, a proof
system is a polynomial-time algorithm for verifying the unsatisfiability of a given
formula F with the aid of a given proof π. Most of the proof systems relevant
for SAT solvers (such as resolution, Nullstellensatz, polynomial calculus, cutting
planes, et cetera) are such refutation systems designed for refuting unsatisfiable
formulas F . However, some proof systems in propositional logic (such as Frege
systems) instead produce proofs of valid formulas. For such proof system, the
language L under study consists of all tautological formulas. There is a duality

5In the literature, the terms “simulate”, “p-simulate” and “polynomially simulate” are used
more or less interchangeably, but sometimes coupled with the proviso that there is a polynomial
time algorithm which can produce a P ′-proof given a P-proof as input.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 238 — #6 i
i

i
i

i
i

238 Chapter 7. Proof Complexity and SAT Solving

between refutations and proofs in that the CNF formula F is unsatisfiable if and
only if its negation, the DNF formula ¬F , is valid (i.e., is a tautology). We will use
the term proof system to refer to both kinds of systems above. When discussing
refutation systems, we will frequently use the term proof (of unsatisfiability) for F
to refer to a refutation of F .

7.2.3. Complexity and Asymptotic Notation

One of the central tasks of proof complexity is to prove upper or lower bounds
on the complexity of proofs. That is, for a fixed proof system P and a class F
of unsatisfiable formulas, we may let f(N) denote the worst-case size that might
be needed for a P-refutation of any formula F ∈ F of size N ; then we wish to
provide sharp bounds on the growth rate of f(N). Small upper bounds on f(N)
indicate that P is an efficient proof system for F-formulas. Small upper bounds
also suggest the possibility of efficient search procedures for finding refutations of
formulas F ∈ F . Large lower bounds on f(N) indicate that P cannot be efficient
for all F-formulas.

Proof complexity often deals with asymptotic upper and lower bounds, gen-
erally expressed by using “big-O” notation. The commonly used notations in-
clude f(n) = O(g(n)), f(n) = o(g(n)), f(n) = Ω(g(n)), f(n) = ω(g(n)), and
f(n) = Θ(g(n)), where f(n) and g(n) are always nonnegative. We write f(n) =
O(g(n)) to express that ∃c>0 ∃n0 ∀n≥n0 f(n) ≤ c · g(n), i.e, that f grows at
most as quickly as g asymptotically. We write f(n) = o(g(n)) to express that
∀ε>0∃n0 ∀n≥n0 f(n) ≤ ε · g(n), i.e., that f grows strictly more slowly than g.
When g(n) > 0 always holds, f(n) = o(g(n)) is equivalent to limn→∞ f(n)/g(n) =
0. The notations f(n) = Ω(g(n)) and f(n) = ω(g(n)), mean that g(n) = O(f(n))
and g(n) = o(f(n)), respectively, or, in words, that f grows at least as fast or
strictly faster than g. We write f(n) = Θ(g(n)) to denote that both f(n) =
O(g(n)) and g(n) = O(f(n)) hold, i.e., that asymptotically speaking f and g are
essentially the same function up to a constant factor. Big-O notation is often
used in subexpressions. For example, we write f(n) = 2(1−o(1))n to mean that for
any fixed ε > 0, we have f(n) > 2(1−ε)n for all sufficiently large n.

7.3. Resolution and CDCL SAT solvers

We start our survey by discussing the resolution proof system [Bla37, DP60,
DLL62, Rob65],which is the most important proof system from the point of view
of SAT solving. Resolution is a refutation system that works directly with clauses.
A resolution derivation π of a clause D from a CNF formula F is a sequence of
clauses π = (D1, D2, . . . , DL−1, DL) such that D = DL and each clause Di is
either

1. an axiom clause Di ∈ F , or

2. a clause of the form Di = B ∨ C derived from clauses Dj = B ∨ x and
Dk = C ∨ x for j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C . (7.2)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 239 — #7 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 239

1. x ∨ y Axiom

2. x ∨ y ∨ z Axiom

3. x ∨ z Axiom

4. y ∨ z Axiom

5. y ∨ z Axiom

6. z Res(4, 5)

7. x Res(3, 6)

8. x ∨ y Res(2, 6)

9. x Res(1, 8)

10. ⊥ Res(7, 9)

(a) Refutation as annotated list.

⊥

xx

x ∨ y

z

y ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y

(b) Refutation as directed acyclic graph (DAG).

Figure 7.1: Resolution refutation of the CNF formula (7.3).

We call B ∨ C the resolvent over x of B ∨ x and C ∨ x.

We write π : F `D to denote that π is a derivation of D from F ; we write F ` D
to denote that some such π exists. When D is the empty clause ⊥, we call π a
resolution refutation of F , and write π : F `⊥. The length, or size, of a resolution
derivation/refutation is the number of clauses in it.

A resolution derivation π can be represented as a list of clauses annotated
with explanations for each clause how it was obtained. This is illustrated in
Figure 7.1a for a resolution refutation of the CNF formula

(x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (y ∨ z) . (7.3)

A derivation π = (D1, D2, . . . , DL) from F can alternatively be represented by
a directed acyclic graph (DAG) Gπ, also referred to as a proof DAG , in the
following way. The vertices of Gπ are {v1, v2, . . . , vL}, with vertex vi labelled by
the clause Di. The sources (also called leaves) of the DAG are vertices labelled
with the axiom clauses in F . Without loss of generality there is a unique sink
and it is labelled with DL.6 If π is a refutation, the sink is labelled with ⊥.
Every vertex that is not a source has indegree two and is the resolvent of its two
predecessors. See Figure 7.1b for the refutation in Figure 7.1a represented as a
DAG instead.

A resolution refutation π is tree-like if Gπ is a tree, or equivalently, if every
clause Di in the refutation is used at most once as a hypothesis in an application
of the resolution rule. Note that it is permitted that clauses are repeated in the
sequence π = (D1, D2, . . . , DL), so different vertices in Gπ can be labelled by the
same clause if need be (though every repetition counts towards the size of the
refutation). The refutation in Figure 7.1b is not tree-like since the clause z is
used twice, but it could be made tree-like if we added a second derivation of z
from y ∨ z and y ∨ z. More generally, any derivation can be converted into a

6Any other sinks are parts of superfluous subderivations that can be removed.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 240 — #8 i
i

i
i

i
i

240 Chapter 7. Proof Complexity and SAT Solving

tree-like derivation by repeating subderivations, but possibly at the cost of an
exponential increase in the size of the proof [Tse68, BIW04].

As discussed in Section 7.2.2, completeness and soundness are fundamental
properties of proof systems. For resolution, they are as follows.

Theorem 7.3.1. Let F be a CNF formula and C be a clause.

Completeness: If F � C, then there is a clause C ′ ⊆ C such that F ` C ′. In
particular, if F is unsatisfiable, then F has a resolution refutation.

Soundness: If F ` C, then F � C. In particular, if F has a resolution refuta-
tion, then F is unsatisfiable.

For technical reasons it is sometimes convenient to allow also the weakening
rule

B
B ∨ C , (7.4)

which makes it possible to infer a subsumed clause (i.e., a strictly weaker clause)
from an already derived clause. Resolution with weakening is also sound and
complete; in fact, completeness holds in the stronger sense that if F � C, then C
has a resolution-plus-weakening derivation from F .

It is not hard to show that weakening inferences in a resolution refutation can
be eliminated without increasing the complexity of the proof. This also holds for
all the notions of complexity that we will discuss later, including length, width,
and space.

An important restricted form of resolution is regular resolution. A resolution
refutation π is regular provided that no variable is resolved over more than once
along any path in the DAG Gπ. For example, the refutation of Figure 7.1 is not
regular, since the inferences introducing the clauses z and x lie on a common path,
and both resolve on y. The soundness of regular resolution is immediate from the
soundness of resolution. Regular resolution is also complete [DP60]. However, it
was shown in [Urq11, AJPU07] that there is a family of CNF formulas Fn that
have polynomial size resolution refutations, but are such that, letting c = c(n) be
the length of Fn (i.e., the number of clauses in Fn), the shortest regular resolution

refutation of Fn has size 2c
1−o(1)

. This gives an exponential separation between
regular resolution and (general) resolution. In particular, regular resolution does
not efficiently simulate resolution in the sense discussed in Section 7.2.2.

As already mentioned, resolution without weakening can polynomially sim-
ulate resolution. On the other hand, tree-like resolution cannot polynomially
simulate resolution, or even regular resolution [Tse68].

Another interesting restriction on resolution which is relevant for CDCL SAT
solvers is trivial resolution. A resolution derivation π is a trivial derivation of D
from F if it can be written as a sequence of clauses π = (D1, . . . , DL = D) such
that

1. π is input ; i.e., D1 ∈ F , and for all i ≥ 1 it holds that D2i ∈ F and that
D2i+1 is the resolvent of the latest derived clause D2i−1 with the axiom D2i.

2. π is regular, i.e., no variable is used more than once as the resolution vari-
able.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 241 — #9 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 241

The sequence π is a trivial resolution refutation provided DL is ⊥. Trivial reso-
lution is sound but not complete. For example (and jumping ahead a bit), the
formula (7.3) is not refutable by unit propagation (which will be described later),
and thus does not have a trivial resolution refutation.

A unit clause is a clause of width 1. A unit resolution refutation is a resolution
refutation in which each resolution inference has at least one unit clause as a
hypothesis. Unit resolution is sound but not complete. Indeed, it is very closely
connected to trivial resolution [BKS04]. For F a CNF formula and C = a1∨· · ·∨ak
a clause, there is a trivial resolution derivation of C from F if and only if there
is a unit resolution refutation of F ∪ {a1, a2, · · · , ak}, i.e., of F plus k many unit
clauses. In particular, F has a trivial resolution refutation exactly when F has a
unit resolution refutation.

7.3.1. DPLL and Conflict-Driven Clause Learning

The most successful present-day SAT solvers are based on conflict-driven clause
learning (CDCL) [MS99, MMZ+01], which, when run on unsatisfiable CNF for-
mulas, is a search procedure for resolution proofs. CDCL algorithms have been
highly refined and augmented with both practical optimizations and sophisticated
inference techniques; however, they are based on four main conceptual ingredi-
ents:

1. DPLL, a depth-first, backtracking search procedure for satisfying assign-
ments.7

2. Unit propagation, a method for making obvious inferences during search.

3. A clause learning algorithm that attempts to prune the search space by in-
ferring (“learning”) clauses whenever the search procedure falsifies a clause
(finds a “conflict”) and has to backtrack.

4. A restart policy for stopping a depth-first search and starting a new one.

We will discuss these four ingredients one at a time. Our treatment will be
informal, without including all necessary details, as we presume that most readers
are familiar with the concepts, and as our focus is on discussing connections
between SAT solving and proof complexity. For a more detailed treatment, see
Chapter 3 on complete algorithms and Chapter 4 on CDCL solvers.

7.3.1.1. Depth-First Search Using the DPLL Method

The first ingredient, DPLL, is named after the four collective authors, Davis,
Putnam, Logemann and Loveland, of two of the primary sources for resolution
and automated solvers, namely [DP60] and [DLL62]. The DPLL procedure is
given as input a CNF formula F , i.e., a set of clauses. Its task is to determine
whether F is satisfiable, and if so to find a satisfying assignment. The DPLL
algorithm maintains a partial truth assignment ρ and runs the algorithm shown
in Figure 7.2 recursively. Initially, ρ is the empty assignment with all variables

7Often unit propagation is included as part of DPLL; however, we adopt the convention that
DPLL means a backtracking search, and does not need to include unit propagation. The original
definition of the DPLL algorithm in [DLL62], following [DP60], included both unit propagation
and the pure literal rule.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 242 — #10 i
i

i
i

i
i

242 Chapter 7. Proof Complexity and SAT Solving

if the partial assignment ρ falsifies some clause of F then
return false;

end
if ρ satisfies F then

Output ρ as a satisfying assignment and terminate.
end
Pick some unassigned literal, a, called the decision literal ;
Extend ρ to set a true;
Call this DPLL procedure recursively;
Update ρ to set a false;
Call this DPLL procedure recursively (again);
Update ρ to make a unassigned;
return false;

Figure 7.2: DPLL recursive procedure (without unit propagation).

unassigned. Each time the recursive procedure is called it chooses a decision
literal a, and tries setting it first true and then false, using recursive calls to
explore the two assignments to a. It either halts with a satisfying assignment, or
eventually returns false from the top level if F is unsatisfiable.

There is an exact correspondence between the DPLL search procedure (with-
out unit propagation) and tree-like, regular resolution refutations.8 In one di-
rection, any tree-like regular resolution refutation π containing S occurrences of
clauses corresponds to a DPLL search tree with S nodes (each node an invoca-
tion of the recursive procedure). Such a search tree can be generated by letting
the DPLL search procedure traverse the proof tree Gπ starting at ⊥ in a depth-
first fashion. When the traversal of Gπ is at a node labelled with a clause C,
the partial assignment ρ falsifies C. Conversely, any DPLL search with S calls
to the recursive procedure gives rise to a tree-like, regular resolution refutation
with ≤ S clauses. Such a refutation can be formed from the leaves starting with
clauses falsified by the deepest recursive calls. Pairs of recursive calls are joined
by resolution inferences as needed (possibly with parts of the DPLL search tree
being pruned away).

7.3.1.2. Unit Propagation

The second ingredient is unit propagation. Unit propagation can be viewed as a
way to guide the DPLL search procedure, but it becomes much more important
when used with clause learning, as will be discussed momentarily. Suppose that
the CNF formula F contains a clause C = a1∨· · ·∨ak and that the current partial
assignment ρ has set all but one of the literals in C false, and that the remaining
literal ai is unassigned. Then unit propagation is the operation of setting ai true
and adding it to ρ. This can be done without loss of generality, since setting ai
false would falsify C.

Unit propagation is directly related to the unit resolution proof system dis-
cussed earlier. Let F ′ be the CNF formula consisting of F plus the unit clauses a
for all literals a such that ρ(a) = 0. Then repeatedly applying unit propagation

8Any tree-like resolution refutation can be converted to be regular by pruning away parts of
the proof where variables are resolved on more than once.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 243 — #11 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 243

ρ0 ← ρ;
Extend ρ by unit propagation for as long as possible;
if ρ falsifies some clause of F then

ρ← ρ0;
return false;

end
if ρ satisfies F then

Output ρ as a satisfying assignment and terminate.
end
Pick some literal a not set by ρ (the decision literal);
Extend ρ to set a true;
Call this DPLL procedure recursively;
Update ρ to set a false;
Call this DPLL procedure recursively (again);
ρ← ρ0;
return false;

Figure 7.3: The recursive procedure for DPLL with unit propagation.

starting with F and the partial assignment ρ will falsify some clause of F if and
only if F ′ has a unit resolution refutation.

With unit propagation, the recursive procedure for the DPLL algorithm is
shown in Figure 7.3. This runs similar to the algorithm of Figure 7.2, but now
does unit propagation whenever possible. Values of ρ can be set either as deci-
sion literals or by unit propagation (with ρ0 used to restore the state of ρ when
returning). Each set literal is assigned a decision level . Literals propagated even
before any decision literal has been set are assigned decision level 0. The decision
level is incremented when setting a decision literal, and unit propagated literals
are given the decision level of the last decision literal. Each call to the procedure
either halts with a satisfying assignment extending ρ, or returns false if no such
satisfying assignment exists.

7.3.1.3. Clause Learning and Nonchronological Backtracking

The third ingredient in the recipe for state-of-the-art SAT solvers is a crucial one:
the use of clause learning to infer new clauses. This modifies the first step of
DPLL algorithm to also add clauses to the formula; namely, when ρ falsifies some
clause of F , i.e., reaches a conflict , then clause learning is used to derive one or
more clauses and add them to F . The intent is that the learned clauses will be
used in the future to prune the search space and avoid repeatedly exploring the
same impossible assignments to literals. Essentially all clause learning methods
used in practice will infer only clauses C that can be derived from F (together with
previously learned clauses) by trivial resolution. This is due to the equivalence
between trivial resolution refutations and unit resolution refutations and the fact
that DPLL/CDCL uses unit propagation to find contradictions.

The most popular methods for learning clauses in modern CDCL SAT solvers
are based on the first unique implication point (1UIP) learning scheme, as illus-
trated in Figure 7.4. But for purposes of the connection between clause learning
and trivial resolution, the key point is that the learned clause is chosen to be a

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 244 — #12 i
i

i
i

i
i

244 Chapter 7. Proof Complexity and SAT Solving

clause C = a1 ∨ · · · ∨ ak with the following two properties:

1. C is falsified by ρ, i.e., ρ(ai) = 0 for each ai in C, and

2. there is a unit resolution refutation of F plus the k unit clauses {ai | i ∈ [k]}.
When C is chosen in this way, C is called a reverse unit propagation (RUP)
clause or an asymmetric tautology (AT) for F .9 By the correspondence between
trivial resolution and unit resolution, this is equivalent to the existence of a trivial
resolution derivation of C from F .

A third property that typically holds for a learned clause C is the UIP or
assertive property :

3. C contains exactly one literal ai set to false at the last decision level; the
rest of the literals in C were set false at earlier decision levels. The literal
ai is called the UIP literal or asserting literal .

When C is chosen so that ai is as “close as possible to the contradiction,” then
this is called 1UIP learning, and C is called the first unique implication point
(1UIP) clause with ai being the 1UIP literal . There is always at least one UIP
clause, since the decision literal at the last level is a UIP literal (because this
decision led to a conflict).

In order to visualize conflict analysis, it is helpful to construct a conflict
graph that shows how assignments to different literals causes propagations of
other literals. Figure 7.4 illustrates 1UIP clause learning in the conflict graph
formed from the clauses

{x ∨ a ∨ z, x ∨ z ∨ y, y ∨ t, y ∨ a ∨ u, y ∨ u ∨ v,
y ∨ t ∨ s, u ∨ b ∨ c ∨ w, t ∨ v ∨ w, a ∨ b ∨ c} . (7.5)

Arrows indicate which literals are involved in causing which unit propagations.
The three literals a, b, c have been set true at earlier decision levels, and the
decision literal at the last level is x. The 1UIP learned clause is a∨ b∨ c∨ y, with
the 1UIP literal being y. The dashed line shows the portion of the conflict graph
with propagations that depend on y, and the predecessors vertices of all edges
crossing this cut are the literals a, b, c, and y that form the learned clause.

For an alternative view of the same conflict analysis, Figure 7.5a shows the

unit propagations caused by setting x to 1, where x
DEC←− 1 denotes that x is set

true as a decision literal and `
C←− σ denotes the literal ` being set to the truth

value σ by unit propagation using clause C. The 1UIP clause a ∨ b ∨ c ∨ y is
derived as depicted in Figure 7.5b by traversing backwards through the list of
unit propagated literals starting with the clause t∨ v∨w that was falsified. Each
time a literal is reached that is set false in the current clause, a resolution inference
is applied to update the current clause. (Note how s is skipped as it does not
appear negated in b∨ c∨ t∨ u∨ y.) When we reach for the first time a clause (in
this example, a ∨ b ∨ c ∨ y) that contains only a single literal at the last decision
level (in this example, y), we have obtained the 1UIP clause.

A nice feature of the 1UIP clause learning scheme, and the reason that the
learned clause is called asserting , is that this clause contains exactly one literal ai

9See [GN03, Van08] for the original definitions of RUP; the modern terminology AT is dis-
cussed in [HJB10, JHB12].

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 245 — #13 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 245

x

z

y
t

u

v

w
⊥

s

a b c

x ∨ a ∨ z
x ∨ z ∨ y
y ∨ t

y ∨ a ∨ u
y ∨ u ∨ v
y ∨ t ∨ s

u ∨ b ∨ c ∨ w
t ∨ v ∨ w
a ∨ b ∨ c

Figure 7.4: Example of a conflict graph and 1UIP learning with learned clause
a∨ b∨ c∨ y. This conflict graph is generated using the clauses in Equation (7.5),
also shown on the right in the figure.

that has not been set false at an earlier decision level. This means that after
the solver has backtracked and undone the last decision, the literal ai will unit
propagate to true, flipping the value it had before. For example, the clause learned
in Figure 7.4 is asserting: a, b and c have been set at earlier levels, and so y can be
inferred from the learned clause by unit propagation. Conflict analysis algorithms
with this property are sometimes referred to as asserting clause learning schemes,
and learning schemes used in modern CDCL solvers tend to be of this type.

Perhaps the most direct way to incorporate both unit propagation and clause
learning (but not backjumping or restarts) in DPLL is as in the algorithm shown
in Figure 7.6, which we will call DPLL with clause learning (DPLL-CL). We want
to emphasize that DPLL-CL is not an algorithm that would be used in practice;
we instead introduce it as a didactic tool to illustrate how there is a natural
algorithmic development from DPLL to CDCL.

The DPLL-CL algorithm has been formulated to be faithful to the idea of
DPLL as a depth-first search procedure, but has been updated with clause learn-
ing. Like the basic DPLL algorithm, it acts to set a literal a first true and then
false. The first recursive call to DPLL-CL has the decision literal a set true. If
that call returns, the newly learned clauses may already be enough to set a false
by unit propagation. But if not, a can be set false as a decision literal anyway.
For example, in the 1UIP learning in Figures 7.4 and 7.5 the learned clause allows
y to be set false by unit propagation, but it does not allow x to be derived by
unit propagation. Nonetheless x is a consequence of the literals set in ρ.10

The DPLL-CL algorithm in Figure 7.6 still lacks an important component
of the CDCL algorithm, namely backjumping (also called nonchronological back-
tracking). What this means is that the solver backtracks not just one decision
level but potentially multiple decision levels at once.11 For an example of a com-

10This will not generally be true in the CDCL algorithm described next, since CDCL allows
backjumping to backtrack multiple decision levels.

11It can be noted, though, that a CDCL algorithm with chronological backtracking, somewhat

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 246 — #14 i
i

i
i

i
i

246 Chapter 7. Proof Complexity and SAT Solving

x
DEC←−1

z
x∨a∨z←− 1

y
x∨z∨y←− 1

t
y∨t←−1

u
y∨a∨u←− 1

s
y∨t∨s←− 1

v
y∨u∨v←− 1

w
u∨b∨c∨w←− 1

t∨v∨w
⊥

(a) The unit propagations
triggered by setting x true.

y ∨ t

y ∨ a ∨ u

y ∨ u ∨ v

u ∨ b ∨ c ∨ w

t ∨ v ∨ w

b ∨ c ∨ t ∨ u ∨ v

b ∨ c ∨ t ∨ u ∨ y

a ∨ b ∨ c ∨ t ∨ y

a ∨ b ∨ c ∨ y

(b) The trivial resolution derivation of a ∨ b ∨ c ∨ y
(written bottom-up).

Figure 7.5: Unit propagation derivation of the contradiction shown in Figure 7.4
and trivial resolution derivation of the learned clause (from the clauses in (7.5)).

mon way to use backjumping, refer to the conflict graph and 1UIP learned clause
of Figures 7.4 and 7.5. There, x has been set as a decision literal with decision
level lev(x). The literals a, b and c were set with strictly lower decision levels
lev(a), lev(b) and lev(c); let L ≤ lev(x) − 1 denote the maximum of these three
levels. Once the 1UIP clause a ∨ b ∨ c ∨ y has been learned, the literal y can
be propagated to true already at decision level L, which is called the assertion
level . To readily take advantage of this, the CDCL algorithm uses backjumping
(nonchronological backtracking) to backtrack to decision level L, which could be
much smaller than lev(x)− 1. Another reason for backjumping is that it can be
viewed a miniature version of restarting, which we will discuss next, in that a
restart consists of backtracking to decision level 0.

7.3.1.4. Restarts

The fourth ingredient in our CDCL list is the use of restarts. A restart consists
of halting the CDCL search, while preserving the clauses learned from F so far,
then starting a new CDCL search . As just noted, this already fits into the CDCL

similar in spirit to the DPLL-CL algorithm in Figure 7.6, was recently proposed in [NR18] and
has been shown to perform very well on certain types of benchmarks.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 247 — #15 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 247

ρ0 ← ρ;
loop

Extend ρ by unit propagation for as long as possible;
if ρ falsifies some clause of F then

Optionally learn one or more clauses C and add them to F ;
ρ← ρ0;
return false;

end
if ρ satisfies F then

Output ρ as a satisfying assignment and terminate.
end
Pick some literal a not set by ρ (the decision literal);
Extend ρ to set a true;
Call DPLL-CL recursively;
Unset the value of a in ρ;
Extend ρ by unit propagation for as long as possible;
if the value of a is set in ρ (if so, it is false) then

continue (with the next loop iteration);
end
Update ρ to set a false;
Call DPLL-CL recursively (again);
ρ← ρ0;
return false;

end loop

Figure 7.6: The recursive procedure DPLL-CL for DPLL with clause learning.

algorithm described earlier, as setting the new (backjumping) decision level L′

equal to 0 causes a restart. The new CDCL search can use different decision
literals, and this may provide an advantage in searching for either a satisfying
assignment or a refutation. In practice, the use of restarts is crucial for CDCL
solver performance. As is discussed later in this section, there are also theoretical
reasons why restarts may be beneficial. There are several intuitive explanations of
why restarts might be useful, but ultimately, it comes down to the fact that doing
a restart allows the CDCL search to try out a different choice of decision literals.
There have been extensive investigations of how to do adaptive restarts [AS12,
Bie08] and how to choose decision literals, e.g., by using variable state independent
decaying sum (VSIDS) [MMZ+01], variable move to front (VMTF) [Rya04], and
phase saving [PD07]. Going into details about this is far beyond the scope of this
survey, but see, e.g., [BF15] for an evaluation of different decision strategies, and
[AS12, BF19, Hua07] for good discussions of restart strategies.

7.3.1.5. Putting It All Together

We are now ready to present pseudo-code for an abstract formulation of the CDCL
algorithm. Unlike our earlier algorithms, this one is not implemented as a recur-
sive procedure; this is because backjumping allows backtracking multiple decision
levels at once. Instead, the CDCL algorithm maintains a current decision level L.
Whenever a literal b is set, either as a decision literal or by unit propagation, it is
given the current decision level as its level, denoted lev(b). The CDCL algorithm
is shown in Figure 7.7; its input is a formula F .

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 248 — #16 i
i

i
i

i
i

248 Chapter 7. Proof Complexity and SAT Solving

L← 0;
ρ← empty assignment;
loop

Extend ρ by unit propagation for as long as possible;
if ρ satisfies F then

return ρ as a satisfying assignment;
else if ρ falsifies some clause of F then

if L = 0 then
return “Unsatisfiable”;

end
Learn one or more clauses C and add them to F ;
Let L′ < L be the minimal assertion level among the clauses learned;
Unassign all literals set at levels > L′;
L← L′;

else
Pick some unassigned literal a (the decision literal);
L← L+ 1;
Extend ρ to set a true;

end
continue (with the next iteration of the loop);

end loop

Figure 7.7: The CDCL algorithm (in skeletal form and without clause deletions).

Our pseudo-code does not specify how to implement clause learning. A typical
implementation will learn a 1UIP clause (with some postprocessing that we do
not discuss here); this clause is asserting in that it allows a new literal to be set
by unit propagation. The backjump level L′ is then chosen as the assertion level
of this clause, i.e., the minimum decision level at which this literal can be unit
propagated. The partial assignment ρ will set a literal a true at level 0 if and
only if the unit clause a is in F . It follows that if the CDCL algorithm returns
“Unsatisfiable,” then the current set of clauses F is unsatisfiable. Since clause
learning only learns clauses that are consequences of earlier clauses, this means
that also the original (input) formula F is unsatisfiable.

If the CDCL algorithm uses 1UIP clause learning, or other clause learning
schemes based on the conflict graph, then the learned clauses will be derivable
by trivial resolution derivations (by the correspondence between trivial resolution
and unit resolution). Thus, if the CDCL algorithm returns “Unsatisfiable”, the
original formula F has a resolution refutation of size polynomial in the number
of clauses learned by the CDCL algorithm.

Figure 7.8b shows an example of a full CDCL refutation for the formula

(u∨w)∧ (u∨x∨y)∧ (x∨y∨z)∧ (y∨z)∧ (x∨z)∧ (x∨z)∧ (u∨w)∧ (u∨w) (7.6)

based on 1UIP clause learning. Decision variables are shown in diamonds. Unit
propagations are shown in rectangles. Dashed diamonds and boxes indicate as-
signments that were preserved after the previous conflict. Darker ovals indicate
learned clauses. As shown, the CDCL search finds three conflicts. The first con-
flict is found after w and x are chosen as decision literals at decision levels 1 and 2.
The resulting learned clause u ∨ x is asserting, so x is set true by unit propaga-
tion at level 1. The second conflict learns the unit clause x, which is an asserting

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 249 — #17 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 249

clause setting x false at level 0. The CDCL solver then performs backjumping
(nonchronological backtracking); namely, it backtracks to unset all values set at
decision levels above the level of the asserted literal x. In this case, backjumping
involves backtracking out of decision level 1, unassigning w and u, so that w is
no longer a decision literal. The third conflict arises at level 0, and completes the
CDCL procedure. However, for pedagogical reasons — to get a clearer connec-
tion to the resolution proof — the illustration assumes that the solver does not
terminate immediately after detecting a conflict at decision level 0, but instead
performs a final round of conflict analysis to formally derive the empty clause ⊥.
Figure 7.8c shows the corresponding resolution refutation of F . Note that each
conflict forms a trivial resolution derivation relative to the current CNF formula F
as augmented with learned clauses.

7.3.1.6. Clause Deletions

It should be mentioned that one aspect of CDCL solving that is absolutely crucial
in practice, but that our discussion above completely ignores, is the use of clause
deletion, or clause erasure. Clause deletion means removing some of the learned
clauses. This helps reduce memory usage and, even more importantly, allows
unit propagation to run faster. The disadvantage is that clause erasure might
delete clauses that would have been useful in the future (but results in [KN20]
indicate that in some cases erasing clauses can actually help the solver find shorter
resolution refutations). Some theoretical results related to clause deletion will be
discussed later in the context of resolution space in Sections 7.4.3 and 7.4.4.

7.3.2. Proof Logging in CDCL Solvers

The output of a SAT solver given a CNF formula F will be either a satisfying
assignment for F or the assertion that F is unsatisfiable. In the second case,
it can be useful to not just assert that F is unsatisfiable, but also to produce a
refutation of F so that this assertion can be verified. Of course, the execution of
the SAT solver can serve as a kind of proof, but this is not ideal; first because
there could be bugs in the design or implementation of the SAT solver, and second
because it does not correspond to a useful proof system. A better option is to
output a resolution refutation: this is always possible for the CDCL constructions
we have discussed so far, as illustrated in Figure 7.8.

However, the fact that CDCL solvers (implicitly) produce resolution proofs
does not necessarily mean that this is the best way of producing certificates of
correctness. For a large formula the resolution proof can get very long, containing
lots of details that are not really necessary for efficient verification. Also, forcing
the solver to output all steps in every conflict analysis can incur a large overhead
in running time. A way to get more concise certificates (see [GN03, Bie06, Van08,
HHW13a]) is to use a proof trace consisting only of the sequence of learned clauses
generated during the CDCL search (preferably with unneeded learned clauses
omitted). For instance, in the example in Figure 7.8, the proof trace is just the
sequence of clauses u ∨ x, x, ⊥. Such a proof is called a RUP proof , since each
clause follows by reverse unit propagation from F plus the preceding clauses in
the sequence. The property of being RUP clause is checkable in polynomial time

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 250 — #18 i
i

i
i

i
i

250 Chapter 7. Proof Complexity and SAT Solving

(u ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

(a) The unsatisfiable CNF formula in (7.6).

w
DEC←−0

u
u∨w←−0

x
DEC←−0

y
u∨x∨y←− 1

z
x∨y∨z←− 1

y∨z
⊥

x ∨ y

u ∨ x

w
DEC←−0

u
u∨w←−0

x
u∨x←−1

z
x∨z←−1

x∨z
⊥

x

x
x←−0

u
u∨x←−1

w
u∨w←−1

u∨w
⊥

u

x

⊥

(b) A CDCL refutation of the CNF formula in Figure 7.8a.

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

(c) The corresponding resolution refutation.

Figure 7.8: Part (a) shows the unsatisfiable CNF formula (7.6). Part (b) shows
a complete CDCL run establishing the unsatisfiability of this CNF formula. Part
(c) shows the resolution refutation corresponding to this CDCL execution.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 251 — #19 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 251

using unit propagation; thus the correctness of a RUP proof trace can be checked
in time polynomially bounded by the size of F and the total size of the proof
trace.

A very important aspect in applied SAT solving, which is also relevant for
proof logging, is that extensive preprocessing of the input is performed before the
main CDCL search algorithm starts, and some solvers, such as Lingeling [Lin],
CryptoMiniSat [Cry], and CaDiCaL [CaD], even interleave preprocessing tech-
niques with CDCL search; this is known as inprocessing [JHB12]. This involves
using a number of techniques which, although known to be theoretically very bad
in the worst case, are indispensable in practice. Many of these techniques can be
formalized within resolution and hence in RUP proofs, but not all. Nowadays,
RUP proof traces have therefore been supplanted by more sophisticated DRAT
proofs [HHW13b]. DRAT proofs generalize RUP proofs, but can also simulate
stronger methods of reasoning — in fact, all the way up to extended resolution,12

as will be discussed later in Section 7.8.

7.3.3. Efficiency of CDCL Proof Search

Now that we have given formal descriptions of different methods for SAT solving,
we can study the complexity of proofs as generated by these methods when they
are used on unsatisfiable CNF formulas. As discussed above, the DPLL method
corresponds to tree-like resolution, which can be exponentially worse than (gen-
eral, DAG-like) resolution. Since CDCL is only looking for structurally very
restricted proofs, it is natural to ask how efficient CDCL proof search can be
compared to the best possible general resolution proof. (Henceforth, when we
talk about CDCL, we mean CDCL with restarts, unless explicitly stated other-
wise.) Note that if the formula is exponentially hard for resolution, then basic
CDCL search cannot be expected to run fast since it is searching for a resolution
proof. But what we can do is to benchmark the solver against the best possible
outcome, i.e., the most efficient proof. Thus, we can ask whether a CDCL search
strategy can implement efficient proof search in the sense that the algorithm finds
a refutation which is no more than polynomially longer than, say, the shortest
possible resolution refutation.

This turns out to be a deep and difficult question to answer. What is known
is that there is no algorithm that can find resolution proofs efficiently unless P =
NP [AM19] (this recent paper strengthens previous results in [AR08, MPW19]).
In formal proof complexity terminology, resolution is said to be non-automatable.
What we can do instead is to seek bounds on the proof-theoretic strength of so-
called nondeterministic13 solvers that are assumed to somehow magically make
good choices for certain heuristics during the search. In a line of works including

12It is important to note, however, that the power of DRAT proofs to simulate extended res-
olution is (at least as of yet) a purely theoretical result. Many reasoning techniques that, while
powerful, fall well short of extended resolution, cannot currently be formalized in a practically
efficient way in DRAT, two notable examples being cardinality reasoning and Gaussian reason-
ing. While it is possible in principle to handle cardinality reasoning or Gaussian reasoning in
the DRAT proof system [HB18, BT19, HKB20], the attempts made so far to implement this in
practice in state-of-the-art CDCL solvers have been far too inefficient.

13Note that the word “nondeterministic” is used here in the technical sense of the definition
of the complexity class NP, where a computation can split into two branches at every step and

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 252 — #20 i
i

i
i

i
i

252 Chapter 7. Proof Complexity and SAT Solving

[BKS04, HBPV08, BHJ08] and culminating in the papers [PD11, AFT11], it was
shown that nondeterministic CDCL can be as efficient as the resolution proof
system except possibly for a polynomial blow-up.

More technically speaking, the assumptions needed are that the CDCL solver
is allowed to magically choose decision variables and values to assign to these
variables, and also keeps every single clause ever learned during the search. Fur-
thermore, it has to make somewhat frequent restarts, but not more frequent than
what is already standard in state-of-the-art solvers, and has to use some assert-
ing clause learning scheme (in particular, 1UIP works fine, but a strength of the
simulation is that any other asserting scheme will also be good enough). With
these assumptions, the main result in [PD11] is that a CDCL solver can establish
unsatisfiability of a CNF formula in time polynomial in the shortest resolution
refutation of that formula. One possible way of interpreting this result is that in
cases where the decision heuristic works well enough, and when the right learned
clauses are kept in memory, then a CDCL solver could in principle run fast for
formulas that possess short resolution proofs (although it follows from [AM19]
that for any concrete choice of heuristics there are tricky formulas that will make
these heuristics fail unless P = NP).

The construction of [PD11] showing that CDCL simulates resolution can be
summarized as follows. Suppose that the formula F has a resolution refutation
π = (D1, . . . , DL = ⊥). Intuitively, the goal for the CDCL search is to successively
learn the clauses Di for i = 1, 2, . . . until it reaches DL = ⊥, which corresponds to
a conflict at decision level 0 (as in the example in Figure 7.8). Learning exactly
the clauses Di might not always be possible, but a key insight in [PD11] is that
the CDCL solver can instead learn other clauses which together are as powerful
as Di. For this, using a definition from [AFT11], we say that a set of clauses F ′

absorbs a clause D = a1 ∨ · · · ∨ ak provided that setting any k−1 literals of D
false allows either the remaining literal of D or the empty clause to be derived by
unit propagation from the clauses of F ′. As a small, concrete, example, the set
of clauses {x1 ∨ y1, y1 ∨x2 ∨ y2, y2 ∨x3} absorbs x1 ∨x2 ∨x3, since falsifying any
two of the xi-variables will propagate the third to true for both the clause and
the clause set.

What absorption means is that it seems to an outside observer that the set
of clauses F ′ contains D, since all unit propagations that would occur if D were
in F ′ can be observed now as well. The construction of [PD11] allowing CDCL
search to simulate the resolution refutation π is based on showing that the clause
learning can work well enough to to successively absorb the clauses D1, . . . , DL

in the refutation π. Suppose that the solver has added enough learned clauses to
the clause database F ′ ⊇ F to have absorbed D1, . . . , Di−1. To absorb Di, the
CDCL solver repeatedly tries to falsify all literals in Di. When this is no longer
possible to do without the last unassigned literal in Di being propagated, the
clause has been absorbed. As long as it is possible to falsify Di, then since the
clauses resolved to obtain Di are already absorbed by the inductive hypothesis, it
follows that unit propagation will lead to a conflict. At this point, the solver can

succeeds in finding a solution if one of the (potentially exponentially many) branches does so.
It thus has a very different meaning from “randomized,” where the requirement is that the
successful branch should be found with high probability.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 253 — #21 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 253

add a new learned clause to the clause database F ′ and restart. It can be shown
that this process of falsifying Di and adding a new learned clause can repeat at
most a polynomial number of steps before Di is absorbed.

The independent work [AFT11] obtained an alternative, more effective ver-
sion of the simulation result by showing that if a formula F has a resolution
refutation in bounded width (i.e., where every clause contains only a small num-
ber of literals), then CDCL using a decision strategy with enough randomness will
decide F efficiently. At first sight this might not seem so impressive — after all, it
is easy to see that in this case exhaustive search in bounded width also runs fast
— but the point is that a CDCL solver is very far from doing exhaustive width
search and does not care at all about the existence or non-existence of resolution
refutations with only small clauses.

A downside of both of these results is that it is crucial for the SAT solver
never to delete clauses. This is a very unrealistic assumption, since modern solvers
typically throw away a majority of the clauses learned during search. It would be
nice to extend the model of CDCL in [AFT11, PD11] to capture memory usage in
a more realistic way, and then study the question of whether CDCL can simulate
resolution efficiently with respect to both time and space. An attempt in this
direction was made in [EJL+16], but the following problem still remains open.
(We refer to Section 7.4.3 for the formal definitions of space.)

Open Problem 7.1. Suppose that F is a CNF formula that has a resolution
refutation in simultaneous length L and space s. Does this imply that there is a
CDCL proof of the unsatisfiability of F (as modelled in [AFT11, PD11, EJL+16])
in simultaneous length and space polynomial in L and s, respectively?

