
Lower Bounds and Trade-offs in Proof Complexity

SUSANNA F. DE REZENDE

Doctoral Thesis
Stockholm, Sweden 2019



TRITA-EECS-AVL-2019:47
ISBN 978-91-7873-191-6

KTH School of Electrical Engineering and Computer Science
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till
offentlig granskning för avläggande av teknologie doktorsexamen i datalogi fredagen
den 14 juni 2019 klockan 14.00 i Kollegiesalen, Kungl Tekniska högskolan, Brinellvä-
gen 8, Stockholm.

© Susanna F. de Rezende, juni 2019

Tryck: Universitetsservice US AB



iii

Abstract

Propositional proof complexity is a field in theoretical computer science that
analyses the resources needed to prove statements. In this thesis, we are concerned
about the length of proofs and trade-offs between different resources, such as length
and space.

A classical NP-hard problem in computational complexity is that of determining
whether a graph has a clique of size k. We show that for all k ≪ n1/4 regular res-
olution requires length nΩ(k) to establish that an Erdős–Rényi graph with n vertices
and appropriately chosen edge density does not contain a k-clique. In particular,
this implies an unconditional lower bound on the running time of state-of-the-art
algorithms for finding a maximum clique.

In terms of trading resources, we prove a length-space trade-off for the cut-
ting planes proof system by first establishing a communication-round trade-off for
real communication via a round-aware simulation theorem. The technical contri-
bution of this result allows us to obtain a separation between monotone-ACi−1 and
monotone-NCi .

We also obtain a trade-off separation between cutting planes (CP) with unboun-
ded coefficients and cutting planes where coefficients are at most polynomial in the
number of variables (CP∗). We show that there are formulas that have CP proofs in
constant space and quadratic length, but any CP∗ proof requires either polynomial
space or exponential length. This is the first example in the literature showing any
type of separation between CP and CP∗.

For the Nullstellensatz proof system, we prove a size-degree trade-off via a tight
reduction of Nullstellensatz refutations of pebbling formulas to the reversible peb-
bling game. We show that for any directed acyclic graph G it holds that G can
be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz
refutation of the pebbling formula over G in size t + 1 and degree s.

Finally, we introduce the study of cumulative space in proof complexity, a meas-
ure that captures the space used throughout the whole proof and not only the peak
space usage. We prove cumulative space lower bounds for the resolution proof sys-
tem, which can be viewed as time-space trade-offs where, when time is bounded,
space must be large a significant fraction of the time.
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Sammanfattning

Satsbeviskomplexitet är ett område inom teoretisk datalogi som analyserar de
resurser som behövs för att bevisa satser. I denna avhandling är vi intresserade av
bevisens längd och avvägningar mellan olika resurser, såsom längd och minne.

Ett klassiskt NP-svårt problem i beräkningskomplexitet är att avgöra om en graf
har en klick av storlek k. Vi visar att för alla k ≪ n1/4 krävs längd nΩ(k) i reguljär
resolution för att bevisa att en Erdős–Rényi graf med n hörn och lämpligt vald kant-
densitet inte innehåller en k-klick. I synnerhet innebär detta en ovillkorlig undre
gräns på körtiden för de för närvarande bästa algoritmerna för att hitta en maximal
klick.

När det gäller resursfördelning bevisar vi en avvägning mellan längd och minne
för bevissystemet skärande plan (cutting planes) genom att först upprätta en avväg-
ning för kommunikations-rundor för reell kommunikation via ett simuleringssats.
Det tekniska bidraget från detta resultat gör det möjligt för oss att få en separation
mellan monoton-ACi−1 och monoton-NCi .

Vi får också en avvägningsseparation mellan skärande plan (CP) med obegrän-
sade koefficienter och skärande plan där koefficienterna högst är polynomiskt stora
i antalet variabler (CP∗). Vi visar att det finns formler som har CP-bevis i konstant
minne och kvadratisk längd, men där alla CP∗ bevis kräver antingen polynomiskt
minne eller exponentiell längd. Detta är det första exemplet som visar en separation
mellan CP och CP∗.

För Nullstellensatz-bevissystem visar vi en avvägning mellan storleks och grad-
tal via en optimal reduktion av Nullstellensatz-refutationer av pebblingformler till
reversibla stenläggningsspel, eller pebblingspel. Vi visar att för alla riktade acykliska
grafer G gäller att G har en reversibel pebbling-strategi i tid t ochminne s om och en-
dast om det finns ett Nullstellensatz-bevis för pebblingformeln över G i storlek t+1
and grad s.

Slutligen introducerar vi studien av kumulativt minne i beviskomplexitet, som
bokför det totala minne som används genom hela beviset, istället för endast det
maximala. Vi bevisar kumulativa undre gränser för resolution, som kan betraktas
som avvägningar mellan längd och minne: när tiden är begränsad, behöver beviset
använda stort minne under en betydande del av tiden.
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Those who assert that the mathematical sciences say nothing of the beautiful or
the good are in error. For these sciences say and prove a great deal about them;
if they do not expressly mention them, but prove attributes which are their
results or definitions, it is not true that they tell us nothing about them.

— Aristotles, Metaphysica, Book 13 Part 3
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Chapter 1

Introduction

Everyone knows a beautiful proof when they see one. It most often involves an ingeni-
ous insight or unexpected connections. However, there is something more essential than
cleverness that earns a proof the title of beautiful: simplicity. A proof is only aesthetic-
ally pleasing if it is simple, short and easy to follow. (Of course the exact meaning of
“simple”, “short” and “easy” might differ from person to person, but this is beside the
point here.) We are interested in studying these attributes of proofs. Do all theorems
have beautiful proofs?

For the purpose of this discussion, we can think of a theorem as a statement that
is always true—also known as tautology—and a proof as a sequence of lines, each of
which can be derived from previous lines. The number of lines in the proof is the length
of the proof; the amount of information contained in each line and what rules are used
to derive a new line—the proof system—defines the complexity of the proof; and the
number of lines we must keep in memory in order to verify the proof—often referred
to as the space of the proof—determines how easy it is to follow.

With this terminology, the questions that motivate this thesis can be phrased as
follows. What characterises tautologies that require long proofs in a given proof system?
Are there tautologies where minimising proof space leads necessarily to a large increase
in proof length?

These inquiries emanate from the central question in proof complexity: is there a
proof system in which every tautology has a short (i.e., polynomial length) proof? If you
were to ask a computer scientist or a mathematician, they would probably say they be-
lieve not—in fact, a substantial part of complexity theory is based on this assumption—
yet this has never been demonstrated. This is (literally) the million-dollar question in
proof complexity: a negative answer would solve the P vs. NP question, a problem that
is recognised as one of the most fundamental in mathematics and is among the seven
Clay Institute Millennium Prize Problems [Mil00].

While solving this problem seems currently out-of-reach, one could aim at the less
ambitious goal of showing that a particular proof system does not have polynomial

5
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Figure 1.1: Invitee graph

length proofs of every tautology. This line of research was initiated by Cook and Reck-
how [CR79] and led to the endeavour—often referred to as Cook’s program—of prov-
ing lower bounds for increasingly stronger proof systems with the intention of shedding
light on the P vs. NP problem. Regardless of how realistic this program is, understanding
the power and limitation of proof systems is interesting in its own right and—spoiler
alert—also has applications in the design and analysis of algorithms.

To illustrate the problem of determining if a tautology has a proof of polynomial
length, let us consider the following hypothetical problem. Suppose you are hosting a
party and you are deciding who to invite. You would like to have a nice environment in
the party so you do not want to invite two people that do not get along with each other.
That said, you would like to have as many people as possible in your celebration.

In graph theoretical terms, this problem is called the maximum clique problem. The
possible invitees are the vertices in the graph, and two vertices are connected if these
two people get along with each other. A clique in this graph is a subgraph in which
every pair of vertices are connected. The problem is then to find a clique of largest size.

Returning to your invitee problem, suppose you have fifteen possible friends to invite
and that their affinity-graph looks like the one in Figure 1.1. Can you find a largest
clique in this graph?
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It will probably take you only a minute or two to find a clique of size five (there are
in fact 243 such cliques). But are these the largest cliques? How can you be certain that
there is no clique of size six? How can you present a proof of this fact?

One way to convince yourself that there is no clique of size six is to try all possible
subsets of size six and check that none of these form a clique. Since there are fifteen
vertices in this graph, you would have to consider

�15
6

�
= 5005 different subsets—a quite

tedious task. If you were to write out this method of reasoning you would have a proof
that there is no clique of size six: it would indeed be a simple proof (in that the method
of reasoning behind it is quite simple), but would not qualify as short in terms of the
size of the graph. Is there a shorter proof of this fact, or is this type of “brute-force”
reasoning indeed necessary?

For this particular graph, an attentive observer might notice some symmetry and
take advantage of this fact to not have to consider all 5005 subsets of size six. A perhaps
even sharper observer might note that we can partition the vertices of this graph into
five parts, each of which contains three vertices that are pairwise not connected. Clearly,
any set of six vertices must contain at least two vertices from a same part. But since there
are no edges between vertices of the same part, this set cannot form a clique. We can
therefore say that such a 5-partition of the vertices is a proof that the graph contains no
clique of size six. (See Figure 1.2 for an example of such a partition, where each part is
indicated by a different colour.) Note that this proof required a slightly more advanced
method of reasoning.

Although for our concrete example it was possible to find a short proof that there
were no cliques of size six, it is not clear that this would be the case for every graph. In
fact, the problem of determining whether a graph contains a clique of size k—referred
to as the k-clique problem—is an NP-complete problem [Kar72]. What this means is
that, on the one hand, if the graph does contain a k-clique then there is a short proof of
this—identifying the clique, for example—but on the other, if the graph has no k-clique
then we cannot guarantee that this fact has a short proof—in some cases there are, but
in others we simply do not know. Additionally, if you could demonstrate that there are
k-clique free graphs for which no short proofs of k-clique freeness exist, then you would
be proving that the whole family of NP-complete problems do not always have short
proofs (and you would win a million dollars!).

Now the reader might be thinking that this is all very interesting from a theoretical
point of view, but are there any practical applications of proof complexity? Indeed there
are: lengths of proofs are intimately related with running times of algorithms. For ex-
ample, the execution trace of an algorithm that finds an optimal solution to a problem
can be seen as a proof—formalisable in some system—that the solution is indeed op-
timal. Therefore, studying particular proof systems helps us understand the behaviour
of the class of algorithms that are based on this system. The most noticeable example of
such relation is that of SAT-solvers, algorithms that determine the satisfiability of a pro-
positional formula. All state-of-the-art SAT-solvers—which successfully solve industrial
instances with millions of variables—are, at their core, based on the so-called resolu-
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Figure 1.2: A 5-partition of the invitee graph

tion proof system and therefore proving lower bounds for resolution implies (ignoring
pre-processing techniques) lower bounds on the running time of these algorithms.



Chapter 2

Background

In the beginning of the 20th century, the foundations of mathematics were strongly
shaken by paradoxes and inconsistencies in the early attempts to clarify the basis on
which mathematics was being built. Perhaps the most prominent inconsistency from
that time is Russell’s paradox “if R is the set of all sets that are not members of them-
selves, then R ∈ R ⇔ R ̸∈ R”, which merited the famous reply from Gottlob Frege:
“Your discovery of the contradiction caused me the greatest surprise and, I would al-
most say, consternation, since it has shaken the basis on which I intended to build arith-
metic” [VH67].

This concrete inconsistency in set theory was solved by adopting a certain axiomatic
system, but several other fundamental problems remain open even today. In particular,
David Hilbert’s proposed solution to the crisis—to prove the consistency of complex
systems in terms of simpler ones, so that the consistency of all mathematics would be
reduced to basic arithmetic—was shown to be unattainable by Gödel’s Incompleteness
Theorem [Göd31], published in 1931.

Only a few years later, Alan Turing [Tur37] defined a mathematical model of com-
putation, now called Turing machines, that allowed him to prove the unsolvability of
Hilbert’s Entscheidungsproblem—proved independently by Alonzo Church [Chu36]—by
showing that the halting problem is undecidable. All these events led to an increased
interest in understanding what can or cannot be proven in a certain language, and what
can or cannot be computed.