Another downside of [AFT11, PD11] is that the simulation of resolution by
CDCL depends crucially on the choice of decision literals. However, the cor-
rect choice of decisions is made in a highly non-constructive way — namely, as
discussed above, it consists of falsifying the literals in the clauses in the (un-
known) shortest resolution refutation one at a time in the order they appear in
the refutation, and to do this repeatedly for each clause until it is guaranteed to
be absorbed. In other words, the usual heuristics for decisions (such as VSIDS
and phase saving) do not come into play at all for the simulation of resolution
by CDCL. Similarly, the concrete restart heuristic used plays no role — all that
matters is that restarts are frequent enough. The way the construction goes, the
solver makes progress towards its goal at the first conflict after every restart, but
then it might not do anything useful until the next restart happens. One can
show, though, that the solver also cannot do anything harmful while waiting for
the next restart (but for this to hold it is crucial that the solver never deletes any
learned clauses).

It is still mostly an open problem to establish theoretical results about how
the commonly used CDCL heuristics contribute (or sometimes fail to contribute)
to the success of CDCL search. This is challenging to do from a mathematical
point of view, however, since these heuristics are quite sophisticated and often
depend on the full history of the CDCL execution so far.

For clause learning, a seemingly obvious approach would be to prioritize learn-
ing short clauses, but it seems to have been known in the SAT community that

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 254 — #22 i
i

i
i

i
i

254 Chapter 7. Proof Complexity and SAT Solving

this does not work so well in practice. A theoretical explanation for this was given
in [BJ10], where it was shown that for formulas that require resolution proofs with
large clauses CDCL solvers also need to learn and keep large clauses in order to
run fast (i.e., it is not enough that large clauses appear as intermediate steps in
the conflict analysis). Regarding clause deletion, the theoretical results in Sec-
tions 7.4.3 and 7.4.4 can be interpreted as saying that the quite aggressive deletion
policies in modern CDCL solvers can incur a substantial (sometimes exponential)
increase in running time, although this can only be rigorously proven for specially
designed theoretical benchmark formulas. As to activity-related decision heuris-
tics such as VSIDS [MMZ+01], VMTF [Rya04], or phase saving [PD07], there is
very little by way of concrete theoretical results.

Open Problem 7.2. Prove simulation or separation results for resolution versus
CDCL when the solver is constrained to use decision strategies such as VSIDS,
VMTF, and/or phase saving.

A very recent paper [Vin20] shows, somewhat informally speaking, that there
are unsatisfiable CNF formulas for which standard decision heuristics such as
VSIDS and VMTF can be exponentially worse than optimal decisions. Another
recent contribution [MPR20] studies the power of CDCL when the decision heuris-
tic is replaced by a fixed ordering of the variables, but the strongest results are
unfortunately for a model that is fairly far from practice when it comes to mod-
elling unit propagation and clause learning.

An even more fundamental open problem is to understand the role of restarts
for CDCL solvers and whether they add to the theoretical reasoning power.
Phrased in theoretical language, the question is whether restarts are really nec-
essary in order for CDCL to be able to simulate resolution, or whether this can
be done also without restarts. To conclude this section, we briefly discuss two
related approaches to studying this problem by modelling CDCL without restarts
as a proof system, namely pool resolution [Van05] and RegWRTI [BHJ08].

A pool resolution refutation consists of a resolution refutation π with an asso-
ciated regular depth-first traversal; in other words, there is a depth-first traversal
of the DAG Gπ such that at each point during the traversal the path from the
current clause back to the empty clause does not resolve more than once on any
given variable. The intuition is that a regular depth-first traversal corresponds to
the CDCL search, so if clauses are learned as they are traversed, they do not need
to be traversed again. The fact that CDCL never chooses a decision literal which
is already set and that clause learning only learns clauses containing negated lit-
erals imposes a regularity condition for each path in the depth-first search. One
aspect in which pool resolution seems stronger than CDCL, though, is that the
depth-first traversal allows a much richer set of clauses to be “learned” than those
derived by trivial resolution from the current clause database.

The RegWRTI system is similar in spirit to pool resolution, but it uses a re-
stricted form of clause learning that (unlike pool resolution) allows learning only
clauses that can be learned using cuts in a conflict graph. Thus RegWRTI better
approximates the way clause learning works in CDCL solvers. The definition of
RegWRTI is a bit complicated, so we omit it here. It is open whether pool reso-
lution or RegWRTI simulate resolution; indeed, several candidates for separation

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 255 — #23 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 255

have failed to give a separation [BB12, BBJ14, BK14].
Pool resolution and RegWRTI do not fully capture CDCL without restarts,

as they do not incorporate self-subsumption [SB09, HS09] (also called clause min-
imization) during clause learning. For an example of self-subsumption, see Fig-
ure 7.4, where the 1UIP clause a∨b∨c∨y can be resolved with the clause a∨b∨c
to yield a better learned clause a ∨ b ∨ y. Since this resolves on the literal c even
though c has been set false, it does not fit the framework of pool resolution or
RegWRTI. It is possible that pool resolution or especially RegWRTI can simulate
clause learning augmented with self-subsumption, but this is an open question.

Open Problem 7.3. Can CDCL as modelled in [AFT11, PD11, EJL+16], but
without restarts, efficiently simulate resolution? Or is it possible to prove that res-
olution is stronger than such a model of CDCL, or even stronger than RegWRTI
or pool resolution?

7.4. Resolution and Proof Complexity

The previous section described the close connections between the resolution proof
system and SAT solvers based on conflict-driven clause learning. Thanks to these
connections, one way of analysing the potential and limitations of CDCL proof
search is to study resolution refutations and establish upper and lower bounds
on the complexity of such refutations. A lower bound on resolution proof length
gives a corresponding lower bound on CDCL execution time, since the proof
search cannot run faster than the smallest resolution proof it could possibly find.14

Conversely, an upper bound on resolution refutation length points to at least the
possibility of good performance by CDCL search algorithms. There are other ways
to measure resolution proof complexity beside sheer length. Notably, bounding
the width or space of resolution refutations can shed light on the effectiveness of
different clause learning and clause erasure strategies. In this section, we review
what is known about these different proof complexity measures for resolution.

7.4.1. Resolution Length

We start by recalling that the length (also referred to as the size) of a resolution
refutation is the number of clauses in it, where the clauses are counted with
repetitions (which is relevant for tree-like or regular refutations). In general,
proof length/size is the most fundamental measure in proof complexity, and as
just discussed, lower bounds for resolution length imply lower bounds on CDCL
solver running time.

Any CNF formula of size N can be refuted in resolution in length exp(O(N)),
and there are formulas for which matching exp(Ω(N)) lower bounds are known.
Let us discuss some examples of formulas known to be hard with respect to
resolution length.

Our first example is the pigeonhole principle (PHP), which says that
“m pigeons do not fit into n holes without sharing holes if m > n.” This is

14As already discussed, however, this does not take into account the effect of preprocessing
techniques that cannot be formalized within the resolution proof system, but it is still the case
that resolution lower bounds often imply hardness also in practice.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 256 — #24 i
i

i
i

i
i

256 Chapter 7. Proof Complexity and SAT Solving

arguably the single most studied combinatorial principle in all of proof complexity
(see [Raz02] for a survey). When written as an unsatisfiable CNF formula, this
becomes the claim that, on the contrary, m > n pigeons do fit into n holes. To
encode this, one uses variables pi,j to denote “pigeon i goes into hole j,” and
write down the following clauses, where i 6= i′ range over 1, . . . ,m and j 6= j′

range over 1, . . . , n:

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n [every pigeon i gets a hole] (7.7a)

pi,j ∨ pi′,j [no hole j gets two pigeons i 6= i′] (7.7b)

There are also variants where one in addition has “functionality” and/or “onto”
axioms

pi,j ∨ pi,j′ [no pigeon i gets two holes j 6= j′] (7.7c)

p1,j ∨ p2,j ∨ · · · ∨ pm,j [every hole j gets a pigeon] (7.7d)

In a breakthrough result, Haken [Hak85] proved that the PHP formulas consisting
of clauses (7.7a) and (7.7b) require length exp(Ω(n)) in resolution for m = n+ 1
pigeons, and his proof can be extended to work also for the onto FPHP formu-
las consisting of all clauses (7.7a)–(7.7d).15 Later work [Raz04a, Raz03, Raz04b]
has shown that all of the PHP formula variants remain hard even for arbitrarily
many pigeons m, requiring resolution length exp

(
Ω
(
nδ
))

for some δ > 0 — such
formulas with m� n are referred to as weak pigeonhole principle (WPHP)
formulas, since the claim made by the pigeonhole principle gets weaker and
weaker as m increases compared to n. What all of these lower bounds mean,
intuitively, is that the resolution proof system really cannot count: even faced
with the preposterous claim that infinitely many pigeons can be mapped in a
one-to-one fashion into a some finite number n of holes, resolution cannot refute
this claim with a proof of length polynomially bounded in the number of holes.

Since pigeonhole principle formulas have size N = Θ
(
n3
)
, Haken’s lower

bound is only of the form exp
(
Ω
(

3
√
N
))

expressed in terms of formula size, how-
ever, and so does not quite match the exp(O(N)) worst-case upper bound. The
first truly exponential lower bound on length was obtained for Tseitin formu-
las (an example of which is shown in Figure 7.9), which encode (the negation of)
the principle that “the sum of the vertex degrees in a graph is even.” Here the
variables correspond to the edges in an undirected graph G of bounded degree.
Every vertex in G is labelled 0 or 1 so that the sum of the vertex labels is odd.
The Tseitin formula for G is the CNF formula which is the conjunction of the set
of clauses expressing that for each vertex of G the parity of the number of true
edges incident to that vertex is equal to the vertex label. See Figure 7.9b, which
displays the formula corresponding to the labelled graph in Figure 7.9a.

15To generate these formulas in the standard DIMACS format used by SAT solvers, one
can use the tool CNFgen [LENV17, CNF] with the command line cnfgen php 〈m〉 〈n〉 to ob-
tain PHP formulas with m pigeons and n holes, cnfgen php --functional 〈m〉 〈n〉 for FPHP
formulas with axioms (7.7c) also, cnfgen php --onto 〈m〉 〈n〉 for onto PHP formulas with ax-
ioms (7.7d), and cnfgen php --onto --functional 〈m〉 〈n〉 for onto FPHP formulas with all
axioms clauses (7.7a)–(7.7d) discussed above. (Here and in all following CNFgen examples,
the syntax 〈n〉 means that an actual value of n, without brackets, should be provided on the
command line.)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 257 — #25 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 257

1

1

0

1

x

y

u

vw

(a) Graph with odd labelling.

(x ∨ u) ∧ (y ∨ v)

∧ (x ∨ u) ∧ (y ∨ v)

∧ (x ∨ w ∨ y) ∧ (u ∨ w ∨ v)

∧ (x ∨ w ∨ y) ∧ (u ∨ w ∨ v)

∧ (x ∨ w ∨ y) ∧ (u ∨ w ∨ v)

∧ (x ∨ w ∨ y) ∧ (u ∨ w ∨ v)

(b) Corresponding Tseitin formula.

Figure 7.9: Example Tseitin formula.

If we sum over all vertices, the number of all true incident edges should be odd
by the construction of the labelling. However, since such a sum counts each edge
exactly twice it has to be even. Thus, the Tseitin formulas are indeed unsatisfi-
able. Urquhart [Urq87] established that Tseitin formulas require resolution length
exp
(
Ω
(
N
))

if the underlying graph is a well-connected so-called expander graph.
We cannot discuss the fascinating theory of expander graphs here, and instead
refer to [HLW06] for more information, but suffice it to say that, e.g., a randomly
sampled regular graph is an excellent expander asymptotically almost surely, i.e.,
with overwhelmingly large probability,16 and there are also explicit constructions.
Intuitively, the lower bound in [Urq87] shows that not only is resolution unable
to count efficiently in general, but it cannot even do so mod 2.17

Another example of exponentially hard formulas are random k-CNF for-
mulas which are generated by randomly sampling ∆ ·n k-clauses over n variables
for some large enough constant ∆ depending on k. For instance, ∆ & 4.5 is suffi-
cient to get unsatisfiable 3-CNF formulas asymptotically almost surely [DBM00]
(see also Chapter 10 on random satisfiability in this handbook). Chvátal and
Szemerédi [CS88] established that resolution requires length exp

(
Ω
(
N
))

to refute
such formulas (again asymptotically almost surely).18

By now strong lower bounds have been shown for formulas encoding tiling
problems [Ale04, DR01], k-colourability [BCMM05], independent set/clique ,
and vertex cover [BIS07], and many other combinatorial principles. For clique
formulas there is an interesting range of parameters where lower bounds are not
known, however, and so we discuss this family of formulas next.

16Formally, we say that a sequence of events Pn happen asymptotically almost surely (some-
times also referred to as with high probability) if limn→∞ Pr[Pn] = 1.

17To generate unsatisfiable Tseitin formulas in DIMACS format for random 4-regular graphs
over n vertices (which yields formulas that are exponentially hard for resolution asymptotically
almost surely) one can use CNFgen with the command line cnfgen tseitin 〈n〉 (or, more
generally, cnfgen tseitin 〈n〉 〈d〉 for d-regular graphs over n vertices as long as d · n is even).
For a standard CDCL solver without Gaussian reasoning, Tseitin formulas over random 4-regular
graphs become quite hard already for around 50 vertices.

18CNFgen generates random k-CNF formulas with m clauses over n variables with the
command line cnfgen randkcnf <k> <n> <m>. Random 3-CNF formulas with n variables and
∆ · n clauses for ∆ = 4.5 are noticeably hard for CDCL solvers by the time n = 350 or so.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 258 — #26 i
i

i
i

i
i

258 Chapter 7. Proof Complexity and SAT Solving

Given a positive integer k and a graph G = (V,E) with vertices V and
edges E, the clique formula encodes the claim that G has a k-clique. We have
variables xv,i with the intended meaning “vertex v is the ith member of the
clique” and also think of the vertices as V = {1, 2, . . . , n} so that we can list
them in order and compare them. Letting u, v range over vertices and i, j range
over clique membership indices, the formula consists of the following clauses:

x1,i ∨ x2,i ∨ · · · ∨ xn,i i ∈ [k], (7.8a)

xu,i ∨ xv,i u, v ∈ V, u < v, i ∈ [k] (7.8b)

xv,i ∨ xv,j v ∈ V, i, j ∈ [k], i < j (7.8c)

xu,i ∨ xv,j (u, v) /∈ E, i, j ∈ [k], i 6= j (7.8d)

xu,j ∨ xv,i u, v ∈ V, u < v, i, j ∈ [k], i < j (7.8e)

Clauses (7.8a), (7.8b), and (7.8c) just encode that there is precisely one vertex cho-
sen to be the ith clique member. Clauses (7.8d) enforce the constraint that there
must be edges between all vertices in the clique. Finally, the clauses (7.8e) re-
move a potential (and artificial) source of hardness by specifying that the vertices
v1, v2, . . . , vk chosen as clique members 1, 2, . . . , k should be listed in increasing
order.

From a proof complexity point of view, clique formulas become interesting
when the graph G does not have a k-clique but when this is hard to prove. This
problem can clearly be solved in time roughly nk simply by checking if any of the(
n
k

)
many sets of vertices of size k forms a clique. Such a simple approach can

be formalized already in tree-like resolution, and yields refutations of polynomial
length if k is constant. A popular conjecture is that the k-clique problem must
require time nΩ(k) in the worst case, or even on average when graphs are sampled
at random (e.g., according to the Erdős-Rényi distribution where for an n-vertex
graph every single edge out of the

(
n
2

)
possible ones is included uniformly and

independently at random with some appropriate probability p, called the edge
density).19 A natural question is whether it is possible to prove such lower bounds
unconditionally for proof systems that are strong enough to capture algorithmic
methods used in practice.

For tree-like resolution, an optimal nΩ(k) length lower bound (i.e., optimal
up to constant factors in the exponent) was established in [BGL13] for k-clique
formulas on Erdős-Rényi random graphs. When k is chosen very large, on the
order of nγ for some large enough γ, 0 < γ < 1, it was shown in [BIS07, Pan19]
that resolution requires length scaling like exp

(
nδ
)

for some δ > 0 for Erdős-Rényi

random graphs. For smaller k, an optimal nΩ(k) length lower bound was obtained
for the restricted subsystem of regular resolution in [ABdR+18], but for general
resolution it remains an open problem even to establish worst-case lower bounds
for small k

19To generate k-clique formulas over n-vertex random graphs for small values of k that seem
likely to require resolution refutations of length nΩ(k), one can use CNFgen with the command
line cnfgen kclique 〈k〉 gnp 〈n〉 〈p〉 for p = n−2/(k−2), which is below the threshold edge
density n−2/(k−1) for the appearance of k-cliques and hence will yield unsatisfiable formulas
asymptotically almost surely. A concrete setting of parameters that seem to yield formulas with
hardness that scales nontrivially with the number of vertices n in practice for CDCL solvers is
k = 10 and p = n−1/4.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 259 — #27 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 259



1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1


(a) Matrix with row and column constraints.

(x1,1 ∨ x1,2 ∨ x1,4)

∧ (x1,1 ∨ x1,2 ∨ x1,8)

∧ (x1,1 ∨ x1,4 ∨ x1,8)

∧ (x1,2 ∨ x1,4 ∨ x1,8)

...

∧ (x4,11 ∨ x8,11 ∨ x10,11)

∧ (x4,11 ∨ x8,11 ∨ x11,11)

∧ (x4,11 ∨ x10,11 ∨ x11,11)

∧ (x8,11 ∨ x10,11 ∨ x11,11)

(b) Cardinality constraints in CNF.

Figure 7.10: Matrix and (fragment of) corresponding subset cardinality formula.

Open Problem 7.4. Prove average-case resolution length lower bounds nΩ(k) for
k-clique formulas over Erdős-Rényi random graphs with appropriate parameters,
or worst-case length lower bounds for any family of graphs.

This problem is also of intrinsic interest in proof complexity, since these
formulas do not seem to be amenable to the standard techniques for proving
resolution lower bounds such as the interpolation method [Kra97, Pud97], random
restrictions [BP96b], or the length-width lower bound in [BW01]. We will discuss
some of these techniques later in the survey.

We conclude our discussion of resolution length by mentioning one slightly
more recent addition to the long list of challenging combinatorial formulas already
mentioned, namely the subset cardinality formulas studied in [Spe10, VS10,
MN14] (also known as zero-one design or sgen formulas).

To construct these formulas, we start with an n×n (0, 1)-matrix with 4 non-
zero entries in each row and column except that one extra non-zero entry is added
to some empty cell (as in Figure 7.10a, where the extra 1 in the bottom row is in
bold face). The variables of the formula are the non-zero entries of the matrix,
yielding a total of 4n+1 variables. For each row of 4 ones in the matrix, we write
down the natural 3-CNF formula encoding the positive cardinality constraint that
at least 2 variables must be true (as in the first set of clauses in Figure 7.10b),
and for the row with 5 ones the 3-CNF formula encoding that a strict majority of
3 variables must be true. For the columns we instead encode negative cardinality
constraints that a majority of the variables in each column must be false (see the
last set of clauses in Figure 7.10b). The formula consisting of the conjunction
of all these clauses must be unsatisfiable, since a strict majority of the variables
cannot be true and false simultaneously. We will have reason to return to these
formulas below when we discuss connections between CDCL and resolution, and
also when discussing cutting planes and pseudo-Boolean solving.

It was shown empirically in [Spe10, VS10] that these formulas are very chal-
lenging for CDCL solvers, but there was no analysis of the theoretical hardness.
Such an analysis was provided by [MN14], where it was established that subset

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 260 — #28 i
i

i
i

i
i

260 Chapter 7. Proof Complexity and SAT Solving

cardinality formulas are indeed exponentially hard if the underlying matrix is an
expander (informally, if every small-to-medium set of rows has non-zero entries
in many distinct columns).20

7.4.2. Resolution Width

A second complexity measure in resolution, which is almost as well studied as
length, is the width of refutations measured as the size of a largest clause in a
resolution refutation. It is clear that the width needed to refute a formula is never
larger than the number of variables n, which is in turn less than the total formula
size N . It is also easy to see that an upper bound w on resolution width implies an
upper bound O((3n)w) on resolution length, simply because the total number of
distinct clauses of width at most w over n variables is less than (3n)w. Incidentally,
this simple counting argument turns out to be essentially tight, in that there are
k-CNF formulas refutable in width w that require resolution length nΩ(w), as
shown in [ALN16].

Much less obviously, however, and much more interestingly, strong enough
width lower bounds imply strong length lower bounds. Ben-Sasson and Wigder-
son [BW01] (using methods based on [CEI96, IPS99]) showed that for a k-CNF
formula over n variables it holds that

refutation length ≥ exp

(
Ω

(
(refutation width− k)2

n

))
(7.9)

where “refutation length” and “refutation width” mean the minimum length and
minimum width, respectively, of any resolution refutations of the formula. (Note
that these two minima could potentially be realized by different refutations.)
The inequality (7.9) implies that if one can prove that a formula requires width
ω
(√
n log n

)
, this immediately yields a superpolynomial length lower bound, and

a width lower bound Ω(N) in terms of the formula size N (which is lower-bounded
by the number of variables n) implies a truly exponential exp(Ω(N)) length lower
bound. Almost all known lower bounds on resolution length can be derived via
width lower bounds in this way (in particular, essentially all the bounds dis-
cussed in Section 7.4.121 although the ones predating [BW01] were originally not
obtained in this way).

For tree-like resolution refutations of k-CNF formulas, the paper [BW01]
proved a sharper version

tree-like refutation length ≥ 2refutation width−k (7.10)

of the bound in (7.9) for general resolution. This means that for tree-like res-
olution, even width lower bounds ω

(
logN

)
yield superpolynomial length lower

20CNFgen generates subset cardinality formulas for random n × n matrices — which are
expanding, and so yield formulas that are exponentially hard for resolution, asymptotically
almost surely — with the command line cnfgen subsetcard <n>. These formulas get noticeably
hard for CDCL solvers around n = 25.

21To be precise, the exceptions are [Ale04, DR01, Raz04a, Raz03, Raz04b], where the number
of variables n, and hence the formula size N , is at least as large as the refutation width squared,
and where other methods must therefore be used to prove lower bounds on resolution length.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 261 — #29 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 261

bounds. For general resolution, however, a width lower bound even as large as
Ω
(√
n log n

)
does not imply any length lower bound according to (7.9). This raises

the question of whether it is possible to improve the analysis so that (7.9) can be
strengthened to something closer to (7.10) also for general resolution. Bonet and
Galesi [BG01] showed that this is not the case by studying another interesting
combinatorial benchmark formula, which we describe next.

The ordering principle says that “every finite (partially or totally) ordered
set {e1, . . . , en} has a minimal element.” To encode the negation of this statement
in CNF, we use variables xi,j to denote “ei < ej” and write down the following
clauses (for i 6= j 6= k 6= i ranging over 1, ..., n):

xi,j ∨ xj,i [anti-symmetry; not both ei < ej and ej < ei] (7.11a)

xi,j ∨ xj,k ∨ xi,k [transitivity; ei < ej and ej < ek implies ei < ek] (7.11b)∨
1≤i≤n, i 6=jxi,j [ej is not a minimal element] (7.11c)

One can also add axioms

xi,j ∨ xj,i [totality; either ei < ej or ej < ei] (7.11d)

to specify that the ordering has to be total.22 This yields a formula over Θ
(
n2
)

variables of total size N = Θ
(
n3
)
. We remark that variants of ordering principle

formulas also appear under the names least number principle formula and
graph tautology formula in the literature.

It was conjectured in [Kri85] that these formulas should be exponentially
hard for resolution, but St̊almarck [St̊a96] showed that they are refutable in
length O(N) (even without the clauses (7.11d)).

As the formula is described above, it does not really make sense to ask about
the refutation width, since already the axiom clauses (7.11c) have unbounded
width. However, one can convert the formula to 3-CNF by applying the transfor-
mation from (7.1a) to (7.1b) to the wide axioms (7.11c), and for this version of
the formula [BG01] established a width lower bound Ω

(
3
√
N
)

(which is tight, and
holds even if the axioms (7.11d) are also added). This shows that even polynomi-
ally large resolution width does not necessarily imply any length lower bounds for
general resolution (and, in view of (7.10), it provides an exponential separation
in proof power between general and tree-like resolution, although even stronger
separations are known [BIW04]).

7.4.3. Resolution Space

The study of the space complexity of proofs, which was initiated in the late 1990s,
was originally motivated by considerations of SAT solver memory usage, but has
also turned out to be of intrinsic interest for proof complexity. Space can be
measured in different ways — here we focus on the most well studied measure of
clause space, which is the maximal number of clauses needed in memory while

22CNFgen generates the ordering principle formula for a set of n elements with the command
line cnfgen op 〈n〉 and also adds totality axioms with cnfgen op --total 〈n〉. These formu-
las are easy in practice for CDCL solvers that use VSIDS with a small enough decay factor
or VMTF.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 262 — #30 i
i

i
i

i
i

262 Chapter 7. Proof Complexity and SAT Solving

verifying the correctness of a resolution refutation.23 Thus, in what follows below
“space” will always mean “clause space.”

The space usage of a resolution refutation at step t is the number of clauses
at steps ≤ t that are used at steps ≥ t. Returning to our example resolution
refutation in Figure 7.1, the space usage at step 8 is 5 (the clauses in memory
at this point are clauses 1, 2, 6, 7, and 8). The space of a proof is obtained by
measuring the space usage at each step in the proof and taking the maximum.
Phrased differently, one can view the formula as being stored in read-only input
memory, from where the axiom clauses can be read into working memory. The
resolution rule can only be applied to clauses currently in working memory, and
if a clause has been erased from working memory, then it is gone, and will have
to be rederived if it is to be used again (or read again from the read-only input,
in the case of axiom clauses). Then space measures how many clauses are used in
working memory to perform the resolution refutation. Incidentally, it is not hard
to see that the proof in Figure 7.1 is not optimal when it comes to minimizing
space. We could do the same refutation in space 4 instead by processing the
clauses in the order 4, 5, 6, 3, 7, 2, 8, 1, 9, 10. (In fact, it is even conceivable
that if minimizing space is all we care about, then it might be beneficial to forget
clauses and rederive them later, even if it means repeating the same steps in the
resolution refutation multiple times. This indeed turns out to be the case, as
discussed in Section 7.4.4 below.)

Perhaps somewhat surprisingly, any unsatisfiable CNF formula of size N can
always be refuted in resolution space at most N + O(1) as shown by [ET01],24

though the resolution refutation thus obtained might have exponential length.
Lower bounds on space were shown for pigeonhole principle formulas and Tseitin
formulas in [ABRW02, ET01] and for random k-CNF formulas in [BG03]. For
the latter two formula families the (optimal linear) lower bounds matched ex-
actly previously known width lower bounds, and also the proof techniques had a
very similar flavour. This led to the question of whether there was some deeper
connection waiting to be discovered. In a very elegant paper, Atserias and Dal-
mau [AD08] confirmed this by showing that the inequality

refutation space ≥ refutation width− k (7.12)

holds for resolution refutations of k-CNF formulas. The proof of (7.12) is beautiful
but uses a somewhat non-explicit argument based on finite model theory. A
more explicit proof, which works by simple syntactic manipulations to construct a
small-width refutation from a small-space refutation, was presented in [FLM+15].

Since for all formulas studied up to [AD08] the width and space complexity
measures turned out to actually coincide, it is natural to ask whether (7.12)

23Note, though, that this measure underestimates the actual memory usage, since storing a
clause requires more than a constant amount of memory (this is similar to how we ignore the
size of clauses when defining the size of resolution proofs to be the total number of clauses in
the proof). For completeness, we mention that there is also a measure total space, counting
the total number of literals in memory (with repetitions), which has been studied in, e.g.,
[ABRW02, BGT14, BBG+17, Bon16, GKT19].

24This space upper bound can also be obtained simply by running CDCL (or even DPLL)
as described in Section 7.3.1 with some arbitrary but fixed variable ordering, with the (non-
standard) modification that after each backjump all clauses that are no longer needed to explain
the propagation of literals in the current assignment are immediately erased.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 263 — #31 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 263

z

x y

u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v
∧ w
∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2
.

Figure 7.11: Example pebbling contradiction for the pyramid of height 2.

can be strengthened to an asymptotic equality. The answer to this question
is negative. As shown in the sequence of works [Nor09a, NH13, BN08], there
are formulas that can be refuted in width O(1) and length O(N) but require
space Ω(N/ logN) (i.e., formulas that are maximally easy for width but exhibit
worst-case behaviour for space except for a log factor, and this result is tight since
it can be shown (using a result from [HPV77] that is, incidentally, very related
to the next topic of pebbling) that any formula refutable in length O(N) can also
be refuted in space O(N/ logN)).

The formulas used to obtain the separation result just described are peb-
bling contradictions (also called pebbling formulas) encoding so-called peb-
ble games on bounded fan-in DAGs, which for the purposes of this discussion we
additionally require to have a unique sink. In the “vanilla version” of the formula
(illustrated in Figure 7.11), there is one variable associated to each vertex and
clauses encoding that

• the source vertices are all true;

• if all immediate predecessors are true, then the successor vertex is true;

• but the sink is false.

There is an extensive literature on pebbling space and time-space trade-offs from
the 1970s and 80s, with Pippenger [Pip80] and Savage [Sav98, Chapter 10] giv-
ing excellent overviews of some classic results in the area. Some more recent
developments are covered in the upcoming survey [Nor20]. Pebbling contradic-
tions have been useful before in proof complexity in various contexts, e.g., in
[RM99, BEGJ00, BW01]. Since pebbling contradictions can be shown to be
refutable in constant width but there are graphs for which the pebble game re-
quires large space, one could hope that the pebbling properties of such DAGs
would somehow carry over to resolution refutations of pebbling formulas and
help us separate space and width.

Unfortunately, this hope cannot possibly materialize — a quick visual inspec-
tion of Figure 7.11b reveals that this is a Horn formula (i.e., having at most one
positive literal in each clause), and such formulas are maximally easy for length,

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 264 — #32 i
i

i
i

i
i

264 Chapter 7. Proof Complexity and SAT Solving

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

Figure 7.12: Pebbling contradiction in Figure 7.11b with XOR-substitution.

width, and space since they are decided by unit propagation. However, we can
modify these formulas by substituting for every variable x an exclusive or x1⊕x2

of two new variables, and then expand to CNF in the canonical way to get a new
formula. This process is called XOR-ification or XOR-substitution and is perhaps
easiest to explain by example. Performing this substitution in the clause

x ∨ y (7.13a)

we obtain the formula
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2) , (7.13b)

which when expanded out to CNF becomes

(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) .

(7.13c)

As another example, applying XOR-substitution to Figure 7.11b yields the for-
mula in Figure 7.12.25

Using such XOR-substitution, it turns out that the pebbling contradiction
inherits the time-space trade-offs of the pebbling DAG in terms of which it is
defined [BN08, BN11] (and there is nothing magical with XOR — this can be
shown to work also for substitution with other Boolean functions that have the

25To generate pebbling formulas as in Figure 7.11b for pyramid graphs of height h, run
CNFgen with the command line cnfgen peb pyramid 〈h〉. Doing cnfgen peb pyramid 〈h〉 -T

xor 2 yields XOR-ified pebbling formulas as illustrated in Figure 7.12.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 265 — #33 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 265

right properties). Now the strong space-width separation described above is ob-
tained by plugging in the pebbling DAGs studied in [PTC77, GT78].

7.4.4. Resolution Trade-offs

In the preceding sections, we have seen that for all the complexity measures of
length, width, and space there are formulas which are maximally hard for these
measures. Suppose, however, that we are given a formula that is guaranteed to be
easy for two or more of these measures. Can we then find a resolution refutation
that optimizes these complexity measures simultaneously? Or are there trade-
offs, so that minimizing one measure must cause a sharp increase in the other
measure? Such questions about trade-offs have a long history in computational
complexity theory, but it seems that Ben-Sasson [Ben09] was first to raise the
issue in the context of proof complexity.

It should be noted that this kind of trade-off questions need to be phrased
slightly more carefully in order to be really interesting. As observed in [Nor09b], it
is often possible to prove trade-off results simply by gluing together two formulas
F and G over disjoint sets of variables which have different proof complexity
properties, and then obtain a trade-off result from the fact that any proof of
unsatisfiablity has to refute either F or G. In order to eliminate such examples
and obtain formulas that have inherent trade-off properties, we can additionally
require that the formulas in question should be minimally unsatisfiable, i.e., that
if any clause in the formula is removed, then the residual formula is satisfiable.
For most of the trade-off results we consider here, the formulas are of this flavour.
Also, it can be noted that for the strongest trade-off results discussed below, the
trick of gluing together disjoint formulas cannot yield trade-offs with so strong
parameters anyway.

The first trade-off result in proof complexity seems to have been obtained
in [Ben09], where a strong space-width trade-off was established. Namely, there
are formulas for which

• there are refutations in width O(1);

• there are also refutations in space O(1);

• but optimizing one measure causes (essentially) worst-case behaviour for
the other measure, in that the product of the width and the space for any
refutation must be Ω(N/ logN) (where N is the size of the formula, and
the number of variables is also Θ(N)).

This holds for the “vanilla version” of the pebbling contradictions in Figure 7.11b
(if one again uses the graphs studied in [PTC77, GT78]). Using techniques
from [Raz16a], this space-width trade-off was strengthened in [BN20] to show that
there are formulas over n variables for which resolution refutations in width w
require space almost nw, i.e., far above the linear worst-case upper bound for
space.

Regarding trade-offs between length and space, it was shown in [BN11, BBI16,
BNT13] that there are formulas that can be refuted in short length and also in
small space, but where even slightly optimizing one of these complexity measures
causes a dramatic blow-up for the other measure. One way of obtaining such

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 266 — #34 i
i

i
i

i
i

266 Chapter 7. Proof Complexity and SAT Solving

results is to take DAGs with strong pebbling time-space trade-offs (as in, e.g.,
[CS80, CS82, LT82, Nor12]) and consider substituted pebbling formulas (as in
Figure 7.12) over such DAGs. To give an example of such a result from [BN11],
there are CNF formulas Fn of size Θ(n) and constants κ′ � κ such that:

• The formulas Fn have resolution refutations in space κ′ · n/ log n.

• It is also possible to refute Fn in resolution in length O(n) and space O(n)
simultaneously.

• However, any resolution refutation of Fn in space at most κ · n/ log n has
length exp

(
nΩ(1)

)
.

Another example of formulas exhibiting length-space trade-offs are Tseitin for-
mulas over long, narrow rectangular grids. Building on [BBI16], it was shown
in [BNT13] that there are formula families {Fn,w}, with 1 ≤ w ≤ n1/4, which are
of size Θ(n) and have the following properties:

• The formulas Fn have resolution refutations in space O
(
w log n

)
.

• It is also possible to refute Fn in length nO(1)2w and space 2w + nO(1).

• But for any resolution refutation of Fn in space s the refutation length is

lower-bounded by
(

2Ω(w)

s

)Ω(log logn
log log logn)

.

One interesting aspect of this second result is that if we choose w = κ log n for
some suitably large constant κ, then it follows that short refutations of these
formulas require even superlinear space.26 That is, although we know that any
CNF formula can be refuted in linear space, short refutations can require space
that is much larger than this worst-case upper bound. (It can also be noted that
both of the above results are actually slightly stronger than as described here,
but we omit the full technical details in order to give simpler statements.)

What a length-space trade-off result like the two examples above says is that
if a resolution is of short length, then at some point during the refutation a lot of
space is being used. Such results do not a priori rule out, though, that this high
space usage could be an isolated spike, and that most of the time the refutation
uses very little space. A more recent work [AdRNV17] established more robust
trade-offs between length and cumulative space, exhibiting formulas where any
short proof has to use a lot of space throughout the resolution refutation.

For length versus width, we know that short refutation length implies small
refutation width by (7.9). The proof of this inequality works by transforming a
given short refutation into a narrow one, but the length blows up exponentially
in the process. Thapen [Tha16] showed that this blow-up is unavoidable by ex-
hibiting formulas for which there exist resolution refutations in short length, but
for which any refutation in width as guaranteed by (7.9) has to be exponentially
long. These formulas are slightly tricky to describe, however, and so we do not do
so here. A technical issue with Thapen’s result is that for all other trade-offs dis-

26To generate such Tseitin formulas, run CNFgen with the command line cnfgen tseitin

randomodd grid 〈N〉 〈M〉 for N scaling like κ log(M) for some suitably large constant κ. It
appears, though, that these formulas are just too hard to be solved by CDCL SAT solvers
regardless of memory management, and so even though these formulas could potentially provide
a time-space trade-off for SAT solvers this is more of a theoretical notion than something that
could be observed in practice.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 267 — #35 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 267

cussed above there are k-CNF formulas (for k = O(1)) that exhibit this behaviour,
but Thapen’s formulas have clauses of logarithmic width. A resolution length-
width trade-off result as in [Tha16] but for k-CNF formulas was recently obtained
in [LNSS20]. We also want to mention in this context that in a very intriguing
work Razborov [Raz16a] obtained doubly exponential length-width trade-offs in
tree-like resolution (this is measured in the number of variables in the formulas,
which have exponential size and polynomial width).

7.4.5. Theoretical Complexity Measures and Hardness in Practice

The next topic we wish to discuss is whether practical hardness for CDCL is
in any way related to the complexity measures of resolution length, width, and
space. One interesting observation in this context is that it follows from the results
reviewed in Section 7.4 — if we “normalize” length by taking a logarithm, since
it can be exponential in the formula size N whereas the worst-case upper bounds
for width and space are linear — that for any k-CNF formula the inequalities

log(refutation length) . refutation width . refutation space (7.14)

hold. Thus, length, width, and space form an hierarchy of increasingly strict
hardness measures. Let us briefly discuss the measures again in this light:

• We know that length provides a lower bound on CDCL running time27 and
that CDCL polynomially simulates resolution [PD11]. However, the results
in [AM19, AR08, MPW19] suggest that short resolution proofs should be
intractable to find in the worst case.

• Regarding width, searching for proofs in small width is apparently a well-
known heuristic in the AI community, and [AFT11] proved that CDCL has
the potential to run fast if such proofs exist. (Also, note that for formulas
with resolution proofs in constant width the impossibility result in [AM19]
does not apply, since for such formulas exhaustive search for small-width
resolution proofs runs in polynomial time.)

• As to space, memory consumption is an important bottleneck for SAT
solvers in practice, and space complexity results provide lower bounds on
CDCL clause database size. One downside of this is that the bounds can
be at most linear, and the solver would certainly use a linear amount of
memory just to store the input. However, it is important to note that the
space lower bounds can be shown to hold even in a model where we only
charge for clauses in addition to the input clauses, and since it is a proof
complexity lower bound it applies even to solvers which would somehow
magically know exactly which clauses they need to keep. It could there-
fore be argued that in reality probably much more memory than this bare
minimum should be needed.

Are width or even space lower bounds relevant indicators of CDCL hardness?
Or could it be true in practice that CDCL does essentially as well as resolution
with respect to length/running time? These are not mathematically well-defined

27Again, except if some non-resolution-based preprocessing or inprocessing techniques happen
to be very successful.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 268 — #36 i
i

i
i

i
i

268 Chapter 7. Proof Complexity and SAT Solving

questions, since state-of-the-art CDCL solvers are moving targets, but perhaps
it could still possible to perform experiments and draw interesting conclusions?
Such an approach was proposed in [ABLM08], and the paper [JMNŽ12] reports on
what seems to have been the first systematic attempt to implement this program.

In view of the discussion above it seems too optimistic that length complexity
should be a reliable indicator of CDCL hardness. The work in [JMNŽ12] was
therefore focused on comparing width and space by running extensive experiments
on formulas with constant width complexity (and linear length complexity) but
varying space complexity to see whether running time correlated with space.
These experiments produced lots of interesting data, but it seems fair to say that
the results are inconclusive. For some families of formulas the correlation between
running time and space complexity looks very nice, but for other formulas the
results seem quite chaotic.

One comment worth making here is that the experiments in [JMNŽ12] only
considered the worst-case space complexity of formulas. It might be that it would
be more relevant to study formulas exhibiting length-space trade-offs as in [BN11,
BBI16, BNT13] or cumulative space lower bounds as in [AdRNV17]. Another
issue that should be pointed out is that formulas with low width complexity
and varying space complexity are hard to find — pretty much the only known
examples are the substituted pebbling formulas discussed in Section 7.4.3. Thus,
it is not even clear whether the experiments measured differences in width and
space complexity or some other property specific to these particular formulas.
This problem seems inherent, however. One cannot just pick arbitrary benchmark
formulas and compute the width and space complexity for them before running
experiments, since deciding width is EXPTIME-complete [Ber12] and deciding
space appears likely to be PSPACE-complete.

7.4.6. Using Theory Benchmarks to Shed Light on CDCL Heuristics

Although modern CDCL solvers are routinely used to solve real-world instances
with hundreds of thousands or even millions of variables, it seems fair to say that it
is still very poorly understood how these solvers can be so unreasonably effective.
As should be clear from the description in Section 7.3, the basic architecture of
CDCL solvers is fairly simple, but the secret behind the impressive performance
of state-of-the-art solvers lies in a careful implementation of the basic CDCL
algorithm with highly optimized data structures, as well in the use of dozens of
sophisticated heuristics.

Unfortunately, many of these heuristics interact in subtle ways, which makes
it hard to assess their relative importance. A natural approach to gain a better
understanding would be to collect “real-world benchmarks” and run experiments
on an instrumented CDCL solver with different parameter settings to investigate
how they contribute to overall performance, as proposed in [LM02, KSM11], or
even to study the resolution proofs corresponding to the solver executions [Sim14].
It seems quite tricky to implement this idea in a satisfactory way, however. The
problem is that set of available benchmarks is somewhat limited, and is also a
highly heterogeneous collection in terms of formula properties. For this reason
it turns out to be challenging to obtain statistically significant data that would
admit drawing general conclusions.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 269 — #37 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 269

The recent paper [EGG+18] instead put forth the proposition that a better
understanding of CDCL could be obtained by running experiments on carefully
chosen theoretical benchmarks. By tuning various parameters, one can study
what impact each heuristic has on performance and how this correlates with
the theoretical properties of the formulas. An obvious objection is that it is
very unclear why such a study of crafted benchmarks should have any practical
relevance, but some arguments in favour of this approach given in [EGG+18] are
as follows:

• The benchmarks are scalable, meaning that one can generate “the same”
formula for different sizes and study how performance scales as the instance
size increases. (This simple but powerful idea was perhaps first articulated
clearly in an applied SAT solving setting in [PV05].)

• The benchmarks are chosen to have different extremal properties in a proof-
complexity-theoretic sense, meaning that they can be viewed as challenging
benchmarks for different heuristics for variable decisions, clause deletions,
restarts, et cetera.

• Finally, in contrast to most combinatorial benchmarks traditionally used in
the SAT competitions [SAT], which are known to be very hard for resolution,
the benchmarks in [EGG+18] have been constructed so as to be easy in the
sense of having very short resolution proofs of unsatisfiability that CDCL
solvers could potentially find. In view of this, it can be argued that the
performance of the solver provides a measure of the quality of the proof
search and how it is affected by different heuristics.

Below follow the main conclusions reported in [EGG+18] after comparing the
empirical results with theoretical properties of the benchmarks:

1. Learned clauses are absolutely critical for performance. It is true that the
information gathered while learning the clauses is important for guiding
other heuristics, but this is not enough — the solvers crucially need to also
store the clauses to realize the exponential increase in reasoning power from
tree-like (DPLL-style) proofs to DAG-like resolution proofs.

2. While the mathematical question of whether restarts are just a helpful
heuristic or are fundamentally needed for CDCL solvers to harness the full
power of resolution remains wide open, the experimental results provide
some circumstantial evidence that the latter might be the case. Also, adap-
tive restarts as in [AS12] often work markedly better than the fixed-interval
so-called Luby sequence restarts in [ES04]. More support for this observa-
tion was provided very recently in [KN20].

3. For formulas inspired by time-space trade-off results, too aggressive clause
erasure can incur a stiff penalty in running time also in practice. And when
memory is tight, the literal block distance (LBD) heuristic [AS09] often does
a particularly good job at identifying useful clauses.

4. For VSIDS variable decisions [MMZ+01] the choice of decay factor can some-
times be vitally important. It is not at all clear why, but one hypothesis
is that this might be connected to whether the proof search needs to find
DAG-like proofs or whether tree-like proofs are good enough. One can also

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 270 — #38 i
i

i
i

i
i

270 Chapter 7. Proof Complexity and SAT Solving

see that VSIDS decisions can sometimes go badly wrong for easy but tricky
formulas, which suggests that there is room for further improvements in
variable selection heuristics. Somewhat disappointingly, [EGG+18] did not
find any support for the hypothesis that the newly proposed learning-rate
based branching (LRB) heuristic [LGPC16] would be better than, or even
distinguishable from, VSIDS.

It should perhaps be stressed that none of these findings should be consid-
ered to be a priori obvious, since proof complexity is inherently non-constructive
whereas CDCL is about algorithmic proof search. Another point to emphasize is
that the above findings are in no way rigorous results, but more a way of collect-
ing circumstantial evidence for connections between theory and practice. Much
work still remains to gain a more solid, mathematical understanding of when and
why CDCL solvers work.

7.5. Algebraic Proof Systems

We now switch topics to algebraic proof systems, where formulas are translated to
polynomials so that questions of satisfiability or unsatisfiability can be answered
using algebraic methods of reasoning.

In what follows, we will let F be a field (which will usually be the finite field
GF(2) with two elements {0, 1} in practical SAT solving applications, but can be
any field from the point of view of proof complexity) and ~x = {x1, . . . , xn} be a set
of variables. Algebraic proof systems deal with polynomials in the polynomial ring
over F, i.e., multivariate polynomials in the variables x1, . . . , xn with coefficients
from F. A monomial m is a product of variables m =

∏n
i=1 x

ei
i for ei ∈ N. If

ei ∈ {0, 1} for all i we say that the monomial is multilinear (this is sometimes
also referred to as being square-free). A term t = αm is a monomial m multiplied
by some field element α ∈ F.28

7.5.1. Nullstellensatz

As our first example of an algebraic proof system we discuss Nullstellensatz in-
troduced by Beame et al. [BIK+94]. A Nullstellensatz refutation of a set of poly-
nomials P = {pi(~x) | i ∈ [m]} in the polynomial ring F[~x] is a syntactic equality

m∑
i=1

ri(~x) · pi(~x) +

n∑
j=1

sj(~x) · (x2
j − xj) = 1 , (7.15)

where ri, sj are also polynomials in F[~x]. In algebraic language, what this shows
is that the multiplicative identity 1 of the field F lies in the polynomial ideal
generated by P ∪

{
x2
j − xj

∣∣j ∈ [n]
}

. By Hilbert’s Nullstellensatz, such a refuta-
tion (7.15) exists if and only if there is no common {0, 1}-valued root for the set
of polynomials P.

28We remark that the exact meaning of the terms “monomial” and “term” varies in the
literature, but our choice of terminology here seems well in line with common usage in proof
complexity.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 271 — #39 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 271

Nullstellensatz can also be viewed as a proof system for certifying the unsat-
isfiability of CNF formulas. In this setting we first translate clauses of the form

C =
∨
x∈P

x ∨
∨
y∈N

y (7.16a)

to polynomials

p(C) =
∏
x∈P

(1− x) ·
∏
y∈N

y . (7.16b)

As a concrete example, D = x∨ y∨ z gets translated to p(D) = (1−x)(1− y)z =
z − yz − xz + xyz.29 Then a Nullstellensatz refutation of {p(Ci) | i ∈ [m]} can
be viewed as a refutation of the CNF formula F =

∧m
i=1 Ci. This is so since an

assignment to the variables in F (where we think of 1 as true and 0 as false) is
satisfying precisely if all the polynomials {p(Ci) | i ∈ [m]} vanish, i.e., evaluate
to 0, and a Nullstellensatz refutation rules out that such a satisfying assignment
exists.

The size of a Nullstellensatz refutation is defined to be the total number
of monomials encountered when all products of polynomials are expanded out
as linear combinations of monomials. To be more precise, let mSize(p) denote
the number of monomials in a polynomial p written as a linear combination
of monomials (so that for our example clause D = x ∨ y ∨ z above we have
mSize(p(D)) = 4). Then the size of a Nullstellensatz refutation of the form (7.15)
is

m∑
i=1

mSize
(
ri(~x)

)
·mSize

(
pi(~x)

)
+

n∑
j=1

2 ·mSize
(
sj(~x)

)
. (7.17)

We remark that this is not the only possible way of measuring size. It can be
noted that the definition (7.17) is quite wasteful in that it forces us to represent
the proof in a very inefficient way. Other papers in the so-called semialgebraic
proof complexity literature, such as [GHP02b, KI06, DMR09], instead define size
in terms of the polynomials in isolation, more along the lines of

m∑
i=1

(
mSize

(
ri(~x)

)
+ mSize

(
pi(~x)

))
+

n∑
j=1

(
mSize

(
sj(~x)

)
+ 2
)

(7.18)

or as the bit size or “any reasonable size” of the representation of all polyno-
mials ri(~x), pi(~x), sj(~x). However, our definition (7.17) is consistent with the
general definition of size for so-called algebraic and semialgebraic proof systems

29Note that in this translation we are thinking of 1 as true and 0 as false, which is standard
in proof complexity. It can be argued, though, that in the specific context of algebraic proof
systems a more natural convention is to flip the values and identify 0 with true and 1 with false,
just as a clause evaluating to true is identified with the corresponding polynomial evaluating to 0.
If we adopt this flipped convention, then x∨ y ∨ z would be translated to xy(1− z) = xy− xyz.
There is no clear consensus on this matter in the algebraic proof complexity literature, however,
and so for simplicity we will identify 0 with false and 1 with true throughout this survey to be
consistent with how other proof systems view the constants 0 and 1.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 272 — #40 i
i

i
i

i
i

272 Chapter 7. Proof Complexity and SAT Solving

in [ALN16, Ber18, AO19], and, in particular, matches the size definition in the
other algebraic proof systems that will be discussed later in this section.30

A much more well-studied measure for Nullstellensatz than size is degree,
which we define as max{deg(ri(~x) · pi(~x)),deg(sj(~x) · (x2

j − xj))}. In order to
prove a lower bound d on Nullstellensatz degree for refuting P, one can construct
a d-design, which is a map D from degree-d polynomials in F[~x] to F such that

1. D is linear, i.e., D(αp+ βq) = αD(p) + βD(q) for α, β ∈ F;

2. D(1) = 1;

3. D(rp) = 0 for all p ∈ P and r ∈ F[~x] such that deg(rp) ≤ d;

4. D(x2s) = D(xs) for all s ∈ F[~x] such that deg(s) ≤ d− 2.

Designs provide a characterization of Nullstellensatz degree in that there is a
d-design for P if and only if there is no Nullstellensatz refutation of P in degree d
(this is clearly spelled out in [Bus98] but is mentioned there to have been known
before). The only-if direction is clear — applying D to a purported Nullstellensatz
refutation of the form (7.15) yields 0 on the left-hand side but 1 on the right-hand
side, which is a contradiction. The if-direction requires more work, but follows
from linear programming duality.

Lower bounds on Nullstellensatz degree have been proven for formulas en-
coding combinatorial principles such as the pigeonhole principle [BCE+98] and
pebbling contradictions [BCIP02], which have already been described in previous
sections, and also for other formulas encoding the induction principle [BP98b],
house-sitting principle [CEI96, Bus98], and matching [BIK+97], most of
which we will not discuss further in this survey.

It seems fair to say that research in algebraic proof complexity soon moved
on from Nullstellensatz to stronger systems such as polynomial calculus [CEI96],
which we will discuss shortly. Briefly (and somewhat informally), the difference
between Nullstellensatz and polynomial calculus is that in the latter proof sys-
tem the proof that 1 lies in the ideal generated by P ∪

{
x2
j − xj

∣∣j ∈ [n]
}

can
be constructed dynamically by a step-by-step derivation, which sometimes makes
it possible to decrease both degree and size significantly (while, in the oppo-
site direction, the many lower bounds on degree and size later established for
polynomial calculus, as discussed in Section 7.5.2, certainly apply also to Null-
stellensatz). The Nullstellensatz proof system has seen somewhat of a revival in a
recent line of works [RPRC16, PR17, PR18, GKRS19, dRMN+20] showing that
Nullstellensatz degree lower bounds can be “lifted” to lower bounds in stronger
computational models. We will briefly discuss lifting in Section 7.7.1 and then
see some examples of these ideas can be used in proof complexity in the rest of
Section 7.7. The size complexity measure for Nullstellensatz has also received
attention in recent papers such as [Ber18, AO19, dRNMR19].

When proving lower bounds for algebraic proof systems it is often convenient

30We remark that in the end the difference between these two theoretical size measures is not
too important, since the two measures (7.17) and (7.18) are at most a square apart, and when
measuring size in proof complexity we typically focus on the distinction between polynomial
and superpolynomial. In addition, and more importantly, when we are dealing with k-CNF
formulas with k = O(1), as we are mostly doing in this survey, then the two size definitions are
the same up to a constant factor 2k. We refer the reader to Section 2.4 in [AH19] for a more
detailed discussion of the definition of proof size in algebraic and semialgebraic proof systems.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 273 — #41 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 273

to consider a multilinear setting where refutations are presented in the quotient
ring F[~x]/{x2

j − xj | j ∈ [n]}. Since the Boolean axioms x2
j − xj are no longer

needed, the refutation (7.15) can be written simply as

m∑
i=1

ri(~x) · pi(~x) = 1 , (7.19)

where we assume that all results of multiplications are implicitly multilinearized.
It is clear that any refutation on the form (7.15) remains valid after multilin-
earization, and so the size and degree measures can only decrease in a multilinear
setting.

7.5.2. Polynomial Calculus

The proof system polynomial calculus (PC) was introduced in [CEI96] to model
Gröbner basis computations (and was originally called the “Gröbner basis proof
system,” although by now the name “polynomial calculus” is firmly established).
As in Nullstellensatz, the setup is that we have a set of polynomials P over
variables x1, . . . , xn, where the polynomial coefficients live in some field F. The
goal is to prove that the polynomials P∪

{
x2
j−xj

∣∣j ∈ [n]
}

have no common root.
When operating with CNF formulas, we first translate the clauses to polynomials
using the transformation from (7.16a) to (7.16b).

It is important to observe that, from an algebraic point of view, the variables
can take as values any elements in the field F. Hence, we need to add constraints
enforcing 0/1 assignments. We are also allowed to take linear combinations of
polynomials, or to multiply a polynomial by any monomial, since any common
root for the original polynomials is preserved under such operations. This leads
to the following set of derivation rules for polynomial calculus:

Boolean axioms
x2
j − xj

(7.20a)

Linear combination
p q

αp+ βq
(α, β ∈ F) (7.20b)

Multiplication
p
mp (m any monomial) (7.20c)

A polynomial calculus refutation of P also allows polynomials from P as axioms;
the refutation ends when 1 has been derived, showing that the polynomial equa-
tions have no common root, or equivalently when P is an translation of a CNF
formula, that this formula is unsatisfiable. The polynomial calculus proof system
is sound and complete, not only for CNF formulas but also for inconsistent sys-
tems of polynomial equations in general. As for Nullstellensatz, we can consider
the setting where all polynomials are multilinear, because any higher powers of
variables can always be eliminated using the Boolean axioms (7.20a).

To define the complexity measures of size, degree, and space, we write out the
polynomials in a refutation as linear combinations of monomials. Then the size
of a refutation, which is the analogue of resolution length, is the total number of

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 274 — #42 i
i

i
i

i
i

274 Chapter 7. Proof Complexity and SAT Solving

monomials in the refutation (counted with repetitions), the degree, correspond-
ing to resolution width, is the largest degree of any monomial in it, and the
(monomial) space,, which is the analogue of resolution (clause) space, is the max-
imal number of monomials in memory at any point during the refutation (again
counted with repetitions). One can also define a length measure for polynomial
calculus, which is the number of derivation steps, but this can be exponentially
smaller than the size, which is the more relevant measure to study here.31

The representation of a clause
∨n
i=1 xi as a polynomial in polynomial calculus

is
∏n
i=1(1−xi), which means that the number of monomials is exponential in the

clause width. This problem arises only for positive literals, however — a large
clause with only negative literals is translated to a single monomial. To get a
cleaner and more symmetric treatment, in [ABRW02] the proof system polynomial
calculus (with) resolution, or PCR for short, was introduced. The idea is to add
an extra set of parallel formal variables x′j , j ∈ [n], sometimes referred to as twin
variables, so that positive and negative literals can both be represented in an
efficient fashion.

Lines in a PCR proof are polynomials over the ring F[x1, x
′
1, . . . , xn, x

′
n], where

as before F is some field. We have all the axioms and rules of polynomial calculus
plus the axiom

Negation
xj + x′j − 1

. (7.20d)

Size, length, and degree are defined as for polynomial calculus, and the (mono-
mial) space of a PCR refutation is again the maximal number of monomials in
any configuration counted with repetitions.

It is important to understand that from an algebraic point of view the vari-
ables xj and x′j are completely independent. The point of the negation rule,
therefore, is to force xj and x′j to take opposite values in {0, 1}, so that they re-
spect the intended meaning of negation. It is worth noting that in actual Gröbner
basis calculations one would not have both xj and x′j , so the introduction of “twin
variables” is just to get a nicer proof system from a theoretical point of view. Our
example clause D = x ∨ y ∨ z is rendered as x′y′z in PCR.

One gets the same degree bounds for polynomial calculus resolution as in
polynomial calculus, (just substitute 1− x for x′), but one can potentially avoid
an exponential blow-up in size measured in the number of monomials (and thus
also for space). There are k-CNF formulas for which PCR is exponentially more
powerful than PC with respect to size [dRLM+20]. In PCR, monomial space
is a natural generalization of clause space since every clause translates into a
monomial as just explained in the example above.

Clearly, PC and PCR are very closely related, and in what follows we will
sometimes be a bit sloppy and write just “polynomial calculus” when the distinc-
tion between the two is not important. We write “polynomial calculus resolution”
or “PCR” to highlight when a claim only holds for polynomial calculus with twin
variables for positive and negative literals.

31In fact, if we consider the multilinear setting, where there are no Boolean axioms and instead
multiplication is defined to return the multilinearized result, then it is not hard to show that
any CNF formula with m clauses over n variables can be refuted in polynomial calculus in
length O(mn). See, e.g., [MN15] for a proof of this fact.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 275 — #43 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 275

x ∨ y ∨ z y ∨ z
x ∨ y

(a) Resolution step.

x′yz′

yz

x′yz

z′ + z − 1

x′yz′ + x′yz − x′y
−x′yz′ + x′y

x′y

(b) Corresponding PCR derivation.

Figure 7.13: Example of simulation of resolution step by PCR.

7.5.3. Nullstellensatz, Polynomial Calculus, and Resolution

Polynomial calculus resolution can simulate resolution efficiently with respect to
length/size, width/degree, and space simultaneously simply by mimicking refu-
tations step by step. This means that all worst-case upper bounds for resolution
immediately carry over to PCR. For an example of how this works, see the sim-
ulation of the resolution step in Figure 7.13a by the derivation in Figure 7.13b,
where the polynomials corresponding to the simulated clauses are in boldface.

Polynomial calculus can be strictly stronger than resolution with respect to
size and degree. For instance, over GF(2) it is not hard to see that Tseitin formulas
can be refuted in size O(N logN) and degree O(1) by doing Gaussian elimination.
Another example are the onto functional pigeonhole principle (FPHP) formulas
(7.7a)–(7.7d), which were shown to be easy in [Rii93]. It remains open whether
such separations can be found also for space, however.

Open Problem 7.5. Prove (or disprove) that polynomial calculus resolution is
strictly stronger than resolution with respect to space.32

The proof systems Nullstellensatz and polynomial calculus without twin vari-
ables are incomparable to resolution with respect to size/length — there are for-
mulas for which both Nullstellensatz and PC are exponentially more efficient than
resolution, and other formulas for which resolution is exponentially better.

7.5.4. Size and Degree for Nullstellensatz and Polynomial Calculus

A lot of what is known about length versus width in resolution carries over to size
versus degree in polynomial calculus, whereas Nullstellensatz is mostly different.
It is not hard to show that for both Nullstellensatz and polynomial calculus
upper bounds on degree imply upper bounds on size, in the sense that if a CNF
formula over n variables can be refuted in degree d, then such a refutation can be
carried out in size nO(d). This is qualitatively similar to the bound for resolution,
although the arguments are a bit more involved. Just as for resolution, this
upper bound has been proven to be tight up to constant factors in the exponent
for polynomial calculus [ALN16], and it follows from [LLMO09] that this also
holds for Nullstellensatz.

32A constant-factor separation is claimed in [ABRW02], but this result is for the slightly
different monomial space measure where every distinct monomial is only charged once but an
arbitrary number of copies of this monomial (in different polynomials) can be had for free.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 276 — #44 i
i

i
i

i
i

276 Chapter 7. Proof Complexity and SAT Solving

In the other direction, a lower bound on size in terms of degree exactly analo-
gous to the size-width bound (7.9) for resolution [BW01] holds also for polynomial
calculus, as shown in [IPS99]. For Nullstellensatz it is not possible to obtain lower
bounds on size from degree lower bounds in this way, and pebbling formulas pro-
vide a counter-example [BCIP02].

Interestingly, the paper [IPS99] is a precursor to [BW01], and although it
was far from obvious at the time it turns out that one can run exactly the same
proof for both resolution and polynomial calculus. As for resolution, the ordering
principle formulas in (7.11a)–(7.11d) witness the optimality of this size-degree
lower bound, as shown by [GL10b]. As for resolution, almost all size lower bounds
are derived via degree lower bounds.

The basic tool for proving polynomial calculus degree lower bounds is that
of R-operators, which are analogues of the d-designs used for Nullstellensatz. As
proposed in [Raz98], the idea is to give an overapproximation of what polynomials
can be derived in degree at most d by defining an operator R on multilinear
polynomials such that all degree-d consequences of the axioms are contained in
the set {p | R(p) = 0}. The degree lower bound then follows by showing that
R(1) 6= 0.

Formally, let d ∈ N+ be a positive integer. Suppose that there exists a linear
operator R on a set P of (multilinear) polynomials of degree at most d with the
following properties:

1. R(1) 6= 0.

2. R(f) = 0 for all axioms f ∈ P.

3. For every term t with Deg(t) < d and every variable x it holds that R(xt) =
R(xR(t)).

Then any polynomial calculus refutation of P requires degree strictly greater
than d. (Note that here we can restrict our attention to PC without twin variables
for literals, since the degree measure is the same for PC and PCR.)

The proof of this claim is not hard. The basic idea is that R will map all ax-
ioms to 0 by property 2, and further derivation steps in degree at most d will yield
polynomials that also map to 0 by the linearity of R and property 3 (where we use
that without loss of generality we can implement multiplication by a monomial
by multiplying by all variables in it one by one). But then property 1 implies
that no derivation in degree at most d can reach 1 and establish contradiction.
However, constructing such operators to obtain degree lower bounds seems much
harder than proving resolution width lower bounds, and the technical machinery
is much less well developed.

With the exception of Tseitin formulas and onto functional pigeonhole prin-
ciple (FPHP) formulas, all the formulas discussed in detail in Section 7.4.1 are
equally hard also with respect to polynomial calculus size, which can be shown
via degree lower bounds arguments:

• Hardness of the standard CNF encoding (7.7a)–(7.7b) of pigeonhole prin-
ciple formulas33 follows from [AR03], with some earlier work on other non-

33Here a twist is needed since these formulas have high initial degree, but we will not go into
this. The most elegant solution is to consider so-called graph PHP formulas as discussed in,
e.g., [BW01, MN15].

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 277 — #45 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 277

CNF encodings in [Raz98, IPS99]. The proof in [AR03] works also if onto
clauses (7.7d) are added, and more recently it was shown in [MN15] that
FPHP formulas with clauses (7.7a)–(7.7c) are also hard (whereas with both
onto and functionality axioms added the formulas are easy, as noted above).

• Strong degree and size lower bounds on random k-CNF formulas were shown
in [BI99] for polynomial calculus over fields of characteristic distinct from 2,
and lower bounds in any characteristic including 2 were established by dif-
ferent methods in [AR03].

• For the subset cardinality formulas in Figure 7.10, polynomial calculus de-
gree and size lower bounds were obtained in [MN14].

• Also, “Tseitin formulas with the wrong modulus” are hard — one can define
Tseitin-like formulas encoding counting modulo primes q, and such formulas
are hard over fields of characteristic p 6= q [BGIP01, AR03].

We also wish to discuss briefly two formula families for which we currently
do not know how to prove lower bounds on polynomial calculus degree or size.
Recall that a legal k-colouring of an undirected graph G = (V,E) is a mapping
χ : V → [k] such that for every edge (u, v) ∈ E it holds that χ(u) 6= χ(v). The
k-colouring formula for a graph G is the set of polynomials

k∑
j=1

xv,j − 1 v ∈ V (G), (7.21a)

xv,jxv,j′ v ∈ V (G), j 6= j′ ∈ [k], (7.21b)

xu,jxv,j (u, v) ∈ E(G), j ∈ [k], (7.21c)

with the intended interpretation that xv,j = 1 if vertex v has colour χ(v) = j. It is
clear that these polynomials have a common {0, 1}-valued root if and only if there
exists a legal k-colouring, in which case we say that G is k-colourable. We wish to
prove lower bounds on the complexity of disproving this formula for graphs G that
are not k-colourable. (We remark that we can also represent (7.21a)–(7.21c) as a
CNF formula by rewriting the only non-clausal constraints (7.21a) as the clause∨k
j=1 xv,j , but the exact representation does not matter for this discussion.)

For resolution, it was shown in [BCMM05] that if one samples a graph G at
random with appropriate edge probabilities, then with overwhelming probability
G is not k-colourable, but resolution still requires linear width, and hence expo-
nential length, to refute the k-colouring formula over G.34 This gives a very strong
average-case lower bound over a whole distribution of inputs. For polynomial cal-
culus, all that is known is that one can construct specific worst-case instances that
are exponentially hard [LN17], but we cannot yet rule out that k-colouring would

34CNF versions (in the standard DIMACS format used by SAT solvers) of 3-colouring
formulas over n-vertex random graphs with appropriate parameters can be obtained with
the tool CNFgen [LENV17, CNF] using the command line cnfgen kcolor 3 gnp 〈n〉 〈p〉 for
p = 5/(n− 1). These formulas start getting quite challenging for SAT solvers around n = 800.
(It should be noted that this edge density is slightly too low to get the theoretical guarantees
from [AM99] that the graphs are not 3-colourable, and thus that the formulas are unsatisfiable,
asymptotically almost surely, but empirically this seems to hold. Choosing p = 5.5/(n − 1)
should be enough to also get theoretical guarantees, but yields more overconstrained formulas,
meaning that n has to be chosen larger before the exponential hardness manifests itself.)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 278 — #46 i
i

i
i

i
i

278 Chapter 7. Proof Complexity and SAT Solving

vu

w x

yz

(a) Eulerian graph.

u+ w = 1

u+ z = 1

v + x = 1

v + y = 1

x+ y + z + w = 2

(b) Constraints.

(u ∨ w) ∧ (w ∨ x ∨ y)

∧ (u ∨ w) ∧ (w ∨ x ∨ z)
∧ (u ∨ z) ∧ (w ∨ y ∨ z)
∧ (u ∨ z) ∧ (x ∨ y ∨ z)
∧ (v ∨ x) ∧ (w ∨ x ∨ y)

∧ (v ∨ x) ∧ (w ∨ x ∨ z)
∧ (v ∨ y) ∧ (w ∨ y ∨ z)
∧ (v ∨ y) ∧ (x ∨ y ∨ z)

(c) CNF encoding.

Figure 7.14: Example of even colouring (EC) formula (satisfiable instance).

be an easy problem for Gröbner basis computations in an average-case setting
(although it seems absurd that this would be the case).

Open Problem 7.6. Prove linear lower bound on polynomial calculus degree,
and hence exponential lower bounds on size, for k-colouring formulas over ran-
domly sampled graphs analogously to the average-case lower bound for resolution
in [BCMM05].

Another quite intriguing family of benchmark formulas are the even colour-
ing (EC) formulas constructed by Markström [Mar06] (see Figure 7.14 for an
example). These formulas are defined over connected graphs with all vertices hav-
ing even degree. For a fixed graph G = (V,E) we consider every edge e ∈ E to be
a variable and let the formula consist of the (CNF encodings of) the constraints∑

e∈E(v)

e = deg(v)/2 v ∈ V, (7.22)

where E(v) denotes the set of edges incident to v. The constraints (7.22) require
that the edges should be labelled 0/1 in such a way that for every vertex v in V
the number of 0-edges and 1-edges incident to v is equal. If the total number of
edges in the graph is even, then this formula is satisfiable — since the graph has all
vertices of even degree it also has an Eulerian cycle, and we can fix any such cycle
and label every second edge 0 and 1, respectively. If the number of edges is odd,
however, then summing up (7.22) over all vertices yields 2 ·

∑
e∈E(G) e = |E(G)|

which is clearly a contradiction since an odd number cannot be divisible by 2.
If the graph G is a good enough expander graph, then a fairly standard ex-

tension of the techniques in [BW01] can be used to prove that the even colouring
formula over G requires linear width, and hence also exponential length, for res-
olution.35 However, a moment of reflection reveals that over GF(2) it easy to

35To generate unsatisfiable even colouring formulas over 6-regular random graphs, which
are expanding asymptotically almost surely, one can use CNFgen with the command line
cnfgen ec gnd 〈n〉 6 for the number of vertices n in the graph chosen odd. For CDCL solvers,
these formulas become noticeably hard around n = 21.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 279 — #47 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 279

derive polynomials
∑
e∈E(v) e−deg(v)/2 from (7.22), and summing these polyno-

mials for all v ∈ V yields 2 ·
∑
e∈E(G) e− |E(G)| = 1 (where the calculations are

in GF(2)). Thus, even colouring formulas are easy over GF(2), or more generally
over any field of characteristic 2.

Open Problem 7.7. Are even colouring formulas over expander graphs hard for
polynomial calculus over fields of characteristic distinct from 2?

7.5.5. Polynomial Calculus Space

We next turn to a discussion of space complexity. This measure does not make too
much sense for Nullstellensatz, since refutations of the form (7.15) are presented
in “one shot” and it is hard to talk about any intermediate results. Thus, our
discussion of space will focus on polynomial calculus.

Recall that for resolution we measure space as the number of clauses in mem-
ory, and since clauses turn into monomials in polynomial calculus resolution the
natural analogue here is monomial space (in our discussion of space we are al-
ways focusing on PCR, since this proof system allows for a more efficient repre-
sentation of discjunctive clauses as discussed above). The first monomial space
lower bounds were shown for pigeonhole principle formulas in [ABRW02]. These
formulas have wide axioms, however, and if one applies the 3-CNF conversion
from (7.1a) to (7.1b) the lower bound proof breaks down.

Monomial space lower bounds for formulas of bounded width were proven
only in [FLN+15] for an obfuscated 4-CNF version of PHP formulas. This was
followed by optimal, linear lower bounds for random 4-CNF formulas [BG15], and
then for Tseitin formulas over expanders but with the added assumptions that
either these graphs are sampled randomly or one adds two copies of every edge
to get a multigraph [FLM+13].36 Somewhat intriguingly, none of these papers
could show any nontrivial lower bounds for any 3-CNF formulas. This barrier was
finally overcome by [BBG+17], where optimal lower bounds for random 3-CNF
formulas were established. However, the following open problems show that we
still do not understand polynomial calculus space very well.

Open Problem 7.8. Prove linear lower bounds on polynomial calculus space
for refutations of Tseitin formulas over d-regular expander graphs for d = 3 or
even d > 3 using no other assumptions than expansion only.

Open Problem 7.9. Prove that pigeonhole principle formulas require large
monomial space in polynomial calculus even when converted to 3-CNF.

Another intriguing question is whether an analogue of the fact that resolu-
tion width is a lower bound for resolution space (7.12) holds also for polynomial
calculus.

Open Problem 7.10. Is it true that space ≥ degree −O(1) for k-CNF formulas
in polynomial calculus?

36It is worth noting that these space lower bounds hold for any characteristic, so although
Tseitin formulas have small-size refutations over GF(2), such refutations still require large space.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 280 — #48 i
i

i
i

i
i

280 Chapter 7. Proof Complexity and SAT Solving

For a long time, essentially nothing was known about this problem, except
that the work [FLM+13] made what can be described as some limited progress
by showing that if a formula requires large resolution width (which is a necessary,
but not sufficient, condition for high degree), then the XOR-substituted version
of the formula (as in (7.13a)–(7.13c)) requires large monomial space. When ap-
plied to Tseitin-like formulas over expander graphs, this result yields an optimal
separation of space and degree. Namely, it follows that these formulas can be
refuted in degree O(1) but require space Ω(N). To obtain such separations we
have to commit to a finite characteristic p of the underlying field, however, and
the formulas encoding counting mod p will separate space and degree only for
fields of this characteristic. It would be nice to get a separation that would work
in any characteristic, and the candidate formulas to obtain such a result readily
present themselves.

Open Problem 7.11. Prove (or disprove) that XOR-substituted pebbling for-
mulas as in Figure 7.12 require monomial space lower-bounded by the pebbling
space of the underlying DAG (which if true would yield an essentially optimal
space-degree separation independent of the field characteristic).

Recently, some quite exciting news regarding Open Problem 7.10 was an-
nounced [GKT19], namely that the PCR monomial space of refuting a formula
is lower-bounded by the square root of the resolution refutation width (which, as
mentioned above, is stronger than the corresponding lower bound in terms of de-
gree, since resolution width can be much larger than polynomial calculus degree).
This also implies lower bounds for the formulas mentioned in Open Problems 7.8
and 7.9 and provides a separation between degree and space that is independent
of the characteristic as called for in Open Problem 7.11, although all of these
results are off by a square root from what would have been expected. It is not
clear whether the bounds obtained in this way are tight or not.

7.5.6. Trade-off Results for Nullstellensatz and Polynomial Calculus

When it comes to trade-offs in polynomial calculus we again recognize most of the
picture from resolution, but there are also some differences. Here is a summary
of what is known (where the upper bounds in all of the results hold for PC, i.e.,
polynomial calculus without twin variables, whereas the lower bound apply also
for the PCR proof system with twin variables):

• For space versus degree in polynomial calculus we know strong, essentially
optimal trade-offs from [BNT13], and the formulas exhibiting such trade-
offs are the same vanilla pebbling contradictions as for resolution (for which
we get exactly the same bounds as in Section 7.4.4). However, it is not
known whether a result analogous to [BN20] holds, i.e., whether polynomial
calculus refutations in small degree can require superlinear space.

• The paper [BNT13] also showed strong size-space trade-offs, and again
the formulas used are substituted pebbling contradictions over appropri-
ate DAGs and Tseitin formulas over long, narrow grids. Here there is some
loss in parameters as compared to resolution, however, which seems to be
due to limitations of the proof techniques rather than to actual differences

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 281 — #49 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 281

in formula behaviour, Also, the Tseitin formula trade-off results do not hold
over fields of characteristic 2. Overall, though, the size-space trade-offs are
very similar to the length-space trade-offs for resolution discussed in Sec-
tion 7.4.4, and we omit the details.

• The size blow-up in [IPS99] when degree is decreased is necessary, and can
be obtained for k-CNF formulas of constant width k = O(1), by using the
same ideas as in [Tha16] and then adding a number of extra tweaks to make
the argument go through in polynomial calculus as shown in [LNSS20].

In view of the above, we have two final open problems about polynomial calculus
that we want to highlight in this section.

Open Problem 7.12. Establish size-space trade-offs for polynomial calculus
that hold regardless of the characteristic of the underlying field (in contrast
to [BNT13]).

Open Problem 7.13. Are there formulas over n variables for which polyno-
mial calculus refutations in degree d require monomial space almost nd, or at
least ω(n)?

We wish to mention also that for the weaker Nullstellensatz proof systems
size-degree trade-offs were recently shown in [dRNMR19]. For instance, there is
a family of 3-CNF formulas {Fn}∞n=1 of size Θ(n) such that:

1. There is a Nullstellensatz refutation of Fn in degree O
(

6
√
n log n

)
.

2. There is a Nullstellensatz refutation of Fn of nearly linear size O(n1+ε) and
degree O

(
3
√
n log n

)
.

3. Any Nullstellensatz refutation of Fn in degree at most 3
√
n must have expo-

nential size.

The formulas Fn are vanilla pebbling contradictions without substitution gener-
ated from suitably chosen graphs.

7.5.7. Algebraic SAT Solving

We conclude this section with a(n all too) brief discussion of algebraic SAT solv-
ing. There seems to have been quite some excitement, at least in the theory com-
munity, about the Gröbner basis approach to SAT solving after the paper [CEI96]
appeared. However, the hoped for improvement in performance from this method
failed to materialize in practice. Instead, the CDCL revolution happened. . .

Some Gröbner basis SAT solvers have been developed, the most notable ex-
ample perhaps being PolyBoRi [BD09, BDG+09], but these solvers do not seem
competitive with resolution-based solvers (and, sadly, PolyBoRi is no longer main-
tained). Some SAT solvers such as March [HvM06] and CryptoMiniSat [Cry] suc-
cessfully implement Gaussian elimination [HvM05], but this is only very limited
form of polynomial calculus reasoning.

Is it harder to build good algebraic SAT solvers than CDCL solvers? Or is
it just that too little work has been done? (Witness that it took over 40 years
for resolution-based SAT solvers to become really efficient.) Or is it perhaps a
little bit of both? It can be noted in this context that it was recently shown

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 282 — #50 i
i

i
i

i
i

282 Chapter 7. Proof Complexity and SAT Solving

that efficient proof search is NP-hard for Nullstellensatz and polynomial calcu-
lus [dRGN+20] (strengthening an earlier paper [GL10a]) — i.e., these proof sys-
tems are not automatable — but it is not clear that this should be an obstacle
in practice, since very successful SAT solvers have been built on top of resolution
despite the non-automatability of this proof system [AM19].

Whatever the answer is to these questions, it seems clear that one needs to
find some kind of shortcut in order to use Gröbner bases for efficient SAT solving.
A full Gröbner basis computation does too much work, since it allows us not only
to decide satisfiability but also to read off the number of satisfying assignments,
which is widely believed to be a strictly harder problem.

This slightly downbeat discussion of algebraic SAT solving should not be
taken to mean that algebraic methods cannot be used for successfully solving hard
combinatorial problems, however. To give a positive example, in the sequence of
papers [DLMM08, DLMO09, DLMM11], a body of work that was recognised with
the INFORMS Computing Society Prize 2010, the authors solve graph colouring
problems (with great success) essentially by constructing Nullstellensatz certifi-
cates of non-colourability. Hence, for some NP-complete problems it seems that
even lowly Nullstellensatz can be a quite powerful approach.

Another very interesting line of work is exemplified by the papers [RBK17,
RBK18, KBK19] using Gröbner bases computations to attack the challenging
problem of verifying multiplier circuits. As a part of this work, the authors develop
a formal proof logging system to certify correctness, called practical algebraic
calculus (PAC), and this proof system is nothing other than polynomial calculus
(but with the field F chosen to be the rational numbers Q rather than a finite
field).

7.6. Cutting Planes and Pseudo-Boolean Solving

The cutting planes proof system [CCT87], which formalizes the integer linear pro-
gramming algorithm in [Gom63, Chv73] and underlies so-called pseudo-Boolean
(PB) solvers, operates with linear inequalities over the reals with integer coeffi-
cients. To reason about CNF formulas in cutting planes, the disjunctive clauses
are translated to linear inequalities, which are then manipulated to derive a con-
tradiction. Thus, the question of Boolean satisfiability is reduced to the geometry
of polytopes over the real numbers. Just as algebraic proof systems can deal not
only with translated CNF formulas but with arbitrary sets of polynomials, cut-
ting planes can operate on arbitrary 0-1 integer linear constraints, which we will
also refer to as pseudo-Boolean constraints. A pseudo-Boolean formula is a set of
pseudo-Boolean constraints (also known as a 0-1 integer linear program).

In the standard proof complexity setting, we use only positive literals (un-
negated variables) and identify z with 1−z so that, for instance, the clause x∨y∨z
gets translated to x + y + (1 − z) ≥ 1, or x + y − z ≥ 0 after we have moved all
integer constants to the right-hand side. However, in order to give a description of
cutting planes that is helpful also when we want to reason about pseudo-Boolean
solvers, and in order to get compact notation, it is more useful to keep negated
literals as variables in their own right, and to insist that all inequalities consist
of linear combinations of (positive or negative) literals with only non-negative

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 283 — #51 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 283

coefficients.37 It will also be convenient here to use the notation xσ, σ ∈ {0, 1},
mentioned in Section 7.2, where we recall that x1 = x and x0 = x. With this
notation, assuming that our set of variables is {x1, . . . , xn} we can write all linear
constraints in normalized form ∑

i∈[n], σ∈{0,1}

aσi x
σ
i ≥ A , (7.23)

where for all i ∈ [n] and σ ∈ {0, 1} it holds that aσi ∈ N and min{a0
i , a

1
i } = 0

(the latter condition specifies that variables occur only with one sign in any given
inequality), and where A ∈ N+ (this constant term is often referred to as the
degree of falsity , or just degree, in an applied pseudo-Boolean solving context). In
what follows, all expressions of the type (7.23) are supposed to be in normalized
form, and all sums are assumed to be taken over all combinations of i ∈ [n]
and σ ∈ {0, 1} except as specified under the summation sign.