In the late 1960s a new field emerged within the foundations of mathematics with
the introduction of the notions of polynomial time algorithms, complexity classes and
reductions between problems. The emphasis was now not only on what is computable,
or what is provable, but on how efficient this computation can be, or how short these
proofs can be. When analysing computations, this area is known as computational com-
plexity, and when considering proofs, proof complexity. These are two closely related
areas and, although our focus is the analysis of proofs, computational aspects will come
up throughout this thesis.

9
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As originally conceived by Stephen Cook and Robert Reckhow [CR79], propositional
proof complexity is “the study of the size of the shortest proof of a propositional tauto-
logy in various proof systems as a function of the size of the tautology.” A propositional
tautology is a formula that evaluates to true for all possible assignments to the variables,
for example, the law of excludedmiddle x∨¬x . A proof system is simply a sound system
for proving tautologies. Perhaps themore natural ones are Frege systems [Fre93, CR79],
which operate with Boolean expressions—built from variables and connectives such as
{¬,∧,∨,→}—and are defined in terms of a set of sound and implicationally complete
inference rules and axioms. An example of such rule is modus ponens φ φ→ψ

ψ .
When analysing a proof, the most important characteristic is its length, which is a

lower bound on the time required to find, or even to verify, the proof. However, another
very relevant measure is the space required to verify it—a lower bound on the memory
needed for such a task. In this work, apart from studying proof length, we are also
interested in understanding the relation between length and space; in particular, when
optimising one measure leads inevitably to a blow-up in the other.

Before we formally define the formulas and proof systems that are most relevant for
this thesis, we introduce pebble games. These games were first defined in [PH70] with
the purpose of understanding space in computations and are also a very useful tool to
study space and length-space trade-offs in proof complexity.

2.1 Pebble Games

Pebble games are played on directed acyclic graphs (DAG). A vertex in a DAG is a source
if it has no incoming edges and is a sink if it has no outgoing edges. Given a DAG G with a
unique sink, the standard pebble game [PH70] on G is a single-player game that is played
with a set of pebbles. Initially, there are no pebbles on the graph, and at each step the
player can either place a pebble on a vertex v whose immediate predecessors—denoted
by parents(v)—already have pebbles (in particular, the player can always place a pebble
on a source) or remove a pebble from any vertex. The goal of the game is to place a
pebble on the sink by using as few pebbles as possible. This simple game is a model
of deterministic sequential computation, and has been used to study flowcharts and
recursive schemata [PH70], register allocation [Set75] and time and space as Turing-
machine resources [Coo74, HPV77].

By varying some of the rules of the game, it is possible to define pebble games
that capture non-determinism (black-white pebbling [CS76]), parallelism (parallel peb-
bling [AS15]), and reversible computation (reversible pebbling [Ben89]). Applications
of different variants of the game include—just to mention a few—algorithmic time and
space trade-offs [Cha73], parallel time [DT85], communication complexity [RM99],
monotone space complexity [CP14, FPRC13], cryptography [AS15, DNW05], energy
dissipation during computation [Ben89], quantum computing [MSR+18, BSD+19] and
proof complexity [BN08, BW01, BEGJ00].
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In particular, in the last couple of decades, pebbling has played a key role in length-
space trade-offs in proof complexity (see, e.g., [Nor13]). The results presented in this
thesis build and extend on prior applications of pebbling, and all the flavours mentioned
above—standard, black-white, parallel and reversible—will play an important role in
some context.

To get a unified description of all types of the pebble game we will mention in this
thesis, it is convenient to define pebbling as follows.

Definition 2.1.1 (Pebble games). Let G = (V, E) be a DAG with a unique sink vertex z.
The black-white pebble game on G is the following one-player game. At any time i,
we have a black-white pebbling configuration Pi = (Bi , Wi) of black pebbles Bi and white
pebbles Wi on the vertices of G, at most one pebble per vertex. The rules of how a pebble
configuration Pi−1 = (Bi−1, Wi−1) can be changed to Pi = (Bi , Wi) are as follows:

1. A black pebble may be placed on a vertex v only if all immediate predecessors
of v are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Bi \ Bi−1) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

Note that, in particular, a black pebble can always be placed on a source vertex.

2. A black pebble on any vertex in Pi−1 can be removed in Pi .

3. A white pebble can be placed on any vertex in Pi .

4. A white pebble on a vertex v in Pi−1 may be removed in Pi only if all immediate
predecessors of v are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Wi−1 \Wi) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

In particular, a white pebble can always be removed from a source vertex.

A (complete) pebbling P of G is a sequence P = (P0, . . . ,Pτ) where P0 = Pτ = (;,;),
every configuration Pi can be obtained from Pi−1 using the rules 1–4 and z ∈∪τi=0(Bi ∪
Wi) (that is, at some point the sink is pebbled).

A pebbling is sequential if, for all i ∈ [τ], Pi−1 and Pi differ by only one pebble, in
other words, only one application of a single rule 1–4 is allowed at every step. In a
parallel pebbling an arbitrary number of applications of the rules 1–4 can be made to
get from Pi−1 to Pi (but observe that all moves must be legal with respect to Pi−1).

A black pebbling (or standard pebbling) is a pebbling where Wi = ; for all i ∈ [τ].
A more restricted game is reversible pebbling that can be defined as a black pebbling
in which removals have to obey rule 4, that is, a pebble on a vertex v in Pi−1 may be
removed in Pi only if all immediate predecessors of v are covered by pebbles in both Pi−1

and Pi .
The time of a pebbling P = (P0, . . . ,Pτ) is t(P) = τ; the (maximum) space is s(P) =

s =maxi∈[τ]|Bi |+ |Wi |; and the cumulative space is c(P) = c =
∑

i∈[τ]|Bi |+ |Wi | (where
we note that c ≤ st).
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2.2 Formulas

Pebble games can be encoded in CNF by so-called pebbling formulas [BW01]. These
formulas play an important role in four of the five papers in this thesis. The other
family of formulas that will be relevant to us are clique formulas. In this section we
establish some basic terminology and then define these two families.

A literal over a Boolean variable x is either the variable x itself (a positive literal)
or its negation ¬x (a negative literal), sometimes denoted x . A clause C = ℓ1 ∨ · · · ∨ ℓw

is a disjunction of literals. We write ⊥ to denote the empty clause without any literals.
A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We think of clauses and
CNF formulas as sets: order is irrelevant and there are no repetitions. Given a CNF
formula F , we refer to the clauses in F as axioms.

One way of proving a tautology F is to determine that ¬F leads to a contradiction.
This view is often more convenient to consider and that is why we define the negation
of tautologies—that is, unsatisfiable formulas—below, and later on will refer to proofs
of unsatisfiablity of these formulas.

2.2.1 Pebbling Formulas

Let G be a DAG with a single sink z, let S ⊆ V (G) be the sources of G and recall that
parents(v) denote the immediate predecessors of the vertex v. The pebbling formula
on G, denoted PebG , is defined over variables xv for v ∈ V (G) and encodes that sources
are true

xs s ∈ S , (2.1a)

and that truth propagates from predecessors to successors

xv ∨
∨

u∈parents(v)
¬xu v ∈ V (G) , (2.1b)

but that the sink is false

¬xz . (2.1c)

Note that if G has n vertices, the formula PebG is an unsatisfiable CNF formula over
n variables with n+ 1 clauses.

2.2.2 Clique Formulas

Given a graph G we can encode a CNF formula Clique(G, k) asserting that G contains
a k-clique by claiming that for i ∈ [k] there exists an ith clique member∨

v∈V

xv,i i ∈ [k] , (2.2a)

and that two non-neighbouring vertices cannot both be in the clique

¬xu,i ∨¬xv, j i, j ∈ [k], i ̸= j, u, v ∈ V, {u, v} /∈ E , (2.2b)
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where the intended meaning of the variables is that xv,i is true if vertex v is the ith
clique member. We could also add functionality axioms stating that at most one vertex
is the ith clique member

¬xu,i ∨¬xv,i i ∈ [k], u, v ∈ V, u ̸= v . (2.2c)

We refer to (2.2b) as edge axioms, (2.2a) as clique axioms and (2.2c) as functionality
axioms. Note that Clique(G, k) is satisfiable if and only if G contains a k-clique, and
that this is true even if clauses (2.2c) are omitted.

2.3 Proof Systems

In this section, we define the proof systems that are most relevant to the result we in-
clude in this thesis. The first two—resolution and cutting planes—are dynamic proof
systems in the sense that the proof is presented step-by-step with intermediate deriv-
ations. The third and last proof system—Nullstellensatz—is a static proof system: the
proof is presented in one shot. In the dynamic setting, it is natural to analyse length
and space of proofs, while in the static setting other complexity measures will show up.

2.3.1 Resolution

Resolution is undoubtedly themost well-studied system in proof complexity. A resolution
refutation π : F ⊢⊥ of an unsatisfiable CNF formula F—or a resolution proof for (the
unsatisfiability of) F—is an ordered sequence of clauses π = (D1, . . . , Dτ) such that
Dτ =⊥ is the empty clause containing no literals, and for each i ∈ [τ] either Di is a
clause in F or there exist j < i and k < i such that Di is derived from Dj and Dk by the
resolution rule

B ∨ x C ∨¬x
B ∨ C , (2.3)

for Di = B ∨ C , Dj = B ∨ x , Dk = C ∨ ¬x . We refer to B ∨ C as the resolvent of B ∨ x
and C∨¬x over x , and to x as the resolved variable. The length of a resolution refutation
π= (D1, . . . , Dτ) is τ.

It is often useful to consider every non-axiom clause in the proof as having a refer-
ence to the two clauses from which it was derived; in particular, since a same clause
may appear more than once in a refutation. For this reason, it is convenient to view a
resolution refutation π= (D1, . . . , Dτ) as a labelled DAG with the set of nodes {1, . . . , L}
and edges ( j, i), (k, i) for each application of the resolution rule deriving Di from Dj

and Dk. Each node i in this DAG is labelled by its associated clause Di , and each non-
source node is also labelled by the resolved variable in its associated derivation step in
the refutation. Note the the number of nodes in the graph is equal to the length of the
refutation. A resolution refutation is called regular if along any source-to-sink path in
its associated DAG every variable is resolved at most once, and it is called tree-like if the
underlying graph is a tree.
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In order to study space of resolution derivations, we consider the proof from the
blackboardmodel perspective. Following [ABRW02, ET01], a resolution refutationπ : F ⊢⊥
can be defined as a sequence of configurations π= (C0, . . . ,Cτ′), where each configura-
tion is a set of clauses such that C0 = ;, ⊥ ∈ Cτ′ , and for all i ∈ [τ′] we obtain Ci from
Ci−1 by applying exactly one of the following type of rules:

Axiom download Ci = Ci−1 ∪ {A} for A∈ F ;

Inference Ci = Ci−1 ∪ {D} for D derived by the resolution rule from clauses in Ci−1;

Erasure Ci ⊊ Ci−1.

The (maximum) space of π is max{|Ci | : Ci ∈ π} and the cumulative space is
∑
Ci∈π |Ci |.

As defined above, the length of a resolution refutation is the number of axiom downloads
and inference steps. In some cases, however, we consider length to be the total number
of steps τ′—including erasures—but this is a minor difference since it differs by at most
a factor 2.