If the input is a CNF formula F we just view every clause C ∈ F of the form

C = xσ1
1 ∨ x

σ2
2 ∨ · · · ∨ xσww (7.24a)

as a linear constraint
xσ1

1 + xσ2
2 + · · ·+ xσww ≥ 1 . (7.24b)

That is, a disjunctive clause is simply a constraint on the form (7.23) where
aσi ∈ {0, 1} and A = 1 (in particular, our example clause x ∨ y ∨ z now becomes
x1 + y1 + z0 ≥ 1). Hence, CNF formulas can be viewed as a special case of
pseudo-Boolean formulas).

Pseudo-Boolean constraints can be exponentially more concise than CNF, as
is shown by a comparison of the constraint

x1 + x2 + x3 + x4 + x5 + x6 ≥ 3 (7.25a)

with

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧ (x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧ (x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6) (7.25b)

∧ (x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧ (x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

(note that we are assuming here that it is not allowed to introduce new variables
to encode the constraints — as discussed in Section 7.8, such extension variables
can change the properties of proof systems dramatically). Constraints of the form

xσ1
1 + xσ2

2 + · · ·+ xσww ≥ A , (7.26)

i.e., such that aσi ∈ {0, 1} holds for all coefficients aσi , are called cardinality
constraints, since they encode that at least A of the literals in the constraint
are true. We can also have general pseudo-Boolean constraints such as, say,
x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7.

37This is analogous to how twin variables were introduced for polynomial calculus in Sec-
tion 7.5.2, except that for cutting planes this does not affect the reasoning power of the proof
system in any significant way.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 284 — #52 i
i

i
i

i
i

284 Chapter 7. Proof Complexity and SAT Solving

7.6.1. Pseudo-Boolean Rules of Reasoning

Not only are pseudo-Boolean constraints much more concise than clauses, but
the rules used to manipulate them are also more powerful. Using the normalized
form (7.23), the derivation rules in the standard proof complexity definition of
cutting planes are

Literal axioms
xσi ≥ 0

(7.27a)

Multiplication

∑
aσi x

σ
i ≥ A∑

caσi x
σ
i ≥ cA

c ∈ N+ (7.27b)

Addition

∑
aσi x

σ
i ≥ A

∑
bσi x

σ
i ≥ B∑

(aσi + bσi)xσi ≥ A+B
(7.27c)

Division

∑
caσi x

σ
i ≥ A∑

aσi x
σ
i ≥ dA/ce

c ∈ N+ (7.27d)

where in the addition rule (7.27c) we implicitly assume that the result is rewritten
in normalized form. Let us illustrate this by a small example. It is important to
note that when we add literals of opposite sign, the result is

x1
i + x0

i = x1
i +

(
1− x1

i

)
= 1 (7.28)

(which is just another way of saying that it will always be the case that exactly
one of the literals xi and xi is true). If we have the two constraints

x+ 2y + 3z + 4w ≥ 5 (7.29)

and
3x+ 2y + z + w ≥ 3 , (7.30)

then by applying the addition rule (7.27c) we get the expression

(1 + 3)x+ (2− 2)y + (3− 1)z + (4 + 1)w ≥ 5 + 3− (2 + 1) (7.31a)

which in the normalized form (7.23) becomes

4x+ 2z + 5w ≥ 5 (7.31b)

(where we suppress terms with zero coefficients). We note that when adding
(7.29) and (7.30) to obtain (7.31b) the coefficients for y and y cancel so that
this variable disappears. In general, when we add two constraints

∑
aσi x

σ
i ≥ A

and
∑
bσi x

σ
i ≥ B such that there is a variable xi and a σ ∈ {0, 1} for which

aσi = b1−σi > 0, we say that this is an instance of cancelling addition.
More generally, when two linear constraints

∑
aσi x

σ
i ≥ A and

∑
bσi x

σ
i ≥ B

share a variable xj for which aσj > 0 and b1−σj > 0 hold, then we can multiply the

constraints by the smallest numbers cA and cB such that cAa
σ
j = cBb

1−σ
j , and

then apply cancelling addition. If we return to the constraints (7.29) and (7.30)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 285 — #53 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 285

but now focus on the variable z, then we can multiply the second constraint by 3
and then add to get

x+ 2y + 3z + 4w ≥ 5

3x+ 2y + z + w ≥ 3

9x+ 6y + 3z + 3w ≥ 9

10x+ 4y + 7w ≥ 9

(7.32)

More abstractly, writing d = gcd
(
aj , bj

)
for the greatest common divisor of aj

and bj , so that the smallest numbers cA and cB such that cAaj = cBbj are
cA = bj/d and cB = aj/d, the formal specification of this rule is

ajx
σ
j +

∑
i 6=j,σ a

σ
i x

σ
i ≥ A bjx

1−σ
j +

∑
i 6=j,σ b

σ
i x

σ
i ≥ B∑

i 6=j,σ
(
(bja

σ
i /d) + (ajb

σ
i /d)

)
xσi ≥ bjA/d+ ajB/d− ajbj/d

(7.33)

(where as before we implicitly assume that the result of the linear combination is
put into normalized form). Note that this can be viewed as a kind of generalization
of the resolution rule (7.2) from disjunctive clauses to general linear constraints.
We therefore refer to (7.33) as generalized resolution (or sometimes cancelling
linear combination), and we say that the two constraints are resolved over xj .
This rule essentially goes back to Hooker [Hoo88, Hoo92] (although Hooker’s
definition is slightly different in that the cancelling addition has to be followed
by a division step). It is worth noting, though, that one difference compared to
the resolution rule for disjunctive clauses is that it may be possible to resolve the
same pair of constraints over several different variables, which can yield different
results (as in (7.31b) and (7.32) above).

Given a set of linear inequalities, one can show that there is no {0, 1}-valued
solution by using the cutting planes rules to derive the inequality 0 ≥ 1 from
the given linear inequalities. It is clear that such a refutation can exist only if
the instance is indeed unsatisfiable. The other direction also holds, but requires
more work to establish [Chv73, CCT87]; for the special case of translations of
CNF formulas, this follows from the cutting planes can simulate resolution as
discussed in Section 7.7.2 below).

We want to highlight that in the division rule (7.27d) (which is also referred
to as the Chvátal-Gomory cut rule) we can divide with the common factor c on
the left and then divide and round up the constant term on the right to the closest
integer, since we know that we are only interested in {0, 1}-valued solutions. This
division rule is where the power of cutting planes lies. (And, indeed, this is how
it must be, since a moment of thought reveals that the other rules are sound also
for real-valued variables, and so without the division rule we would not be able
to distinguish sets of linear inequalities that have real-valued solutions but no
{0, 1}-valued solutions.)

It is not hard to see that we can modify the definitions slightly to obtain a
more cleanly stated general division rule∑

aσi x
σ
i ≥ A∑⌈

aσi /c
⌉
xσi ≥ dA/ce

c ∈ N+ (7.34)

without changing anything essential, since this rule can easily be simulated by
using rules (7.27a) and (7.27d). Therefore, although the standard definition of di-
vision in the proof complexity literature is as in (7.27d), without loss of generality

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 286 — #54 i
i

i
i

i
i

286 Chapter 7. Proof Complexity and SAT Solving

we will use rule (7.34) (though it should be noted that the correctness of (7.34)
hinges on the fact that we are using normalized form).

A small example just to illustrate how the rules can be combined is the
derivation

6x+ 2y + 3z ≥ 5

x+ 2y + w ≥ 1
Multiplication by 2

2x+ 4y + 2w ≥ 2
Addition

8x+ 6y + 3z + 2w ≥ 7
Division by 3

3x+ 2y + z + w ≥ 3

(7.35)

where we note that in this case we do not lose any information in the final division
step. This is not always true when using the general division rule (7.34) — for
instance, a further division of 3x + 2y + z + w ≥ 3 by 3 would yield the clause
x+ y + z + w ≥ 1, which is a strictly weaker constraint.

Pseudo-Boolean solvers such as Sat4j [LP10] do not implement the full set
of cutting planes derivation rules as presented above, however. To describe how
they work, we need to introduce two other rules, namely

Weakening

∑
(i,σ) a

σ
i x

σ
i ≥ A∑

(i,σ), i 6=j a
σ
i x

σ
i ≥ A−

(
a0
j + a1

j

) (7.36a)

and

Saturation

∑
(i,σ) a

σ
i x

σ
i ≥ A∑

(i,σ) min
{
aσi , A

}
·xσi ≥ A

. (7.36b)

The weakening rule is merely a convenient shorthand for one application each of
the rules (7.27a), (7.27b), and (7.27c). Just as division, saturation is a special
rule in that it is sound only for integral solutions. A second small toy example

2x+ y + z+ ≥ 2

3x+ 2y + 2z + u+ w ≥ 5
Weakening on z

3x+ 2y + u+ w ≥ 3
Resolution on x

7y + 3z + 2u+ 2w ≥ 6
Saturation

6y + 3z + 2u+ 2w ≥ 6

(7.37)

shows how weakening, generalized resolution, and saturation can be combined.
(Again, the statement of the saturation rule in (7.36b) is crucially using normal-
ized form.)

In the proof complexity literature the focus has been on investigating the
general cutting planes proof system with the derivation rules (7.27a)–(7.27c)
and (7.34). To understand the reasoning power of pseudo-Boolean solvers, how-
ever, it makes sense to study also other versions of the cutting planes proof system
where (i) the saturation rule (7.36b) is used instead of the division rule (cutting
planes with saturation), or (ii) all applications of (7.27b) and (7.27c) have to be
combined into applications of the generalized resolution rule (7.33) (cutting planes
with resolution), or (iii) both of these modifications are applied at the same time
(cutting planes with saturation and resolution). We will return to these different
versions of the cutting planes proof system in Section 7.7.4.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 287 — #55 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 287

7.6.2. Conflict-Driven Pseudo-Boolean Solving

To explain why the different flavours of cutting planes just introduced are inter-
esting from an applied point of view, we next turn to pseudo-Boolean solvers and
how they can be used to determine the satisfiability of sets of pseudo-Boolean
constraints, which we recall are referred to as pseudo-Boolean formulas.

One approach to solving pseudo-Boolean formulas is to convert them to CNF,
either lazily by learning clauses from PB constraints during conflict analysis, as
in clasp [GKKS09] and one of the version in the Sat4j library [LP10], or eagerly
by re-encoding the whole formula to CNF (typically introducing new auxiliary
variables, or extension variables) and running a CDCL solver as in, e.g., Min-
iSat+ [ES06], Open-WBO [MML14], or NaPS [SN15]. In the context of cutting
planes we are more more interested in solvers doing native pseudo-Boolean rea-
soning, such as PRS [DG02], Galena [CK05], Pueblo [SS06], Sat4j [LP10], and
RoundingSat [EN18], so this is where our focus will be below (we mention, though,
that related, but slightly different, ideas were also explored in bsolo [MM06]).
Our discussion of pseudo-Boolean solvers cannot come anywhere close to do-
ing full justice to the topic of pseudo-Boolean solving or the even richer area
of pseudo-Boolean optimization — for this, we refer the reader to Chapter 28
in this handbook. Another source of much useful information is Dixon’s PhD
thesis [Dix04].

In our discussion of pseudo-Boolean solving, the standard setting is that the
input is a PB formula without 0-1 solutions, and the goal of the solver is to decide
that the formula is contradictory. For readers more interested in optimization,
note that the above scenario arises also when the optimal solution has been found
and the solver should prove that the (linear) objective function cannot be better
than in the current solution.

Just as CDCL solvers can be viewed as searching for resolution proofs, we will
see that the pseudo-Boolean solving techniques we will discuss generate proofs in
different subsystems of cutting planes. Simplifying drastically, when building a
pseudo-Boolean solver on top of cutting planes we have the following choices:

1. Boolean rule: (a) saturation or (b) division.

2. Linear combinations: (a) generalized resolution or (b) no restrictions.

As we will soon see, the choice of generalized resolution seems inherent in a
conflict-driven setting, which is what we are focusing on here. However, which
Boolean rule to prefer is less clear. Saturation was used in the seminal pa-
per [CK05] and has also been the rule of choice in what is arguably the most
popular pseudo-Boolean solver to date, namely Sat4j [LP10]. Division appeared
only recently in RoundingSat [EN18] (although it was suggested in a more general
integer linear programming setting in [JdM13]). We will return to a discussion of
saturation versus division later, but let us first describe the general setup.

Naively, when generalizing CDCL to a pseudo-Boolean setting we just want
to build a solver that decides on variable values and propagates forced values until
conflict, at which point a new linear constraint is learned and the solver back-
tracks. To decide when constraints are propagating or conflicting it is convenient
to use the concept of slack , which we define next.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 288 — #56 i
i

i
i

i
i

288 Chapter 7. Proof Complexity and SAT Solving

ρ slack(C; ρ) Comment
∅ 8 Sum of coefficients minus degree of falsity.

(x5) 3 Propagates x4, since coefficient > slack.
(x5, x4) 3 Propagation does not change slack.

(x5, x4, x3, x2) −2 Conflict, since slack < 0.

Figure 7.15: Slack of C
.
= x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7 for different trails ρ.

The slack of a constraint
∑
i∈[n], σ∈{0,1} a

σ
i x

σ
i ≥ A under a partial assign-

ment ρ (which we should think of as the variables currently assigned on the trail)
measures how far

∑
i∈[n], σ∈{0,1} a

σ
i x

σ
i ≥ A is from being falsified by ρ, and is

defined as

slack

 ∑
i∈[n], σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 =
∑

ρ(xσi) 6=0

aσi −A , (7.38)

i.e., the sum of the coefficients of all literals that are not falsified by ρ minus
the constant term. To illustrate with a special case, the slack of a disjunctive
clause is the number of non-falsified literals it the clause minus 1. The constraint∑
i∈[n], σ∈{0,1} a

σ
i x

σ
i ≥ A is conflicting under ρ if

slack

 ∑
i∈[n], σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 < 0 (7.39)

and, for xi∗ not in the domain of ρ, it propagates xσ
∗

i∗ under ρ if

0 ≤ slack

 ∑
i∈[n], σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 < aσ
∗

i∗ (7.40)

(which is just another way of saying that we have to set xσ
∗

i∗ to true, or else there
will be no way to satisfy the constraint). The above definitions might be easier
to digest by studying the example in Figure 7.15 of how the slack changes for the
constraint C

.
= x1+2x2+3x3+4x4+5x5 ≥ 7 under different partial assignments ρ

on the trail. The initial slack is just the sum of the coefficients minus the degree.
If x5 is assigned to false, then x4 is propagated to false according to (7.40).
Assigning a variable to its propagated value does not change the slack. If now
the solver for some other reason sets x3 to false and x2 to true, we have a conflict
according to (7.39). Note that in contrast to clauses in CDCL, a pseudo-Boolean
constraint can be conflicting even though not all variables in it have been assigned.

7.6.2.1. A First (Failed) Attempt at Pseudo-Boolean Conflict Analysis

Now we can give a slightly more detailed (though still incomplete) sketch of how
we would like our pseudo-Boolean solver to work:

1. While there is no conflict, iteratively propagate all literals xσ
∗

i∗ such that
there is a constraint for which 0 ≤ slack

(∑
i∈[n], σ∈{0,1} a

σ
i x

σ
i ≥ A; ρ

)
< aσ

∗

i∗

(i.e., add the literals to the current assignment ρ).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 289 — #57 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 289

2. If there is no conflict, find some unassigned literal xσi , decide to set it to
true (i.e., add xσi to ρ), and go to step 1.

3. Otherwise, fix some conflicting constraint
∑
i∈[n], σ∈{0,1} a

σ
i x

σ
i ≥ A, i.e.,

such that slack
(∑

i∈[n], σ∈{0,1} a
σ
i x

σ
i ≥ A; ρ

)
< 0, and resolve it with the

propagating constraints found in step 1 in reverse chronological order until
we derive a constraint that is the analogue of an asserting clause.

4. Add this constraint to the formula, backtrack to the first point in the trail
where the constraint is not falsified, and go to step 1.

From this description it is possible to see why the generalized resolution enters
the picture in a natural way — the only time we use linear combinations is in
step 3, where there are two constraints that have opposing opinions about what
value the current variable under consideration should take.

The simple approach outlined above will not quite work. In what remains of
this subsection, we first show an example why it fails, and then discuss what can
be done to fix the problem. From the examples in Section 7.3 we can see that an
important invariant during CDCL conflict analysis is that the assignment that is
“left on the trail” always falsifies the currently derived clause. This means that
every derived constraint “explains” the conflict by showing what assignments on
the trail are inconsistent, and we can continue the conflict analysis until the de-
rived constraint looks “nice,” at which point the solver learns it and backtracks.
The standard concept of “niceness” in CDCL is that the constraint should be
asserting , i.e., that if we remove further literals from the trail in reverse chrono-
logical order until the first time when the learned constraint is not falsified, then
at this point the constraint propagates some variable that flips an earlier assign-
ment. When we generalized conflict-driven solving to a pseudo-Boolean setting,
we would like the conflict analysis to work in the same way.

As a running example, let us consider the pseudo-Boolean formula consisting
of the two constraints

C1
.
= 2x1 + 2x2 + 2x3 + x4 ≥ 4 (7.41a)

C2
.
= 2x1 + 2x2 + 2x3 ≥ 3 (7.41b)

(which is just an obfuscated way of writing that a majority of the variables
{x1, x2, x3} have to be true and false at the same time, but it is a simple enough
example that we can use it to illustrate our main points). Note that both con-
straints have slack 3 under the empty assignment, which is larger than all coeffi-
cients, so there are no propagations at decision level 0. Suppose that the solver
sets x1 to false to get the trail

ρ1 =
(
x1

DEC←−0
)
. (7.42a)

Now slack(C1; ρ1) = 1, which is less than the coefficient 2 of x2, so C1 propagates
x2 to true, yielding

ρ2 =
(
x1

DEC←−0, x2
C1←−1

)
. (7.42b)

For the same reason, x3 is also propagated to true by C1 (note that, in contrast
to CDCL, the same constraint can propagate several times). For this trail

ρ3 =
(
x1

DEC←−0, x2
C1←−1, x3

C1←−1
)

(7.42c)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 290 — #58 i
i

i
i

i
i

290 Chapter 7. Proof Complexity and SAT Solving

the slack of the other constraint C2 is slack(C2; ρ3) = −1, and we have reached a
conflict.

Inspired by CDCL conflict analysis, we take the reason constraint C1
.
=

reason(x3, ρ2) propagating the last literal x3 under ρ2 and resolve it over x3 with
the conflicting constraint C2, i.e., performing the derivation step

2x1 + 2x2 + 2x3 + x4 ≥ 4 2x1 + 2x2 + 2x3 ≥ 3

x4 ≥ 1
, (7.43)

to obtain the resolvent x4 ≥ 1
.
= resolve(C1, C2, x3). But now we have a prob-

lem: the slack of the resolvent with respect to what remains on the trail is
slack(x4 ≥ 1; ρ2) = 0. This is no longer negative, so we have lost the invariant
from CDCL that the constraint derived on the conflict side should be conflicting!

Taking a step back to analyse what happened, the reason for this failure is
that it is in fact possible to satisfy both constraints C1 and C2 by extending
ρ2 with the assignment x3 = 1

2 . Of course, this is not a Boolean assignment.
However, taking linear combinations is not a Boolean rule but is sound also over
the reals. For this reason, there is no way we can guarantee that the invariant of
a conflicting constraint on the conflict side can be maintained if we use only the
generalized resolution rule (7.33). Thus, we need to get some Boolean derivation
rule into play.

7.6.2.2. Pseudo-Boolean Conflict Analysis Using Saturation

We will now describe how Chai and Kuehlmann [CK05] adapt conflict analysis
to a pseudo-Boolean setting using the saturation rule. Saturation in itself cannot
help fix our problem, because both constraints resolved in (7.43) are already
saturated, as is the resolvent. But if we combine saturation with weakening of
the reason constraint, then (perhaps somewhat counter-intuitively) we can get
the conflict analysis to work. When resolving a propagating constraint Creason on
the reason side with the currently derived constraint Cconfl on the conflict side
(starting with the violated constraint and working our way back along the trail
in reverse chronological order, as described above), we will iterate the following
procedure:

1. weaken the current reason constraint Creason on some non-falsified literal `′

(other than the literal ` propagated by Creason, on which we want to apply
resolution) to get weaken(Creason, `

′);

2. saturate the weakened constraint to obtain saturate(weaken(Creason, `
′));

3. compute the resolvent resolve(Cconfl, saturate(weaken(Creason, `
′)), `) of the

weakened reason constraint with the conflicting constraint Cconfl over the
propagated literal `;

until obtaining a resolved constraint that is conflicting. After each step in this
iteration Creason is updated to to weaken(Creason, `

′), and when we finally get a
conflicting resolvent we update Cconfl to be this new constraint.

Let us first show how this works for our example, and then discuss why this
is a correct approach in general. If we weaken reason(x3, ρ2)

.
= C1 on x2, which

is the first non-falsified literal that is not the one currently propagated, then we

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 291 — #59 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 291

while slack(resolve(Cconfl, Creason, `); ρ) ≥ 0 do
`′ ← literal in Creason \ {`} not falsified by ρ;
Creason ← saturate(weaken(Creason, `′));

end
return Creason;

Figure 7.16: Chai-Kuehlmann reason reduction reduceSat(Cconfl, Creason, `, ρ).

get the following derivation:

2x1 + 2x2 + 2x3 + x4 ≥ 4
Weakening on x2

2x1 + 2x3 + x4 ≥ 2
Saturation

2x1 + 2x3 + x4 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3
Resolution on x3

2x2 + x4 ≥ 1

(7.44)

Unfortunately, this does not solve the problem, since 2x2 + x4 ≥ 1 again has
slack 0 with respect to the trail ρ2 in (7.42b).

We cannot weaken away x3, since this is the propagating literal we want to
resolve over, but we can weaken C1 also on x4, which is not falsified. This yields

2x1 + 2x2 + 2x3 + x4 ≥ 4
Weakening on x2

2x1 + 2x3 + x4 ≥ 2
Weakening on x4

2x1 + 2x3 ≥ 1
Saturation

x1 + x3 ≥ 1 2x1 + 2x2 + 2x3 ≥ 3
Resolution on x3

2x2 ≥ 1

(7.45)

and now we have slack(2x2 ≥ 1; ρ2) = −1 < 0, i.e., we have derived a new con-
straint that maintains the invariant of having negative slack with respect to what
remains on the trail. This does not change if we saturate this constraint to
get x2 ≥ 1.

Although we have not formally defined anything like 1UIP pseudo-Boolean
constraints — and, indeed, doing so requires some care — it should be clear that
x2 ≥ 1 is asserting. If we undo all decisions on the trail, then at top level we have

slack(x2 ≥ 1; ∅) = 0, so x2 propagates to false yielding ρ4 =
(
x2

x2≥1←− 0
)
. Looking

at C1
.
= 2x1 + 2x2 + 2x3 + x4 ≥ 4, we have slack(C1; ρ4) = 1, and since this is

smaller than the coefficient 2 of x1 and x3 both variables propagate to true. This
causes a conflict with C2

.
= 2x1 + 2x2 + 2x3 ≥ 3, and since no decisions have

been made the solver can terminate and report that the formula consisting of the
constraints (7.41a) and (7.41b) is indeed unsatisfiable.

The key to the pseudo-Boolean conflict analysis just described is that we
apply a reduction algorithm on the reason constraint, combining weakening and
saturation, to ensure that when the reduced reason constraint is resolved with
the currently derived conflict constraint, then the result will be a new conflicting
constraint. The pseudo-code for this reduction algorithm from [CK05] is given in
Figure 7.16. But how do we know that this procedure is guaranteed to work?

Briefly, the reason is that slack is subadditive, i.e., if we take a linear combi-

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 292 — #60 i
i

i
i

i
i

292 Chapter 7. Proof Complexity and SAT Solving

while Cconfl not asserting do
`← literal assigned last on trail ρ;

if ` occurs in Cconfl then
Creason ← reason(`, ρ);
Creason ← reduceSat(Creason, Cconfl, `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);
Cconfl ← saturate(Cconfl);

end
ρ← removeLast(ρ);

end
return Cconfl;

Figure 7.17: Pseudo-Boolean conflict analysis analyzePBconflict(Cconfl, ρ).

nation of two constraints C and D, then it is not hard to verify that

slack(c · C + d ·D; ρ) ≤ c · slack(C; ρ) + d · slack(D; ρ) (7.46)

holds. By the invariant, we know for the currently derived constraint Cconfl on
the conflict side that we have slack(Cconfl; ρ) < 0. It is also easy to see directly
from the definition (7.38) that weakening the reason constraint Creason leaves
slack(Creason; ρ) unchanged, since we only weaken on non-falsified literals. But
saturation can decrease the slack, and if we have not reached non-positive slack
before, then at the very latest this will happen when all non-falsified literals
except the propagating one have been weakened away — at this stage the only
coefficient contributing to the slack is that of the propagating literal, and since
the constraint is saturated this coefficient must be equal to the degree of falsity,
so that the whole constraint has slack 0. (This is exactly what happened in our
example.) Plugging this into (7.46), we see that a positive linear combination of
zero and a negative number will be negative, and the invariant is maintained.

Using this reason reduction method, the whole pseudo-Boolean conflict analy-
sis algorithm will be as in Figure 7.17. The reduction step highlighted in boldface
is new compared to CDCL, but everything else is essentially the same (at least
at a high level). So how does our conflict analysis compare to CDCL? Let us
just point out three important aspects here, which will motivate some of the
discussions later.

1. One difference is how much work needs to be performed at each step. When
we resolve a new reason with the current conflict clause in CDCL, then we
only have to “tag on” the reason clause to the conflict clause, but we do
not have to touch the literals already in the conflict clause. Therefore, the
total amount of work during CDCL conflict analysis is linear in the sum of
the clause sizes. But in pseudo-Boolean analysis we might have to multiply
both the reason and the conflict in order to adjust the coefficients so that
the linear combination in (7.33) is cancelling, and this means that we might
have to touch all literals in the constraint on the conflict side over and over
again. In the worst case, this will incur an extra linear factor in the running
time

2. Because of these multiplications, it can also be the case that the coefficients

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 293 — #61 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 293

in the constraints grow very large. If this happens, then the integer arith-
metic can get hugely expensive. This can become a very serious problem in
practice.

3. Perhaps the most serious problem, though, is that for inputs in CNF this
procedure described above degenerates to resolution. All that will happen
during the conflict analysis is that trivial resolution derivations will produce
new clauses, and so the whole algorithm just becomes CDCL but with much
more expensive data structures. Hence, if we take the pigeonhole principle
formula encoded in CNF and feed it into a pseudo-Boolean solver using this
conflict analysis, then although the formula is easy for cutting planes (as
shown in [CCT87]) it will be exponentially hard in practice.

The third issue is perhaps the most important one in that it shows how sensitive
pseudo-Boolean solvers can be to details of the encoding. We will return to the
question of CNF inputs and discuss it in a bit more detail in Section 7.7.

7.6.2.3. Pseudo-Boolean Conflict Analysis Using Division

Motivated by the above discussion, it seems interesting to consider whether the
division rule could be a competitive alternative to saturation. It is known that
general cutting planes (consisting of the rules (7.27a)–(7.27c) and (7.34)) is impli-
cationally complete, meaning that if a pseudo-Boolean formula implies a certain
constraint, then there is a way to derive this constraint.38 This is not true for
cutting planes with saturation [VEG+18], i.e., when the saturation rule (7.36b) is
substituted for the division rule (7.34). For instance, it can be shown that there
is no way to derive the cardinality constraint

x+ y + z ≥ 2 (7.47)

from the (translation into pseudo-Boolean constraints of the) CNF encoding

x+ y ≥ 1 (7.48a)

x+ z ≥ 1 (7.48b)

y + z ≥ 1 (7.48c)

using cutting planes with saturation (even with unrestricted linear combinations).
In view of this, it is natural to ask whether the use of division could perhaps yield
a stronger conflict analysis algorithm. As mentioned above, using division was
proposed in the context of general integer linear programming in CutSat [JdM13],
although it appears that this approach does not work so well in practice. What
we will discuss below is a fairly recent variant of pseudo-Boolean conflict analysis
that uses division instead of saturation, and that does seem to perform very well
in practice.

In the division-based conflict analysis method, for each step in the conflict
analysis we will iterate the following three actions

38This is the analogue of Theorem 7.3.1 for resolution saying that of a clause C is implied by
a CNF formula F , then there is a resolution derivation of some clause C′ ⊆ C from F .

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 294 — #62 i
i

i
i

i
i

294 Chapter 7. Proof Complexity and SAT Solving

c← coeff (Creason, `);
while slack(resolve(Cconfl, divide(Creason, c), `); ρ) ≥ 0 do

`′ ← literal in Creason \ {`} such that `j /∈ ρ and c - coeff (C, `′);
Creason ← weaken(Creason, `′);

end
return divide(Creason, c);

Figure 7.18: Reduction reduceDiv(Cconfl, Creason, `, ρ) using division.

1. Weaken the reason constraint Creason on some non-falsified literal `′ with
coefficient not divisible by the coefficient of the propagating literal ` to
obtain weaken(Creason, `

′).

2. Divide the weakened constraint by the coefficient c of the propagating literal,
yielding the constraint divide(weaken(Creason, `

′), c).

3. Compute the resolvent resolve(Cconfl, divide(weaken(Creason, `
′), c), `) of this

constraint with the conflicting constraint Cconfl over the propagated literal `.

These steps are iterated until the resolvent obtained is conflicting. (Again, the
constraint Creason is updated to weaken(Creason, `

′) after each step.)
Before arguing about correctness, let us do as we did for the saturation-based

method and illustrate how this approach works for the constraints C1 and C2

from (7.41a)–(7.41b) with the trail ρ3 =
(
x1

DEC←− 0, x2
C1←− 1, x3

C1←− 1
)

in (7.42c),
under which C2 is conflicting. The first attempt to resolve the reason C1 for x3

with the conflict constraint C2 now yields the derivation

2x1 + 2x2 + 2x3 + x4 ≥ 4
Weakening on x4

2x1 + 2x2 + 2x3 ≥ 3
Division by 2

x1 + x2 + x3 ≥ 2 2x1 + 2x2 + 2x3 ≥ 3
Resolution on x3

0 ≥ 1

(7.49)

so for this particular example the solver immediately derives contradiction and
can terminate with a report that the instance is unsatisfiable!

The pseudo-code for the reason reduction algorithm from [EN18] using divi-
sion is given in Figure 7.18. Let us sketch the argument why this algorithm is
guaranteed to return a reduced reason constraint that will maintain our desired
invariant, namely that the resolvent of this constraint with the current constraint
on the conflict-side has negative slack with respect to the current trail. Just as in
the analysis of the reason reduction algorithm reduceSat using saturation in Fig-
ure 7.16, it is sufficient to prove that at some point the slack of the constraint on
the reason side is guaranteed to become non-positive. This is sufficient to main-
tain the conflict analysis invariant of negative slack, since the constraint Cconfl on
the conflict side has negative slack by assumption and slack is subadditive (7.46),
meaning that the resolvent of the reason and conflict constraints also has to have
negative slack.

Following the notation in Figure 7.18, let c be the coefficient of the literal `
propagated by Creason. By the definition of propagation in (7.40) we have

0 ≤ slack(Creason; ρ) < c , (7.50)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 295 — #63 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 295

c← coeff (C, `);
foreach literal `′ in C do

if `′ /∈ ρ and c - coeff (C, `′) then
C ← weaken(C, `′);

end

end
return divide(C, c);

Figure 7.19: Reason reduction roundToOne(C, `, ρ) used in RoundingSat .

while Cconfl contains no or multiple falsified literals on last level do
if no current solver decisions then

output UNSAT and terminate
end
`← literal assigned last on trail ρ;

if ` occurs in Cconfl then

Cconfl ← roundToOne(Cconfl, `, ρ);
Creason ← roundToOne(reason(`, ρ), `, ρ);
Cconfl ← resolve(Cconfl, Creason, `);

end
ρ← removeLast(ρ);

end
`← literal in Cconfl last falsified by ρ;
return roundToOne(Cconfl, `, ρ);

Figure 7.20: Pseudo-Boolean conflict analysis in RoundingSat using roundToOne.

and since weakening on non-falsified literals does not change the slack these in-
equalities hold at all times during the execution of reduceDiv. Suppose that we
have reached the point in the algorithm when all coefficients of non-falsified liter-
als not divisible by c have been weakened away. Consider what contribution the
literals in divide(Creason, c) give to the slack. Falsified literals in Creason do not
contribute at all, and all remaining non-falsified literals have coefficients divisible
by c. Therefore, the slack of the reason constraint is divisible by c, i.e., we have

slack(divide(Creason, c); ρ) =
slack(Creason; ρ)

c
, (7.51)

and it follows from this and (7.50) that

0 ≤ slack(divide(Creason, c); ρ) < 1 , (7.52)

i.e., slack(divide(Creason, c); ρ) = 0. This proves the correctness of reduceDiv.
We remark that the reason reduction method roundToOne used in [EN18],

and presented in Figure 7.19, does not weaken away literals one by one, but does
the maximal amount of weakening right away. This is guaranteed to maintain the
invariant by the proof just outlined above. Also, this method is used not only for
reason reduction but is applied more aggressively during the conflict analysis. The
pseudo-code for the conflict analysis in RoundingSat is presented in Figure 7.20.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 296 — #64 i
i

i
i

i
i

296 Chapter 7. Proof Complexity and SAT Solving

It is an interesting question how saturation and division compare when used
for pseudo-Boolean solving, but this is currently not very well understood. It
is clear from our example (7.49) that division can sometimes be more efficient,
but one can also construct crafted benchmarks where it seems that saturation
should have the potential to work better [GNY19]. Nevertheless, some preliminary
conclusions are that for instances where pseudo-Boolean reasoning does not help,
so that a competitive approach would have been to translate to CNF and run a
CDCL solver, then the conflict speed, and hence the search speed, is orders of
magnitude faster in RoundingSat than in Sat4j [EN18]. For crafted benchmarks
where pseudo-Boolean reasoning appears to be crucial, the number of generated
conflicts per second in RoundingSat goes down significantly, but the performance
is still much better than for pseudo-Boolean solvers using saturation [EGNV18].
One extra bonus is that the frequent use of division helps keep the coefficients
small, so that one can use fixed-precision arithmetic (this of course also assumes
that there is code for handling overflow, which is an issue we ignore in the pseudo-
code presented here). However, the main problem we identified with saturation-
based solvers still remains: for CNF inputs, the algorithm degenerates to a CDCL
search for resolution proofs.

7.6.3. More Pseudo-Boolean Rules

Before wrapping up our discussion of pseudo-Boolean solving, we wish to mention
some other reasoning rules that are relevant to consider in this context. A natural
question to ask is whether general linear constraints are needed to harness the
full power of pseudo-Boolean solvers, or whether solvers could equally well work
with a more limited set of constraints. One particularly interesting class of linear
inequalities are cardinality constraints (7.26). Given a general PB constraint such
as, for instance,

3x1 + 2x2 + x3 + x4 ≥ 4 , (7.53a)

one can compute the least number of literals that have to be true, which results
in the constraint

x1 + x2 + x3 + x4 ≥ 2 . (7.53b)

This is used in the solver Galena [CK05], which only learns cardinality con-
straints. The fact that all learned constraints will be of a particular form can also
make other aspects of the algorithm easier. Formally, this cardinality constraint
reduction rule can be written as∑

i∈[n], σ∈{0,1} a
σ
i x

σ
i ≥ A∑

(i,σ) : aσi >0 x
σ
i ≥ T

T = min
{
|I| : I ⊆ [n],

∑
i∈I, σ a

σ
i ≥ A

}
. (7.54)

Another interesting rule is strengthening , which we also introduce by giving an
example. Consider again the constraints (7.48a)–(7.48c) and suppose that we set

x
DEC←−0 and propagate. This yields y

x+y≥1←− 1 and z
x+z≥1←− 1, meaning that the final

constraint y + z ≥ 1 is “oversatisfied” by a margin of 1. A closer analysis of this
situation leads to the conclusion that we can deduce the constraint x+ y+ z ≥ 2
in (7.47), since either x is true, in which case the constraint certainly holds, or else
y+z ≥ 1 is oversatisfied as we just saw. Slightly more formally, the strengthening

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 297 — #65 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 297

rule, which seems to have been imported by [DG02] from operations research,
can be described as follows:

• Suppose that assigning x
σj
j = 0 implies that the constraint

∑
i 6=j, σ aix

σ
i ≥ A

has to be oversatisfied by an amount of K.

• Then it is sound to deduce the constraint

Kx
σj
j +

∑
i 6=j, σ

aix
σ
i ≥ A+K . (7.55)

In theory, using strengthening can allow the solver to recover from bad encodings
such as CNF (in our example, we recovered the cardinality constraint (7.47) from
the CNF encoding (7.48a)–(7.48c)). In practice, however, it seems hard to get
this to work in an efficient way.

A final interesting scenario that we want to discuss is the following. If we
have the PB constraints

2x+ 3y + 2z + w ≥ 3 (7.56a)

2x+ 3y + 2z + w ≥ 3 (7.56b)

then by eyeballing we can conclude that

3y + 2z + w ≥ 3 (7.56c)

must hold, since x is either true or false and so can contribute to at most one of the
constraints (7.56a) and (7.56b). But an application of the generalized resolution
rule on these two constraints instead results in the constraint

6y + 4z + 2w ≥ 4 , (7.56d)

reflecting that this rule also takes the possibility x = 1
2 into consideration. Ap-

plying saturation to (7.56d) yields

4y + 4z + 2w ≥ 4 (7.56e)

and division does not help either since it yields the equivalent constraint

2y + 2z + w ≥ 2 , (7.56f)

which is clearly weaker than (7.56c). As observed by [Goc17], it would be quite
convenient to have an implementation of what we can call a fusion resolution rule

ajxj +
∑
i6=j, σ b

σ
i x

σ
i ≥ B ajxj +

∑
i 6=j, σ b

σ
i x

σ
i ≥ B′∑

i 6=j, σ b
σ
i x

σ
i ≥ min{B,B′}

. (7.57)

The need for such a rule shows up in some tricky benchmarks in [EGNV18], but
we see no obvious way for cutting planes to perform such reasoning in an efficient
manner.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 298 — #66 i
i

i
i

i
i

298 Chapter 7. Proof Complexity and SAT Solving

7.6.4. Some Challenges for Pseudo-Boolean Solving

We conclude our review of conflict-driven pseudo-Boolean solving with a discus-
sion of some of the challenges that lie ahead. On the theory side, one difficulty is
that there seem to be many more degrees of freedom in PB solving compared to
conflict-driven clause learning (CDCL). As we have seen above, there are several
different ways of generalizing CDCL to a pseudo-Boolean context, and it seems
far from obvious what is the best way to do so.

An example of an interesting question concerning the algorithms we have
discussed so far is how much the reason should be weakened in the reduction
step. Is it better to weaken iteratively, literal by literal, until the first point in
time when the resolvent is conflicting? Or is it better to do as in RoundingSat
and do all the weakening right away? Another curious difference from CDCL is
that sometimes the slack on the conflict side can be so negative that it is possible
to just skip a resolution step and still maintain that the conflict-side constraint
when the last propagated literal is removed from the trail (so that its status
changes from falsified to non-falsified and it starts contributing to the slack).
In such a scenario, is it better to skip the resolution step, in order to get fewer
applications of the resolution rule over all, and get a more “compact explanation”
of the conflict, or is it preferable to always resolve? It seems that one can cook
up crafted benchmarks supporting both approaches. Different aspects of pseudo-
Boolean conflict analysis have been studied in [LMMW20, LMW20], but there is
room for much more work in this area.

This leads to the more general question of whether there is a better approach
for conflict analysis than generating (the analogue of) trivial resolution deriva-
tions. Note that this question also makes sense for CDCL. The main reason in
favour of trivial resolution seems to be that it is simple and runs very fast. But
perhaps it could sometimes pay off to be slower and do something smarter? Or, in
the opposite direction, could it be that one should not try to learn general pseudo-
Boolean constraints, as described above, but instead focus on a more limited form
such as cardinality constraints, as done in Galena [CK05]?

One reason that we do not have any good answers to these questions is
that we do not know too much about how the different subsystems of cutting
planes described towards the end of Section 7.6.1 relate to each other in terms
of theoretical strength. Some progress has been made in recent papers such
as [VEG+18, GNY19], but many open problems still remain. A particularly in-
triguing question is whether cutting planes with division is strictly stronger than
cutting planes with saturation when the linear combination rule is limited to
generalized resolution. We will discuss this further in Section 7.7.4.

Among the implementation challenges, one of the most important ones is
how to achieve efficient propagation for pseudo-Boolean constraints. For CDCL
solvers, a simple but crucial observation is that as long as a disjunctive clause con-
tains two non-falsified literals it cannot propagate, and the famous two-watched-
literals scheme implementing this approach in state-of-the-art solvers is an impor-
tant part of the explanation how such solvers can run so fast. This is not true in
pseudo-Boolean solving — for a constraint like

∑n
i=1 xi ≥ n− 1 one has to watch

all variables in order to detect propagation, since as soon as any single variable

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 299 — #67 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 299

is set to false all others should propagate to true. The recent paper [Dev20] pro-
vides what is currently the state of the art in pseudo-Boolean propagations and
discusses in more detail the challenges that remain.

A second major challenge is if and how natural and efficient methods can be
designed to recover from bad encodings (such as CNF). Although it is hard to
make anything like this into a formal claim, it seems that pseudo-Boolean solvers
are more sensitive to the exact encoding of a problem, and also to the presence
or absence of extra, potentially superfluous constraints, than CDCL solvers. A
recent work reporting progress on implementing efficient pseudo-Boolean search
for CNF formulas, assuming that these formulas encode cardinality constraints
or that such constraints can play an important part in the proofs, is [EN20], but
much work still remains.

Another interesting question is how far the solver should backjump once an
asserting constraint has been learned. In contrast to CDCL, a learned constraint
can be asserting at several levels, and there are even different options in how to
define what an asserting constraint should be depending on whether one wants to
apply syntactic or (potentially harder to check) semantic criteria. A somewhat
related concern is how to assess the “quality” of different constraints, for instance,
when the solver has the choice of either performing or skipping a resolution step,
and one would like to know which of the two options seems to yield the better
constraint.

A puzzling observation, made in, e.g., [EGNV18], is that sometimes pseudo-
Boolean solvers perform extremely poorly on instances which are infeasible even
viewed as linear program relaxations without any integrality constraints. Such
instances can be trivial for mixed integer linear programming (MIP) solvers such
as Gurobi [Gur], CPLEX [CPL], and SCIP [SCI], which will detect infeasibility
after solving the LP at the root node, while the pseudo-Boolean solvers get com-
pletely lost looking for satisfying Boolean assignments in a search space where
there are not even any real-valued solutions. On the other hand, it seems that
sometimes MIP solvers can fail badly on instances where learning from failed
partial assignments to PB constraints appears to be crucial (and where, for this
reason, conflict-driven PB solvers can shine). For this reason, a quite tempt-
ing proposition would be to borrow techniques from, or merge techniques with,
MIP solvers to obtain pseudo-Boolean solvers that could provide the best of both
worlds. Some research in this direction has been initiated in [DGN20], but again
it seems that most of the work is still ahead.

In order to further develop pseudo-Boolean solving techniques, however, a
final challenge that we wish to highlight is that it would be very desirable to
develop efficient and concise pseudo-Boolean proof logging techniques. Although
the DRAT format employed for CDCL solvers could also be used to log pseudo-
Boolean proofs in theory, in practice the required overhead makes this infeasi-
ble with current techniques. It seems that the focus on logging only disjunc-
tive clauses mixes very poorly with what is arguably the main advantage of
pseudo-Boolean solvers, namely the stronger format of the constraints they de-
rive. There is some recent work on a proof checker VeriPB [GMN20b, Ver19]
for pseudo-Boolean reasoning, which has been shown to admit efficient proof log-
ging for some constraint programming techniques [EGMN20] and graph solving

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 300 — #68 i
i

i
i

i
i

300 Chapter 7. Proof Complexity and SAT Solving

algorithms [GMN20a, GMM+20], but there is currently no version that would
support proof logging for the full range of techniques used by PB solvers in, e.g.,
the latest pseudo-Boolean solver competition [Pse16].

7.7. Cutting Planes and Proof Complexity

In the previous section we defined different flavours of the cutting planes proof
system, and then showed how the conflict-driven SAT solving framework could
be lifted from clauses to general 0-1 integer linear constraints. We now wish to
proceed to discussing what is known about cutting planes from the point of view
of proof complexity.

Before doing so, however, it will be helpful to describe a particular way of
constructing crafted benchmarks that has played a crucial role in many of the
recent advances on the theoretical side, namely lifting . The formal definition
of lifted formulas seems to have appeared first in [BHP10], though our discus-
sion below relies heavily on the later paper [HN12]. Readers more interested in
seeing statements of concrete proof complexity results can safely skip ahead to
Section 7.7.2.

7.7.1. Brief Detour: Lifted CNF Formulas

The idea behind lifting of functions is that we can take a base function f over some
domain (which we will choose to be Boolean in this discussion) and extend it to
a function over tuples from the same domain by combining it with an indexing or
selector function that determines on which coordinates from the tuples f should
be evaluated. More formally, given a positive integer ` ≥ 2 and a function f :
{0, 1}m → Q for some range Q, the lift of length ` of f is the function Lift`(f) :
{0, 1}m×`×[`]m → Q such that for any bit-vector {xi,j}i∈[m],j∈[`] and any y ∈ [`]m

the value of the lifted function is

Lift`(f)(x, y) = f(x1,y1 , x2,y2 , . . . , xm,ym) . (7.58)

In words, the y-vector selects which coordinates of the x-vector should be fed
to f , as illustrated in Figure 7.21. We refer to the coordinates of the y-vector as
selector variables and the coordinates of the x-vector as main variables, and we
write

selecty(x) = (x1,y1 , x2,y2 , . . . , xm,ym) (7.59)

to denote the substring of the x-vector selected by the y-coordinates. (With this
notation, we have selecty(x) = (x1,3, x2,1, x3,2, x4,2) in Figure 7.21.)

We next extend this definition from functions to relations, or search problems.
To this end, let S be any search problem defined as a subset of {0, 1}m×Q; that
is, on any input a ∈ {0, 1}m, the problem is to find some q ∈ Q such that
(a, q) ∈ S. Then we define the lift of length ` of S to be a new search problem
Lift`(S) ⊆ {0, 1}m×` × [`]m ×Q with input domain {0, 1}m×` × [`]m and output
range Q such that for any bit-vector {xi,j}i∈[m],j∈[`], any y ∈ [`]m, and any q ∈ Q,
it holds that

(x, y, q) ∈ Lift`(S) if and only if
(
selecty(x), q

)
∈ S . (7.60)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 301 — #69 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 301

x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3 x4,1 x4,2 x4,3

y1 y2 y3 y4

()
f x1,y1 x2,y2 x3,y3 x4,y4

Figure 7.21: Illustration of lifted function (for ` = 3, m = 4, and y = (3, 1, 2, 2)).

The general paradigm of lifting is to prove that if the function f or the search
problem S is hard to compute in some weak computational model, then applying
lifting produces a new function Lift`(f) or search problem Lift`(S) that is hard
for a much stronger computational models (in which the original problems f or S
might be trivial). This is sometimes referred to as hardness escalation.

The key behind several recent results establishing lower bounds for the cutting
planes proof system has been to study lifted search problems defined in terms
of CNF formulas using tools from the area of communication complexity [KN97,
RY20]. Such lifted search problems are not themselves CNF formulas syntactically
speaking, however, and therefore an additional step is needed where these lifted
search problems are encoded back into CNF. Such lifted CNF formulas, as first
introduced in [BHP10], can be constructed in the following way.

Definition 7.7.1 (Lift of CNF formula [BHP10]). Given any CNF formula F
with clauses C1, . . . , Cm over variables u1, . . . , un, and any positive integer ` ≥ 2,
the lift of length ` of F is a CNF formula Lift`(F) over 2`n variables denoted by
{xi,j}i∈[n],j∈[`] (main variables) and {yi,j}i∈[n],j∈[`] (selector variables), consisting
of the following clauses:

• For every i ∈ [n], an auxiliary clause

yi,1 ∨ yi,2 ∨ · · · ∨ yi,` . (7.61a)

• For every clause Ci ∈ F , where Ci = ui1 ∨ · · · ∨ uis ∨ uis+1
∨ · · · ∨ uis+t for

some i1, . . . , is+t ∈ [n], and for every tuple (j1, . . . , js+t) ∈ [`]s+t, a main
clause

yi1,j1 ∨ xi1,j1 ∨ · · · ∨ yis,js ∨ xis,js∨
yis+1,js+1

∨ xis+1,js+1
∨ · · · ∨ yis+t,js+t ∨ xis+t,js+t (7.61b)

(where we will refer to Ci as the original clause corresponding to the lifted
clause in (7.61b)).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 302 — #70 i
i

i
i

i
i

302 Chapter 7. Proof Complexity and SAT Solving

Let us try to decipher what the notation in Definition 7.7.1 means. The
purpose of the auxiliary clauses in (7.61a) is to make sure that in every variable
subset {yi,j | 1 ≤ j ≤ `} at least one of the variables is true. We can think of
the selector variables as encoding the vector y ∈ [`]m in the lifted search problem
above. Since every pair yi,j ∨ xi,j in a main clause (7.61b) is equivalent to an
implication yi,j → xi,j , we can rewrite (7.61b) as

(yi1,j1 → xi1,j1) ∨ · · · ∨ (yis+t,js+t → xis+t,js+t) . (7.62)

Now we can see that for every clause Ci, the auxiliary clauses encode that there
is some choice of selector variables yi,j which are all true, and for this choice of
selector variables the xi,j-variables in the lifted clause give us back the original
clause Ci. It is easily verified that F is unsatisfiable if and only if G = Lift`(F)
is unsatisfiable, and that if F is a k-CNF formula with m clauses, then G is a
max(2k, `)-CNF formula with at most m`k+n clauses. In Figure 7.22 we show the
lifted formula Lift2

(
PebΠ2

)
of length 2 obtained from the pebbling contradiction

in Figure 7.11b.39

We remark that there are also other types of lifted CNF formulas in the
literature, but Definition 7.7.1 (which, formally speaking, describes lifting using
the indexing gadget), is the most commonly used version. In the most general
sense, though, the pebbling formula with XOR-substitution in Figure 7.12 is also
a form of lifted formula.

7.7.2. Cutting Planes Size, Length, and Space

Returning from the detour and focusing again on the cutting planes proof system,
the length of a cutting planes refutation is the total number of lines/inequalities
in it, and the size also sums the sizes of all coefficients (i.e., the bit size of rep-
resenting them). The natural generalization of clause space in resolution is to
define (line) space as the maximal number of linear inequalities needed in mem-
ory during a refutation, since every clause is translated into a linear inequality.
There is no useful analogue of width/degree known for cutting planes.40

Cutting planes can simulate resolution efficiently with respect to length/size
and space simultaneously by mimicking the resolution steps one by one. Hence,
just as for polynomial calculus we can conclude that the worst-case upper bounds
for resolution carry over to cutting planes.

The cutting planes proof system is strictly stronger than resolution with re-
spect to length and size, since cutting planes can refute pigeonhole principle
formulas (7.7a)–(7.7b) efficiently [CCT87]. The reason for this is that in contrast
to resolution (and polynomial calculus), cutting planes can count. At a high level,
pigeonhole principle formulas are refuted simply but summing up the number of

39A very closely related CNF formula, but complemented with clauses yi,j ∨ yi,j′ for 1 ≤ j <
j′ ≤ ` to enforce that assignments satisfying clauses (7.61a) set only one variable yi,j to true,
can be generated in DIMACS format by the tool CNFgen [LENV17, CNF] with the command
line cnfgen peb pyramid 〈h〉 -T lift 2 (for pyramid graphs of height h). Whether these extra
clauses are added or not typically does not affect the proof complexity bounds we can obtain
for lifted formulas.

40That is, one can certainly define width measures, but no such measure is known to have
any interesting relation to other complexity measures for cutting planes.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 303 — #71 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 303

(yu,1 ∨ yu,2) ∧ (yv,1 ∨ xv,1 ∨ yw,1 ∨ xw,1 ∨ yy,1 ∨ xy,1)

∧ (yv,1 ∨ yv,2) ∧ (yv,1 ∨ xv,1 ∨ yw,1 ∨ xw,1 ∨ yy,2 ∨ xy,2)

∧ (yw,1 ∨ yw,2) ∧ (yv,1 ∨ xv,1 ∨ yw,2 ∨ xw,2 ∨ yy,1 ∨ xy,1)

∧ (yx,1 ∨ yx,2) ∧ (yv,1 ∨ xv,1 ∨ yw,2 ∨ xw,2 ∨ yy,2 ∨ xy,2)

∧ (yy,1 ∨ yy,2) ∧ (yv,2 ∨ xv,2 ∨ yw,1 ∨ xw,1 ∨ yy,1 ∨ xy,1)

∧ (yz,1 ∨ yz,2) ∧ (yv,2 ∨ xv,2 ∨ yw,1 ∨ xw,1 ∨ yy,2 ∨ xy,2)

∧ (yu,1 ∨ xu,1) ∧ (yv,2 ∨ xv,2 ∨ yw,2 ∨ xw,2 ∨ yy,1 ∨ xy,1)

∧ (yu,2 ∨ xu,2) ∧ (yv,2 ∨ xv,2 ∨ yw,2 ∨ xw,2 ∨ yy,2 ∨ xy,2)

∧ (yv,1 ∨ xv,1) ∧ (yx,1 ∨ xx,1 ∨ yy,1 ∨ xy,1 ∨ yz,1 ∨ xz,1)

∧ (yv,2 ∨ xv,2) ∧ (yx,1 ∨ xx,1 ∨ yy,1 ∨ xy,1 ∨ yz,2 ∨ xz,2)

∧ (yw,1 ∨ xw,1) ∧ (yx,1 ∨ xx,1 ∨ yy,2 ∨ xy,2 ∨ yz,1 ∨ xz,1)

∧ (yw,2 ∨ xw,2) ∧ (yx,1 ∨ xx,1 ∨ yy,2 ∨ xy,2 ∨ yz,2 ∨ xz,2)

∧ (yu,1 ∨ xu,1 ∨ yv,1 ∨ xv,1 ∨ yx,1 ∨ xx,1) ∧ (yx,2 ∨ xx,2 ∨ yy,1 ∨ xy,1 ∨ yz,1 ∨ xz,1)

∧ (yu,1 ∨ xu,1 ∨ yv,1 ∨ xv,1 ∨ yx,2 ∨ xx,2) ∧ (yx,2 ∨ xx,2 ∨ yy,1 ∨ xy,1 ∨ yz,2 ∨ xz,2)

∧ (yu,1 ∨ xu,1 ∨ yv,2 ∨ xv,2 ∨ yx,1 ∨ xx,1) ∧ (yx,2 ∨ xx,2 ∨ yy,2 ∨ xy,2 ∨ yz,1 ∨ xz,1)

∧ (yu,1 ∨ xu,1 ∨ yv,2 ∨ xv,2 ∨ yx,2 ∨ xx,2) ∧ (yx,2 ∨ xx,2 ∨ yy,2 ∨ xy,2 ∨ yz,2 ∨ xz,2)

∧ (yu,2 ∨ xu,2 ∨ yv,1 ∨ xv,1 ∨ yx,1 ∨ xx,1) ∧ (yz,1 ∨ xz,1)

∧ (yu,2 ∨ xu,2 ∨ yv,1 ∨ xv,1 ∨ yx,2 ∨ xx,2) ∧ (yz,2 ∨ xz,2)

∧ (yu,2 ∨ xu,2 ∨ yv,2 ∨ xv,2 ∨ yx,1 ∨ xx,1)

∧ (yu,2 ∨ xu,2 ∨ yv,2 ∨ xv,2 ∨ yx,2 ∨ xx,2)

Figure 7.22: Lifting of the pebbling contradiction in Figure 7.11b.

pigeons and holes, after which the observation can immediately be made that
there are too many pigeons to fit into the holes. Cutting planes and polynomial
calculus are incomparable with respect to size, i.e., for both proof systems one
can find hard formulas that are easy for the other system. PHP formulas are an
example of formulas that are hard for polynomial calculus but easy for cutting
planes. In the other direction, it was recently shown in [GKRS19] that there are
formulas that are easy for polynomial calculus (and even Nullstellensatz) over any
field, but are hard for cutting planes. These formulas are obtained by lifting as
in Section 7.7.1, but the construction is a bit too involved to describe here.

The length measure in cutting planes does not consider the size of the coeffi-
cients. It is natural to ask if, and if so how, the power of cutting planes changes
when coefficients are required to be of limited size. In [BC96] it was shown that
the size of the coefficients need not be larger than of exponential magnitude if
one is willing to tolerate a possible polynomial blow-up in proof length. One can
define a subsystem of cutting planes where all inequalities in the proofs have to
have coefficients of at most polynomial magnitude measure in the input size (i.e.,
coefficients should be representable with a logarithmic number of bits), and this
subsystem is sometimes denoted CP∗ in the literature. Understanding the power
of CP∗ remains wide open.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 304 — #72 i
i

i
i

i
i

304 Chapter 7. Proof Complexity and SAT Solving

Open Problem 7.14. Decide whether cutting planes with coefficients of poly-
nomial magnitude (CP∗) can simulate general cutting planes with at most a poly-
nomial blow-up in proof length, or whether there are formulas for which cutting
planes with unbounded coefficients is superpolynomially stronger.

When it comes to space, cutting planes is very much stronger than both reso-
lution and polynomial calculus — it was shown in [GPT15] that any unsatisfiable
CNF formula (and, in fact, any set of inconsistent 0-1 linear inequalities) can
be refuted in constant line space 5 by cutting planes!41 This proof works by
starting with a linear inequality/hyperplane that cuts away the all-zero point of
the Boolean hypercube {0, 1}n from the candidate list of satisfying assignments
(there has to exist a clause falsified by this assignment, from which the hyperplane
can be obtained), and then uses 4 auxiliary hyperplanes to remove further points
α ∈ {0, 1}n one by one in lexicographical order until all possible assignments have
been eliminated, showing that the formulas is unsatisifiable. During the course
of this refutation the size of the coefficients of the hyperplanes become exponen-
tially large, however, which the line space measure does not charge for. A very
interesting question is what happens if coefficients are limited to be of polynomial
magnitude, i.e., if we consider the space complexity of CP∗ refutations.

Open Problem 7.15. Determine whether cutting planes with coefficients of
polynomial magnitude (CP∗) is as strong as general cutting planes with respect
to space, or whether there exist families of formulas that require superconstant
space in CP∗.

This question is completely open, and it cannot currently be ruled out that
line space 5 would be sufficient. All that is known is that if we restrict the cutting
planes proofs to have coefficients of at most constant size, then there are formulas
that require Ω(log log log n) space [GPT15].

If also coefficient sizes are counted, i.e., if one measures the total space of
cutting planes refutations, then it is not hard to show a linear lower bound (for
instance by combining [BW01] and [BNT13]) and a quadratic worst-case upper
bound is immediately implied by resolution. For resolution this quadratic upper
bound is known to be tight by [BGT14], but to the best of our knowledge no
superlinear lower bounds are known on total space in cutting planes.

Proving space lower bounds, if they exist, seems challenging. It might be
worth noting in this context that already cutting planes with coefficients of abso-
lute size 2 (which is the minimum needed to simulate resolution) is quite powerful
— this is sufficient to construct space-efficient refutations of pigeonhole princi-
ple formulas [GPT15] (when space is measured as the number of inequalities in
memory).

For a long time, essentially the only formulas that were known to be hard
for the cutting planes proof system with respect to length/size were the clique-
coclique formulas (also referred to as clique-colouring formulas) claiming
(the negation of) that “a graph with an m-clique cannot be (m− 1)-colourable.”

41Recall that this means that the formula is kept on a read-only input memory, and the
working memory never contain more than 5 inequalities at any given time.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 305 — #73 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 305

The formula consists of clauses

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n [some vertex is the kth member of the clique] (7.63a)

qk,i ∨ qk′,i [clique members are uniquely defined] (7.63b)

pi,j ∨ qk,i ∨ qk′,j [clique members are neighbours] (7.63c)

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 [every vertex i has a colour] (7.63d)

pi,j ∨ ri,` ∨ rj,` [neighbours have distinct colours] (7.63e)

where variables pi,j are indicators of the edges in an n-vertex graph, variables qk,i
identify the members of an m-clique in the graph, and variables ri,` specify a
colouring of the vertices, for indices ranging over 1 ≤ i < j ≤ n, 1 ≤ k < k′ ≤ m,
and 1 ≤ ` ≤ m− 1.42

Pudlák [Pud97] proved that these formulas are hard by using a so-called Craig
interpolation argument, specifically tailored to work for formulas with the right
structure. He showed that from any short cutting planes refutation of the formula
one can extract a small monotone circuit for clique, which reduces the problem
to a question about size lower bounds for monotone circuits. (For completeness,
we mention that essentially the same techniques were used in [HC99] to obtain
exponential lower bounds for so-called broken mosquito screen formulas, but
due to space constraints we will not discuss these formulas further here.)

It has been conjectured that Tseitin formulas (as in Figure 7.9) should require
long cutting planes refutations, since it should be hard to count mod 2 using
linear inequalities. It has seemed even more likely that random k-CNF formulas
should be exponentially hard. The last few years have seen some very exciting
progress on cutting planes lower bounds. In a breakthrough result, exponential
length lower bounds for random CNF formulas of logarithmic width were obtained
in [HP17, FPPR17]. Unfortunately, currently it does not seem possible to apply
the techniques used in these papers to formulas of constant width.

Open Problem 7.16. Prove length lower bounds for cutting planes refutations
of random k-CNF formulas for some constant k ≥ 3.

Another intriguing result established in [GGKS18] is that if one starts with
k-CNF formulas (for k = O(1)) that require large resolution width, and then
applies lifting as described in Section 7.7.1, then this yields formulas which are
weakly exponentially hard for cutting planes. Very recently, the cutting planes
proof system was shown to be non-automatable, i.e., not to admit efficient proof
search, unless P = NP [GKMP20]. As a complement to these results indicating
weaknesses of cutting planes, another recent result revealing some of the (quite
unexpected) strength of this method of reasoning is that Tseitin formulas have
cutting planes refutations of quasipolynomial43 size [DT20]. Interestingly, this

42A closely related version of this formula, but with extra clauses qk,i ∨ qk,j for 1 ≤ i < j ≤ n
and ri,` ∨ ri,`′ for 1 ≤ ` < `′ ≤ m − 1, so that the assignments satisfying the clauses (7.63a)
and (7.63d) must set a single variable to true, can be generated by CNFgen with the command
line cnfgen cliquecoloring 〈n〉 〈m〉 〈m-1〉 (for the claim that an (m− 1)-colourable n-vertex
graph can also have an m-clique). More generally, cnfgen cliquecoloring 〈n〉 〈k〉 〈c〉 yields
a formula claiming that there exists an n-vertex graph that is both c-colourable and has a
k-clique. Whether the extra binary clauses discussed above are added or not typically does not
affect what proof complexity bounds can be established for these formulas.

43That is, refutations of size exp
(
(logn)κ

)
for some constant κ.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 306 — #74 i
i

i
i

i
i

306 Chapter 7. Proof Complexity and SAT Solving

result was obtained by studying the proof system stabbing planes [BFI+18], which
very roughly can be described as an extension of pseudo-Boolean reasoning where
one can branch over the truth value not only of variables but of general 0-1 linear
inequalities. This proof system is powerful enough to model the kind of reasoning
carried out in mixed integer linear programming (MIP) solvers, and appears to
be much stronger than cutting planes. However, in some settings it is possible to
translate proofs from stabbing planes to cutting planes in a somewhat efficient
manner, which is how the result in [DT20] is obtained.

7.7.3. Size-Space Trade-offs for Cutting Planes

Given our very limited understanding of cutting planes, it is perhaps not so
surprising that not very much has known about size-space trade-offs for this proof
system until quite recently.

It was shown in [GP18b] that short cutting planes refutations of a lifted ver-
sion of Tseitin formulas on expanders must have large space, but this does not
provide a real trade-off since it seems likely that such short refutations do not
exist at all, regardless of their space complexity. Earlier, [HN12] proved that short
cutting planes refutations of a lifted version of pebbling contradictions (similar
to the formula in Figure 7.22) over one particular family of DAGs require large
space — a result that was strengthened and generalized by [GP18b] — and for
pebbling contradictions such short refutations do exist. Interestingly, and some-
what unexpectedly, all of these results follow from reductions to communication
complexity [KN97, RY20]. The state of knowledge regarding pebbling contradic-
tions is much worse here than for resolution and polynomial calculus, however —
for the latter two proof systems we know of general methods to translate peb-
bling trade-offs for (essentially) arbitrary graphs into proof complexity size-space
trade-offs.

Since [GPT15] established that any unsatisfiable CNF formula has a constant-
space refutation, the lower bounds for pebbling contradictions in [HN12, GP18b]
yield true size-space trade-off results for cutting planes, with formulas that can be
refuted in both small size and small space, but where optimizing both measures
simultaneously is impossible. However, the “space-efficient” refutations have co-
efficients of exponential size. It would be more convincing to obtain trade-offs
where the small-space refutations also have small coefficients. Such results would
follow if known resolution and polynomial calculus results for pebbling contra-
dictions or Tseitin formulas over long, narrow grids could be extended also to
cutting planes, since the resolution refutations establishing the upper bounds in
these trade-offs can certainly be simulated by cutting planes with constant-size
coefficients. It seems plausible that such trade-off results should hold for these
formulas even with respect to cutting planes, but proving this has remained out
of reach.

However, using lifted pebbling formulas as in Section 7.7.1, it can be proven
that there are formulas which have cutting planes proofs with coefficients of con-
stant size in either small length or small space, but for which any small-space
refutation must require superpolynomial length even if the coefficients in the
proof are of unbounded size. An example of such a result from [dRNV16] is that
there exist CNF formulas {FN}∞N=1 of size Θ(N) such that:

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 307 — #75 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 307

• FN can be refuted by cutting planes with constant-size coefficients in size
O(N) and (total) space O

(
N2/5

)
.

• FN can be refuted by cutting planes with constant-size coefficients in (total)

space O
(
N1/40

)
and size 2O(N1/40).

• Any cutting planes refutation of FN , even with coefficients of unbounded
size, in line space less than N1/20−ε (for some small enough constant ε > 0)

requires length greater than 2Ω(N1/40).

In fact, this trade-off result holds simultaneously for resolution, polynomial cal-
culus, and cutting planes, although for resolution and polynomial calculus the
parameters are much worse than in the results surveyed in Sections 7.4.4 and 7.5.6.

As discussed above, determining the precise relation between general cutting
planes and the subsystem CP∗ with coefficients of at most polynomial magnitude
remains open, but what is known regarding Open problems 7.14 and 7.15 can
also be stated in the form of a trade-off result. Namely, it was recently shown
in [dRMN+20] that there are formulas which exhibit strong length-space trade-
offs for CP∗ but not for general cutting planes. In more detail, it is possible to
construct a family of CNF formulas {Fn}∞n=1 such that:

• CP∗, and even resolution, can refute Fn in length Õ(n) (this “big-O-tilde”
notation hides polylogarithmic factors in n).

• Cutting planes can refute Fn in length Õ(n2) and line space O(1),

• For any CP∗ refutation in length L and line space s it must hold that

s · logL = Ω(n/ log2 n) . (7.64)

In order to make this into a “true trade-off” in the sense of [dRNV16], we would
also like to show that CP∗ can refute these formulas in small space. This is
not known, however, and in fact it is conceivable, or even seems likely, that any
CP∗ refutation, regardless of the length, would require line space Ω(n/ log2 n) for
these formulas. Proving such a space lower bound would seem to require new
techniques, however.

7.7.4. Subsystems of Cutting Planes

Recall that towards the end of Section 7.6.1 we introduced the following variants
of the cutting planes proof system (following [VEG+18]), loosely corresponding
to different approaches to pseudo-Boolean solving:

General cutting planes: Rules (7.27a)–(7.27c) and (7.34).

Cutting planes with resolution: As general cutting planes above, except
that all applications of (7.27b) and (7.27c) have to be combined into appli-
cations of the generalized resolution rule (7.33).

Cutting planes with saturation: Rules (7.27a)–(7.27c) and (7.36b) (with no
restrictions on the linear combinations).

Cutting planes with saturation and resolution: As the version of cutting
planes with saturation above, except that all applications of the rules (7.27b)
and (7.27c) have to be combined instances of generalized resolution (7.33).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 308 — #76 i
i

i
i

i
i

308 Chapter 7. Proof Complexity and SAT Solving

As mentioned previously, the general cutting planes proof system is implica-
tionally complete, meaning that if a set of linear inequalities imply some other
linear inequality, then the latter inequality can also be derived syntactically. This
is not true for the other variants of cutting planes listed above. Probably already
since [Hoo88, Hoo92] it has been known that cutting planes with division and
resolution collapses to the resolution proof system when the input is presented in
CNF. It is not hard to show that this holds also if division is replaced by saturation
(while restricting linear combinations to general resolution). Thus, subsystems of
cutting planes with the generalized resolution rule rather than unrestricted linear
combinations can be exponentially weaker than general cutting planes.

However, for cutting planes with saturation it turns out that the general-
ized resolution rule is not the problem. It was shown in [GNY19], building
on [VEG+18], that if the saturation rule is used, then any refutation using unre-
stricted linear combinations can be transformed into a refutation using only the
generalized resolution rule with at most a small polynomial blow-up in the proof
length.44 Phrased differently, for cutting planes with saturation it is not really a
restriction to limit linear combinations to general resolution.

In a pseudo-Boolean solving context it is natural that the generalized resolu-
tion rule is used when taking linear combinations of constraints. Such derivation
steps arise naturally during conflict analysis, as has been discussed above, and it
is hard to see how to devise good heuristics for non-cancelling linear combinations
(although it would be very nice if this could be done). A relevant question, there-
fore, is how the division and saturation rules compare to each other if cutting
planes is restricted to generalized resolution. Two results in [GNY19], which we
will discuss next, indicate that using division or saturation might lead to incom-
parable proof systems.

In one direction, there are pseudo-Boolean formulas which have linear-length
refutations in cutting planes with division and resolution but require exponential-
length refutations in cutting planes with saturation even if there are no restrictions
on the linear combinations.

In the other direction, simulating one generalized resolution step followed by
a saturation step can take an unbounded number of steps in general cutting planes
with division and unrestricted linear combinations. Since the example is simple,
we present it here. Let R be a positive integer and consider the two constraints

Rx+Ry +

R∑
i=1

zi ≥ R (7.65a)

and

Rx+Ry +

2R∑
i=R+1

zi ≥ R . (7.65b)

Resolving these two constraints yields

2Rx+

2R∑
i=1

zi ≥ R , (7.66)

44To be technically precise, note that this is a claim about proof length and not about size.
There is no guarantee in [GNY19] as to what happens to the size of the coefficients.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 309 — #77 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 309

which after saturation becomes

Rx+

2R∑
i=1

zi ≥ R . (7.67)

However, deriving (7.67) from (7.65a) and (7.65b) in general cutting planes (with
division and arbitrary linear combinations) can be shown to require Ω

(√
R
)

ap-
plications of the division rule. Note that this is exponential in the number of bits
of the coefficients. It is important to understand that this does not show that
cutting planes with saturation can be superpolynomially stronger than cutting
planes with division — to obtain such a separation, we would need to exhibit a
family of pseudo-Boolean formulas for which refutations using division have to be
superpolynomially longer than refutations using saturation. What the above ex-
ample does show, however, is that if CP with division and resolution polynomially
simulates CP with saturation and resolution, then such a simulation is unlikely
to proceed line by line and instead has to work by some kind of global argument.

Open Problem 7.17. Are there unsatisfiable pseudo-Boolean formulas for which
cutting planes with saturation can produce shorter refutations than cutting planes
with division?45

We can use the above results concerning different versions of cutting planes to
understand better the potential and limitations of different approaches to pseudo-
Boolean solving.

As we have already discussed, one problem with current pseudo-Boolean
solvers is that they perform poorly on CNF inputs. The explanation for this
is that if the input is in CNF, then the solvers cannot possibly go beyond resolu-
tion, regardless of what heuristics they use. Thus, while solvers that implement
native pseudo-Boolean reasoning, such as Sat4j [LP10] and RoundingSat [EN18],
can solve pigeonhole principle formulas very efficiently, they crucially depend on
the input being given in pseudo-Boolean form as linear inequalities:

pi,1 + pi,2 + · · ·+ pi,n ≥ 1 [every pigeon i gets a hole] (7.68a)

p1,j + p2,j + · · ·+ pn+1,j ≥ n [no hole j gets two pigeons] (7.68b)

If the input is instead presented in CNF, with the cardinality constraints in Equa-
tion (7.68b) encoded as the clauses in Equation (7.7b), then the solvers will run in
exponential time. The same holds for subset cardinality formulas — if a pseudo-
Boolean solver is fed the formula encoded as cardinality constraints, then it runs
fast, but on the CNF version in Figure 7.10b it cannot possibly do better than
the exponential lower bound on resolution length in [MN14].

An obvious algorithmic challenge is to make pseudo-Boolean solvers reason
more efficiently with CNF inputs, so that they could, e.g., detect and use the
cardinality constraints hidden in (7.7a)–(7.7b) to get performance comparable to

45Here we want the constraints in the pseudo-Boolean formula to be in saturated form, so that
the separation would not be a consequence of obfuscated input, but would provide an example
where reasoning with saturation during the proof search can be more efficient than reasoning
with division, as in the derivation of (7.67) from (7.65a) and (7.65b).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 310 — #78 i
i

i
i

i
i

310 Chapter 7. Proof Complexity and SAT Solving

when the input is given as (7.68a)–(7.68b). It is possible to do a preprocess-
ing step to recover cardinality constraints encoded in CNF, and for pigeonhole
principle formulas and subset cardinality formulas this works well [BLLM14], but
full preprocessing of the input to try to detect cardinality constraints does not
seem to be an efficient approach in general. A different idea is to try to perform
cardinality constraint detection “on the fly” during the proof search, as proposed
in [EN20], but although this seems like a more promising approach it, too, is not
yet efficient enough to be used in a general pseudo-Boolean solver. Yet another
possibility would be to develop better heuristics for solvers using division and
unrestricted linear combinations, since we know that with such rules it is always
possible, at least in theory, to rewrite CNF constraints in some other pseudo-
Boolean form when this is desirable.

The sensitivity to the input format is not the only challenge in the context of
pseudo-Boolean reasoning, however. Another challenging benchmark family are
the even colouring (EC) formulas discussed in Section 7.5.4. The pseudo-Boolean
encoding of these formulas is obtained by converting every equality constraint to
a pair of inequalities, so that, e.g., the first constraint u+ w = 1 in Figure 7.14b
is translated to the inequalities u+w ≥ 1 and u+w ≥ 1, and the second equality
u+ z = 1 is translated to u+ z ≥ 1 and u+ z ≥ 1, et cetera.

If the number of edges is odd, so that the formula is unsatisfiable, then
cutting planes can sum the PB constraints with positive literals over all vertices
to derive 2 ·

∑
e∈E(G) e ≥ |E(G)| and then divide by 2 and round up to obtain∑

e∈E(G) e ≥ (|E(G)|+1)/2. By instead summing up all constraints with negated

literals and dividing by 2 one obtains
∑
e∈E(G) e ≥ (|E(G)| + 1)/2, and adding

these two inequalities cancels all variables and leaves 0 ≥ 1.
One interesting aspect to observe here is that in contrast to pigeonhole prin-

ciple and subset cardinality formulas, it is essential in the above argument that
variables are integer-valued. To see the difference, suppose that we are given a
PHP or subset cardinality formula encoded as linear constraints. Then for cutting
planes it is sufficient to simply add up the inequalities to derive a contradiction.
No integer-based reasoning is needed. Even if we allow putting fractional pigeons
into fractional holes, there is no way one can make a pigeon mass of n+ 1 fit into
holes of total capacity n. This set of linear inequalities is unsatisfiable even over
the rationals, i.e., the polytope defined by the constraints is empty, and so it is
sufficient to just solve the linear programming relaxation. Similarly, for subset
cardinality formulas there is no way 4n + 1 variables could have a total “true
mass” of at least 2n + 1 and a total “false mass” of 2n + 1 simultaneously. But
for collections of linear constraints as in Figure 7.14b, assigning all edges value 1

2
yields a satisfying fractional solution. The polytope defined by the linear inequal-
ities is not empty, but it does not contain any integer points. Hence, refuting
EC formulas in cutting planes crucially requires that the solvers use saturation
or division (or some other form of integer-based reasoning).

Experiments in [EGNV18] show that even colouring formulas and some other
crafted formulas are much harder for pseudo-Boolean solvers than the cutting
planes upper bound would suggest, which seem to indicate that the solvers are
still quite far from using the full power of cutting planes reasoning.46 It also seems

46To balance this picture somewhat — since this survey chapter might be perceived as taking

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 311 — #79 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 311

to be the case that the division-based solver RoundingSat performs clearly better
than Sat4j , and indeed it is not easy to see what a short argument using saturation
for the unsatisfiability of even colouring formulas would be. It is tempting to
conjecture that EC formulas generated from the right kind of graphs should be
exponentially hard for cutting planes with saturation, but proving such a lower
bound appears to be beyond current techniques.

Open Problem 7.18. Is it true that even colouring formulas over random
6-regular graphs with an odd number of vertices (so that the formulas are unsat-
isfiable) are exponentially hard for cutting planes with saturation asymptotically
almost surely?

7.7.5. Further Algebraic and Semialgebraic Proof Systems

Nullstellensatz, polynomial calculus, and cutting planes have been generalized to
other algebraic and semialgebraic proof systems that are more powerful in sev-
eral ways. These include the Lovász-Schrijver proof system [LS91], the Sherali-
Adams proof system [SA90], the Positivstellensatz proof system [GV01], a system
combining Lovász-Schrijver and cutting planes [Pud99], and the Lasserre proof
system [Las01a]. All of these are methods for reasoning about solutions to polyno-
mial equations. By adapting them to prove the nonexistence of 0-1 solutions for a
system of polynomials, they can be used as proof systems for refuting Boolean for-
mulas. There has been extensive work on these systems. For an early expository
account of the Positivstellensatz and the Lovász-Schrijver systems, see [GHP02a].
The survey papers [Lau01, CT12] discuss the Lovász-Schrijver, Sherali-Adams,
and Lasserre systems.

The Sum-of-Squares proof system describes methods for establishing the
(non-)existence of general solutions (not just 0-1 solutions) to systems of poly-
nomial equalities over the real numbers. They are similar to the Positivstellen-
satz system. Sum-of-Squares systems were introduced by [Sho87, Nes00, Par00,
Las01b]; see also the survey [BS14]. Other, very strong, algebraic proof systems
are the ideal proof system (IPS) introduced by Grochow and Pitassi [GP18a]
and the noncommutative ideal proof system of [LTW18]. An exposition of these
systems is in [PT16].

A recent survey covering proof complexity and Sherali-Adams and Sum-of-
Squares is given by [FKP19]. For another survey including the above topics,
see [Raz16b]. Not all of the above-discussed systems are propositional proof
systems in the sense of Cook and Reckhow; in particular, the validity of IPS proofs
can be checked by randomized polynomial time algorithms, but no deterministic
polynomial algorithm is known.