2.3.2 Cutting Planes

The cutting planes (CP) proof system, introduced in [CCT87] as a formalization of the
integer linear programming algorithm in [Gom63, Chv73], operates with linear inequal-
ities and inferences that are sound over integer solutions. The derivation rules in cutting
planes are linear combinations∑

i ai x i ≥ A
∑

i bi x i ≥ B∑
i (cai + d bi)x i ≥ cA+ dB

(2.4)

and division ∑
i cai x i ≥ A∑

i ai x i ≥ ⌈A/c⌉
, (2.5)

where ai , bi , c, d, A, and B are all integers and c, d ≥ 0.
In order to use cutting planes to refute unsatisfiable CNF formulas, we translate

clauses C to linear inequalities L(C) by identifying the clause
∨

j∈P x j ∨∨ j∈N ¬x j with
the inequality
∑

j∈P x j +
∑

j∈N (1 − x j) ≥ 1 and include variable axioms x ≥ 0 and
−x ≥ −1 ensuring all variables take {0, 1} values. The goal, then, is to derive the
inequality 0 ≥ 1 which is a proof of unsatisfiablity. It is not hard to show that CP can
polynomially simulates resolution, and, therefore, we can conclude that deriving 0≥ 1
is possible if and only if no {0, 1}-assignment satisfies all constraints.

Similarly to the blackboard model perspective in resolution, a cutting planes (CP)
proof of unsatisifiability of a CNF formula F , or refutation of F , can be defined as a
sequence of configurations (L0, . . . ,Lτ) where configurations are sets of linear inequal-
ities
∑

j a j x j ≥ c with a j , c ∈ Z such that L0 = ;, the inequality 0≥ 1 occurs in Lτ, and
for t ∈ [τ] we obtain Li from Li−1 by one of the following rules:
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Axiom download Li = Li−1 ∪ {L} for L being either the encoding L(C) of an axiom
C ∈ F or a variable axiom x j ≥ 0 or −x j ≥ −1 for any variable x j .

Inference Li = Li−1∪{L} for L inferred from inequalities in Li−1 by one of the cutting
planes derivation rules.

Erasure Li ⊊ Li−1.

The length of a CP refutation is the number of derivation steps τ. The formula space
(or line space) of a configuration L=

�∑
j ai, j x i, j ≥ ci

��i ∈ [s]	 is the number of inequal-
ities s in it, and the total space of L is

∑
i∈[s]
�
log|ci |+∑ j log|ai, j |

�
. We obtain the formula

space or total space of a refutation by taking the maximum over all configurations in it.
Note that the total space depends on the magnitude of coefficients of the inequalities

in the proof. In this setting, it is natural to ask whether cutting planes refutations require
large coefficients to realise the full power of the proof system. In order to formalise this
question, we define CP∗ to be the subsystem of cutting planes with the restriction that
all coefficients in the proof are polynomially bounded or, in other words, a cutting planes
refutation π of a formula F with n variables is a CP∗ refutation if the largest coefficient
in π has magnitude poly(n).

2.3.3 Hilbert’s Nullstellensatz

As a proof system, Hilbert’s Nullstellensatz—often referred to simply as Nullstellensatz—
provides a certificate that a set of polynomials do not have a common root. More form-
ally, let F be a field, and let P = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable
system of polynomial equations in F[x1, x2, . . . , xn]. A Nullstellensatz refutation of P is
a sequence of polynomials q1, q2, . . . , qm ∈ F[x1, x2, . . . , xn] such that

m∑
i=1

piqi = 1

where the equality is syntactic.
The degree of the refutation is maxi deg(piqi); the Nullstellensatz degree of P is the

minimum degree of any Nullstellensatz refutation of P. We define the size of the refuta-
tion to be the total number of monomials encountered when all products of polynomials
are expanded out as linear combinations of monomials.

To analyse Nullstellensatz refutations of CNF formulas, we consider the standard
encoding of each clause C =

∨
x∈P x ∨∨x∈N ¬x as the polynomial equation

E(C)≡∏
x∈P

(1− x)
∏
x∈N

x .

Observe that E(C) = 0 is satisfied (over 0/1 assignments to zi) if and only if the cor-
responding assignment satisfies C . For a CNF formula F , we abuse notation and let
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E(F) = {E(C) : C ∈ F} ∪ {x2
i − x i}i∈[n], where the second set of polynomial equations

restricts the x i inputs to {0, 1} values. We note that—as shown in [BIK+97]—if P is a
system of polynomial equations over F[x1, . . . , xn] with no {0, 1} solutions, then there
exists a Nullstellensatz refutation of P ∪ {x2

i − x i = 0}i∈[n].

2.4 Communication Complexity

Communication complexity plays an important role in some of our length-space trade-
off results in proof complexity. In this section, we define the communication model of
interest for us and then explain in general lines how we can obtain lower bounds in
proof complexity via lower bounds in communication complexity.

The classical communication model of [Yao79] consists of two parties, traditionally
referred to as Alice and Bob, each holding a separate input x ∈ X and y ∈ Y , respectively.
They both have knowledge of a function f : X ×Y → {0, 1} and their goal is to compute
f (x , y) by exchanging the minimum number of bits. The communication is guided by
a protocol that the parties agree on before receiving their inputs. The protocol can be
viewed as a binary tree where Alice and Bob start at the root and together trace a path
to a leaf depending on what is spoken: every node in the tree specifies who is going
to speak, the value of the spoken bit—which is only a function of the node they are
currently at and of the input x if Alice speaks or y if Bob does—determines which of
the successors of the node they will consider next, and leaves are labelled by correct
values f (x , y). The cost of a protocol is the maximum number of bits communicated
on any input, that is, the length of the longest root-to-leaf path in the protocol tree.
Another measure that will be of interest to us is the number of rounds, which is defined
as the maximum number of alternations between Alice and Bob speaking.

For our applications, we also need to study the more general real communication
model in [Kra98], where Alice and Bob interact via a referee. In order to introduce
the concept of rounds in this model, it is convenient to describe the protocol as a (non-
binary) tree, where at node v in the protocol tree Alice and Bob send kv real numbers
ϕv,1(x), . . . ,ϕv,kv

(x) and ψv,1(y), . . . ,ψv,kv
(y), respectively, to the referee. The referee

announces the results of the comparisonsϕv,i(x)≤ψv,i(y) for i ∈ [kv] as a kv-bit binary
string, after which the players move to the ith successor node in the protocol tree. As
in the classical model, leaves are labelled by correct values f (x , y). The number of
rounds r of a protocol is the depth of the tree and the cost c is the maximum number
of comparisons made by the referee for any input. It is easy to see that this model can
simulate standard deterministic communication (for instance, if Alice wants to send a
message, she sends the complement of that message to the referee and Bob sends a
list of the same length with all entries 1/2), and is in fact strictly stronger (since the
equality function can be solved with just two bits of communication).

Communication problems as defined above can be extended to relations in the ob-
vious way: for any relation S ⊆ X × Y × Q, the communication problem for S is one
in which Alice is given x ∈ X , Bob is given y ∈ Y , and they are required to commu-



2.5. CIRCUIT COMPLEXITY 17

nicate to find some q such that (x , y, q) ∈ S. For our applications in proof complexity,
we are interested in a specific type of relation that arises from a total search problem,
defined as a relation S ⊆ I × O such that for all z ∈ I there is an o ∈ O such that
(z, o) ∈ S. Intuitively, S represents the computational task in which we are given an
input z ∈ I and would like to find an output o ∈ O that satisfies (z, o) ∈ S. In proof
complexity, an important example of a total search problem is the falsified clause search
problem. Given a CNF formula F over variables z1, . . . , zn, the falsified clause search
problem Search(F) ⊆ {0, 1}n × F contains the tuple (z, C) if and only if the clause C is
falsified by the assignment z.

To turn this into a communication problem, we either partition the set of variables
into two sets or we compose it with an inner function, also referred to as a gadget, g :
X ×Y → I. Given a search problem S ⊆ In×O and a function g : X ×Y → I, we define
the composition S ◦ gn ⊆ X n×Yn×O in the natural way: (x1 . . . xn, y1 . . . yn, o) ∈ S ◦ gn

if and only if (g(x1, y1) . . . g(xn, yn), o) ∈ S. We sometimes write S ◦ g instead of S ◦ gn

if n is clear from the context.
Before ending this section, we record an observation (which can be found, e.g.,

in [HN12]) that is important for some of our applications. To make the statement more
comprehensible, we explain in general terms a proof strategy for obtaining length-space
trade-offs in proof complexity. Given a CNF formula F and a gadget g, we consider the
so-called lifted CNF formula F ◦ g, which has a natural partition of variables between
Alice and Bob. We can then show that a short, space-efficient refutation of the for-
mula F ◦ g can be used to construct an efficient protocol for Search(F ◦ g). While it is
not immediately clear how to prove lower bounds for Search(F ◦ g), we can prove lower
bounds for the related composed search problem Search(F)◦ g, for some F and some g,
via the so-called lifting theorems. Despite the fact that Search(F) ◦ g is not the same
problem as Search(F ◦ g), we can reduce the former to the latter.

Observation 2.4.1. For any unsatisfiable CNF F and any Boolean gadget g, a communica-
tion protocol for Search(F◦g) can be adapted to a communication protocol for Search(F)◦g
in the same model and with the same parameters.

2.5 Circuit Complexity

As a by-product of the techniques developed for proof complexity results, we also obtain
some results in monotone circuit complexity. A Boolean circuit C is a single sink DAG
where each non-source node—usually referred to as a gate—is labelled by AND, OR, or
NOT, with the restriction that NOT gates have in-degree, or fan-in, 1. We say C computes
a Boolean function f : {0, 1}n→ {0, 1} if C has n sources, each labelled by an input bit,
and for all x ∈ {0, 1}n, the circuit on input x evaluates to f (x). The size of the circuit is
the number of gates and the depth is the length of a longest path from a source to the
sink.
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A formula is a circuit in which all gates have out-degree, or fan-out, at most 1, and a
monotone Boolean circuit is a circuit with no NOT gates. Monotone real circuits, which
were introduced by Pudlák [Pud97], are a generalization of monotone Boolean circuits
where each gate is allowed to compute any non-decreasing real function of its inputs,
but the inputs and output of the circuit are Boolean.



Chapter 3

Contributions

3.1 Clique is Hard on Average for Regular Resolution
Summary of Clique is Hard on Average for Regular Resolution by Albert Atserias, Ilario
Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Alexander
Razborov [ABdR+18]

In Paper A, we study regular resolution refutations of the k-clique formula on Erdős-
Rényi random graphs G ∼ G (n, p)—graphs on n vertices where every edge is present
with probability p. We prove an nΩ(k) average-case lower bound for such refutations,
when the graph is sampled with appropriate edge density. This implies a lower bound
on the running time of most state-of-the-art algorithms used in practice to solve the
k-clique problem (see, e.g., [Pro12, McC17] for a survey on such algorithms) since
the underlying method of reasoning can be captured by regular resolution. This lower
bound is tight up to multiplicative constants in the exponent since regular resolution
can solve the problem in time nO(k) simply by checking whether any of the

�n
k

�
many

sets of vertices of size k forms a clique.

Theorem 3.1.1 (Informal). For any integer k≪ 4
p

n, given an n-vertex graph G sampled
at random from the Erdős-Rényi model with the appropriate edge density, regular resolu-
tion asymptotically almost surely requires length nΩ(k) to certify that G does not contain a
k-clique.

As mentioned in Chapter 1, determining whether a graph contains a clique of size
k is an NP-complete problem. In fact, it is one of the—now classical—problems that
appeared in Karp’s list of 21 NP-complete problems [Kar72] and is considered one of
the most basic computational problems on graphs. Although NP-completeness only in-
dicates that the problem is hard in the worst case, the k-clique problem appears to
be hard also on average—we know of no efficient algorithms that with high probabil-
ity can decide if an Erdős-Rényi random graph with appropriate edge densities has a
k-clique [Kar76, Ros10].

19
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To prove our average case lower bound, it is crucial to identify what combinatorial
structures of randomly sampled graphs account for the hardness of refuting the k-clique
formula on these graphs. We define such a structural property, which we call clique-
denseness, and then divide the proof into two parts. On the one hand, we prove that
clique-dense graphs are hard to refute; on the other, we show that Erdős-Rényi random
graphs with appropriate edge density are asymptotically almost surely clique-dense.
The latter argument turns out to be much more involved than most arguments of this
kind, but, in a nutshell, it involves Chernoff bounds, a somewhat elaborate construction
of “bad sets”, and a delicate balancing of parameters.