An orthogonal family of proof systems — which we mention here anyway
because of the connection to cutting planes — are based on ordered binary de-
cision diagrams (OBDDs), which can provide efficient and flexible representa-
tions of Boolean functions serving as an alternative to the CNF representation

a rather dim view of the state of the art in pseudo-Boolean solving — we want to stress that
there are also applications [LR18, LBD+20, SDNS20] where pseudo-Boolean solvers are doing
very well, and for some of these applications it seems that the power of the cutting planes proof
system is crucial to get better performance than what is offered by CDCL SAT solving, algebraic
approaches, constraint programming, and/or mixed integer linear programming.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 312 — #80 i
i

i
i

i
i

312 Chapter 7. Proof Complexity and SAT Solving

(see [Bry92]). The paper [AKV04] proposed the use of OBDDs in proof sys-
tems, showing they can polynomially simulate resolution and cutting planes with
small coefficients. Lower bounds on OBDD-based proof systems were shown
in [AKV04], and then by [Kra08, Seg08]. Further lower bounds and simulation
results have been obtained in [GZ03, TSZ10, Jär11, IKRS17, BIKS18].

7.8. Extended Resolution and DRAT Proof Systems

We now switch our focus to proof systems that are substantially stronger than
the earlier considered systems of resolution, Nullstellensatz, polynomial calculus,
and cutting planes. Just to give an overview of where we are going, the present
section discusses DRAT-style proofs and extended resolution. These systems
are directly based on resolution and CDCL solvers, and are intended for use in
automated proof systems. Section 7.9 then covers Frege proof systems, which is a
generalization of resolution that sits between resolution and extended resolution
in proof strength. Extended resolution and Frege proof systems are both stronger
than the other proof systems that we have surveyed earlier — in fact, they can give
polynomial-size proofs of all the combinatorial principles and counting principles
discussed earlier. The only family of formulas discussed so far for which it is not
known whether they possess polynomial-size Frege and/or extended resolution
proofs are random k-CNF formulas; the usual conjecture is that they do not.
Section 7.10 discusses bounded-depth Frege systems, which is a restricted form of
Frege systems. Bounded-depth Frege systems are weaker than full Frege systems
but stronger than resolution, and are not comparable to cutting planes, in that
bounded-depth Frege is more effective on some propositional formulas, but less
effective on others.

Our treatment of these topics is theoretical in orientation and relatively brief,
partly due to space constraints and partly since these proof systems have yet to
be widely used in practical SAT solvers. The exception is that DRAT and similar
systems are becoming widely used for proof logging and verification.

Extended resolution (ER) was originally introduced by Tseitin [Tse68] to
allow resolution to work with more general formulas than CNFs. The intuition is
that an extended resolution refutation should be allowed to introduce proof lines
of the form

x↔ ϕ , (7.69)

where x is a new variable and ϕ is an arbitrary propositional formula. The proviso
that x is new means that x does not appear in any axiom, in ϕ, or earlier in the
derivation. The extension rule can be used in derivations as well, but then x also
must not appear in the formula being derived.

The extension rule (7.69) is stated in the form that will be employed in
extended Frege systems, which are defined in Section 7.9. Since resolution systems
are constrained to work with clauses, extended resolution uses instead a restricted,
clausal form of the extension rule. If a and b are literals, and x is a new variable,
then the extension rule allows inferring the three clauses

x ∨ a x ∨ b a ∨ b ∨ x (7.70)

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 313 — #81 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 313

which express that x↔ (a∧ b). An extended resolution derivation is a derivation
in which both the resolution rule (7.2) and the extension rule (7.70) are allowed.
Using (7.70) multiple times, with multiple new variables, makes it possible to
simulate efficiently the action of the full extension inference of (7.69). Conse-
quently, extended resolution simulates (and is simulated by) the extended Frege
proof system which uses (7.69).

It is almost immediate that adding the extension rule preserves soundness,
since if there is a satisfying assignment to a set of clauses, the satisfying assign-
ment can be extended to give the new variable x the (unique) truth value which
satisfies (7.69) or (7.70). Therefore, extended resolution is sound and complete.
However, resolution does not polynomially simulate extended resolution. Instead,
the addition of extension variables makes the proof system exponentially more
powerful. The classic example of this are the pigeonhole principle formulas, which
was shown to have polynomial-size extended resolution proofs in [CR79], but to
require exponential-size resolution proofs in [Hak85].

The fact that the extension rule is so powerful raises the question of whether
practical, CDCL-based, SAT solvers can incorporate the extension rule. If this
could be done well, the gains would be enormous, as this would in principle give
CDCL the possibility to refute CNFs using the full power of extended resolution.
There have been a number of attempts to do so, but the published literature
on this is fairly sparse, principally [SB06, AKS10, Hua10, MHB13]. So far, the
extension rule has been shown to be useful in limited situations; however, it
has not been successful enough to be generally included in SAT solvers. The
main bottleneck appears to be that we have no good heuristics for how to choose
extension formulas ϕ for use in the extension rule. A second bottleneck is that
even if good choices are made for extension formulas, it appears to be difficult for
the CDCL solver to use the new extension variables advantageously for decision
literals, unit propagation and clause learning.

In recent years, a new application for the extension rule has appeared, driven
by the desire to have SAT solvers output verifiable proofs of correctness of the
computations. Section 7.3.1 discussed reverse unit propagation (RUP) proofs
as proof traces. RUP proofs, however, are not powerful enough to handle all
the preprocessing and inprocessing techniques used by modern SAT solvers. A
more powerful resolution asymmetric tautology (RAT) inference rule has been
developed to supplant RUP, and has later been complemented with a deletion
rule in the proof traces to yield the DRAT proof system.

The RAT rule differs from RUP rules or resolution in that it does not respect
implication. That is to say, it is possible to use a RAT rule to derive a clause C
from a set of clauses F even if F does not imply C. Instead, RAT inferences only
preserve consistency, in that we are assured F ∪C is consistent if and only if F is.
This property is called equisatisfiability . As we shall see, examples of this include
the pure literal rule and extension axioms. The pure literal rule is used to set a
literal that occurs only positively to be set true; the extension axioms are allowed
even though they are not true under all truth assignments. Equisatisfiability
means that these steps cannot introduce an inconsistency.

Following [HHW13b, HHW13a], a RAT inference is formally defined as fol-
lows. Let F be the current set of clauses in the clause database. (Recall that

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 314 — #82 i
i

i
i

i
i

314 Chapter 7. Proof Complexity and SAT Solving

typically the clause database F is repeatedly updated by clause learning and
clause deletion.) Let C be a clause a1 ∨ · · · ∨ ak ∨ b: here it is permitted, but not
required, that the literal b is a new literal not appearing yet in F . Then we may
infer C with a RAT inference with respect to b, provided that for every clause
D ∨ b in F it holds that the clause

a1 ∨ · · · ∨ ak ∨D ∨ b (7.71)

either is tautological by virtue of containing clashing literals or is a RUP clause
with respect to F . (Recall that a RUP clause is a clause C ′ which can be inferred
by trivial resolution from F , and that this can be checked quickly by adding the
negations of the literals in C ′ to F and using unit propagation to generate a
contradiction — see Section 7.3.1 for more details).

The intuition behind a RAT inference is that a clause C of the form a1 ∨
· · · ∨ ak ∨ b can be added to the clause database F without introducing a new
inconsistency. One way to justify this is to prove that if the clause C is resolved
in all possible ways with clauses of F using the distinguished literal b, then only
clauses which are already derivable from F are obtained.

For an example of a RAT inference, let F be the set of clauses

{b ∨ a1 ∨ a2 ∨ a3, b ∨ a4, a4 ∨ a2, a4 ∨ a3, a2 ∨ a3} . (7.72)

Then the clause C = a1∨b can be inferred by a RAT inference from F with respect
to the special variable b. To verify this, note there are two clauses to consider
for D by virtue of F containing D ∨ b. The first choice for D is a1 ∨ a2 ∨ a3;
the resolvent of D ∨ b with C contains both a1 and a1 yielding a clause of the
form (7.71) that is tautological. The second choice for D is a4; now the resolvent
with C is a1 ∨ a4, so the clause (7.71) now becomes a1 ∨ a4 ∨ b. This clause is
RUP with respect to F since after setting a1, a4 and b false in F , we can obtain
the empty clause by unit propagation.

Note that the clause C of this example is not a consequence of F , since F is
satisfied by setting b, a1, a4 false and a2, a3 true. In particular, RAT can infer C
even though F 2 C. Instead, the critical property is that if C can be inferred
from F with a RAT inference, then F is satisfiable if and only if F ∪ {C} is
satisfiable. This means that the RAT inference is sound for refutations, but not
for derivations. Indeed, the resolution rule is subsumed by the RAT rule, so the
RAT rule by itself yields a sound and complete refutation system.

As another example, the RAT inference subsumes the pure literal rule. A
literal is pure if it occurs only positively in the clause database F ; the pure literal
rules allows introducing a unit clause asserting the literal is true. Specifically,
for the example F of (7.72) the unit clause a1 is trivially RAT with respect to F
since there is no clause containing the literal a1. Subsequently, the unit clause b is
RAT as well, for the same reason. In other words, RAT inferences can be used to
infer both of the unit clauses a1 and b. This is in no way contradicts the previous
example, since it is not possible to introduce the clause b∨a1 at the same time, as
the latter clause can no longer be inferred by a RAT inference once a1 and b have
been introduced. Thus, adding clauses to F may lead to that clauses that were
previously RAT clauses are no longer inferrable by a RAT inference. Conversely,

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 315 — #83 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 315

deleting clauses from F may cause clauses to be become derivable by using the
RAT rule.

It is not hard to see that RAT inferences can simulate the extension rule;
indeed, the three clauses x ∨ a, x ∨ b, and a ∨ b ∨ x of the extension rule (7.70)
can be added one at a time by RAT inferences provided F does not contain any
clauses containing x or x. The first two clauses can be added since F does not
contain any clauses involving x; the third one, because its resolvents with the first
two clauses are tautological. Conversely, it is known that extended resolution can
simulate the RAT inference [KRH18]. Therefore, the DRAT proof system and
extended resolution polynomially simulate each other.

These simulations between DRAT and extended resolution work because the
systems allow introducing arbitrary new variables. Thus, using DRAT for proof
search can suffer from the same difficulties as extended resolution; namely, we
lack effective methods of deciding what properties the new variables should rep-
resent. A different, and very interesting, approach proposed by [HKB17, HKB20]
is to consider DRAT without allowing new variables to be introduced. In recent
works [HB18, KRH18, BT19], it has been shown that many of the variants of
DRAT are equivalent even when new variables are not allowed to be introduced.

DRAT under the restriction of not introducing new variables is still an area
of active research. It is too new to be properly surveyed here, but recent develop-
ments include [HHW15, HB18, HKSB17, BT19] and works cited in these papers.
An intriguing aspect of DRAT (and related systems) is that, even when no new
variables are permitted, it is still unexpectedly strong (see [HKB20, BT19]). It
was shown in [BT19, HKB17, HKB20] that even without allowing new variables
or clause deletion, a modest extension of the RAT rule called subset propagation
redundancy (or SPR for short), first introduced in [HKB20] is powerful enough
to give polynomial-size proofs of many hard examples for bounded-depth Frege
proof systems, including pigeonhole principle formulas, clique-colouring formulas,
and Tseitin formulas.

The paper [BT19] further showed that when new variables are not allowed,
then there is an exponential separation in refutation size between the proof system
RAT (the RAT rule without allowing clause deletion) and the proof system DRAT
(the RAT rule combined with clause deletion). Clause deletion can give this extra
power, since removing clauses permits additional RAT inferences.

An approach to automating the search for DRAT proofs was investigated
in the work [HKSB17, HKB19], which used satisfaction-driven clause learning
(SDCL) to search for short DRAT refutations without new variables. With SDSL,
they were able to generate refutations of pigeonhole principle formulas and Tseitin
formulas much more quickly than what CDCL can typically accomplish, finding
refutations for pigeonhole principle formulas that are close to the optimal poly-
nomial size, although still taking exponential time (at least for PHP formulas).
This was accomplished in a very general way without explicitly checking for car-
dinality constraints. However, so far SDCL has not proved helpful in the general
setting of SAT competition problems. As mentioned, there are theoretical results
that deletion can exponentially increase the power of (D)RAT; however, there are
at present no practical techniques for incorporating this extra power of deletion.
In addition, if the deletion rule is not constrained to preserve equisatisfiability,

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 316 — #84 i
i

i
i

i
i

316 Chapter 7. Proof Complexity and SAT Solving

then deletion may change an unsatisfiable formula into a satisfiable formula. This
would be incompatible with present-day CDCL solvers, which search simultane-
ously for satisfying assignments and proofs of unsatisfiability. For more on DRAT
and related systems, see Chapter 15.

7.9. Frege and Extended Frege Proof Systems

Frege proofs are the standard “textbook” propositional proof systems, typically
with modus ponens as the sole inference rule, and frequently formulated with con-
nectives ¬, ∧, ∨, and →. In contrast to previous sections, formulas are no longer
required to be in CNF, and instead can be formed using arbitrary combinations
of Boolean connectives.

Frege systems were first defined in the setting of proof complexity by [CR79,
Rec75]). They are axiomatized with a finite set of axiom schemes (for example
F ∧ G → F is a possible axiom) and a finite set of inference rules (for instance,
modus ponens). This allows for many possible Frege systems. Indeed, different
sets of connectives, and different axioms and rules of inference can be used. It
is required that the connectives of a Frege system can form formulas expressing
any Boolean functions (that is that the connectives are “complete”); it is also
required that a Frege proof system be implicationally sound and complete. To
explain this last bit, let F be a formula and Γ be a set of formulas; recall that
we write Γ � F to indicate that Γ logically implies F . For a Frege system F to
be implicationally sound and complete, we must have Γ � F if and only if there
is an F-derivation of F from the formulas in Γ. As shown in [CR79, Rec75]),
any two Frege systems polynomially simulate each other, so the exact choice of
axioms and rules of inference is not particularly important.

We present here an alternative definition of Frege proof systems based on
the sequent calculus. This is an elegant and flexible framework for formulating
many different proof systems; we describe one particular version, called here LK ,
suitable for propositional logic.47 Propositional formulas are formed using the
propositional connectives ∧ and ∨ and variables x and negated variables x. Propo-
sitional formulas are defined formally by induction: firstly, for x any variable, x
and x are both propositional formulas and secondly, if ϕ and ψ are proposi-
tional formulas, then their conjunction (ϕ ∧ ψ) and their disjunction (ϕ ∨ ψ) are
propositional formulas. Note that propositional formulas allow arbitrary use of
conjunctions and disjunctions and consequently are much more general than the
CNF formulas considered earlier in this survey.

The lines in an LK proof are sequents. A sequent is an expression of the form

ϕ1, ϕ2, . . . , ϕk ⇒ ψ1, ψ2, . . . , ψ`, (7.73)

where the ϕi’s and ψi’s are propositional formulas. The intended meaning of
this sequent is that the conjunction of the formulas ϕi on the left implies the
disjunction of the formulas ψj on the right. That is, commas on the left-hand

47The name LK is often used instead for a first-order logic, as originally introduced by
Gentzen [Gen35]; our propositional system is sometimes called PK in the literature.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 317 — #85 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 317

side of (7.73) should be understood as if they were ∧’s, and commas on the right-
hand side should be understood as if they were ∨’s. Equivalently, the sequent
expresses that the disjunction of the ψj ’s and the ¬ϕi’s is true.

It is convenient to use the convention that in the sequent (7.73), the right-
and left-hand sides are multisets. That is, the order of the formulas ϕ1, . . . , ϕk
is unimportant, but the multiplicities of formulas are tracked. We use Γ,∆, . . .
to denote multisets of formulas, and often use commas to denote the union of
multisets. The rules of inference for LK are:

Initial sequents: For any variable x, there are three initial sequents (logical
axioms):

x⇒ x and x, x⇒ and ⇒ x, x (7.74a)

Structural rules:

Weak-left: Γ⇒ ∆
ϕ,Γ⇒ ∆

Weak-right: Γ⇒ ∆
Γ⇒ ∆, ϕ

(7.74b)

Contract-left:
ϕ,ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

Contract-right:
Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

(7.74c)

Cut rule:
Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆

Cut: Γ⇒ ∆
(7.74d)

Logical rules:

∧-left:
ϕ,ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
∧-right:

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ
Γ⇒ ∆, ϕ ∧ ψ

(7.74e)

∨-left:
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

ϕ ∨ ψ,Γ⇒ ∆
∨-right:

Γ⇒ ∆, ϕ, ψ
Γ⇒ ∆, ϕ ∨ ψ (7.74f)

For extended Frege proofs (but not for Frege or LK), extension axioms are also
allowed as initial sequents. Extension axioms are specified by a sequence of pairs
(xi, ψi) for i = 1, . . . , k so that each ψi is a formula and each extension variable xi
is a “new” variable that does not appear in the conclusion of the proof and does
not appear in any ψj for j ≤ i. Then an extended Frege proof may use the
following extension axioms as initial sequents:

Extension axioms:

xi ⇒ ψi and ψi ⇒ xi (7.75)

An LK proof is a sequence of sequents, where each sequent either is a logical axiom
or is inferred from earlier sequents by a valid LK rule of inference.48 A Frege proof
of a formula ϕ is defined to be an LK proof of the sequent⇒ ϕ. An extended Frege

48It is typical in the literature to require LK proofs to be tree-like; we instead allow DAG-
like proofs, so as to be consistent with the other systems discussed in this survey. Perhaps
confusingly however, Frege proofs based on modus ponens are typically defined to be DAG-
like in the literature. This makes no difference for us, as tree-like LK proofs can polynomially
simulate (DAG-like) LK proofs [Kra94], so the distinction between tree-like and DAG-like proofs
is not important for Frege systems.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 318 — #86 i
i

i
i

i
i

318 Chapter 7. Proof Complexity and SAT Solving

proof of ϕ is defined similarly, but allowing the use of extension axioms (7.75) as
initial sequents. Extended Frege is equivalent to extended resolution, in that the
two systems polynomially simulate each other.

We can also use LK as a refutation system. For this, let S be a set of sequents.
An LK refutation may use both the logical axioms of (7.74a) and sequents from S
as initial sequents and ends with the empty sequent ⇒. The initial sequents
from S are called nonlogical axioms. Since the empty sequent is false under any
truth assignment, an LK refutation proves the unsatisfiability of the nonlogical
axioms S.

As already mentioned, Frege systems are strictly stronger than resolution;
in fact, even the weaker bounded-depth Frege systems discussed in the next sec-
tion are more powerful: they can polynomially simulate resolution, but cannot
be polynomially simulated by resolution. It was shown in [Bus87] that Frege sys-
tems have polynomial-size proofs of the pigeonhole principle formulas, whereas,
as already mentioned several times above, the smallest resolution refutations grow
exponentially [Hak85].

The polynomial-size Frege proofs of pigeonhole principle formulas can be
constructed by showing that Frege systems can define counting, and even define
the sum of a vector of integers when the integers are presented as propositional
variables representing the integers in binary notation ([Bus87]. This was exploited
in [Goe90] to prove that Frege systems can polynomially simulate cutting planes
proofs. Furthermore, it is not hard to see that Frege systems can polynomially
simulate Nullstellensatz and polynomial calculus over any finite field F.

Extended Frege systems are conjectured to be yet stronger than Frege sys-
tems, but we lack good examples of combinatorial properties that might have
short extended Frege proofs but require exponentially long Frege proofs. The
paper [BBP95] identified some candidates, but these have largely been ruled out
in recent years [HT15, TC17, ABB16, Bus15].

Open Problem 7.19. Find new combinatorial candidates for exponentially sep-
arating Frege and extended Frege proofs.

Open Problem 7.20. Give a conditional exponential lower bound for Frege
proofs using some assumption weaker than NP 6= coNP.

7.10. Bounded-Depth Frege Proof System

One important measure of the complexity of general propositional formulas with
the connectives ∧ and ∨ is the number of alternations of ∧’s and ∨’s. The depth
of a propositional formula ϕ equals the number of levels of disjunctions and con-
junctions in ϕ. More formally, any literal x or x is a depth-0 formula, and if
ϕ1, . . . , ϕk are all depth strictly smaller than d, then any formula formed by com-
bining those k formulas with only conjunctions, or with only disjunctions, has
depth bounded by d. For example, v ∧ ((x ∨ (y ∨ z)) ∧ u) is a depth-2 formula.

The sequent calculus LK also lends itself to working with Frege proofs with
restrictions on formula depth in a natural way. At the bottom level, resolution can
be viewed as a depth-0 LK refutation system. In particular, a resolution refutation
can be viewed as an LK refutation in which all formulas are merely propositional

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 319 — #87 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 319

variables. To see this, note that if C is a clause containing the variables x1, . . . , xk
unnegated and the negated literals y1, . . . , yk′ , then the corresponding sequent SC
is y1, . . . , yk′ ⇒ x1, . . . , xk. Under this translation between clauses and sequents
of literals, the resolution inference rule corresponds exactly to a cut inference in
depth-0 LK. In this way, resolution refutations are essentially identical to depth-0
LK refutations.

The notion of depth-0 LK proof can be generalized to any bounded depth d.
For d ≥ 0, a depth-d LK proof is an LK proof in which every formula has depth at
most d. We write d-LK as a compact notation for the LK proof system restricted
to depth-d proofs.

Loosely speaking, the depth-d Frege system is the same as the d-LK proof
system. However, the notion of depth for Frege proofs is sensitive to issues such
as whether proofs are tree-like or DAG-like, and whether proofs are formulated
Hilbert-style with modus ponens (say) or with the sequent calculus. Thus, to be
formal, we will restrict our attention to the (DAG-like) d-LK proof system.

The Res(k) or k-DNF resolution proof system is an extension of resolution in
which the lines are DNF formulas where the conjunctions have size bounded by k.
Note that Res(1) is the same as resolution, so Res(k) proof systems lie just above
resolution in strength. Res(k) can also be defined as the subsystem of depth-1 LK
in which all formulas are either disjunctions or conjunctions of at most k literals.
A number of exponential lower bounds on Res(k) refutations of weak pigeonhole
principle formulas have been proven in a sequence of papers [ABE02, SBI04,
Ale11, AMO15, Raz15] with Razborov [Raz15] establishing exponential lower
bounds for k = ε log n/ log log n. Size-space trade-offs for Res(k) were obtained
in [BN11].

There are also exponential lower bounds on the size of depth-d LK proofs for
all constant d > 0. Haken’s exponential lower bound for resolution refutations
of pigeonhole principle formulas [Hak85] applies to depth-0 LK. This was sub-
stantially extended to give strong lower bounds on the size of bounded-depth LK
proofs of the pigeonhole principle formulas by [PBI93, KPW95] who showed that
with m = n+ 1 pigeons and n holes, depth d LK refutations of the PHP formulas

require size exp
(
Ω
(
n51/d))

, improving on earlier lower bounds of [Ajt88].
Other known hard principles for bounded-depth LK include the counting-

mod-p principle formulas.49 We define here only the case p = 2; this is the
parity principle . Fix n > 0 an odd integer. The parity principle PARITY n

uses variables xi,j for 1 ≤ i < j ≤ n; for convenience of notation, we define xj,i
to be the same variable as xi,j . The clauses of PARITY n consist of the n many
totality clauses∨

j 6=i

xi,j for 1 ≤ i ≤ n (7.76a)

and the n
(
n−1

2

)
many clauses

xi,j ∨ xi′,j for i, i′, j ∈ [n], i 6= i′ 6= j 6= i (7.76b)

49Counting-mod-p principle formulas can be generated in the standard DIMACS format for
CNF formulas used by SAT solvers by the tool CNFgen [LENV17, CNF] using the command
line cnfgen count 〈n〉 〈p〉 for positive integers n and p such that p does not divide n (in order
to get unsatisfiable instances).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 320 — #88 i
i

i
i

i
i

320 Chapter 7. Proof Complexity and SAT Solving

claiming that there is a partition of [n] into pairs of elements. These parity princi-
ple formulas PARITY n

50 require exponential-size bounded-depth LK refutations;
it was established in [BP96a] that depth-d LK refutations of PARITY n require

size exp
(
Ω
(
n61/(d+1)))

. This lower bound holds even if formulas expressing the

unsatisfiability of PHPn+1
n are permitted as additional axioms.

The lower bounds for the parity principle refutations can also be generalized
to exponential lower bounds for general counting-mod-p principles for p > 2, as
proved by [BIK+97] building on work of [BIK+96] and [Rii97a, Rii97b].

There are a number of other exponential lower bounds known for bounded-
depth LK systems, but these two results are representative of the best known
lower bounds. A recent result of [PRST16] has opened up a potential avenue for
new lower bounds, by showing a lower bound of exp(Ω((log n)2/d2)) for the size
of d-LK refutations of Tseitin formulas on 3-regular expander graphs where n
is the number of vertices in the graph. This result implies a depth lower bound
of d = Ω(

√
log n) for polynomial-size d-LK refutations of these Tseitin formulas.

H̊astad [H̊as17] instead focused on Tseitin formulas defined over grid graphs to
obtain an improved size lower bound for d-LK of exp

(
Ω
(
n1/58(d+1)

))
and an

improved depth lower bound of Ω(log n/ log log n).
The above-discussed results are some of the highlights regarding lower bounds

on the size of bounded-depth LK proofs. Along with the lower bounds for poly-
nomial calculus in Section 7.5.2 and cutting planes in Section 7.7.2, these are the
state of the art in proving size lower bounds on proof size.

There are also a large number of open problems remaining about the size of
bounded-depth LK proofs. Many of these problems lie right at the border of where
we expect to be able to prove lower bounds on the complexity of proofs without
actually resolving fundamental open questions such as whether P 6= NP or not.
One such open problem is to give better separations of depth-d and depth-(d+1)
systems.

Open Problem 7.21. Is there an exponential separation between the size of
depth-d LK and depth-(d+ 1) LK refutations of CNF formulas?

So far, only a superpolynomial separation is known for d-LK versus (d+1)-
LK proofs when refuting CNF formulas. This separation is obtained by, on the
one hand, using the above-discussed lower bounds for d-LK proofs for pigeon-
hole principle formulas with n+ 1 pigeons and n holes and, on the other hand,
constructing small (d+1)-LK proofs of the pigeonhole principle formulas using
a speedup technique of Nepomnjaščĭı [Nep70]. Discussing this in more detail is
beyond the scope of this survey; the only proof in the literature is described
in [KI02] using formalizations in bounded arithmetic.

One of the reasons that Open Problem 7.21 is so tantalizing is that the Yao-
H̊astad switching lemmas [H̊as86] in circuit complexity tell us that depth-(d+1)
propositional formulas can be exponentially more succinct in expressibility than
depth-d propositional formulas. This seems like it should give (d+1)-LK proofs
more power than d-LK proofs; however, Open Problem 7.21 remains unsolved
even though considerable effort has been spent on it.

50Parity principle formulas can be generated by CNFgen with the command line cnfgen

parity 〈n〉 with the integer n chosen odd (to get unsatisfiable instances).

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 321 — #89 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 321

Another open problem concerns the power of bounded-depth LK when the
language is extended to include the parity connective ⊕ (exclusive or) in addition
to ∧ and ∨. It is straightforward to extend LK to accommodate formulas that
use the connectives ∧, ∨ and ⊕; and the notion of depth extends naturally to the
notion of {∧,∨,⊕}-depth. We write d-LK(⊕) to denote the depth-d LK system
so extended. There are polynomial size, bounded-depth LK(⊕) proofs of many
principles that depend on only counting mod 2; these include the Tseitin formu-
las and the onto functional pigeonhole principle formulas for m = n + 1 pigeons
and n holes. Fundamental results of Razborov[Raz87] and Smolensky [Smo87] in
circuit complexity give exponential lower bounds on the expressibility of proposi-
tional formulas using the connectives ∧, ∨ and ⊕. For instance the mod-3 sum-
mation function cannot be expressed by polynomial-size, bounded-depth propo-
sitional formulas with those connectives. Thus, bounded-depth LK(⊕) proofs
cannot reason directly about mod-3 counting. Nonetheless, it is an open problem
to obtain superpolynomial lower bounds for this proof system.

Open Problem 7.22. Let LK(⊕) denote LK extended with a parity (exclu-
sive or) logical connective. Are there exponential, or even superpolynomial, lower
bounds on the size of bounded-depth LK(⊕) proofs? Can bounded-depth LK(⊕)
be simulated by bounded-depth LK augmented with all instances of formulas
expressing the unsatisfiability of the PARITY n formulas?

Open Problem 7.22 is related to the Nullstellensatz proof system discussed
in Section 7.5.1. In fact, the study of proof systems based on counting principles
and counting gates was the original impetus for the development of Nullstellen-
satz [BIK+96].

It is interesting to compare the strength of bounded-depth LK proofs to
the strengths of the proof systems of resolution, cutting planes, and polynomial
calculus. First, as already mentioned, d-LK polynomially simulates resolution
for all d ≥ 0. However, resolution does not polynomially simulate all the systems
d-LK. An example of this are the weak pigeonhole principle formulas PHP2n

n

expressing that there is no injection from 2n pigeons to n holes. These formulas
are known from [PWW88, MPW02] to have quasipolynomial-size 2-LK proofs;
but from [Hak85, BT88] to require exponential-size resolution refutations.

Bounded-depth LK systems are not directly comparable to cutting planes.
In one direction, there are short cutting planes refutations of PHP and parity
principle formulas, for instance. However, these require exponential-size d-LK
proofs for any fixed d > 0. For the other direction, an exponential separation
can be obtained using a “weak” clique-coclique principle. Recall that the clique-
coclique formulas ((7.63a)–(7.63e)) encode that a graph cannot have both a clique
of size m + 1 and a colouring of size m. By the “weak” clique-coclique formulas
we mean an analogous version that states that a graph cannot have clique of size
2m and a colouring of size m (this is a weaker claim, and so should be easier to
prove). These latter formulas have quasipolynomial-size 3-LK proofs by adapting
the quasipolynomial-size 2-LK proofs for weak PHP formulas. On the other hand,
the Craig interpolation method of [Pud97], along with lower bounds on monotone
real circuits based on [AB87], still work for the weak clique-coclique formulas to
show that they require exponential-size cutting planes refutations.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 322 — #90 i
i

i
i

i
i

322 Chapter 7. Proof Complexity and SAT Solving

Finally, we can compare bounded-depth Frege to polynomial calculus. In
one direction, there are CNF formulas that are easy to refute in polynomial
calculus, or even Nullstellensatz, but require exponential-size d-LK proofs for
any fixed d, for instance, mod-p counting principles when working over a field of
characteristic p. A separation in the other direction follows from [GL10b]. Thus,
bounded-depth Frege and polynomial calculus are incomparable proof systems.

7.11. Concluding Remarks

In this chapter we have presented an overview of proof complexity with a focus
on connections with SAT solving. On the proof complexity side, one main take-
away message is that resolution is fairly well-understood, although substantial
important open questions still remain open. There has also been good progress
in research on polynomial calculus, cutting planes and bounded-depth Frege sys-
tems, but these proof systems are not nearly as well understood as resolution.

When it comes to applied SAT solving (where, as mentioned in the intro-
ductory section, we are mostly restricted to studying unsatisfiable formulas, since
this is the setting in which the tools from proof complexity can most naturally be
brought to bear), there is still lots of room for improvement in our understand-
ing of why different formulas are easy or hard, why different proof systems are
better or worse for proof search, and why sometimes seemingly very small differ-
ences in algorithms can make big differences in the effectiveness of SAT solvers.
It would be interesting to investigate further whether there are relevant connec-
tions between proof complexity measures and hardness of SAT, and whether proof
complexity can help to shed light on the inner workings on SAT solvers.

We want to stress again that there are many topics in proof complexity that
we have not been able to cover in this survey chapter due to the finiteness of
time and space, and to a large extent our choice of topics has been guided by
considerations as to what should be most relevant in an applied SAT solving
context. One major omission from a theoretical point of view is the topic of
bounded arithmetic. Bounded arithmetic theories are a collection of first-order
and second-order theories in formal logic with close connections to both proof
complexity and computational complexity theory more broadly. An overview
of bounded arithmetic can be found in the books [Bus86, Kra95, CN10] and
the final part of [HP93], and the connections to proof complexity are covered
in [Kra95, CN10]. The Paris-Wilkie translation [PW85] gives a direct connec-
tion between bounded arithmetic and quasipolynomial-size, bounded-depth Frege
proofs. Cook translations [Coo75, Ara00, CM05, CN10, BPT14] relate bounded
arithmetic theories to the Frege and extended Frege proof systems.

Another important topic that we have not discussed is symmetry reasoning
(see Chapter 13). Many of the combinatorial formulas that we have examined in
this survey chapter are hard because they contain symmetries that make them
hard to deal with for different proof systems — examples include pigeonhole prin-
ciple formulas for resolution and polynomial calculus, clique-coclique formulas for
cutting planes, and (perhaps less obviously) Tseitin formulas for bounded-depth
Frege — but these formulas become trivial once reasoning with symmetries is
allowed. In practice, different methods of handling symmetries that use static

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 323 — #91 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 323

or dynamic techniques, or combinations thereof, have been developed in, e.g.,
[DBBD16, DBB17, MBCK18, MBK19, TD19] and have been shown to be quite
efficient in many cases, and the question of how to express symmetry reasoning
as DRAT proofs has been studied in [HHW15]. It would be very interesting to
perform a theoretical study of the strength of the methods of reasoning in the
above-mentioned papers. However, we are not aware of any work in proof com-
plexity that focuses on proof systems enhanced with rules for symmetry reasoning
apart from a few (by now rather old) papers such as [Kri85, Urq99, AU00, Sze05].

We also want to mention briefly a (somewhat unexpected) connection between
SAT solving and MaxSAT solving (discussed in Chapters 23 and 24). In general,
it is more difficult to solve MaxSAT problems than SAT problems. However,
dual-rail MaxSAT has recently been introduced in the papers [IMM17, BBI+18,
MIB+19] as a method for solving SAT instances. A dual-rail proof system replaces
each propositional variable x with two new propositional variables px and nx, for
the positive and negative values of x, representing the literals x and x. An appro-
priate dual-rail formulation allows a SAT instance to be reduced to a MaxSAT
instance which can be easier in some cases.

Concluding this chapter, the main algorithmic challenge we want to highlight
is if and how one can build efficient SAT solvers based on stronger proof systems
than resolution. Is it really the case that conflict-driven clause learning (CDCL),
originating in the DPLL method from the early 1960s, is the best conceivable
paradigm? Or could it be possible that is it now time, over 50 years later, to take
the next step and build fundamentally different SAT solvers, perhaps based on
some of the algebraic and/or geometric methods discussed in this survey chapter?
Is the comparative lack of progress on SAT solvers using such stronger method
of reasoning an indication of that there are fundamental limitations to efficient
proof search being implemented within stronger proof systems? Or could it be
that a sustained long-term effort will yield powerful new SAT solving paradigms,
just as the immense work spent on optimizing CDCL solvers over the years have
led to improvements in performance of several orders of magnitude?

Acknowledgements

We are most grateful to all our colleagues in the proof complexity and SAT
communities, too numerous to list here, with whom we have had stimulating
and enlightening discussions over the years. We want to give a special thanks to
Paul Beame, Jan Elffers, Stephan Gocht, Massimo Lauria, Gunnar St̊almarck, and
Marc Vinyals for answering questions and/or proof-reading different versions of
the manuscript, helping to catch many typos and other mistakes, and giving sug-
gestions how to improve the exposition. We are also thankful to Massimo Lauria
and Marc Vinyals for providing information on how to generate different crafted
proof complexity benchmark formulas using the tool CNFgen and finding suit-
able values for the parameters. Furthermore, we wish to thank Daniel Le Berre,
João Marques-Silva, and Dmitry Sokolov for help with literature references, and
Armin Biere, Laurent Simon, and Niklas Sörensson for providing empirical data
on SAT solver performance. Last, but certainly not least, we are most indebted
to Robert Robere for an amazingly thorough review of the first completed version

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 324 — #92 i
i

i
i

i
i

324 Chapter 7. Proof Complexity and SAT Solving

of the chapter, which further helped to enhance the manuscript. Any remaining
errors or deficiencies are certainly the responsibility of the authors only.

Part of this work was carried out while the second author visited the Simons
Institute for the Theory of Computing at UC Berkeley in association with the
DIMACS/Simons Collaboration on Lower Bounds in Computational Complexity,
which is conducted with support from the National Science Foundation. The first
author was funded by the Simons Foundation, grant number 578919. The second
author was funded by the Swedish Research Council (VR) grants 621-2012-5645
and 2016-00782 as well as by the Independent Research Fund Denmark grant
9040-00389B.

References

[AB87] B. Alon and R. Boppana. The monotone circuit complexity of
Boolean functions. Combinatorica, 7:1–22, 1987.

[ABB16] James Aisenberg, Maria Luisa Bonet, and Sam Buss. Quasi-
polynomial size Frege proofs of Frankl’s theorem on the trace of
finite sets. Journal of Symbolic Logic, 81(2):1–24, 2016.

[ABdR+18] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo
Lauria, Jakob Nordström, and Alexander Razborov. Clique is hard
on average for regular resolution. In Proceedings of the 50th An-
nual ACM Symposium on Theory of Computing (STOC ’18), pages
866–877, June 2018.

[ABE02] Albert Atserias, Maŕıa Luisa Bonet, and Juan Luis Esteban. Lower
bounds for the weak pigeonhole principle and random formulas be-
yond resolution. Information and Computation, 176(2):136–152, Au-
gust 2002. Preliminary version in ICALP ’01.

[ABLM08] Carlos Ansótegui, Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà.
Measuring the hardness of SAT instances. In Proceedings of the 23rd
National Conference on Artificial Intelligence (AAAI ’08), pages
222–228, July 2008.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and
Avi Wigderson. Space complexity in propositional calculus. SIAM
Journal on Computing, 31(4):1184–1211, April 2002. Preliminary
version in STOC ’00.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characteriza-
tion of resolution width. Journal of Computer and System Sciences,
74(3):323–334, May 2008. Preliminary version in CCC ’03.

[AdRNV17] Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc
Vinyals. Cumulative space in black-white pebbling and resolution.
In Proceedings of the 8th Innovations in Theoretical Computer Sci-
ence Conference (ITCS ’17), volume 67 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 38:1–38:21, January 2017.

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-
learning algorithms with many restarts and bounded-width resolu-
tion. Journal of Artificial Intelligence Research, 40:353–373, January
2011. Preliminary version in SAT ’09.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 325 — #93 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 325

[AH19] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for
Sums-of-Squares and Positivstellensatz proofs. In Proceedings of
the 34th Annual Computational Complexity Conference (CCC ’19),
volume 137 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:20, July 2019.

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson.
Exponential lower bounds for the running time of DPLL algo-
rithms on satisfiable formulas. Journal of Automated Reasoning,
35(1–3):51–72, October 2005. Preliminary version in ICALP ’04.

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general
resolution. Theory of Computing, 3(5):81–102, May 2007. Prelimi-
nary version in STOC ’02.

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’88), pages 346–355, October 1988.

[AKS10] Gilles Audemard, George Katsirelos, and Laurent Simon. A re-
striction of extended resolution for clause learning SAT solvers. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI ’10), pages 15–20, July 2010.

[AKV04] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Con-
straint propagation as a proof system. In Proceedings of the 10th
International Conference on Principles and Practice of Constraint
Programming (CP ’04), volume 3258 of Lecture Notes in Computer
Science, pages 77–91. Springer, 2004.

[Ale04] Michael Alekhnovich. Mutilated chessboard problem is expo-
nentially hard for resolution. Theoretical Computer Science,
310(1–3):513–525, January 2004.

[Ale11] Michael Alekhnovich. Lower bounds for k-DNF resolution on ran-
dom 3-CNFs. Computational Complexity, 20(4):597–614, December
2011. Preliminary version in STOC ’05.

[ALN16] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow
proofs may be maximally long. ACM Transactions on Computational
Logic, 17(3):19:1–19:30, May 2016. Preliminary version in CCC ’14.

[AM99] Dimitris Achlioptas and Michael Molloy. Almost all graphs with
2.522n edges are not 3-colorable. Electronic Journal of Combina-
torics, 6:R29:1–R29:9, July 1999.

[AM19] Albert Atserias and Moritz Müller. Automating resolution is NP-
hard. In Proceedings of the 60th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS ’19), pages 498–509, November
2019.

[AMO15] Albert Atserias, Moritz Müller, and Sergi Oliva. Lower bounds for
DNF-refutations of a relativized weak pigeonhole principle. Journal
of Symbolic Logic, 80(2):450–476, June 2015. Preliminary version in
CCC ’13.

[AO19] Albert Atserias and Joanna Ochremiak. Proof complexity meets
algebra. ACM Transactions on Computational Logic, 20:1:1–1:46,

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 326 — #94 i
i

i
i

i
i

326 Chapter 7. Proof Complexity and SAT Solving

February 2019. Preliminary version in ICALP ’17.
[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for

polynomial calculus: Non-binomial case. Proceedings of the Steklov
Institute of Mathematics, 242:18–35, 2003. Available at http://

people.cs.uchicago.edu/~razborov/files/misha.pdf. Prelimi-
nary version in FOCS ’01.