Given the correct definition of clique-denseness, the first part of the proof is the more
challenging one. It is based on a bottleneck counting argument similar to [Hak85] but
with a slight twist. From a bird’s eye view, the classical argument requires definitions of
a set of bottleneck nodes and of a distribution of random paths on the DAG underlying
the proof. The next step is to show that every path from the distribution contains some
bottleneck node, but at the same time that it is highly unlikely that a random path
contains any particular bottleneck node. By a union bound argument, we can then
conclude that there must be many bottleneck nodes and so the proof must be long. The
twist in our argument, introduced already in [RWY02], is to define pairs of bottleneck
nodes, instead of single nodes.

There are several steps in the bottleneck argument that rely on the resolution refuta-
tion being regular. In order to strengthen this result to hold also for (general) resolution,
new ideas seem to be needed. However, the abstract combinatorial property of graphs
we identify does not in itself have any connection with regularity. We believe an import-
ant contribution of this paper is to have identified this structural property of random
graphs, which might very well be useful to extend this results to stronger proof systems.

3.2 How Limited Interaction Hinders Real Communication
Summary of How Limited Interaction Hinders Real Communication (and What it Means for Proof
and Circuit Complexity) by Susanna F. de Rezende, Jakob Nordström, and Marc
Vinyals [dRNV16]

In Paper B, we prove length-space trade-offs for cutting planes (CP), where upper bounds
hold for derivations with constant size coefficients, and the lower bounds apply even
for derivations with unbounded coefficients. These results are the first true trade-offs—
in the sense that there are refutations both of small size and small space, only not
simultaneously—for which the small space refutations have polynomially bounded coef-
ficients. These are also the first trade-offs to hold uniformly for resolution, polynomial
calculus and cutting planes, thus capturing the main methods of reasoning used in cur-
rent state-of-the-art SAT solvers.

Below, we state two examples of trade-offs we obtain. The first one is a “robust
trade-off”: there are proofs in linear length (which require large space), proof in poly-
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logarithmic space (which are long) and even if you allow polynomial space n1/10−ε there
is no polynomial length proof.

Theorem 3.2.1. There is a family of CNF formulas over Θ(n) clauses that have

• a CP proof with constant-size coefficients of length O(n) and

• a CP proof with constant-size coefficients in space polylog n, but

• any CP proof, even with coefficients of unbounded size, in space n1/10−ε requires
superpolynomial length.

The second trade-off holds over a smaller space range, but restricting space causes
the length to go from linear to exponential.

Theorem 3.2.2. There is a family of CNF formulas over Θ(n) clauses that have

• a CP proof with constant-size coefficients of length O(n) and

• a CP proof with constant-size coefficients in space O(n1/40), but

• any CP proof, even with coefficients of unbounded size, in space n1/20−ε requires
length exp(Ω(n1/40)).

As a by-product of the techniques we developed to show the proof complexity res-
ult, we were able to separate monotone-ACi−1 from monotone-NCi , solving an open
problem in monotone circuit complexity [GS92, Joh01].

Theorem 3.2.3. For every i ∈ N there is a Boolean function over n variables that can be
computed by a monotone circuit of depth logi n, fan-in 2, and size O(n), but for which
every monotone circuit of depth O(logi−1 n) requires superpolynomial size.

In addition, we prove an exponential separation of the monotone-AC hierarchy.

Theorem 3.2.4. For every i ∈ N there is a Boolean function over n variables that can be
computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which
for every q ∈ N every monotone circuit of depth q logi−1 n requires size exp

�
Ω
�
n

1
11q
��
.

Let us now make a tour d’horizon of the proof of these theorems, focusing on the
proof complexity results since the monotone circuit ones follow from a similar and even
slightly simpler argument.

The formulas we consider are pebbling formulas composed with the indexing gadget
g : [ℓ] × {0, 1}ℓ of length ℓ, defined as g(x , y) = yx . The proof of the lower bounds
can be viewed as a proof by contradiction via a chain of reductions that goes through
communication complexity, decision trees and the so-called Dymond–Tompa [DT85]
game played on a DAG.
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We suppose there is a short space-efficient cutting planes proof for the lifted CNF
formula F ◦ g. As was made explicit in [HN12], we can obtain from an efficient proof an
efficient communication protocol for the falsified clause search problem Search(F ◦ g).
The exact model of communication needed depends on the proof system. For cutting
planes, standard deterministic communication is not enough, so we use real communic-
ation [Kra98]. We make the additional simple but crucial observation that the protocol
obtained from a short proof is also round-efficient. By Observation 2.4.1, we get a
protocol for Search(F) ◦ g that is both communication- and round-efficient.

We now arrive at the main technical contribution of this paper. We generalize the
lifting theorem in [RM99, GPW15] to preserve rounds and use ideas from [BEGJ00] to
adapt the protocol to hold for real communication. From a real communication protocol
with few rounds and small cost, we obtain a parallel decision tree with small depth and
few queries. Parallel decision trees were introduced by Valiant [Val75b] and differ from
decision trees in that they are not necessarily binary: at every node the tree is allowed
to query any number of bits.

Theorem 3.2.5. Let S be a search problem and let g be the indexing gadget. If there is a
real communication protocol for S ◦ gn with communication c and r rounds, then there is
a decision tree for S with O(c/ log n) queries and depth r.

To obtain contradiction, the last step is to prove lower bounds for the falsified search
problem on pebbling formulas on a DAG G for parallel decision trees. It is quite straight-
forward to see that this problem is equivalent to the (parallel version of the) Dymond–
Tompa game played on G. We then modify graph constructions of [LT82] to obtain the
desired Dymond–Tompa lower bound.

3.3 Lifting with Simple Gadgets and Applications
Summary of Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity by
Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere,
and Marc Vinyals [dRMN+19]

In Paper C, we address the question of whether cutting planes (CP)—which allows the
inequalities to use coefficients of arbitrary size—is polynomially equivalent to the vari-
ant in which the coefficients are polynomially bounded (CP∗). This question was raised
in [BC96] and has evaded all solution attempts so far. In this work, we finally make
progress by exhibiting a family of formulas that have short constant-space CP proofs
but that in small space require exponential length CP∗ proofs.

Theorem 3.3.1. There is a family of CNF formulas of size N that have cutting planes
refutations of length Õ(N2) and space O(1), but for which any refutation of length L and
space s with polynomially bounded coefficients must satisfy s log L = Ω̃(N).

To attain such a separation, we exploit the fact that only with high-weight coef-
ficients it is possible to encode several equalities with a single equality (or with two
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inequalities). To take advantage of this observation, we concoct a formula that cannot
be refuted in small length unless reasoning about several equalities at the same time.
These are based on pebbling formulas that have the very useful property that, inde-
pendently of the DAG they are defined on, they can always be refuted in small length
in resolution by reasoning about several literals at once. Moreover, pebbling formulas
that are defined on DAGs that require large space to be pebbled, when composed with
the XOR function, in resolution require reasoning about large conjunctions of clauses at
the same time [BN08].

Instead of XOR, we compose pebbling formulas with the equality gadget (EQ). By
reasoning about a conjunction of several equalities, CP can simulate the short resolu-
tion refutation of pebbling formulas in constant space and quadratic length. To obtain
the separation, we need to prove that CP∗ cannot refute these formulas in small space
and small length simultaneously. The first step is to reduce the problem to a commu-
nication complexity problem: first using the connection between proofs and protocols
as per [HN12]—where we note that since CP∗ has bounded coefficients, this can be
done efficiently in the deterministic communication model—and then applying Obser-
vation 2.4.1 to obtain a composed search problem.

The reason we cannot apply previously known lifting theorems is that the composed
search problem we obtain is of the form Search(F)◦EQ and the known lifting theorems
only apply for certain gadgets, such as indexing and inner product. Moreover, as pointed
out in [LM19], it is provably not possible to lift decision tree complexity to communica-
tion complexity with the equality gadget. Loff and Mukhopadhyay [LM19] are able to
get around this problem by proving a lifting theorem from a stronger complexity meas-
ure, namely the 0-query complexity. Unfortunately, this is not the right measure for us,
since pebbling formulas have very small 0-query complexity.

We address this issue by considering a lifting theorem of Pitassi and Robere [PR18]
that lifts Nullstellensatz degree and generalizing it to use any gadget of high-enough
rank; in particular, the equality gadget.

Theorem 3.3.2. Let F be a CNF over n variables, let F be any field, and let g be any gadget
of rank at least r. Then the deterministic communication complexity of Search(F ◦ gn) is
at least NSF(F), the Nullstellensatz degree of F , as long as r ≥ cn/NSF(F) for some large
enough constant c.

Finally we must prove a Nullstellensatz degree lower bound from pebbling formulas
by showing that this measure is exactly equal to the reversible pebbling cost of the
underlying graph.

Lemma 3.3.3. For any field F and any directed acyclic graph G the Nullstellensatz degree
of PebG is equal to the reversible pebbling cost of G.

By considering graphs that have high reversible pebbling cost, we get the space-time
lower bound for CP∗ and Theorem 3.3.1 follows.
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Our new lifting also enabled us to prove the first explicit separation between mono-
tone real and monotone Boolean formulas. Prior to this, only a non-explicit separation
was known [Ros97].

Theorem 3.3.4. There is an explicit family of functions fn over O(n polylog n) variables
that can be computed by monotone real formulas of size O(n polylog n) but for which every
monotone Boolean formula requires size 2Ω(n/ log n).

3.4 Nullstellensatz Size-Degree Trade-offs
Summary of Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling by Susanna F. de
Rezende, Or Meir, Jakob Nordström, and Robert Robere [dRMNR19]

In Paper D, we obtain strong size-degree trade-offs for Nullstellensatz. To understand
how tight the trade-offs can be, we note that if a CNF formula over n variables has
a Nullstellensatz refutation of degree d, then it is not hard to show that the formula
has a Nullstellensatz refutation of simultaneous degree d and size nO(d). It is not true,
however, that if there is a refutation of size nO(d) then there necessarily is a refutation of
degree d. A natural question regarding the relation between size and degree is whether
for any given function d1(n) there is a family of CNF formulas {Fn}∞n=1 of size Θ(n) such
that

1. Fn has a Nullstellensatz refutation of degree d1(n);

2. Fn has a Nullstellensatz refutation of (close to) linear size and degree d2(n) ≫
d1(n);

3. Any Nullstellensatz refutation of Fn of degree only slightly below d2(n)must have
size nearly nd1(n).

We present explicit constructions of such formulas in different parameter regimes.
As an example of such a result, we prove the following trade-off.

Theorem 3.4.1 (Informal). There is a family of 3-CNF formulas {Fn}∞n=1 of size Θ(n)
such that:

1. There is a Nullstellensatz refutation of Fn of degree d1 = O
�

6
p

n log n
�
.

2. There is a Nullstellensatz refutation of Fn of nearly linear size and degree d2 =
O
�

3
p

n log n
�
.

3. Any Nullstellensatz refutation of Fn of degree at most 3
p

n requires size at least nΩ(
6pn).

To obtain these trade-offs, we prove a surprisingly simple and tight correspond-
ence between reversible pebbling and Nullstellensatz refutations of pebbling formulas.
Moreover, this equivalence holds regardless of the field used in the refutation.
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Theorem 3.4.2 (Informal). Let G be a DAG with a single sink. There is a reversible
pebbling strategy for G in time at most t and space at most s if and only if there is a
Nullstellensatz refutation (in any field) for PebG of size at most t +1 and degree at most s.

Given this relation, in order to obtain size-degree trade-offs for Nullstellensatz it is
enough to exhibit graphs that have time-space trade-off for reversible pebbling. There
are several known graphs that present trade-offs for standard pebbling, but these do
not automatically translate to reversible pebbling since the upper bounds do not carry
over—at least not verbatim. We focus on some of these graph constructions [CS80,
CS82, LT82] and, although we are not able to achieve as tight results as in the standard
pebbling, we nevertheless obtain strong reversible time-space trade-offs.

3.5 Cumulative Space in Black-White Pebbling and Resolution
Summary of Cumulative Space in Black-White Pebbling and Resolution by Joël Alwen, Susanna
F. de Rezende, Jakob Nordström, and Marc Vinyal [AdRNV17]

In Paper E, we initiate the study of cumulative space in proof complexity. Cumulative
space was introduced by [AS15] to studymemory-hard functions—functions that require
a large amount of memory to be computed—in cryptography. In some settings, however,
only considering (maximum) memory required is not enough to guarantee security. For
example, suppose an adversary has access to limited working memory and would like to
perform a brute-force attack where she must realise several independent computations.
Then, having to execute computations that only require a few specific instants of high
memory usage is very different from having computations that require high memory
usage for a significant fraction of the time. In the former case, it might be easy to
parallelise computations by intercalating the peak memory usage; while in the latter,
much of the work has to be done sequentially, and therefore the time needed becomes
too large for the attack to be feasible.

In proof complexity, cumulative space could be very relevant in proof search. Al-
gorithms, such as SAT-solvers, that find proofs of unsatisfiablity of formulas are con-
stantly learning new clauses and, since memory is limited, must occasionally decide
what clauses to forget. In order to run fast, the algorithm must be smart enough—and
lucky enough—to not forget clauses which will be needed further on in the proof. To
find a proof that has only one instance of large (maximum) space would mean to guess
the right clauses to keep in memory that one time, while to find a proof that has large
space during a significant fraction of the time would require repeatedly good luck.

While the concept of cumulative space seems to be as natural as maximum space
and as time-space trade-offs, we are not aware of it having been studied in the context of
proof complexity before. In this first paper on cumulative space in proof complexity we
focus on the resolution proof system, as was also done in the first paper on (maximum)
space complexity [ET01].
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We define several versions of parallel resolution, with different degrees of parallel-
ism and study the cumulative space complexity of these variants. We believe parallel
models of resolution could be useful to analyse algorithms that attempt to parallelise
state-of-the-art SAT solvers using so-called conflict-driven clause learning (CDCL) [BS97,
MS99].

One of the resolution variants we consider is the semantic inference-parallel model,
where axiom downloads must occur sequentially, but any set of clauses that follows se-
mantically from the current configuration can be derived in one step. In this model, any
unsatisfiable formula can be refuted in simultaneous linear length and quadratic cumu-
lative space by downloading each axiom sequentially and then deriving contradiction
in one step. We prove that there are formulas for which this cumulative space upper
bound is tight.

Theorem 3.5.1 (Informal). There is a family of CNF formulas {Fn}n∈N+ of size Θ(n) that
have syntactic sequential resolution refutations of length O(n), and hence also in maximum
space O(n/ log n), but for which any semantic inference-parallel refutation requires cumu-
lative space Ω(n2).

We also show that there are formulas that require small maximum space and never-
theless require almost maximum cumulative space.

Theorem 3.5.2 (Informal). There is a family of CNF formulas {Fn}n∈N+ of size Θ(n)
that have syntactic sequential resolution refutations of length O(n) and also refutations in
maximum space O(log n), but for which any semantic inference-parallel refutation requires
cumulative clause space Ω(n2/ log n).

Cumulative space can also be viewed as a stronger version of time-space trade-offs.
Indeed, cumulative space is equal to time multiplied by average space, and so proving
cumulative space lower bounds in particular implies time-space lower bounds. We ex-
hibit formulas that present smooth trade-offs where bounded maximum space implies
cumulative space lower bounds.

Theorem 3.5.3 (Informal). There is a family of CNF formulas {Fn}n∈N+ of size Θ(n) such
that for any s = O

�p
n
�
the formula Fn has a resolution refutation of length O

�
n2/s2
�
and

maximum space O(s), but any refutation of Fn in maximum space s requires cumulative
clause space Ω(n2/s).

To obtain these results, the main tool used are pebble games—as is the case in the
study of (maximum) space in resolution and of cumulative space in cryptography. The
model of parallel black pebbling was introduced by [AS15] precisely for the applications
in cryptography. For our proof complexity applications, we must consider instead ap-
propriately defined versions of the black-white pebble game and then translate results
to the different models of resolution by observing that the reductions in [BN08, BN11]
also apply to our new setting. The cumulative space lower bounds and the trade-offs
we obtain for black-white pebbling may be of independent interest.
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Clique is Hard for Regular Resolution
Albert Atserias, Ilario Bonacina, Susanna F. de Rezende,
Massiom Lauria, Jakob Nordström, and Alexander Razborov

Full length version of the article published in Proceedings of the 50th Annual ACM Sym-
posium on Theory of Computing (STOC ’18), June 2018, pp. 866–877.

Abstract

We prove that for k ≪ 4pn regular resolution requires length nΩ(k) to establish
that an Erdős–Rényi graph with appropriately chosen edge density does not contain
a k-clique. This lower bound is optimal up to the multiplicative constant in the
exponent, and also implies unconditional nΩ(k) lower bounds on running time for
several state-of-the-art algorithms for finding maximum cliques in graphs.

A.1 Introduction

Deciding whether a graph has a k-clique is one of themost basic computational problems
on graphs, and has been extensively studied in computational complexity theory ever
since it appeared in Karp’s list of 21 NP-complete problems [Kar72]. Not only is this
problem widely believed to be infeasible to solve exactly (unless P = NP) there does
not even exist any polynomial-time algorithm for approximating the maximal size of a
clique to within a factor n1−ε for any constant ε > 0, where n is the number of vertices
in the graph [Hås99, Zuc07]. Furthermore, the problem appears to be hard not only in
the worst case but also on average in the Erdős-Rényi random graph model—we know
of no efficient algorithms for finding cliques of maximum size asymptotically almost
surely on random graphs with appropriate edge densities [Kar76, Ros10].

In terms of upper bounds, the k-clique problem can be solved in time roughly nk

simply by checking if any of the
�n

k

�
many sets of vertices of size k forms a clique, which

is polynomial if k is constant. This can be improved slightly to O(nωk/3) using algebraic
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techniques [NP85], where ω ≤ 2.373 is the matrix multiplication exponent, although
in practice such algebraic algorithms are outperformed by combinatorial ones [Vas09].

The motivating problem behind this work is to determine the exact time complex-
ity of the clique problem when k is given as a parameter. As noted above, all known
algorithms require time nΩ(k). It appears quite likely that some dependence on k is
needed in the exponent, since otherwise we have the parameterized complexity col-
lapse FPT = W[1] [DF95]. Even more can be said if we are willing to believe the
Exponential Time Hypothesis (ETH) [IP01]—then the exponent has to depend linearly
on k [CHKX04], so that the trivial upper bound is essentially tight.

Obtaining such a lower bound unconditionally would, in particular, imply P ̸= NP,
and so currently seems completely out of reach. But is it possible to prove nΩ(k) lower
bounds in restricted but nontrivial models of computation? For circuit complexity, this
challenge has been met for circuits that are of bounded depth [Ros08] or are mono-
tone [Ros14]. In this paper we focus on computational models that are powerful enough
to capture several algorithms that are used in practice.

When analysing such algorithms, it is convenient to view the execution trace as a
proof establishing the maximal clique size for the input graph. In particular, if this
graph does not have a k-clique, then the trace provides an efficiently verifiable proof
of the statement that the graph is k-clique-free. If one can establish a lower bound
on the length of such proofs, then this implies a lower bound on the running time of
the algorithm, and this lower bound holds even if the algorithm is a non-deterministic
heuristic that somehow magically gets to make all the right choices. This brings us to
the topic of proof complexity [CR79], which can be viewed as the study of upper and
lower bounds in restricted nondeterministic computational models.

Using a standard reduction from k-clique to SAT, we can translate the problem of
k-cliques in graphs to that of satisfiability of formulas in conjunctive normal form (CNF).
If an algorithm for finding k-cliques is run on a graph G that is k-clique-free, then we can
extract a proof of the unsatisfiability of the corresponding CNF formula—the k-clique
formula on G—from the execution trace of the algorithm. Is it possible to show any non-
trivial lower bound on the length of such proofs? Specifically, does the resolution proof
system—the method of reasoning underlying state-of-the-art SAT solvers [BS97, MS99,
MMZ+01]—require length nΩ(k), or at least nωk(1), to prove the absence of k-cliques in
a graph? This question was asked in, e.g., [BGLR12] and remains open.

The hardness of k-clique formulas for resolution is also a problem of intrinsic interest
in proof complexity, since these formulas escape known methods of proving resolution
lower bounds for a range of interesting values of k including k = O(1). In particular,
the interpolation technique [Kra97, Pud97], the random restriction method [BP96],
and the size-width lower bound [BW01] all seem to fail.

To make this more precise, we should mention that some previous works do use the
size-width method, but only for very large k. It was shown in [BIS07] that for n5/6 ≪
k ≤ n/3 resolution requires length exp

�
nΩ(1)
�
to certify that a dense enough Erdős-

Rényi random graph is k-clique-free. The constant hidden in the Ω(1) increases with
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the density of the graph and, in particular, for very dense graphs and k = n/3 the length
required is 2Ω(n). Also, for a specially tailored CNF encoding, where the ith member of
the claimed k-clique is encoded in binary by log n variables, a lower bound of nΩ(k) for
k ≤ log n can be extracted from a careful reading of [LPRT17]. However, in the more
natural unary encodings, where indicator variables specify whether a vertex is in the
clique, the size-width method cannot yield more than a 2Ω(k

2/n) lower bound since there
are resolution proofs of width O(k). This bound becomes trivial when k ≤pn.

In the restricted subsystem of tree-like resolution, optimal nΩ(k) length lower bounds
were established in [BGL13] for k-clique formulas on complete (k− 1)-partite as well
as on average for Erdős-Rényi random graphs of appropriate edge density. There is no
hope to get hard instances for general resolution from complete (k− 1)-partite graphs,
however—in the same paper it was shown that all instances from the more general class
of (k − 1)-colourable graphs are easy for resolution. A closer study of these resolution
proofs reveals that they are regular, meaning that if the proof is viewed as a directed
acyclic graph (DAG), then no variable is eliminated more than once on any source-to-
sink path.

More generally, regular resolution is an interesting and non-trivial model to analyse
for the k-clique problem since it captures the reasoning used in many state-of-the-art
algorithms used in practice (for a survey, see, e.g., [Pro12, McC17]). Nonetheless, it has
remained consistent with state-of-the-art knowledge that for k ≤ n5/6 regular resolution
might be able to certify k-clique-freeness in polynomial length independent of the value
of k.

Our contributions We prove optimal nΩ(k) average-case lower bounds for regular res-
olution proofs of unsatisfiability for k-clique formulas on Erdős-Rényi random graphs.

Theorem A.1.1 (Informal). For any integer k≪ 4
p

n, given an n-vertex graph G sampled
at random from the Erdős-Rényi model with the appropriate edge density, regular resolu-
tion asymptotically almost surely requires length nΩ(k) to certify that G does not contain a
k-clique.

At a high level, the proof is based on a bottleneck counting argument in the style
of [Hak85] with a slight twist that was introduced in [RWY02]. In its classical form,
such a proof takes four steps. First, one defines a distribution of random source-to-sink
paths on the DAG representation of the proof. Second, a subset of the vertices of the DAG
is identified—the set of bottleneck nodes—such that any random path must necessarily
pass through at least one such node. Third, for any fixed bottleneck node, one shows
that it is very unlikely that a random path passes through this particular node. Given
this, a final union bound argument yields the conclusion that the DAG must have many
bottleneck nodes, and so the resolution proof must be long.

The twist in our argument is that, instead of single bottleneck nodes, we need to
define bottleneck pairs of nodes. We then argue that any random path passes through
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at least one such pair but that few random paths pass through any fixed pair; the lat-
ter part is based on Markov chain-type reasoning similar to [RWY02, Theorems 3.2,
3.5]. Furthermore, it crucially relies on that the graph satisfies a certain combinator-
ial property, which captures the idea that the common neighbourhood of a small set
of vertices is well distributed across the graph. Identifying this combinatorial property
is a key contribution of our work. In a separate argument (that, surprisingly, turned
out to be much more elaborate than most arguments of this kind) we then establish
that Erdős-Rényi random graphs of the appropriate edge density satisfy this property
asymptotically almost surely. Combining these two facts yields our average-case lower
bound.