[AR08] Michael Alekhnovich and Alexander A. Razborov. Resolution is
not automatizable unless W[P] is tractable. SIAM Journal on
Computing, 38(4):1347–1363, October 2008. Preliminary version in
FOCS ’01.

[Ara00] Toshiyasu Arai. A bounded arithmetic AID for Frege systems. An-
nals of Pure and Applied Logic, 103:155–199, 2000.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses qual-
ity in modern SAT solvers. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI ’09), pages
399–404, July 2009.

[AS12] Gilles Audemard and Laurent Simon. Refining restarts strategies
for SAT and UNSAT. In Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming
(CP ’12), volume 7514 of Lecture Notes in Computer Science, pages
118–126. Springer, October 2012.

[AU00] Noriko H. Arai and Alasdair Urquhart. Local symmetries in propo-
sitional logic. In Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX ’00), volume 1847 of Lecture Notes in Computer Sci-
ence, pages 40–51. Springer, July 2000.

[BB12] Maŕıa Luisa Bonet and Samuel R. Buss. An improved separation
of regular resolution from pool resolution and clause learning. In
Proceedings of the 15th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT ’12), volume 7317 of Lecture
Notes in Computer Science, pages 44–57. Springer, June 2012.

[BBG+17] Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike
Molloy, and Paul Wollan. Space proof complexity for random
3-CNFs. Information and Computation, 255:165–176, 2017.

[BBI16] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-
offs in resolution: Superpolynomial lower bounds for superlinear
space. SIAM Journal on Computing, 45(4):1612–1645, August 2016.
Preliminary version in STOC ’12.

[BBI+18] Maŕıa Luisa Bonet, Samuel R. Buss, Alexey Ignatiev, João Marques-
Silva, and António Morgado. MaxSAT resolution with the dual rail
encoding. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI ’18), pages 6565–6572, February 2018.

[BBJ14] Maŕıa Luisa Bonet, Sam Buss, and Jan Johannsen. Improved sep-
arations of regular resolution from clause learning proof systems.
Journal of Artificial Intelligence Research, 49:669–703, April 2014.

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are
there hard examples for Frege systems? In P. Clote and J. Rem-

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 327 — #95 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 327

mel, editors, Feasible Mathematics II, pages 30–56, Boston, 1995.
Birkhäuser.

[BC96] Samuel R. Buss and Peter Clote. Cutting planes, connectivity and
threshold logic. Archive for Mathematical Logic, 35:33–63, 1996.

[BCE+98] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo,
and Toniann Pitassi. The relative complexity of NP search problems.
Journal of Computer and System Sciences, 57(1):3–19, August 1998.
Preliminary version in STOC ’95.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo,
and Toniann Pitassi. Homogenization and the polynomial calcu-
lus. Computational Complexity, 11(3-4):91–108, 2002. Preliminary
version in ICALP ’00.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and
Cristopher Moore. The resolution complexity of random graph
k-colorability. Discrete Applied Mathematics, 153(1-3):25–47, De-
cember 2005.

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A frame-
work for Gröbner-basis computations with Boolean polynomials.
Journal of Symbolic Computation, 44(9):1326–1345, September
2009.

[BDG+09] Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel,
Markus Wedler, and Oliver Wienand. New developments in the the-
ory of Gröbner bases and applications to formal verification. Journal
of Pure and Applied Algebra, 213(8):1612–1635, August 2009.

[BEGJ00] Maŕıa Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan
Johannsen. On the relative complexity of resolution refinements
and cutting planes proof systems. SIAM Journal on Computing,
30(5):1462–1484, 2000. Preliminary version in FOCS ’98.

[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal
on Computing, 38(6):2511–2525, May 2009. Preliminary version in
STOC ’02.

[Ber12] Christoph Berkholz. On the complexity of finding narrow proofs. In
Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’12), pages 351–360, October 2012.

[Ber18] Christoph Berkholz. The relation between polynomial calculus,
Sherali-Adams, and sum-of-squares proofs. In Proceedings of
the 35th Symposium on Theoretical Aspects of Computer Science
(STACS ’18), volume 96 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 11:1–11:14, February 2018.

[BF15] Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scor-
ing schemes. In Proceedings of the 18th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’15), volume
9340 of Lecture Notes in Computer Science, pages 405–422. Springer,
September 2015.

[BF19] Armin Biere and Andreas Fröhlich. Evaluating CDCL restart
schemes. In Proceedings of Pragmatics of SAT 2015 and 2018, vol-
ume 59 of EPiC Series in Computing, pages 1–17, March 2019. Avail-

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 328 — #96 i
i

i
i

i
i

328 Chapter 7. Proof Complexity and SAT Solving

able at https://easychair.org/publications/paper/RdBL.
[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina

Kolokolova, Denis Pankratov, Toniann Pitassi, and Robert Robere.
Stabbing planes. In Proceedings of the 9th Innovations in Theoreti-
cal Computer Science Conference (ITCS ’18), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 10:1–10:20,
January 2018.

[BG01] Maŕıa Luisa Bonet and Nicola Galesi. Optimality of size-width trade-
offs for resolution. Computational Complexity, 10(4):261–276, De-
cember 2001. Preliminary version in FOCS ’99.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of ran-
dom formulae in resolution. Random Structures and Algorithms,
23(1):92–109, August 2003. Preliminary version in CCC ’01.

[BG15] Ilario Bonacina and Nicola Galesi. A framework for space complexity
in algebraic proof systems. Journal of the ACM, 62(3):23:1–23:20,
June 2015. Preliminary version in ITCS ’13.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann
Pitassi. Linear gaps between degrees for the polynomial calculus
modulo distinct primes. Journal of Computer and System Sciences,
62(2):267–289, March 2001. Preliminary version in CCC ’99.

[BGL13] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameter-
ized complexity of DPLL search procedures. ACM Transactions on
Computational Logic, 14(3):20:1–20:21, August 2013. Preliminary
version in SAT ’11.

[BGT14] Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total space in
resolution. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’14), pages 641–650, Oc-
tober 2014.

[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution
trees with lemmas: Resolution refinements that characterize DLL-
algorithms with clause learning. Logical Methods in Computer Sci-
ence, 4(4:13), December 2008.

[BHP10] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplifi-
cation in proof complexity. In Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing (STOC ’10), pages 87–96, June
2010.

[BI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard
for the polynomial calculus. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’99), pages
415–421, October 1999. Journal version in [BI10].

[BI10] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for
the polynomial calculus. Computational Complexity, 19(4):501–519,
2010. Preliminary version in FOCS ’99.

[Bie06] Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.
[Bie08] Armin Biere. Adaptive restart strategies for conflict driven SAT

solvers. In Proceedings of the 11th International Conference on The-
ory and Applications of Satisfiability Testing (SAT ’08), volume 4996

https://easychair.org/publications/paper/RdBL
http://fmv.jku.at/tracecheck/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 329 — #97 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 329

of Lecture Notes in Computer Science, pages 28–33. Springer, May
2008.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
and Pavel Pudlák. Lower bounds on Hilbert’s Nullstellensatz and
propositional proofs. In Proceedings of the 35th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’94), pages
794–806, November 1994.

[BIK+96] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
and Pavel Pudlák. Lower bounds on Hilbert’s Nullstellensatz and
propositional proofs. Proceedings of the London Mathematical Soci-
ety, 73(3):1–26, 1996.

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák,
Alexander A. Razborov, and Jiri Sgall. Proof complexity in algebraic
systems and bounded depth Frege systems with modular counting.
Computational Complexity, 6(3):256–298, 1997.

[BIKS18] Samuel R. Buss, Dmitry Itsykson, Alexander Knop, and Dmitry
Sokolov. Reordering rule makes OBDD proof systems stronger. In
Proceedings of the 33rd Annual Computational Complexity Confer-
ence (CCC ’18), volume 102 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1–16:24, June 2018.

[BIS07] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The reso-
lution complexity of independent sets and vertex covers in random
graphs. Computational Complexity, 16(3):245–297, October 2007.
Preliminary version in CCC ’01.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near op-
timal separation of tree-like and general resolution. Combinatorica,
24(4):585–603, September 2004.

[BJ10] Eli Ben-Sasson and Jan Johannsen. Lower bounds for width-
restricted clause learning on small width formulas. In Proceedings
of the 13th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in
Computer Science, pages 16–29. Springer, July 2010.

[BK14] Samuel R. Buss and Leszek Ko lodziejczyk. Small stone in pool.
Logical Methods in Computer Science, 10(2):16:1–16:22, June 2014.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. Journal
of Artificial Intelligence Research, 22:319–351, December 2004. Pre-
liminary version in IJCAI ’03.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis,
University of Chicago, 1937.

[BLLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Man-
they. Detecting cardinality constraints in CNF. In Proceedings of
the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 285–301. Springer, July 2014.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spa-
cious: An optimal separation of space and length in resolution. In

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 330 — #98 i
i

i
i

i
i

330 Chapter 7. Proof Complexity and SAT Solving

Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof
complexity: Separations and trade-offs via substitutions. In Pro-
ceedings of the 2nd Symposium on Innovations in Computer Science
(ICS ’11), pages 401–416, January 2011.

[BN20] Christoph Berkholz and Jakob Nordström. Supercritical space-width
trade-offs for resolution. SIAM Journal on Computing, 49(1):98–118,
February 2020. Preliminary version in ICALP ’16.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-
off results for polynomial calculus. In Proceedings of the 45th An-
nual ACM Symposium on Theory of Computing (STOC ’13), pages
813–822, May 2013.

[Bon16] Ilario Bonacina. Total space in resolution is at least width squared.
In Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP ’16), volume 55 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 56:1–56:13,
July 2016.

[BP96a] Paul Beame and Toniann Pitassi. An exponential separation between
the parity principle and the pigeonhole principle. Annals of Pure and
Applied Logic, 80(3):195–228, 1996.

[BP96b] Paul Beame and Toniann Pitassi. Simplified and improved resolution
lower bounds. In Proceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’96), pages 274–282,
October 1996.

[BP98a] Paul Beame and Toniann Pitassi. Propositional proof complexity:
Past, present, and future. Bulletin of the European Association for
Theoretical Computer Science, 65:66–89, June 1998.

[BP98b] Samuel R. Buss and Toniann Pitassi. Good degree bounds on Null-
stellensatz refutations of the induction principle. Journal of Com-
puter and System Sciences, 2(57):162–171, October 1998. Prelimi-
nary version in CCC ’96.

[BPR00] Maŕıa Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation
and automatization for Frege systems. SIAM Journal on Computing,
29(6):1939–1967, 2000.

[BPT14] Arnold Beckmann, Pavel Pudlák, and Neil Thapen. Parity games
and propositional proofs. ACM Transactions on Computational
Logic, 15(2):17:1–30, 2014.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagram. ACM Computing Surveys, 24(3):293–318,
1992.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of
the 14th National Conference on Artificial Intelligence (AAAI ’97),
pages 203–208, July 1997.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the
quest toward optimal algorithms. In Proceedings of the International

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 331 — #99 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 331

Congress of Mathematicians (ICM), volume IV, pages 509–533,
August 2014. Available at http://www.icm2014.org/download/

Proceedings_Volume_IV.pdf.
[BT88] Samuel R. Buss and Győrgy Turán. Resolution proofs of generalized

pigeonhole principles. Theoretical Computer Science, 62:311–317,
1988.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation re-
dundancy, and extended resolution. In Proceedings of the 22nd In-
ternational Conference on Theory and Applications of Satisfiability
Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Sci-
ence, pages 71–89. Springer, July 2019.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
Revision of PhD thesis.

[Bus87] Samuel R. Buss. Polynomial size proofs of the propositional pigeon-
hole principle. Journal of Symbolic Logic, 52:916–927, 1987.

[Bus98] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via de-
signs. In Proof Complexity and Feasible Arithmetics, volume 39
of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 59–71. American Mathematical Society, 1998.
Available at http://www.math.ucsd.edu/~sbuss/ResearchWeb/

designs/.
[Bus99] Samuel R. Buss. Propositional proof complexity: An introduction.

In U. Berger and H. Schwichtenberg, editors, Computational Logic,
pages 127–178. Springer-Verlag, Berlin, 1999.

[Bus12] Samuel R. Buss. Towards NP-P via proof complexity and proof
search. Annals of Pure and Applied Logic, 163(9):1163–1182, 2012.

[Bus15] Samuel R. Buss. Quasipolynomial size proofs of the propositional pi-
geonhole principle. Theoretical Computer Science, 576:77–84, April
2015.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—
resolution made simple. Journal of the ACM, 48(2):149–169, March
2001. Preliminary version in STOC ’99.

[CaD] CaDiCaL. http://fmv.jku.at/cadical/.
[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,
18(1):25–38, November 1987.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Us-
ing the Groebner basis algorithm to find proofs of unsatisfiability.
In Proceedings of the 28th Annual ACM Symposium on Theory of
Computing (STOC ’96), pages 174–183, May 1996.

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete Mathematics, 4(1):305–337, 1973.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The
complexity of satisfiability of small depth circuits. In Revised Selected
Papers from the 4th International Workshop on Parameterized and
Exact Computation (IWPEC ’09), volume 5917 of Lecture Notes in
Computer Science, pages 75–85. Springer, September 2009.

http://www.icm2014.org/download/Proceedings_Volume_IV.pdf
http://www.icm2014.org/download/Proceedings_Volume_IV.pdf
http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/
http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/
http://fmv.jku.at/cadical/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 332 — #100 i
i

i
i

i
i

332 Chapter 7. Proof Complexity and SAT Solving

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean con-
straint solver. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(3):305–317, March 2005. Pre-
liminary version in DAC ’03.

[CM05] Stephen A. Cook and Tsuyoshi Morioka. Quantified propositional
calculus and a second-order theory for NC1. Archive for Mathemat-
ical Logic, 44:711–749, 2005.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof
Complexity. Cambridge University Press, July 2010.

[CNF] CNFgen: Combinatorial benchmarks for SAT solvers. https://

massimolauria.net/cnfgen/.
[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.

In Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC ’71), pages 151–158, May 1971.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the proposi-
tional calculus (preliminary version). In Proceedings of the 7th An-
nual ACM Symposium on Theory of Computing (STOC ’75), pages
83–97, May 1975.

[Coo88] Stephen A. Cook. Short propositional formulas represent nondeter-
ministic computations. Information Processing Letters, 26:269–270,
1988.

[CPL] IBM ILOG CPLEX optimization studio. https://www.ibm.com/

products/ilog-cplex-optimization-studio.
[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of

propositional proof systems. Journal of Symbolic Logic, 44(1):36–50,
March 1979. Preliminary version in STOC ’74.

[Cry] CryptoMiniSat. https://github.com/msoos/cryptominisat/.
[CS80] David A. Carlson and John E. Savage. Graph pebbling with many

free pebbles can be difficult. In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing (STOC ’80), pages 326–332,
1980.

[CS82] David A. Carlson and John E. Savage. Extreme time-space tradeoffs
for graphs with small space requirements. Information Processing
Letters, 14(5):223–227, 1982.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for res-
olution. Journal of the ACM, 35(4):759–768, October 1988.

[CT12] Eden Chlamtáč and Madhur Tulsiani. Convex relaxations and inte-
grality gaps. In Miguel F. Anjos and Jean B. Lasserre, editors, Hand-
book on Semidefinite, Conic and Polynomial Optimization, pages
139–169. Springer, 2012.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmet-
ric explanation learning: Effective dynamic symmetry handling for
SAT. In Proceedings of the 20th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’17), volume 10491 of
Lecture Notes in Computer Science, pages 83–100. Springer, August
2017.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc De-

https://massimolauria.net/cnfgen/
https://massimolauria.net/cnfgen/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/msoos/cryptominisat/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 333 — #101 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 333

necker. Improved static symmetry breaking for SAT. In Proceedings
of the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’16), volume 9710 of Lecture Notes in
Computer Science, pages 104–122. Springer, July 2016.

[DBM00] Olivier Dubois, Yacine Boufkhad, and Jacques Mandler. Typical
random 3-SAT formulae and the satisfiability threshold. In Proceed-
ings of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’00), pages 126–127, January 2000.

[Dev20] Jo Devriendt. Watched propagation of 0-1 integer linear constraints.
In Proceedings of the 26th International Conference on Principles
and Practice of Constraint Programming (CP ’20), volume 12333
of Lecture Notes in Computer Science, pages 160–176. Springer,
September 2020.

[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for
a pseudo-Boolean satisfiability solver. In Proceedings of the 18th
National Conference on Artificial Intelligence (AAAI ’02), pages
635–640, July 2002.

[DGN20] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to
relax: Integrating 0-1 integer linear programming with pseudo-
Boolean conflict-driven search. In Proceedings of the 17th Inter-
national Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR ’20),
pages xxiv–xxv, September 2020.

[Dix04] Heidi E. Dixon. Automating Pseudo-Boolean Inference within
a DPLL Framework. PhD thesis, University of Oregon,
2004. Available at http://www.cirl.uoregon.edu/dixon/papers/
dixonDissertation.pdf.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem proving. Communications of the ACM,
5(7):394–397, July 1962.

[DLMM08] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies.
Hilbert’s Nullstellensatz and an algorithm for proving combinatorial
infeasibility. In Proceedings of the 21st International Symposium on
Symbolic and Algebraic Computation (ISSAC ’08), pages 197–206,
July 2008.

[DLMM11] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Mar-
gulies. Computing infeasibility certificates for combinatorial prob-
lems through Hilbert’s Nullstellensatz. Journal of Symbolic Compu-
tation, 46(11):1260–1283, November 2011.

[DLMO09] Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn.
Expressing combinatorial problems by systems of polynomial equa-
tions and Hilbert’s Nullstellensatz. Combinatorics, Probability and
Computing, 18(04):551–582, July 2009.

[DMR09] Stefan S. Dantchev, Barnaby Martin, and Martin Rhodes. Tight
rank lower bounds for the Sherali–Adams proof system. Theoretical
Computer Science, 410(21–23):2054–2063, May 2009.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quan-

http://www.cirl.uoregon.edu/dixon/papers/dixonDissertation.pdf
http://www.cirl.uoregon.edu/dixon/papers/dixonDissertation.pdf

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 334 — #102 i
i

i
i

i
i

334 Chapter 7. Proof Complexity and SAT Solving

tification theory. Journal of the ACM, 7(3):201–215, 1960.
[DR01] Stefan S. Dantchev and Søren Riis. “Planar” tautologies hard for

resolution. In Proceedings of the 42nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’01), pages 220–229,
October 2001.

[dRGN+20] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann
Pitassi, Robert Robere, and Dmitry Sokolov. Automating algebraic
proof systems is NP-hard. Technical Report TR20-064, Electronic
Colloquium on Computational Complexity (ECCC), May 2020.

[dRLM+20] Susanna F. de Rezende, Massimo Lauria, Or Meir, Jakob Nordström,
and Dmitry Sokolov. Manuscript in preparation, 2020.

[dRMN+20] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi,
Robert Robere, and Marc Vinyals. Lifting with simple gadgets and
applications to circuit and proof complexity. In Proceedings of the
61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’20), November 2020. To appear.

[dRNMR19] Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert
Robere. Nullstellensatz size-degree trade-offs from reversible peb-
bling. In Proceedings of the 34th Annual Computational Complexity
Conference (CCC ’19), volume 137 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 18:1–18:16, July 2019.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How
limited interaction hinders real communication (and what it means
for proof and circuit complexity). In Proceedings of the 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’16),
pages 295–304, October 2016.

[DT20] Daniel Dadush and Samarth Tiwari. On the complexity of branching
proofs. In Proceedings of the 35th Annual Computational Complexity
Conference (CCC ’20), volume 169 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 34:1–34:35, July 2020.

[EGG+18] Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström,
and Laurent Simon. Seeking practical CDCL insights from theoreti-
cal SAT benchmarks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI ’18), pages 1300–1308,
July 2018.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-
ström. Justifying all differences using pseudo-Boolean reasoning. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI ’20), pages 1486–1494, February 2020.

[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc
Vinyals. Using combinatorial benchmarks to probe the reasoning
power of pseudo-Boolean solvers. In Proceedings of the 21st Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing (SAT ’18), volume 10929 of Lecture Notes in Computer Science,
pages 75–93. Springer, July 2018.

[EJL+16] Jan Elffers, Jan Johannsen, Massimo Lauria, Thomas Magnard,
Jakob Nordström, and Marc Vinyals. Trade-offs between time and

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 335 — #103 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 335

memory in a tighter model of CDCL SAT solvers. In Proceedings
of the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’16), volume 9710 of Lecture Notes in
Computer Science, pages 160–176. Springer, July 2016.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards
faster pseudo-Boolean solving. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI ’18), pages
1291–1299, July 2018.

[EN20] Jan Elffers and Jakob Nordström. A cardinal improvement to
pseudo-Boolean solving. In Proceedings of the 34th AAAI Confer-
ence on Artificial Intelligence (AAAI ’20), pages 1495–1503, Febru-
ary 2020.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In
6th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT ’03), Selected Revised Papers, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean con-
straints into SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 2(1-4):1–26, March 2006.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution.
Information and Computation, 171(1):84–97, 2001. Preliminary ver-
sions of these results appeared in STACS ’99 and CSL ’99.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic
proofs and efficient algorithm design. Foundations and Trends in
Theoretical Computer Science, 14(1–2):1–221, December 2019.

[FLM+13] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström,
and Marc Vinyals. Towards an understanding of polynomial cal-
culus: New separations and lower bounds (Extended abstract). In
Proceedings of the 40th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’13), volume 7965 of Lecture Notes
in Computer Science, pages 437–448. Springer, July 2013.

[FLM+15] Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström,
and Marc Vinyals. From small space to small width in resolution.
ACM Transactions on Computational Logic, 16(4):28:1–28:15, July
2015. Preliminary version in STACS ’14.

[FLN+15] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi,
and Neil Thapen. Space complexity in polynomial calculus. SIAM
Journal on Computing, 44(4):1119–1153, August 2015. Preliminary
version in CCC ’12.

[FPPR17] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert
Robere. Random Θ(log n)-CNFs are hard for cutting planes. In
Proceedings of the 58th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’17), pages 109–120, October 2017.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schliessen I &
II. Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English
translation in [Gen69], pp. 68-131.

[Gen69] Gerhard Gentzen. Collected Papers of Gerhard Gentzen. North-

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 336 — #104 i
i

i
i

i
i

336 Chapter 7. Proof Complexity and SAT Solving

Holland, 1969. Edited by M. E. Szabo.
[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov.

Monotone circuit lower bounds from resolution. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC ’18),
pages 902–911, June 2018.

[GHP02a] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Com-
plexity of semialgebraic proofs. Moscow Mathematical Journal,
2(4):647–679, 2002. Preliminary version in STACS ’02.

[GHP02b] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Expo-
nential lower bound for static semi-algebraic proofs. In Proceedings
of the 29th International Colloquium on Automata, Languages and
Programming (ICALP ’02), volume 2380 of Lecture Notes in Com-
puter Science, pages 257–268. Springer, July 2002.

[GKKS09] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. On the implementation of weight constraint rules in conflict-
driven ASP solvers. In Proceedings of the 25th International Con-
ference on Logic Programming (ICLP ’09), volume 5649 of Lecture
Notes in Computer Science, pages 250–264. Springer, July 2009.

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Au-
tomating cutting planes is NP-hard. In Proceedings of the 52nd An-
nual ACM Symposium on Theory of Computing (STOC ’20), pages
68–77, June 2020.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov.
Adventures in monotone complexity and TFNP. In Proceedings of
the 10th Innovations in Theoretical Computer Science Conference
(ITCS ’19), volume 124 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 38:1–38:19, January 2019.

[GKT19] Nicola Galesi, Leszek Ko lodziejczyk, and Neil Thapen. Polyno-
mial calculus space and resolution width. In Proceedings of the
60th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’19), pages 1325–1337, November 2019.

[GL10a] Nicola Galesi and Massimo Lauria. On the automatizability of poly-
nomial calculus. Theory of Computing Systems, 47(2):491–506, Au-
gust 2010.

[GL10b] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-
offs for polynomial calculus. ACM Transactions on Computational
Logic, 12(1):4:1–4:22, November 2010.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,
Patrick Prosser, and James Trimble. Certifying solvers for clique and
maximum common (connected) subgraph problems. In Proceedings
of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes
in Computer Science, pages 338–357. Springer, September 2020.

[GMN20a] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph
isomorphism meets cutting planes: Solving with certified solutions.
In Proceedings of the 29th International Joint Conference on Artifi-
cial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 337 — #105 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 337

[GMN20b] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. VeriPB:
The easy way to make your combinatorial search algorithm trust-
worthy. Presented at the workshop From Constraint Programming
to Trustworthy AI at the 26th International Conference on Princi-
ples and Practice of Constraint Programming (CP ’20). Paper avail-
able at http://www.cs.ucc.ie/~bg6/cptai/2020/papers/CPTAI_
2020_paper_2.pdf, September 2020.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of un-
satisfiability for CNF formulas. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’03), pages 886–891,
March 2003.

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On di-
vision versus saturation in pseudo-Boolean solving. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence
(IJCAI ’19), pages 1711–1718, August 2019.

[Goc17] Stephan Gocht. Personal communication, 2017.
[Goe90] Andreas Goerdt. Cutting plane versus Frege proof systems. In Pro-

ceedings of the 4th International Workshop on Computer Science
Logic (CSL ’90), volume 533 of Lecture Notes in Computer Science,
pages 174–194. Springer, October 1990.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear pro-
grams. In R.L. Graves and P. Wolfe, editors, Recent Advances
in Mathematical Programming, pages 269–302. McGraw-Hill, New
York, 1963.

[GP18a] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof
complexity, and polynomial identity testing: The ideal proof system.
Journal of the ACM, 65(6):37:1–37:59, November 2018. Preliminary
version in FOCS ’14.

[GP18b] Mika Göös and Toniann Pitassi. Communication lower bounds
via critical block sensitivity. SIAM Journal on Computing,
47(5):1778–1806, October 2018. Preliminary version in STOC ’14.

[GPT15] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity
of cutting planes refutations. In Proceedings of the 30th Annual Com-
putational Complexity Conference (CCC ’15), volume 33 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 433–447,
June 2015.

[GT78] John R. Gilbert and Robert Endre Tarjan. Variations of a peb-
ble game on graphs. Technical Report STAN-CS-78-661, Stanford
University, 1978. Available at http://infolab.stanford.edu/TR/
CS-TR-78-661.html.

[Gur] Gurobi optimizer. https://www.gurobi.com/.
[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and

Positivstellensatz proofs. Annals of Pure and Applied Logic,
113(1–3):153–160, December 2001.

[GZ03] Jan Frisco Groote and Hans Zantema. Resolution and binary de-
cision diagrams cannot simulate each other polynomially. Discrete
Applied Mathematics, 130(2):157–171, 2003.

http://www.cs.ucc.ie/~bg6/cptai/2020/papers/CPTAI_2020_paper_2.pdf
http://www.cs.ucc.ie/~bg6/cptai/2020/papers/CPTAI_2020_paper_2.pdf
http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html
https://www.gurobi.com/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 338 — #106 i
i

i
i

i
i

338 Chapter 7. Proof Complexity and SAT Solving

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39(2-3):297–308, August 1985.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits.
In Proceedings of the 18-th Annual ACM Symposium on Theory of
Computing (STOC), pages 6–20, 1986.

[H̊as17] Johan H̊astad. On small-depth frege proofs for Tseitin for grids. In
Proceedings of the 58th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’17), pages 97–108, October 2017.

[HB18] Marijn J. H. Heule and Armin Biere. What a difference a vari-
able makes. In Proceedings of the 24th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 18), volume 10806 of Lecture Notes in Computer Science,
pages 75–92. Springer, April 2018.

[HBPV08] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van
Gelder. Clause learning can effectively P-simulate general proposi-
tional resolution. In Proceedings of the 23rd National Conference on
Artificial Intelligence (AAAI ’08), pages 283–290, July 2008.

[HC99] Armin Haken and Stephen A. Cook. An exponential lower bound for
the size of monotone real circuits. Journal of Computer and System
Sciences, 58(2):326–335, April 1999.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-
ming while checking clausal proofs. In Proceedings of the 13th Inter-
national Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Veri-
fying refutations with extended resolution. In Proceedings of the 24th
International Conference on Automated Deduction (CADE-24), vol-
ume 7898 of Lecture Notes in Computer Science, pages 345–359.
Springer, June 2013.

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Ex-
pressing symmetry breaking in DRAT proofs. In Proceedings of the
25th International Conference on Automated Deduction (CADE-25),
volume 9195 of Lecture Notes in Computer Science, pages 591–606.
Springer, August 2015.

[HJB10] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause elimination
procedures for CNF formulas. In Proceedings of the 17th Interna-
tional Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR ’10), volume 6397 of Lecture Notes in Com-
puter Science, pages 357–371. Springer, October 2010.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs
without new variables. In Proceedings of the 26th International Con-
ference on Automated Deduction (CADE-26), volume 10395 of Lec-
ture Notes in Computer Science, pages 130–147. Springer, August
2017.

[HKB19] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Encoding
redundancy for satisfaction-driven clause learning. In Proceedings of
the 25th International Conference on Tools and Algorithms for the

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 339 — #107 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 339

Construction and Analysis of Systems (TACAS 19), volume 11427
of Lecture Notes in Computer Science, pages 41–58. Springer, April
2019.

[HKB20] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong
extension-free proof systems. Journal of Automated Reasoning,
64(3):533–554, 2020. Extended version of [HKB17].

[HKSB17] Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere.
PRuning through satisfaction. In 13th International Haifa Verifica-
tion Conference (HVC ’17), volume 10629 of Lecture Notes in Com-
puter Science, pages 179–194. Springer, November 2017.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs
and their applications. Bulletin of the American Mathematical So-
ciety, 43(4):439–561, October 2006.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs:
Amplifying communication complexity hardness to time-space trade-
offs in proof complexity (Extended abstract). In Proceedings of the
44th Annual ACM Symposium on Theory of Computing (STOC ’12),
pages 233–248, May 2012.

[Hoo88] John N. Hooker. Generalized resolution and cutting planes. Annals
of Operations Research, 12(1):217–239, December 1988.

[Hoo92] John N. Hooker. Generalized resolution for 0-1 linear inequali-
ties. Annals of Mathematics and Artificial Intelligence, 6(1):271–286,
March 1992.

[HP93] Petr Hájek and Pavel Pudlák. Metamathematics of First-order
Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag,
Berlin, 1993.

[HP17] Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone cir-
cuits, and interpolation. In Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’17), pages
121–131, October 2017.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus
space. Journal of the ACM, 24(2):332–337, April 1977. Preliminary
version in FOCS ’75.

[HS09] Hyojung Han and Fabio Somenzi. On-the-fly clause improvement. In
Proceedings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT ’09), volume 5584 of Lecture
Notes in Computer Science, pages 209–222. Springer, July 2009.

[HT15] Pavel Hrubeš and Iddo Tzameret. Short proofs for the determinant
identities. SIAM Journal on Computing, 44(2):340–383, April 2015.
Preliminary version in STOC ’12.

[Hua07] Jinbo Huang. The effect of restarts on the efficiency of clause learn-
ing. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI ’07), pages 2318–2323, January 2007.

[Hua10] Jinbo Huang. Extended clause learning. Artificial Intelligence,
174(15):1277–1284, October 2010.

[HvM05] Marijn J. H. Heule and Hans van Maaren. Aligning CNF- and
equivalence-reasoning. In 7th International Conference on Theory

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 340 — #108 i
i

i
i

i
i

340 Chapter 7. Proof Complexity and SAT Solving

and Applications of Satisfiability Testing (SAT ’04), Selected Re-
vised Papers, volume 3542 of Lecture Notes in Computer Science,
pages 145–156. Springer, 2005.

[HvM06] Marijn J.H. Heule and Hans van Maaren. March dl: Adding adap-
tive heuristics and a new branching strategy. Journal on Satisfiabil-
ity, Boolean Modeling and Computation, 2:47–59, 2006.

[IKRS17] Dmitry Itsykson, Alexander Knop, Andrei E. Romashchenko, and
Dmitry Sokolov. On OBDD-based algorithms and proof systems
that dynamically change order of variables. In Proceedings of
the 34th Symposium on Theoretical Aspects of Computer Science
(STACS ’17), volume 66 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 43:1–43:14, March 2017.

[IMM17] Alexey Ignatiev, António Morgado, and João Marques-Silva. On
tackling the limits of resolution in SAT solving. In Proceedings of
the 20th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’17), volume 10491 of Lecture Notes in
Computer Science, pages 164–183. Springer, August 2017.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of
k-SAT. Journal of Computer and System Sciences, 62(2):367–375,
March 2001. Preliminary version in CCC ’99.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for
the polynomial calculus and the Gröbner basis algorithm. Compu-
tational Complexity, 8(2):127–144, 1999.

[Jär11] Matti Järvisalo. On the relative efficiency of DPLL and OBDDs with
axiom and join. In Proceedings of the 17th International Conference
on Principles and Practice of Constraint Programming (CP ’11),
volume 6876 of Lecture Notes in Computer Science, pages 429–437.
Springer, September 2011.

[JdM13] Dejan Jovanovic and Leonardo de Moura. Cutting to the chase
solving linear integer arithmetic. Journal of Automated Reasoning,
51(1):79–108, June 2013. Preliminary version in CADE-23 2011.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing
rules. In Proceedings of the 6th International Joint Conference on
Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes
in Computer Science, pages 355–370. Springer, June 2012.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav
Živný. Relating proof complexity measures and practical hardness of
SAT. In Proceedings of the 18th International Conference on Princi-
ples and Practice of Constraint Programming (CP ’12), volume 7514
of Lecture Notes in Computer Science, pages 316–331. Springer, Oc-
tober 2012.

[KBK19] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Incremental
column-wise verifiation of arithmetic circuits using computer alge-
bra. Formal Methods in Systems Design, February 2019.

[KI02] Jan Kraj́ıček and Russell Impagliazzo. A note on conservativity
relations among bounded arithmetic theories. Mathematical Logic
Quarterly, 48(3):375–377, 2002.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 341 — #109 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 341

[KI06] Arist Kojevnikov and Dmitry Itsykson. Lower bounds of static
Lovász–Schrijver calculus proofs for Tseitin tautologies. In Proceed-
ings of the 33rd International Colloquium on Automata, Languages
and Programming (ICALP ’06), volume 4051 of Lecture Notes in
Computer Science, pages 323–334. Springer, July 2006.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity.
Cambridge University Press, 1997.

[KN20] Janne I. Kokkala and Jakob Nordström. Using resolution proofs
to analyse CDCL solvers. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming
(CP ’20), volume 12333 of Lecture Notes in Computer Science, pages
427–444. Springer, September 2020.

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan R. Woods. An exponential
lower bound to the size of bounded depth Frege proofs of the pi-
geonhole principle. Random Structures and Algorithms, 7(1):15–40,
1995. Preliminary version in STOC ’92.

[Kra94] Jan Kraj́ıček. Lower bounds to the size of constant-depth proposi-
tional proofs. Journal of Symbolic Logic, 59:73–86, 1994.

[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic and Com-
plexity Theory, volume 60 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press, November 1995.

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof sys-
tems, and independence results for bounded arithmetic. Journal of
Symbolic Logic, 62(2):457–486, June 1997.

[Kra08] Jan Kraj́ıček. An exponential lower bound for a constraint pro-
pogation proof system based on ordered binary decision diagrams.
Journal of Symbolic Logic, 73(1):227–237, 2008.

[Kra19] Jan Kraj́ıček. Proof Complexity, volume 170 of Encyclopedia of
Mathematics and Its Applications. Cambridge University Press,
March 2019.

[KRH18] Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn J. H. Heule. Ex-
tended resolution simulates DRAT. In Proceedings of the 9th Inter-
national Joint Conference on Automated Reasoning (IJCAR ’18),
volume 10900 of Lecture Notes in Computer Science, pages 516–531.
Springer, July 2018.

[Kri85] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta
Informatica, 22(3):253–275, August 1985.

[KSM11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Em-
pirical study of the anatomy of modern SAT solvers. In Proceedings
of the 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’11), volume 6695 of Lecture Notes in
Computer Science, pages 343–356. Springer, June 2011.

[Las01a] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear
0-1 programs. In Proceedings of the 8th International Conference on
Integer Programming and Combinatorial Optimization (IPCO ’01),
volume 2081 of Lecture Notes in Computer Science, pages 293–303.
Springer, June 2001.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 342 — #110 i
i

i
i

i
i

342 Chapter 7. Proof Complexity and SAT Solving

[Las01b] Jean B. Lasserre. Global optimization with polynomials and the
problem of moments. SIAM Journal of Optimization, 11(3):796–
817, 2001.

[Lau01] Monique Laurent. A comparison of the Sherali–Adams, Lovász–
Schrijver and Lasserre relaxations for 0-1 programming. Mathemat-
ics of Operations Research, 28:470–496, 2001.

[LBD+20] Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob
Nordström. Verifying properties of bit-vector multiplication using
cutting planes reasoning. In Proceedings of the 20th Conference on
Formal Methods in Computer-Aided Design (FMCAD ’20), pages
194–204, September 2020.

[LENV17] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals.
CNFgen: A generator of crafted benchmarks. In Proceedings of
the 20th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’17), volume 10491 of Lecture Notes in
Computer Science, pages 464–473. Springer, August 2017.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy
peredachi informatsii, 9(3):115–116, 1973. In Russian. Available at
http://mi.mathnet.ru/ppi914.

[LGPC16] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czar-
necki. Learning rate based branching heuristic for SAT solvers. In
Proceedings of the 19th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT ’16), volume 9710 of Lecture
Notes in Computer Science, pages 123–140. Springer, July 2016.

[Lin] Lingeling, Plingeling and Treengeling. http://fmv.jku.at/

lingeling/.
[LLMO09] Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn.

Expressing combinatorial problems by systems of polynomial equa-
tions and Hilbert’s Nullstellensatz. Combinatorics, Probability and
Computing, 18(4):551–582, July 2009.

[LM02] Inês Lynce and João P. Marques-Silva. Building state-of-the-art SAT
solvers. In Proceedings of the 15th European Conference on Artificial
Intelligence (ECAI ’02), pages 166–170, May 2002.

[LMMW20] Daniel Le Berre, Pierre Marquis, Stefan Mengel, and Romain Wal-
lon. On irrelevant literals in pseudo-Boolean constraint learning. In
Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1148–1154, July 2020.

[LMW20] Daniel Le Berre, Pierre Marquis, and Romain Wallon. On weak-
ening strategies for PB solvers. In Proceedings of the 23rd Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing (SAT ’20), volume 12178 of Lecture Notes in Computer Science,
pages 322–331. Springer, July 2020.

[LN17] Massimo Lauria and Jakob Nordström. Graph colouring is hard for
algorithms based on Hilbert’s Nullstellensatz and Gröbner bases. In
Proceedings of the 32nd Annual Computational Complexity Confer-
ence (CCC ’17), volume 79 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 2:1–2:20, July 2017.

http://mi.mathnet.ru/ppi914
http://fmv.jku.at/lingeling/
http://fmv.jku.at/lingeling/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 343 — #111 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 343

[LNSS20] Guillaume Lagarde, Jakob Nordström, Dmitry Sokolov, and Joseph
Swernofsky. Trade-offs between size and degree in polynomial cal-
culus. In Proceedings of the 11th Innovations in Theoretical Com-
puter Science Conference (ITCS ’20), volume 151 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 72:1–72:16, Jan-
uary 2020.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release
2.2. Journal on Satisfiability, Boolean Modeling and Computation,
7:59–64, July 2010.

[LR18] Daniel Le Berre and Pascal Rapicault. Boolean-based dependency
management for the Eclipse ecosystem. International Journal on
Artificial Intelligence Tools, 27(1):1840003:1–1840003:23, February
2018.

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-
functions and 0-1 optimization. SIAM Journal on Optimization,
1(2):166–190, 1991.

[LT82] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight
bounds on time-space trade-offs in a pebble game. Journal of
the ACM, 29(4):1087–1130, October 1982. Preliminary version in
STOC ’79.