Another contribution of this paper is a relatively simple observation that not only is
regular resolution powerful enough to distinguish graphs that contain k-cliques from
(k − 1)-colourable graphs [BGL13], but it can also distinguish them from graphs that
have a homomorphism to any fixed graph H with no k-cliques.

Paper outline The rest of this paper is organized as follows. Section A.2 presents
some preliminaries. We show that some nontrivial k-clique instances are easy for reg-
ular resolution in Section A.3. Section A.4 contains the formal statement of the lower
bounds we prove for Erdős-Rényi random graphs. In Section A.5 we define a combin-
atorial property of graphs and show that clique formulas on such graphs are hard for
regular resolution, and the proof that Erdős-Rényi random graphs satisfy this property
asymptotically almost surely is in Section A.6. Section A.7 explains why our results im-
ply lower bounds on the running time of state-of-the-art algorithms for k-clique. We
conclude in Section A.8 with a discussion of open problems.

A.2 Preliminaries

We write G = (V, E) to denote a graph with vertices V and edges E, where G is always
undirected, without loops and multiple edges. Given a vertex v ∈ V , we write N(v) to
denote the set of neighbours of v. For a set of vertices R ⊆ V we write ÒN(R) =∩v∈R N(v)
to denote the set of common neighbours of R. For two sets of vertices R ⊆ V and W ⊆ V
we write ÒNW (R) = ÒN(R)∩W to denote the set of common neighbours of R inside W . For
a set U ⊆ V we denote by G[U] the subgraph of G induced by the set U . For n ∈ N+ we
write [n] = {1, . . . , n}. We say that V1

.∪ V2
.∪ · · · .∪ Vk = V is a balanced k-partition of V

if for all i, j ∈ [k] it holds that |Vi | ≤ |Vj |+ 1. All logarithms are natural (base e) if not
specified otherwise.

Probability and Erdős-Rényi random graphs We often denote random variables in
boldface and write X ∼ D to denote that X is sampled from the distribution D. A
p-biased coin, or a Bernoulli variable, is the outcome of a coin flip that yields 1 with
probability p and 0 with probability 1−p. We use the special case of Markov’s inequality
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saying that if X is non-negative, then Pr[X ≥ 1] ≤ E[X]. We also need the following
special case of the multiplicative Chernoff bound: if X is a binomial random variable
(i.e., the sum of i.i.d. Bernoulli variables) with expectation µ = E[X], then Pr[X ≤
µ/2]≤ e−µ/8.

We consider the Erdős-Rényi distribution G (n, p) of random graphs on a fixed set
V of n vertices. A random graph sampled from G (n, p) is produced by placing each po-
tential edge {u, v} independently with probability p, 0≤ p ≤ 1 (the edge probability p
may be a function of n). A property of graphs is said to hold asymptotically almost surely
on G (n, p(n)) if it holds with probability that approaches 1 as n approaches infinity.

For a positive integer k, let X k be the random variable that counts the number of
k-cliques in a random graph from G (n, p). It follows from Markov’s inequality that
asymptotically almost surely there are no k-cliques in G (n, p) whenever p and k are
such that E[X k] = p(

k
2)
�n

k

�
approaches 0 as n approaches infinity. This is the case, for

example, if p = n−2η/(k−1) for k ≥ 2 and η > 1.

CNF formulas and resolution A literal over a Boolean variable x is either the variable
x itself (a positive literal) or its negation ¬x (a negative literal). A clause C = ℓ1∨· · ·∨ℓw

is a disjunction of literals; we say that the width of C is w. The empty clause will be
denoted by ⊥. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We think
of clauses as sets of literals and of CNF formulas as sets of clauses, so that order is
irrelevant and there are no repetitions. For a formula F we denote by Vars(F) the set of
variables of F .

A resolution derivation from a CNF formula F is as an ordered sequence of clauses
π= (D1, . . . , DL) such that for each i ∈ [L] either Di is a clause in C or there exist j < i
and k < i such that Di is derived from Dj and Dk by the resolution rule

B ∨ x C ∨¬x
B ∨ C , (A.1)

Di = B ∨ C , Dj = B ∨ x , Dk = C ∨ ¬x . We refer to B ∨ C as the resolvent of B ∨ x
and C ∨¬x over x , and to x as the resolved variable. The length (or size) of a resolution
derivation π = (D1, . . . , DL) is L and it is denoted by |π|. A resolution refutation of F ,
or resolution proof for (the unsatisfiability of) F , is a resolution derivation from F that
ends in the empty clause ⊥.

A resolution derivation π = (D1, . . . , DL) can also be viewed as a labelled DAG with
the set of nodes {1, . . . , L} and edges ( j, i), (k, i) for each application of the resolution
rule deriving Di from Dj and Dk. Each node i in this DAG is labelled by its associated
clause Di , and each non-source node is also labelled by the resolved variable in its
associated derivation step in the refutation. A resolution refutation is called regular if
along any source-to-sink path in its associated DAG every variable is resolved at most
once.

For a partial assignment ρ we say that a clause C restricted by ρ, denoted C↾ρ, is
the trivial 1-clause if any of the literals in C is satisfied by ρ or otherwise is C with
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all falsified literals removed. We extend this definition to CNFs in the obvious way:
(C1 ∧ . . .∧ Cm)↾ρ = C1↾ρ ∧ . . .∧ Cm↾ρ. Applying a restriction preserves (regular) resolu-
tion derivations. To see this, observe that in every application of the resolution rule the
restricted consequence is either killed (becomes identically 1) or obtained, as before,
by resolving the two restricted premises or it is a copy of one of them. Thus, we have:

Fact A.2.1. Let π be a (regular) resolution refutation of a CNF formula F . For any partial
assignment ρ to the variables of F there is an efficiently constructible (regular) resolution
refutation π↾ρ of the CNF formula F↾ρ, so that the length of π↾ρ is at most the length of π.

Branching programs A branching program on variables x1, . . . , xn is a DAG that has
one source node and where every non-sink node is labelled by one of the variables
x1, . . . , xn and has exactly two outgoing edges labelled 0 and 1. The size of a branching
program is the total number of nodes in the graph. In a read-once branching program it
holds in addition that along every path every variable appears as a node label at most
once.

For each node a in a branching program, let X (a) denote the variable that labels a,
and let a0 and a1 be the nodes that are reached from a through the edges labelled 0
and 1, respectively. A truth-value assignment σ : {x1, . . . , xn} → {0, 1} determines a
path in a branching program in the following way. The path starts at the source node.
At an internal node a, the path is extended along the edge labelled σ(X (a)) so that
the next node in the path is aσ(X (a)). The path ends when it reaches a sink. We write
path(σ) for the path determined by σ. When extending the path from a node a to the
node aσ(X (a)), we say that the answer to the query X (a) at a is σ(X (a)) and that the path
sets the variable X (a) to the value σ(X (a)). For each node a of the branching program,
let β(a) be the maximal partial assignment that is contained in any assignment σ such
that path(σ) passes through a. Equivalently, this is the set of all those σ(x i) = γ for
which the query x i is made, and answered by γ, along every consistent path from the
source to a. If the program is read-once, the consistency condition becomes redundant.

The falsified clause search problem for an unsatisfiable CNF formula F is the task of
finding a clause C ∈ F that is falsified by a given truth value assignment σ. A branching
program P on the variables Vars(F) solves the falsified clause search problem for F if each
sink is labelled by a clause of F such that for every assignment σ, the clause that labels
the sink reached by path(σ) is falsified byσ. The minimal size of any regular resolution
refutation of an unsatisfiable CNF formula F is exactly the same as the minimal size of
any read-once branching program solving the falsified clause search problem for F . This
can be seen by taking the refutation DAG and reversing the edges to get a branching
program or vice versa. For a formal proof see, e.g., [Kra95a, Theorem 4.3].

The k-clique formula In order to analyse the complexity of resolution proofs that
establish that a given graph does not contain a k-clique we must formulate the problem
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as a propositional formula in conjunctive normal form (CNF). We consider two distinct
encodings for the clique problem originally defined in [BIS07].

The first propositional encoding we present, Clique(G, k), is based on mapping of
vertices to clique members. This formula is defined over variables xv,i (v ∈ V, i ∈ [k])
and consists of the following set of clauses:

¬xu,i ∨¬xv, j i, j ∈ [k], i ̸= j, u, v ∈ V, {u, v} /∈ E , (A.2a)∨
v∈V

xv,i i ∈ [k] , (A.2b)

¬xu,i ∨¬xv,i i ∈ [k], u, v ∈ V, u ̸= v , (A.2c)

We refer to (A.2a) as edge axioms, (A.2b) as clique axioms and (A.2c) as functionality
axioms. Note that Clique(G, k) is satisfiable if and only if G contains a k-clique, and
that this is true even if clauses (A.2c) are omitted—we write Clique∗(G, k) to denote
this formula with only clauses (A.2a) and (A.2b).

The second version of clique formulas that we consider is the block encoding, which
we denote by Cliqueblock(G, k). This formula differs from the previous one in that it
requires a k-clique that has a certain “block-respecting” structure. Let V1∪̇V2∪̇ . . . ∪̇Vk =
V be a balanced k-partition of V . This formula, defined over variables xv , encodes the
fact that the graph contains a transversal k-clique, that is, a k-clique in which each clique
member belongs to a different block. Formally, for any positive k and n, the formula
Cliqueblock(G, k) consists of the following set of clauses:

¬xu ∨¬xv u, v ∈ V, u ̸= v, {u, v} /∈ E , (A.3a)∨
v∈Vi

xv i ∈ [k] , (A.3b)

¬xu ∨¬xv i ∈ [k], u, v ∈ Vi , u ̸= v . (A.3c)

We refer to (A.3a) as edge axioms, (A.3b) as clique axioms, and (A.3c) as functionality
axioms.

Note that a graph can contain a k-clique but contain no transversal k-clique for
a given partition. Intuitively it is clear that proving that a graph does not contain a
transversal k-clique should be easier than proving it does not contain any k-clique, since
any proof of the latter fact must in particular establish the former. Wemake this intuition
formal below.

LemmaA.2.2 ([BIS07]). For any graph G and any k ∈ N+, the size of aminimum regular
resolution refutation of Clique(G, k) is bounded from below by the size of a minimum
regular resolution refutation of Cliqueblock(G, k).

This lemma was proven in [BIS07] for tree-like and for general resolution via a
restriction argument, and it is straightforward to see that the same proof holds for
regular resolution.
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A.3 Graphs That Are Easy for Regular Resolution

Before proving our main nΩ(k) lower bound, in this section we exhibit classes of graphs
whose clique formulas have regular resolution refutations of fixed-parameter tractable
length, i.e., length f (k) · nO(1) for some function f . This illustrates the strength of
regular resolution for the k-clique problem. We note that the upper bounds claimed in
this section hold not only for Clique(G, k) but even for the subformula Clique∗(G, k)
that omits the functionality axioms (A.2c).

The first example is the class of (k − 1)-colourable graphs. Such graphs are hard
for tree-like resolution [BGL13], and the known algorithms that distinguish them from
graphs that contain k-cliques are highly non-trivial [Lov79, Knu94]. The second ex-
ample is the class of graphs that have a homomorphism into a fixed k-clique free graph.

Recall that a homomorphism from a graph G = (V, E) into a graph G′ = (V ′, E′) is a
mapping h : V → V ′ that maps edges {u, v} ∈ E into edges {h(u), h(v)} ∈ E′. A graph is
(k − 1)-colourable if and only if it has a homomorphism into the (k − 1)-clique, which
is of course k-clique free. Therefore our second example is a generalization of the first
one (but the function f (k) becomes larger).

Both upper bounds follows from a generic procedure, based on Algorithm 1, that
builds read-once branching programs for the falsified clause search problem for the
formula Clique∗(G, k).

Given a k-clique free graph G define

I(G) =
�

G
�ÒN(R)� : R is a clique in G

	
. (A.4)

Proposition A.3.1. There is an efficiently constructible read-once branching program for
the falsified clause search problem on formula Clique∗(G, k) of size at most |I(G)| · k2 ·
|V (G)|2.
Proof. We build the branching program recursively, following the strategy laid out by
Algorithm 1. For the base case k = 1, G must be the graph with no vertices. The
branching program is a single sink node that outputs the clique axiom of index 1, i.e.,
the empty clause.

For k > 1, fix n= |V (G)| and an ordering v1, . . . , vn of the vertices in V (G). We first
build a decision tree T by querying the variables xv1,k, xv2,k, . . . in order, until we get an
answer 1, or until all variables with second index k have been queried. If xv j ,k = 0 for
all j ∈ [n] then the kth clique axiom (A.2b) is falsified by the assignment (see line 9).
Otherwise, let v be the first vertex in the order where xv,k = 1. The decision tree now
queries xw,i for all w ̸∈ N(v) and all i < k to check whether an edge axiom involving v
is falsified (lines 4–5). If any of these variables is set to 1 the branching stops and the
leaf node is labelled with the corresponding edge axiom ¬xv,k ∨¬xw,i .

The decision tree T built so far has at most kn2 nodes, and we can identify n “open”
leaf nodes av1

, av2
, . . . , avn

, where avi
is the leaf node reached by the path that sets xvi ,k =

1 and that does yet determine the answer to the search problem. Let us focus on a
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Algorithm 1 Read-once branching program for the falsified clause search problem on
Clique∗(G, k).

Input : k ∈ N+, a k-clique free graph G, an assignment
α:{xv,i for v ∈ V (G), i ∈ [k]} → {0, 1}

Output : A clause of Clique∗(G, k) falsified by α
1 Search(G, k,α): begin
2 for v ∈ V (G) do
3 if α(xv,k) = 1 then
4 for w ̸∈ N(v) and i < k do
5 if α(xw,i) = 1 then return edge axiom ¬xv,k ∨¬xw,i (A.2a)

6 G′← G[N(v)]
7 α′← α restricted to variables xw, j for w ∈ V (G′) and 1≤ j ≤ k− 1
8 return Search(G′, k− 1,α′)

9 return the kth clique axiom (A.2b)

specific node av for some v ∈ V (G). The partial assignment path(av) sets v to be the
kth member of the clique and no vertex in V (G) \ N(v) to be in the clique. Let Gv be
the subgraph induced on G by N(v), let Sv be the set of variables xw,i for w ∈ N(v) and
i < k, and let ρv be the partial assignment setting xw,i = 0 for w ̸∈ N(v) and i < k.
Clearly ρv ⊆ path(av).

By the inductive hypothesis there exists a branching program Bv that solves the
search problem on Clique∗(Gv , k − 1) querying only variables in Sv . This corresponds
to the recursive call for the subgraph Gv and k− 1 (lines 6–8). If we attach each Bv to
av we get a complete branching program for Clique∗(G, k). This is read-once because
Bv only queries variables in Sv and these variables are not in path(av).

To prove that the composed program is correct we consider an assignment σ to the
variables in Sv and show that the clause output by Bv on σ is also a valid output for
the search problem on Clique∗(G, k), i.e., it is falsified by the assignment path(av)∪σ.
Actually we show the stronger claim that it is falsified by ρv ∪ σ, which is a subset
of path(av) ∪ σ. To this end, note that if the output of Bv on σ is an edge axiom of
Clique∗(Gv , k − 1), this must be some ¬xu,i ∨ ¬xw, j for i, j < k, which is also an edge
axiom of Clique∗(G, k) and is falsified by σ ⊆ ρv ∪σ. Now if the output of Bv on σ is
the ith clique axiom of Clique∗(Gv , k − 1), then σ falsifies

∨
w∈N(v) xv,i , and therefore

ρv ∪σ falsifies the ith clique axiom in formula Clique∗(G, k).
The construction so far is correct but produces a very large branching program (in

particular, a tree-like one). In order to create a smaller branching program, we observe
that if u, v ∈ V (G) are such that N(u) = N(w) then Gu = Gw, Bu = Bw and ρu = ρw.
In this case, we can identify nodes au and aw, resulting in a node we denote a∗, and
identify the branching programs Bu and Bw. The correctness of this new program is due
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to the fact that even after the identification of vertices ρu ⊆ path(a∗) and ρw ⊆ path(a∗).
This process leads to having only one subprogram for each distinct induced subgraph
at each level of the recursion.

In order to bound the size of this program, we decompose it into k levels. The source
is at level zero and corresponds to the graph G. At level i there are nodes corresponding
to all subgraphs induced by the common neighbourhood of cliques of size i. Each node
in the ith level connects to the nodes of the (i + 1)th level by a branching program of
size at most kn2. Notice that an induced subgraph in I(G) cannot occur twice in the
same layers, so the total size of the final branching program is at most |I(G)| · k2n2

nodes.

We now proceed to prove the upper bounds mentioned previously. A graph G that
has a homomorphism into a small k-clique free graph H may still have a large set I(G),
making Proposition A.3.1 inefficient. The first key observation is that if G has a homo-
morphism into a graph H then it is a subgraph of a blown up version of H, namely, of
a graph obtained by transforming each vertex of H into a “cloud” of vertices where a
cloud does not contain any edge, two clouds corresponding to two adjacent vertices
in H have all possible edges between them, and two clouds corresponding to two non-
adjacent vertices in H have no edges between them. A second crucial point is that if G′ is
a blown up version of H then it turns out that |I(G′)|= |I(H)|, making Proposition A.3.1
effective for G′. The upper bound then follows from observing that the task of proving
that G is k-clique free should not be harder than the same task for a supergraph of G.
Indeed Fact A.3.2 formalises this intuition. It is interesting to observe that the construc-
tions in Proposition A.3.1 and in Fact A.3.2 are efficient. The non-constructive part is
guessing the homomorphism to H.

Fact A.3.2. Let G = (V, E) and G′ = (V ′, E′) be graphs with no k-clique such that
V ⊆ V ′ and E ⊆ E′ ∩ �V2�. If Clique∗(G′, k) has a (regular) refutation of length L, then
Clique∗(G, k) also has a (regular) refutation of length L.

Proof. Consider the partial assignment ρ that sets xv,i = 0 for every v ̸∈ V and i ∈ [k].
The restricted formula Clique∗(G′, k)↾ρ is isomorphic to Clique∗(eG, k), where V (eG) = V
and E(eG) = E′ ∩ �V2�, and thus, by Fact A.2.1, has a (regular) refutation π of length at
most L. Removing edges from a graph only introduces additional edge axioms (A.2a)
in the corresponding formula, therefore Clique∗(eG, k) ⊆ Clique∗(G, k) and π is a valid
refutation of Clique∗(G, k) as well.

It was shown in [BGL13] that the k-clique formula of a complete (k − 1)-partite
graph on n vertices has a regular resolution refutation of length 2knO(1), although the
regularity is not stressed in that paper. Since it is instructive to see how this refutation
is constructed in this framework, we give a self-contained proof.

Proposition A.3.3 ([BGL13, Proposition 5.3]). If G is a (k−1)-colourable graph on n
vertices, then Clique∗(G, k) has a regular resolution refutation of length at most 2kk2n2.
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Proof. Let V = V (G) and let V1∪̇V2∪̇ . . . ∪̇V(k−1) be a partition of V into colour classes.
Define the graph G′ = (V, E′) where the edge set E′ has an edge between any pair of
vertices belonging to two different colour classes. Clearly G is a subgraph of G′. Observe
that any clique R in G′ has at most one vertex in each colour class, and that the common
neighbours of R are all the vertices in the colour classes not touched by R.

Therefore, there is a one-to-one correspondence between the members of I(G′) and
the subsets of [k−1]. By Proposition A.3.1 there is a read-once branching program for
the falsified clause search problem on formula Clique∗(G′, k) of size at most 2kk2n2.
This read-once branching program corresponds to a regular resolution refutation of
Clique∗(G′, k) of the same size. By Fact A.3.2 there must be a regular resolution refut-
ation of size at most 2kk2n2 for Clique∗(G, k) as well.

Next we generalize Proposition A.3.3 to graphs G that have a homomorphism to a
k-clique free graph H.

Proposition A.3.4. If G is a graph on n vertices that has a homomorphism into a k-clique
free graph H on m vertices, then Clique∗(G, k) has a regular resolution refutation of length
at most mkk2n2.

Proof. Fix a homomorphism h:V (G)→ V (H) and an ordering u1, . . . , um of the vertices
of H. Let V1∪̇V2∪̇ . . . ∪̇Vm be the partition of V (G) such that Vi is the set of vertices of G
mapped to ui by h. We define the graph G′ = (V, E′) where

E′ =
∪

{ui ,u j}∈E(H)

Vi × Vj , (A.5)

that is, G′ is a blown up version of H that contains G as a subgraph. To prove our result
we note that, by Proposition A.3.1, there is a read-once branching program for the
falsified clause search problem on Clique∗(G′, k)—and hence also a regular resolution
refutations of the same formula—of size at most |I(G′)| · k2n2. This implies that, by
Fact A.3.2, there is a regular resolution refutation of Clique∗(G, k) of at most the same
size.

To conclude the proof it remains only to show that |I(G′)| ≤ mk. By construction, h
maps injectively a clique R ⊆ V (G′) into a clique RH ⊆ V (H) of the same size. Moreover,
note that if U = ÒN(RH), then ÒN(R) = ∪ui∈U Vi . Therfore, for any clique R′ ⊆ V (G′) that
is mapped by h to RH it holds that ÒN(R) = ÒN(R′), i.e., ÒN(R′) is completely characterized
by the clique in H it is mapped to. Thus I(G) has at most one element for each clique in
H and we have that |I(G′)|= |I(H)|. Finally, note that |I(H)| ≤ mk since, being k-clique
free, H cannot have more than mk cliques.

A.4 Random Graphs Are Hard for Regular Resolution

The main result of this paper is an average case lower bound of nΩ(k) for regular resol-
ution for the k-clique problem. As we saw in Section A.2, the k-clique problem can be
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encoded in different ways and depending on the preferred formula the range of k for
which we can obtain a lower bound differs. In this section we present a summary of our
results for the different encodings.

Theorem A.4.1. For any real constant ε > 0, any sufficiently large integer n, any positive
integer k ≤ n1/4−ε, and any real ξ > 1, if G ∼ G (n, n−2ξ/(k−1)) is an Erdős-Rényi random
graph, then, with probability at least 1− exp(−pn), any regular resolution refutation of
Cliqueblock(G, k) has length at least nΩ(k/ξ

2).

The parameter ξ determines the density of the graph: the larger ξ the sparser the
graph and the problem of determining whether G contains a k-clique becomes easier.
For constant ξ, where the edge probability is somewhat close to the threshold for con-
taining a k-clique, the theorem yields a nΩ(k) lower bound which is tight up to the
multiplicative constant in the exponent. The lower bound decreases smoothly with the
edge density and is non-trivial for ξ= o(

p
k).

A problem which is closely related to the problem we consider is that of distin-
guishing a random graph sampled from G (n, p) from a random graph from the same
distribution with a planted k-clique. The most studied setting is when p = 1/2. In
this scenario the problem can be solved in polynomial time with high probability for
k ≈ pn [Kuč95, AKS98]. It is still an open problem whether there exists a polyno-
mial time algorithm solving this problem for log n ≪ k ≪ pn. For G ∼ G (n, 1/2),
Theorem A.4.1 implies that to refute Cliqueblock(G, k) asymptotically almost surely reg-
ular resolution requires nΩ(log n) size for k = O(log n) and super-polynomial size for
k = o(log2 n).

An interesting question is whether Theorem A.4.1 holds for larger values of k. We
show that for the formula Clique(G, k) (recall that by Lemma A.2.2 this encoding is
easier for the purpose of lower bounds) we can prove the lower bound for k ≤ n1/2−ε as
long as the edge density of the graph is close to the threshold for containing a k-clique.