[LTW18] Fu Li, Iddo Tzameret, and Zhengyu Wang. Characterizing proposi-
tional proofs as noncommutative formulas. SIAM Journal on Com-
puting, 47(4):1424–1462, 2018.

[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):221–227,
2006.

[MBCK18] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Ko-
rdon. CDCLSym: Introducing effective symmetry breaking in SAT
solving. In Proceedings of the 24th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 18), volume 10806 of Lecture Notes in Computer Science,
pages 99–114. Springer, April 2018.

[MBK19] Hakan Metin, Souheib Baarir, and Fabrice Kordon. Composing sym-
metry propagation and effective symmetry breaking for SAT solv-
ing. In 11th NASA Formal Methods Symposium (NFM ’19), vol-
ume 11460 of Lecture Notes in Computer Science, pages 316–332.
Springer, May 2019.

[MHB13] Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated
reencoding of Boolean formulas. In 8th International Haifa Verifica-
tion Conference (HVC ’12), Revised Selected Papers, volume 7857 of
Lecture Notes in Computer Science, pages 102–117. Springer, 2013.

[MIB+19] António Morgado, Alexey Ignatiev, Maŕıa Luisa Bonet, João
Marques-Silva, and Samuel R. Buss. DRMaxSAT with MaxHS:
First contact. In Proceedings of the 22nd International Conference
on Theory and Applications of Satisfiability Testing (SAT ’19), vol-
ume 11628 of Lecture Notes in Computer Science, pages 239–249.
Springer, July 2019.

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 344 — #112 i
i

i
i

i
i

344 Chapter 7. Proof Complexity and SAT Solving

[MM06] Vasco M. Manquinho and João Marques-Silva. On using cutting
planes in pseudo-Boolean optimization. Journal on Satisfiability,
Boolean Modeling and Computation, 2:209–219, March 2006. Pre-
liminary version in SAT ’05.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO:
A modular MaxSAT solver. In Proceedings of the 17th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing (SAT ’14), volume 8561 of Lecture Notes in Computer Science,
pages 438–445. Springer, July 2014.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly)
simple formulas. In Proceedings of the 17th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT ’14),
volume 8561 of Lecture Notes in Computer Science, pages 121–137.
Springer, July 2014.

[MN15] Mladen Mikša and Jakob Nordström. A generalized method for prov-
ing polynomial calculus degree lower bounds. In Proceedings of the
30th Annual Computational Complexity Conference (CCC ’15), vol-
ume 33 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 467–487, June 2015.

[MPR20] Nathan Mull, Shuo Pang, and Alexander A. Razborov. On CDCL-
based proof systems with the ordered decision strategy. In Proceed-
ings of the 23rd International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT ’20), volume 12178 of Lecture
Notes in Computer Science, pages 149–165. Springer, July 2020.

[MPW02] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof
of the weak pigeonhole principle. Journal of Computer and System
Sciences, 64(4):843–872, 2002. Preliminary version in STOC ’00.

[MPW19] Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short proofs are
hard to find. In Proceedings of the 46th International Colloquium on
Automata, Languages and Programming (ICALP ’19), volume 132
of Leibniz International Proceedings in Informatics (LIPIcs), pages
84:1–84:16, July 2019.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search al-
gorithm for propositional satisfiability. IEEE Transactions on Com-
puters, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[Nep70] Valery A. Nepomnjaščĭı. Rudimentary predicates and Turing com-
putations. Dokl. Akad. Nauk SSSR, 195:282–284, 1970. English
translation in Soviet Math. Dokl. 11 (1970) 1462–1465.

[Nes00] Yurii Nesterov. Squared functional systems and optimization prob-
lems. In H. Frenk, K. Roos, T. Terlaky, and S. Zhang, editors, High
Performance Optimization, pages 405–440. Kluwer Academic Pub-
lisher, 2000.

[NH13] Jakob Nordström and Johan H̊astad. Towards an optimal separation

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 345 — #113 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 345

of space and length in resolution. Theory of Computing, 9:471–557,
May 2013. Preliminary version in STOC ’08.

[Nor09a] Jakob Nordström. Narrow proofs may be spacious: Separating space
and width in resolution. SIAM Journal on Computing, 39(1):59–121,
May 2009. Preliminary version in STOC ’06.

[Nor09b] Jakob Nordström. A simplified way of proving trade-off results for
resolution. Information Processing Letters, 109(18):1030–1035, Au-
gust 2009.

[Nor12] Jakob Nordström. On the relative strength of pebbling and resolu-
tion. ACM Transactions on Computational Logic, 13(2):16:1–16:43,
April 2012. Preliminary version in CCC ’10.

[Nor13] Jakob Nordström. Pebble games, proof complexity and time-space
trade-offs. Logical Methods in Computer Science, 9(3):15:1–15:63,
September 2013.

[Nor15] Jakob Nordström. On the interplay between proof complexity and
SAT solving. ACM SIGLOG News, 2(3):19–44, July 2015.

[Nor20] Jakob Nordström. New wine into old wineskins: A survey of some
pebbling classics with supplemental results. Manuscript in prepara-
tion. To appear in Foundations and Trends in Theoretical Computer
Science. Current draft version available at http://www.csc.kth.

se/~jakobn/research/, 2020.
[NR18] Alexander Nadel and Vadim Ryvchin. Chronological backtracking.

In Proceedings of the 21st International Conference on Theory and
Applications of Satisfiability Testing (SAT ’18), volume 10929 of
Lecture Notes in Computer Science, pages 111–121. Springer, July
2018.

[Pan19] Shuo Pang. Large clique is hard on average for resolution. Tech-
nical Report TR19-068, Electronic Colloquium on Computational
Complexity (ECCC), April 2019.

[Par00] Pablo A. Parrilo. Structured Semidefinite Programs and Semialge-
braic Geometry Methods in Robustness and Optimization. PhD the-
sis, California Institute of Technology, May 2000. Available at http:
//resolver.caltech.edu/CaltechETD:etd-05062004-055516.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential
lower bounds for the pigeonhole principle. Computational Complex-
ity, 3:97–140, 1993. Preliminary version in STOC ’92.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component
caching scheme for satisfiability solvers. In Theory and Applications
of Satisfiability Testing (SAT 2007), Lecture Notes in Computer Sci-
ence 4501, pages 294–299. Springer Verlag, 2007.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-
learning SAT solvers as resolution engines. Artificial Intelligence,
175(2):512–525, February 2011. Preliminary version in CP ’09.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among com-
plexity measures. Journal of the ACM, 26:361–381, 1979.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Wat-
son Research Center, 1980. In Proceedings of the 5th IBM Sympo-

http://www.csc.kth.se/~jakobn/research/
http://www.csc.kth.se/~jakobn/research/
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 346 — #114 i
i

i
i

i
i

346 Chapter 7. Proof Complexity and SAT Solving

sium on Mathematical Foundations of Computer Science.
[PR17] Toniann Pitassi and Robert Robere. Strongly exponential lower

bounds for monotone computation. In Proceedings of the 49th An-
nual ACM Symposium on Theory of Computing (STOC ’17), pages
1246–1255, June 2017.

[PR18] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to mono-
tone span programs over any field. In Proceedings of the 50th An-
nual ACM Symposium on Theory of Computing (STOC ’18), pages
1207–1219, June 2018.

[PRST16] Toniann Pitassi, Benjamin Rossman, Rocco Servedio, and Li-Yang
Tan. Poly-logarithmic Frege depth lower bounds. In Proceed-
ings of the 48th Annual ACM Symposium on Theory of Computing
(STOC ’16), pages 644–657, June 2016.

[Pse16] Pseudo-Boolean competition 2016. http://www.cril.

univ-artois.fr/PB16/, July 2016.
[PT16] Toniann Pitassi and Iddo Tzameret. Algebraic proof complexity:

Progress, frontiers and challenges. ACM SIGLOG News, 3(3):21–43,
August 2016.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni.
Space bounds for a game on graphs. Mathematical Systems The-
ory, 10:239–251, 1977.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane
proofs and monotone computations. Journal of Symbolic Logic,
62(3):981–998, September 1997.

[Pud99] Pavel Pudlák. On the complexity of propositional calculus. In
S. Barry Cooper and John K. Truss, editors, Sets and Proofs, vol-
ume 258 of London Mathematical Society Lecture Note Series, pages
197–218. Cambridge University Press, 1999.

[PV05] Guoqiang Pan and Moshe Y. Vardi. Symbolic techniques in satis-
fiability solving. Journal of Automated Reasoning, 35(1–3):25–50,
October 2005.

[PW85] Jeff B. Paris and Alex J. Wilkie. Counting problems in bounded
arithmetic. In Methods in Mathematical Logic, Lecture Notes in
Mathematics #1130, pages 317–340. Springer-Verlag, 1985.

[PWW88] Jeff B. Paris, Alex J. Wilkie, and A. R. Woods. Provability of the
pigeonhole principle and the existence of infinitely many primes.
Journal of Symbolic Logic, 53:1235–1244, 1988.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded
depth networks over a complete basis with logical addition. Matem-
aticheskie Zametki, 41(4):598–607, 1987. English Translation in
Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus.
Computational Complexity, 7(4):291–324, December 1998.

[Raz02] Alexander A. Razborov. Proof complexity of pigeonhole principles.
In 5th International Conference on Developments in Language The-
ory, (DLT ’01), Revised Papers, volume 2295 of Lecture Notes in

http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB16/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 347 — #115 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 347

Computer Science, pages 100–116. Springer, July 2002.
[Raz03] Alexander A. Razborov. Resolution lower bounds for the weak

functional pigeonhole principle. Theoretical Computer Science,
1(303):233–243, June 2003.

[Raz04a] Ran Raz. Resolution lower bounds for the weak pigeonhole princi-
ple. Journal of the ACM, 51(2):115–138, March 2004. Preliminary
version in STOC ’02.

[Raz04b] Alexander A. Razborov. Resolution lower bounds for perfect
matching principles. Journal of Computer and System Sciences,
69(1):3–27, August 2004. Preliminary version in CCC ’02.

[Raz15] Alexander A. Razborov. Pseudorandom generators hard for k-DNF
resolution and polynomial calculus resolution. Annals of Mathemat-
ics, 181(2):415–472, March 2015.

[Raz16a] Alexander A. Razborov. A new kind of tradeoffs in propositional
proof complexity. Journal of the ACM, 63(2):16:1–16:14, April 2016.

[Raz16b] Alexander A. Razborov. Proof complexity and beyond. ACM
SIGACT News, 47(2):66–86, June 2016.

[RBK17] Daniela Ritirc, Armin Biere, and Manuel Kauers. Column-wise ver-
ification of multipliers using computer algebra. In Proceedings of
the 17th International Conference on Formal Methods in Computer-
Aided Design (FMCAD ’17), pages 23–30, October 2017.

[RBK18] Daniela Ritirc, Armin Biere, and Manuel Kauers. Improving and ex-
tending the algebraic approach for verifying gate-level multipliers. In
Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE ’18), pages 1556–1561, March 2018.

[Rec75] Robert A. Reckhow. On the Lengths of Proofs in the Propo-
sitional Calculus. PhD thesis, University of Toronto, 1975.
Available at https://www.cs.toronto.edu/~sacook/homepage/

reckhow_thesis.pdf.
[Rii93] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, Uni-

versity of Oxford, 1993.
[Rii97a] Soren Riis. Count(q) does not imply count(q). Annals of Pure and

Applied Logic, 90:1–56, 1997.
[Rii97b] Soren Riis. Count(q) versus the pigeon-hole principle. Archive for

Mathematical Logic, 36:157–188, 1997.
[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC

hierarchy. Combinatorica, 19(3):403–435, March 1999. Preliminary
version in FOCS ’97.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob79] John Michael Robson. A new proof of the NP-completeness of sat-
isfiability. In Proceedings of the 2nd Australian Computer Science
Conference, pages 62–70, February 1979.

[Rob91] John Michael Robson. An O(T log T) reduction from RAM computa-
tions to satisfiability. Theoretical Computer Science, 82(1):141–149,
May 1991.

[RPRC16] Robert Robere, Toniann Pitassi, Benjamin Rossman, and

https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 348 — #116 i
i

i
i

i
i

348 Chapter 7. Proof Complexity and SAT Solving

Stephen A. Cook. Exponential lower bounds for monotone span
programs. In Proceedings of the 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’16), pages 406–415, Oc-
tober 2016.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity and
Applications. Cambridge University Press, January 2020.

[Rya04] Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, February 2004. Available
at https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations
between the continuous and convex hull representations for zero-one
programming problems. SIAM Journal on Discrete Mathematics,
3:411–430, 1990.

[SAT] The international SAT Competitions web page. http://www.

satcompetition.org.
[Sav98] John E. Savage. Models of Computation: Exploring the Power

of Computing. Addison-Wesley, 1998. Available at http://www.

modelsofcomputation.org.
[SB06] Carsten Sinz and Armin Biere. Extended resolution proofs for con-

joining BDDs. In Proceedings of the 1st International Computer
Science Symposium in Russia (CSR ’06), volume 3967 of Lecture
Notes in Computer Science, pages 600–611. Springer, June 2006.

[SB09] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In
Theory and Applications of Satisfiability Testing (SAT 2009), Lec-
ture Notes in Computer Science 5584, pages 237–243. Springer Ver-
lag, 2009.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A
switching lemma for small restrictions and lower bounds for k-DNF
resolution. SIAM Journal on Computing, 33(5):1171–1200, 2004.
Preliminary version in FOCS ’02.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL.
Journal of the ACM, 25(1):136–145, January 1978.

[SCI] SCIP: Solving constraint integer programs. http://scip.zib.de/.
[SDNS20] Buser Say, Jo Devriendt, Jakob Nordström, and Peter Stuckey. The-

oretical and experimental results for planning with learned binarized
neural network transition models. In Proceedings of the 26th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming (CP ’20), volume 12333 of Lecture Notes in Computer
Science, pages 917–934. Springer, September 2020.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bulletin
of Symbolic Logic, 13(4):417–481, December 2007.

[Seg08] Nathan Segerlind. On the relative efficiency of resolution-like proofs
and ordered binary decision diagram proofs. In Proceedings of
the 23rd Annual IEEE Conference on Computational Complexity
(CCC ’08), pages 100–111, June 2008.

[Sho87] Naum Z. Shor. An approach to obtaining global extremums
in polynomial mathematical programming problems. Cybernet-

https://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps
http://www.satcompetition.org
http://www.satcompetition.org
http://www.modelsofcomputation.org
http://www.modelsofcomputation.org
http://scip.zib.de/

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 349 — #117 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 349

ics, 23(5):695–700, 1987. Translated from Kibernetika, No. 5,
pages 102-–106, 1987.

[Sim14] Laurent Simon. Post mortem analysis of SAT solver proofs. In
Proceedings of the 5th Pragmatics of SAT workshop, volume 27 of
EPiC Series in Computing, pages 26–40, July 2014. Available at
https://easychair.org/publications/paper/N3GD.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds
for Boolean circuit complexity. In Proceedings of the 19th An-
nual ACM Symposium on Theory of Computing (STOC ’87), pages
77–82, 1987.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an
ROBDD for a PB-constraint in band form and related techniques
for PB-solvers. IEICE Transactions on Information and Systems,
98-D(6):1121–1127, June 2015.

[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability
benchmarks. Journal of Experimental Algorithmics, 15:1.2:1–1.2:15,
March 2010.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-
Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and
Computation, 2(1-4):165–189, March 2006. Preliminary version in
DATE ’05.

[St̊a96] Gunnar St̊almarck. Short resolution proofs for a sequence of tricky
formulas. Acta Informatica, 33(3):277–280, May 1996.

[Sze05] Stefan Szeider. The complexity of resolution with generalized sym-
metry rules. Theory of Computing Systems, 38(2):171–188, January
2005. Preliminary version in STACS ’03.

[TC17] Iddo Tzameret and Stephen A. Cook. Uniform, integral and ef-
ficient proofs for the determinant identities. In Proceedings of the
32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’17), pages 1–12, June 2017.

[TD19] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. Enhanc-
ing static symmetry breaking with dynamic symmetry handling in
CDCL SAT solvers. International Journal on Artificial Intelligence
Tools, 28(3):1950011:1–1950011:32, May 2019.

[Tha16] Neil Thapen. A trade-off between length and width in resolution.
Theory of Computing, 12(5):1–14, August 2016.

[Tse68] Grigori Tseitin. The complexity of a deduction in the propositional
predicate calculus. Zapiski Nauchnyh Seminarov Leningradskogo Ot-
delenija matematicheskogo Instituta im. V. A. Steklova akademii
Nauk SSSR (LOMI), 8:234–259, 1968. In Russian.

[TSZ10] Olga Tveretina, Carsten Sinz, and Hans Zantema. Ordered binary
decision diagrams, pigeonhole formulas and beyond. Journal on Sat-
isfiability, Boolean Modeling and Computation, 7(1):35–58, March
2010.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the
ACM, 34(1):209–219, January 1987.

[Urq99] Alasdair Urquhart. The symmetry rule in propositional logic. Dis-

https://easychair.org/publications/paper/N3GD

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 350 — #118 i
i

i
i

i
i

350 Chapter 7. Proof Complexity and SAT Solving

crete Applied Mathematics, 96–97:177–193, October 1999.
[Urq11] Alasdair Urquhart. A near-optimal separation of regular and gen-

eral resolution. SIAM Journal on Computing, 40(1):107–121, 2011.
Preliminary version in SAT ’08.

[Van05] Allen Van Gelder. Pool resolution and its relation to regular reso-
lution and DPLL with clause learning. In Proceedings of the 12th
International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR ’05), volume 3835 of Lecture Notes
in Computer Science, pages 580–594. Springer, 2005.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsat-
isfiability. In 10th International Symposium on Artificial Intelli-
gence and Mathematics (ISAIM ’08), 2008. Available at http:

//isaim2008.unl.edu/index.php?page=proceedings.
[VEG+18] Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and

Jakob Nordström. In between resolution and cutting planes: A study
of proof systems for pseudo-Boolean SAT solving. In Proceedings of
the 21st International Conference on Theory and Applications of
Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes in
Computer Science, pages 292–310. Springer, July 2018.

[Ver19] VeriPB: Verifier for pseudo-Boolean proofs. https://doi.org/10.

5281/zenodo.3548581, 2019.
[Vin20] Marc Vinyals. Hard examples for common variable decision heuris-

tics. In Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI ’20), pages 1652–1659, February 2020.

[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small
hard SAT instances. In Proceedings of the 13th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT ’10),
volume 6175 of Lecture Notes in Computer Science, pages 388–397.
Springer, July 2010.

http://isaim2008.unl.edu/index.php?page=proceedings
http://isaim2008.unl.edu/index.php?page=proceedings
https://doi.org/10.5281/zenodo.3548581
https://doi.org/10.5281/zenodo.3548581

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 351 — #119 i
i

i
i

i
i

Index

0-1 integer linear program, 282
1UIP literal, 244
3-CNF

conversion to, 236, 261, 279

absorb, 252
absorption, 252
adaptive restarts, 247, 269
addition, see also cutting planes, 284
algebraic

methods of reasoning, 270, 310
proof system, 270, 311
SAT solving, 281

asserting, 244, 289
clause learning scheme, 245
literal, 244

assertion level, 246
assertive property, 244
assignment

partial, 236
total, 236

asymmetric tautology (AT), 244
asymptotic notation, 238
asymptotically almost surely, 257
automatability, 234, 251, 305
automatable, 251, 282, 305
average-case lower bound, 258, 259,

277
axiom

clause, 238

backjumping, see also backtracking,
245–247

backtracking, 241, 245–247
chronological, 245
nonchronological, 245

big-O notation, 238
big-O-tilde notation, 307

Boolean
axiom, 273
hypercube, 304
variable, 236

bounded arithmetic, 320, 322
bounded-depth

Frege, see also bounded-depth LK,
318

bounded arithmetic, 322
quasipolynomial size, 322
symmetry, 322
with parity, 321

LK, 319
comparison to cutting planes,

321
comparison to polynomial cal-

culus, 321
comparison to resolution, 321

LK(⊕), 321
broken mosquito screen formula, 305

cancelling
addition, 284
linear combination, 285

cardinality constraint, 283
detection, 310
negative, 259
positive, 259
reduction rule, 296

cardinality reasoning, 251
CDCL, see also conflict-driven clause

learning
conflict analysis, 244, 249, 289,

298
heuristics, 247, 254, 268
proof logging, 249
using extended resolution, 313

chronological backtracking, 245

351

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 352 — #120 i
i

i
i

i
i

352 Chapter 7. Proof Complexity and SAT Solving

Chvátal-Gomory cut, see also division,
285

circuit
monotone, 305

circuit complexity, 320
monotone, 305

clause, 236
k-clause, 236

clause deletion, 249
clause erasure, see clause deletion
clause learning, 241, 243

first unique implication point (1UIP),
244

unique implication point (UIP),
243

clause minimization, 255
clause space, see also space, 261, 274
clique formula, 257, 259

regular resolution lower bound, 258
clique-coclique formula, 304, 321, 322

weak, 321
clique-colouring formula, see also clique-

coclique formula, 304, 315
CNF

translation to polynomials, 271
translation to pseudo-Boolean con-

straints, 282
CNF formula, 236, 316

k-CNF formula, 236
lifted, 301
random k-CNF, 257, 262, 277, 279,

305, 312
colourability, 257
colouring, see also clique-colouring, 277,

see also even colouring, 282
colouring formula, 257, 277, 278
communication complexity, 301, 306
completeness, 237, 240
computational complexity theory, 322
conflict, 243

analysis, see conflict analysis
graph, 244

conflict analysis, 244, 249, 288, 289,
295, 298, 308

CDCL, 244, 249, 289
comparison of CDCL and pseudo-

Boolean solving, 292

invariant, 289
pseudo-Boolean, 288, 295, 308
reduction algorithm, 291, 294, 295
using division, 293
using saturation, 290

conflict-driven
clause learning, see also CDCL,

234, 241, 323
pseudo-Boolean solving, see pseudo-

Boolean, solving
conflicting constraint, 288
conjunctive normal form (CNF), 233,

236
comparison to pseudo-Boolean con-

straints, 283
constraint programming, 299, 310
Cook translation, 322
counting-mod-p principle, 319, 320
CP, see cutting planes
Craig interpolation, see also interpo-

lation, 305, 321
cumulative space, 266, 268
cut rule, 317
cutting planes, 234, 235, 282, 300

CP∗, 303, 304, 307
addition, 284
cancelling linear combination, 285
coefficient size, 303
counting, 302
division, 284, 308
general, 286, 304, 307
general division, 285
generalized resolution rule, 308
implicational completeness, 293,

308
incomparable to polynomial cal-

culus, 303
length, 302
line space, see also cutting planes,

space, see also space, 302
literal axiom, 284
multiplication, 284
polynomial-magnitude coefficients,

303, 304, 307
reduction to monotone circuits, 305
saturation, 286, 308
separation

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 353 — #121 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 353

from polynomial calculus, 303
from resolution, 302

simulation of resolution, 302
size, 302
size-space trade-off, 306, 307
space, 304
symmetry, 322
total space, 304
weakening, 286
with division, 309
with resolution, 286, 307
with saturation, 286, 307, 309, 311
with saturation and resolution, 286,

307
cutting planes proof system, see cut-

ting planes

Davis Putnam Logemann Loveland pro-
cedure, see DPLL

decision
level, 243
literal, 242
strategy, 247, 254

degree, 272, 273, 283
Nullstellensatz, 272
of falsity, 283
polynomial, 274
polynomial calculus, 273, 274
v.s. size, 276
v.s. space, 279, 281

depth
formula, 318
lower bound, 320

depth-d
Frege, 319
LK lower bound, 319
LK proof, 319

design, 272
directed acyclic graph (DAG), 239, 263
division, see also cutting planes, 284,

287, 308
general, 285

DPLL, 241, 323
with clause learning (DPLL-CL),

245
DRAT, 235, 299, 313

symmetry reasoning, 323

without new variables, 315
dual-rail MaxSAT, 323

EC formula, see even colouring for-
mula

equisatisfiability, 313
ER, see extended resolution
Erdős-Rényi random graph, 258

edge density, 258
Eulerian cycle, 278
even colouring formula, 278, 279, 310,

311
pseudo-Boolean form, 310

expander graph, 257, 279, 320
experiments, 268, 310
EXPTIME-complete, 268
extended Frege

proof, 317, 318
system, 316, 322

bounded arithmetic, 322
extended resolution, 234, 235, 251, 312

derivation, 313
extension

axiom, 317
rule, 312, 315
variable, 283, 287, 317

extremal properties, 269

falsify, 236
field, 270
first unique implication point (1UIP),

243
clause, 244

formula
broken mosquito screen, 305
clique, 257, 259
clique-coclique, 304, 322
clique-colouring, 304, 315
CNF, 236, 316
colouring, 257, 277, 278
counting-mod-p principle, 319, 320
depth, 318
even colouring, 278, 279, 310, 311
functional pigeonhole principle, 277
house-sitting principle, 272
independent set, 257
induction principle, 272
least number principle, 261

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 354 — #122 i
i

i
i

i
i

354 Chapter 7. Proof Complexity and SAT Solving

lifted, 301
matching principle, 272
onto functional pigeonhole prin-

ciple, 256, 275, 276, 321
ordering principle, 261, 276
parity principle, 319
pebbling contradiction, 263, 272,

276, 280, 281
pigeonhole principle, 255, 276, 279,

302, 304, 310, 313, 315, 318–
322

propositional, 316
random k-CNF, 257, 277, 279, 305,

312
sgen formula, 259
subset cardinality, 259, 277, 309,

310
tiling problem, 257
Tseitin, 256, 262, 275, 276, 279,

280, 305, 315, 320–322
vertex cover, 257
XOR-ification, 264
XOR-substitution, 264
zero-one design, 259

Frege
extended, see extended Frege
proof, 316, 317
system, 235, 316, 322

bounded arithmetic, 322
bounded-depth, 235
bounded-depth Frege, 319
complete, 316
conditional lower bound, 318
counting, 318
depth-d Frege, 319
implicationally sound and com-

plete, 316
separation from extended Frege,

318
simulation of cutting planes, 318
simulation of Nullstellensatz, 318
simulation of polynomial calcu-

lus, 318
sound, 316

functional pigeonhole principle, 277
fusion resolution, 297

Gaussian

elimination, 251, 275, 281
reasoning, see also Gaussian elim-

ination, 251
general

cutting planes, 286, 304
division, 285

generalized resolution, 285, 287, 308
Gröbner basis, 235

computation, 235, 278, 282
proof system, see polynomial cal-

culus
graph

colouring, see also colouring, 277,
282

expander, see expander graph
k-colourable, 277
pigeonhole principle, 276
random, see random graph
solving algorithms, 300
tautology formula, see ordering

principle formula
greatest common divisor (GCD), 285

halting problem, 233
hardness escalation, 301
Hilbert’s Nullstellensatz, 270
Horn formula, 263
house-sitting principle, 272
hypercube

Boolean, 304

ideal, 270
ideal proof system (IPS), 311

noncommutative, 311
implicationally complete, 293, 308
incomparable, 275
independent set formula, 257
indexing

function, 300
gadget, 302

induction principle, 272
initial sequent, 317
inprocessing, 251
input refutation, 240
integer linear programming, 282, 287,

293
interpolation, 305

method, 259, 321

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 355 — #123 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 355

k-CNF formula, 236
k-DNF resolution, 319

size space trade-off, 319

language, 237
Lasserre proof system, 311
learning-rate based branching (LRB),

270
least number principle, see ordering

principle formula
legal k-colouring, see colouring
length

cutting planes, 302
lifting, 300
polynomial calculus, 274
resolution, 239, 255
v.s. width, 260, 261

length-space trade-off, 265, 266, 268
length-width

lower bound, 259, 260
trade-off, 266, 267

lifted CNF formula, 301
lifting, 300, 303

auxiliary clause, 301
CNF formula, 301
functions, 300
indexing gadget, 302
length, 300
lifted clause, 301
main clause, 301
main variable, 301
original clause, 301
relation, 300
search problem, 300
selector variable, 301
XOR-substitution, 302

linear combination, 273
linear program relaxation, 299, 310
literal, 236

axiom, 284
pure, 314

literal block distance (LBD), 269
LK, 316

proof, 317
refutation system, 318
rules of inference, 317

logical

axiom, 317
implication, 236, 316

Lovász-Schrijver proof system, 311
Luby

restarts, 269
sequence, 269

main variable, 300
matching principle, see also parity prin-

ciple, 272
MaxSAT, 323

dual-rail, 323
mixed integer linear programming (MIP),

299, 306, 310
monomial, 270

space, 274
monotone

circuit, 305
real circuit, 321

multilinear, 270, 274
multilinearization, 273
multiplication, see also cutting planes,

see also polynomial calculus,
273, 284

negation axiom, 274
negative literal, 236
non-automatability, 282
non-automatable, 251, 282, 305
nonchronological backtracking, 245
nondeterministic solver, 251
nonlogical axiom, 318
normalized form, 283, 286
NP-complete, 233
Nullstellensatz, 234, 235, 270, 282, 321

degree, 272, 275
multilinear, 273
refutation, 270
size, 271, 275
size-degree trade-off, 281

OBDD proof system, 312
onto functional pigeonhole principle,

256, 275, 276, 321
ordered binary decision diagram (OBDD),

311
ordering principle, 261
ordering principle formula, 261, 276

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 356 — #124 i
i

i
i

i
i

356 Chapter 7. Proof Complexity and SAT Solving

Paris-Wilkie translation, 322
parity principle, 319
parity principle formula, 321
partial assignment, 236
PC, see polynomial calculus
PCR, see also polynomial calculus res-

olution, 274
negation axiom, 274

pebble game, 263
pebbling, 263

formula, see pebbling contradic-
tion

space, 263
trade-off, 263

pebbling contradiction, 263, 272, 276,
280, 281

lifted, 302
substituted, 264, 268, 280
XOR-ified, 264

phase saving, 247, 254
PHP, see pigeonhole principle
pigeonhole principle, 255, 276, 279, 302,

304, 310, 313, 315, 318–322
functional, 277
graph, 276
onto functional, 256, 275, 276, 321
pseudo-Boolean form, 309
weak, 256, 319, 321

pigeonhole principle formula, 262, 272,
see pigeonhole principle

PK, 316
polynomial, 270

calculus, see polynomial calculus
degree, 274
ideal, 270
ring, 270

polynomial calculus, 234, 235, 272, 273
Boolean axiom, 273
characteristic of field, 281
degree, 273, 275
incomparable to cutting planes,

303
length, 274
linear combination, 273
monomial space, 279
multilinear, 273
multiplication, 273

practical algebraic calculus (PAC),
282

proof logging, 282
refutation, 273
resolution, see polynomial calcu-

lus resolution
separation

from cutting planes, 303
from resolution, 275

size, 273, 275
space, 274, 279, 280
symmetry, 322
trade-off, 280

size-degree, 281
size-space, 280
space-degree, 280

with resolution, see polynomial cal-
culus resolution

polynomial calculus resolution, 274
negation axiom, 274
simulation of resolution, 275

polynomially bounded, 237
pool resolution, 254, 255
positive literal, 236
Positivstellensatz proof system, 311
practical algebraic calculus (PAC), 282
preprocessing, 251, 255
proof, 237

as refutation, 238
complexity, see proof complexity
DAG, 239
logging, see proof logging
of unsatisfiability, 238
system, see proof system
trace, 249

proof complexity, 234, 237
proof logging, 235, 249, 299, 312

DRAT, 299
pseudo-Boolean, 299

proof system, 237, 238
algebraic, 270, 311
bounded-depth Frege, see bounded-

depth Frege
bounded-depth Frege with parity,

see bounded-depth Frege, with
parity

bounded-depth LK with parity, 321

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 357 — #125 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 357

completeness, 237, 240
cutting planes, see cutting planes
DRAT, see DRAT
extended Frege system, see ex-

tended Frege system
extended resolution, see extended

resolution
Frege system, see Frege system,

316
ideal proof system (IPS), 311
k-DNF resolution, 319
Lasserre, 311
Lovász-Schrijver, 311
noncommutative ideal proof sys-

tem, 311
Nullstellensatz, see Nullstellensatz
OBDD, 312
polynomial calculus, see polyno-

mial calculus
pool resolution, see pool resolu-

tion
Positivstellensatz, 311
RegWRTI, see RegWRTI
resolution, see resolution
semialgebraic, 271, 311
sequent calculus, 316
Sherali-Adams, 311
soundness, 237, 240
stabbing planes, 306

relation to cutting planes, 306
Sum-of-Squares, 311

propagate, see unit propagation, 288
propositional formula, 316
pseudo-Boolean

cardinality constraint reduction,
296

competition, 300
conflict analysis, 288, 290, 293,

295, 298, 308
using division, 293
using saturation, 290

conflicting constraint, 288
constraint, 282
formula, 282
fusion resolution, 297
integer arithmetic, 293
linear program relaxation, 299, 310

normalized form, 283
optimization, 287
proof logging, 299
propagating constraint, 288
propagation, 298
reason constraint, 290, 291
reduced reason constraint, 291
reduction algorithm, 291, 294, 295
resolved constraints, 285
slack, 288
solver competition, 300
solving, 235, 282, 287, 309

cardinality constraint detection,
310

CNF, 293, 299
collapse to resolution, 293
comparison to CDCL, 292, 298
conversion to CNF, 287
exploiting power of cutting planes,

310
sensitivity to encoding, 293, 299

strengthening rule, 296
weakening, 290

PSPACE-complete, 268
pure

literal, 314
literal rule, 313, 314

quasilinear, 233
quasipolynomial, 305

R-operator, 276
random

graph, see random graph
restriction, 259

random graph, 258
edge density, 258

random k-CNF formula, 257, 262, 277,
279, 305, 312

RAT inference, 313, 314
reason constraint, 290, 291

reduced, 291
reduction

to SAT, 233
reduction algorithm, 291, 294, 295
refutation length, 260
refutation size, 260
refutation system, 237

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 358 — #126 i
i

i
i

i
i

358 Chapter 7. Proof Complexity and SAT Solving

refutation width, 260
regular resolution, see resolution, reg-

ular
RegWRTI, 254, 255
relation, 300
Res(k), see k-DNF resolution
resolution, 234, 235, 238

as depth-0 LK refutation, 318
asymmetric tautology, see reso-

lution asymmetric tautology
(RAT)

completeness, 240
extension rule, 315
fusion rule, 297
generalized, 285
input, 240
k-DNF, 319
length, 253, 255, 267
length-width lower bound, 259, 260
pool, 254
proof DAG, 239
refutation, 239
regular, 240, 258

separation, 240
RegWRTI, 254
resolution rule, 238
resolvent, 239
rule, 238
separation, 240, 263, 265

from cutting planes, 302
from polynomial calculus, 275
from tree-like resolution, 261

size, 255
size-width lower bound, 259, 260
soundness, 240
space, 253, 255, 267
symmetry, 322
total space, 262
trade-off

length-space, 265, 266, 268
length-width, 266, 267
size-space, 265, 266
size-width, 266, 267
space-width, 265

tree-like, 239
trivial, 240
unit, 241

weakening rule, 240
width, 255, 260, 262, 267

resolution asymmetric tautology (RAT),
313

resolution proof system, see resolution
resolvent, 239
restart, 246, 254, 255

policy, 241
reverse unit propagation, see also RUP,

244, 249, 313
RUP, see also reverse unit propaga-

tion, 249
clause, 314
proof, 249, 313

SAT
competition, 269
problem, 233
solver, see SAT solver

SAT solver, 233
proof logging, 249

satisfaction-driven clause learning (SDCL),
315

satisfiable, 236
satisfy, 236
saturation, 286, 287, 308
scalable, 269
search problem, 300
selector

function, 300
variable, 300

self-subsumption, 255
semialgebraic

proof system, 271, 311
separation, 240
sequent, 316

calculus, 316
initial, 317

sgen formula, see subset cardinality
formula

Sherali-Adams proof system, 311
simulate

polynomially, 237
size

cutting planes, 302
formula, 236, 237
Nullstellensatz, 271

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 359 — #127 i
i

i
i

i
i

Chapter 7. Proof Complexity and SAT Solving 359

polynomial calculus, 273
proof, 237
resolution, 239, 255
v.s. degree, 276
v.s. width, 260, 261

size-degree trade-off, 281
size-space trade-off, 265, 266, 280, 281,

306, 307, 319
size-width

lower bound, 259, 260
trade-off, 266, 267

slack, 287, 288
subadditivity, 291, 294

soundness, 237, 240
space, see clause space, see also line

space, see also total space
cumulative, 266
cutting planes, 302, 304
polynomial calculus, 274
resolution v.s. polynomial calcu-

lus resolution, 275
v.s. degree, 279, 281
v.s. width, 262, 263, 265

space-degree trade-off, 280
space-width trade-off, 265
square-free, 270
strengthening rule, 296, 297
Strong Exponential Time Hypothesis

(SETH), 233
subadditive, 291, 294
subset cardinality formula, 259, 277,

309, 310
subset propagation redundancy (SPR),

315
subsume, 236, 240
Sum-of-Squares proof system, 311
switching lemma, 320
symmetry reasoning, 322

DRAT, 323
dynamic, 323
proof complexity, 323
static, 323

tautological, 236
term, 270
tiling problem formula, 257
total

assignment, 236
space, 262, 304

trade-off, 265, 280
k-DNF resolution, 319
cutting planes, 306, 307
length-space, 265, 266, 268
length-width, 266, 267
Nullstellensatz, 281
polynomial calculus, 280, 281
resolution, 265–268
size-degree, 281
size-space, 265, 266, 280, 281, 306,

307, 319
size-width, 266, 267
space-degree, 280
space-width, 265

tree-like resolution, 239
trivial resolution, 240
truth assignment, 236
Tseitin formula, 256, 262, 275, 276,

279, 280, 305, 315, 320–322
Turing machine

halting problem, 233
twin variables, 274

UIP literal, 244
unit

clause, 241
propagation, 241, 242

two-watched-literals scheme, 298
resolution, 241

unsatisfiable, 236

variable move to front (VMTF), 247,
254, 261

variable state independent decaying sum
(VSIDS), 247, 254, 261, 270

vertex cover formula, 257
VMTF, see variable move to front
VSIDS, see variable state independent

decaying sum (VSIDS)

weak pigeonhole principle, 256, 319,
321

weakening, 286, 290
cutting planes, 286, 290
pseudo-Boolean, 290
resolution, 240

i
i

“ProofComplexityChapter” — 2020/10/20 — 22:55 — page 360 — #128 i
i

i
i

i
i

360 Chapter 7. Proof Complexity and SAT Solving

rule, 240
cutting planes, 286, 290
resolution, 240

width
clause, 236
refutation, 260
resolution, 260
v.s. length, 260, 261
v.s. size, 260, 261
v.s. space, 262, 263, 265

XOR-ification, 264
XOR-substitution, 264

zero-one design formula, see subset car-
dinality formula

	Proof Complexity and SAT Solving
	Introduction
	Outline of This Survey Chapter

	Preliminaries
	Propositional Logic
	Proof Systems
	Complexity and Asymptotic Notation

	Resolution and CDCL SAT solvers
	DPLL and Conflict-Driven Clause Learning
	Proof Logging in CDCL Solvers
	Efficiency of CDCL Proof Search

	Resolution and Proof Complexity
	Resolution Length
	Resolution Width
	Resolution Space
	Resolution Trade-offs
	Theoretical Complexity Measures and Hardness in Practice
	Using Theory Benchmarks to Shed Light on CDCL Heuristics

	Algebraic Proof Systems
	Nullstellensatz
	Polynomial Calculus
	Nullstellensatz, Polynomial Calculus, and Resolution
	Size and Degree for Nullstellensatz and Polynomial Calculus
	Polynomial Calculus Space
	Trade-off Results for Nullstellensatz and Polynomial Calculus
	Algebraic SAT Solving

	Cutting Planes and Pseudo-Boolean Solving
	Pseudo-Boolean Rules of Reasoning
	Conflict-Driven Pseudo-Boolean Solving
	More Pseudo-Boolean Rules
	Some Challenges for Pseudo-Boolean Solving

	Cutting Planes and Proof Complexity
	Brief Detour: Lifted CNF Formulas
	Cutting Planes Size, Length, and Space
	Size-Space Trade-offs for Cutting Planes
	Subsystems of Cutting Planes
	Further Algebraic and Semialgebraic Proof Systems

	Extended Resolution and DRAT Proof Systems
	Frege and Extended Frege Proof Systems
	Bounded-Depth Frege Proof System
	Concluding Remarks
	References