Theorem A.4.2. For any real constant ε > 0, any sufficiently large integer n, any positive
integer k, and any real ξ > 1 such that k

p
ξ≤ n1/2−ε, if G ∼ G (n, n−2ξ/(k−1)) is an Erdős-

Rényi random graph, then, with probability at least 1−exp(−pn), any regular resolution
refutation of Clique(G, k) has length at least nΩ(k/ξ

2).

In this paper we prove Theorem A.4.1 and we refer to the conference version of
this paper [ABdR+18] for the proof of Theorem A.4.2. We note, however, that both
proofs are very similar and having seen one it is an easy exercise to obtain the other.
The proof of Theorem A.4.1 is deferred to Section A.6 and is based on a general lower
bound technique we develop in Section A.5.

A.5 Clique-Denseness Implies Hardness for Regular Resolution

In this section we define a combinatorial property of graphs, which we call clique-
denseness, and prove that if a k-clique-free graph G is clique-dense with the appropriate
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parameters, then this implies a lower bound nΩ(k) on the length of any regular resolution
refutation of the k-clique formula on G.

In order to argue that regular resolution has a hard time certifying the k-clique-
freeness of a graph G, one property that seems useful to have is that for every small
enough clique in the graph there are many ways of extending it to a larger clique. In
other words, if R ⊆ V forms a clique and R is small, we would like the common neigh-
bourhood ÒNV (R) to be large. This motivates the following definitions.

Definition A.5.1 (Neighbour-dense set). Given G = (V, E) and q, r ∈ R+, a set W ⊆ V
is q-neighbour-dense for R ⊆ V if

��ÒNW (R)
��≥ q. We say that W is (r, q)-neighbour-dense if

it is q-neighbour-dense for every R ⊆ V of size |R| ≤ r.

If W is an (r, q)-neighbour-dense set, then we know that any clique of size r can be
extended to a clique of size r + 1 in at least q different ways by adding some vertex of
W . Note, however, that the definition of (r, q)-neighbour-dense is more general than
this since R is not required to be a clique.

We next define a more robust notion of neighbour-denseness. For some settings of r
and q of interest to us it is too much to hope for a set W which is q-neighbour-dense
for every R ⊆ V of size at most r. In this case we would still like to be able to find a
“mostly neighbour-dense” set W in the sense that we can “localize” bad (i.e., those for
which W fails to be q-neighbour-dense) sets R ⊆ V of size |R| ≤ r.

Definition A.5.2 (Mostly neighbour-dense set). Given G = (V, E) and r ′, r, q, s ∈ R+
with r ′ ≥ r, a set W ⊆ V is (r ′, r, q, s)-mostly neighbour-dense if there exists a set S ⊆ V
of size |S| ≤ s such that for every R ⊆ V with |R| ≤ r ′ for which W is not q-neighbour-
dense, it holds that |R∩ S| ≥ r.

In what follows, it might be helpful for the reader to think of r ′ and r as linear in k
and q and s as polynomial in n, where we also have s≪ q.

Now we are ready to define a property of graphs that makes it hard for regular
resolution to certify that graphs with this property are indeed k-clique-free.

Definition A.5.3 (Clique-dense graph). Given k ∈ N+ and t, s,ϵ ∈ R+, 1 ≤ t ≤ k we
say that a graph G = (V, E) with a k-partition V1 ∪ · · · ∪ Vk = V is (k, t, s,ϵ)-clique-dense
if there exist r, q ∈ R+, r ≥ 4k/t2, such that

1. Vi is (t r, tq)-neighbour-dense for all i ∈ [k], and
2. every (r, q)-neighbour-dense set W ⊆ V is (t r, r, q′, s)-mostly neighbour-dense for

q′ = ϵrs1+ϵ log s.

Remark A.5.4 (The complete (k − 1)-partite graph is not clique-dense). Since the
property of clique-denseness in Definition A.5.3 is a sufficient condition for the lower
bound, it is worth to pause and observe that this property does not hold for examples
such as the (k− 1)-colourable graphs which have non-trivially short proofs.
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Consider indeed G = (V, E) to be the (k − 1)-colourable graph with balanced color
classes and maximum set of edges. Namely V =

∪
c Uc with c ∈ [k − 1] and |Uc | =

n/(k− 1). The edges of the G are all pairs {u, v} for u ∈ Uc and v ∈ Uc′ with c ̸= c′.
Graph G satisfies Property 1 for essentially any reasonable k-partition of V , but it fails
property (2) it a pretty extreme way.

Given r < k−1 we pick W to be the union of r +1 arbitrarily chosen colour classes.
The chosen set W is (r, q)-neighbour-dense for any q up to n/(k− 1), because the com-
mon neighbourhood of any of r vertices in W must containt one of the colour classes
Uc .

Can it W be (t r, r, q′, s)-mostly neighbour-dense for some choice of the parameters?
By definition t > 1, and we see that already if we choose R of size r + 1 by picking one
vertex for each colour class in W , the common neighbourhood is empty. To make W to
be (t r, r, q′, s)-mostly neighbour-dense for some choice of s ≪ q′ < n we should find a
set S of size s that has large intersection with any such R. But since S is much smaller
than n (and therefore smaller than of n/(k− 1)), it cannot cover completely any of the
colour classes in W . Hence there are some R for which any chosen S has even empty
intersection and yet R has no common neighbours in W .

Theorem A.5.5. Given k ∈ N+ and t, s,ϵ ∈ R+ if the graph G = (V, E) with balanced k-
partition V1∪· · ·∪Vk = V is (k, t, s,ϵ)-clique-dense, then every regular resolution refutation
of the CNF formula Cliqueblock(G, k) has length at least Ω

�
sϵk/t2�

.

The value of q′ in Definition A.5.3 can be tailored in order to prove Theorem A.4.1
for slightly larger values of k. For example, setting q′ = 3ϵs1+ϵ log s and making the
necessary modifications in the proof would yield Theorem A.4.1 for k ≪ n1/3 but for
a smaller range of edge densities. A similar adjustment was done in the conference
version of this paper [ABdR+18] to obtain Theorem A.4.2 for k≪ n1/2.

We will spend the rest of this section establishing Theorem A.5.5. Fix r, q ∈ R+
witnessing that G is (k, t, s,ϵ)-clique-dense as per Definition A.5.3. We first note that
we can assume that t r ≤ k since otherwise, by property 1 of Definition A.5.3, G contains
a block-respecting k-clique and the theorem follows immediately.

By the discussion in Section A.2 it is sufficient to consider read-once branching pro-
grams, since they are equivalent to regular resolution refutations, and so in what follows
this is the language in which we will phrase our lower bound. Thus, for the rest of this
section let P be an arbitrary, fixed read-once branching program that solves the falsified
clause search problem for Cliqueblock(G, k). We will use the convention of referring to
“vertices” of the graph G and “nodes” of the branching program P to distinguish between
the two. We sometime abuse notation and say that a vertex v ∈ V is set to 0 or to 1
when we mean that the corresponding variable xv is set to 0 or to 1.

Recall that for a node a of P, β(a) denotes the maximal partial assignment that is
contained in any assignment σ such that the path path(σ) passes through a. For any
partial assignment β we write β1 to denote the partial assignment that contains exactly
the variables that are set to 1 in β . Clearly, if β falsifies an edge axiom or a functionality
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axiom, then so does β1. Furthermore, for any γ ⊇ β , if β falsifies an axiom so does γ.
We will use this monotonicity property of partial assignments throughout the proof.

For each node a of P and each index i ∈ [k] we define two sets of vertices

V 0
i (a) = {u ∈ Vi | β(a) sets xu to 0} (A.6a)

V 1
i (a) = {u ∈ Vi | β(a) sets xu to 1} (A.6b)

of G. Observe that for β = β(a) the set of vertices referenced by variables in β1 is∪
i V 1

i (a).
Intuitively, one can think of V 0

i (a) and V 1
i (a) as the only sets of vertices in Vi as-

signed 0 and 1, respectively, that are “remembered” at the node a (in the language
of resolution, they correspond to negative and positive occurrences of variables in the
clause Da associated with the node a). Other assignments to vertices in Vi encountered
along some path to a have been “forgotten” and may not be queried any more on any
path starting at a. Formally, we say that a vertex v is forgotten at a if there is a path from
the source of P to a passing through a node b where v is queried, but v is not in V 0

i (a)
nor in V 1

i (a). Furthermore, we say index i is forgotten at a if some vertex v ∈ Vi is
forgotten at a. Of utter importance is the fact that these notions are persistent: if a
variable or an index is forgotten at a node a, then it will also be the case for any node
reachable from a by a path. We say that a path in P ends in the ith clique axiom if the
clause that labels its last node is the clique axiom (A.3b) of Cliqueblock(G, k) with in-
dex i. The above observation implies that the index i cannot be forgotten at any node
along such a path.

We establish our lower bound via a bottleneck counting argument for paths in P. To
this end, let us define a distribution D over paths in P by the following random process.
The path starts at the source and ends whenever it reaches a sink of P. At an internal
node a with successor nodes a0 and a1, reached by edges labelled 0 and 1 respectively,
the process proceeds as follows.

1. If X (a) = xu for u ∈ Vi and i is forgotten at a then the path proceeds via the edge
labelled 0 to a0.

2. If X (a) = xu and β(a)∪{xu = 1} falsifies an edge axiom (A.3a) or a functionality
axiom (A.3c), then the path proceeds to a0.

3. Otherwise, an independent s−(1+ϵ)-biased coin is tossed with outcome γ ∈ {0, 1}
and the random path proceeds to aγ.

We say that in cases 1 and 2 the answer to the query X (a) is forced. Note that any path
α in the support of D must end in a clique axiom since α does not falsify any edge or
functionality axiom by item 2 in the construction. Moreover, a property that will be
absolutely crucial is that only answers 0 can be forced—answers 1 are always the result
of a coin flip.

Claim A.5.6. Every path in the support of D sets at most k variables to 1.
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Proof. Let α be a path in the support of D. We argue that for each i ∈ [k] at most one
vertex u ∈ Vi is such that the variable xu is set to 1 on α. Let a and b be two nodes that
appear in this order in α. If for some i ∈ [k], and for some u, v ∈ Vi , xu is set to 1 by α
at node a and xv is queried at b, then v ̸= u by regularity and, by definition of D, the
answer to query xv will be forced to 0, either to avoid violating a functionality or an
edge axiom, or because i is forgotten at b.

Let us call a pair (a, b) of nodes of P useful if there exists an index i such that
V 1

i (b) = ;, i is not forgotten at b (which in particular implies V 1
i (a) = ; and V 0

i (a) ⊆
V 0

i (b)), and the set V 0
i (b) \ V 0

i (a) is (r, q)-neighbour-dense. For each useful pair (a, b),
let i(a, b) be an arbitrary but fixed index witnessing that (a, b) is useful. A path is said
to usefully traverse a useful pair (a, b) if it goes through a and b in that order and sets
at most ⌈k/t⌉ variables to 1 between a and b (with a included and b excluded).

As already mentioned, the proof of Theorem A.5.5 is based on a bottleneck counting
argument in the spirit of [Hak85], with the twist that we consider pairs of bottleneck
nodes. To establish the theorem we make use of the following two lemmas which will
be proven subsequently.

Lemma A.5.7. Every path in the support of D usefully traverses a useful pair.

Lemma A.5.8. For every useful pair (a, b), the probability that a random α chosen from
D usefully traverses (a, b) is at most 2s−ϵr/2.

Combining the above lemmas, it is immediate to prove TheoremA.5.5. By LemmaA.5.7
the probability that a random path α sampled from D usefully traverses some useful
pair is 1. By Lemma A.5.8, for any fixed useful pair (a, b), the probability that a random
α usefully traverses (a, b) is at most 2s−ϵr/2. By a standard union bound argument, it
follows that the number of useful pairs is at least 1

2 sϵr/2, so the number of nodes in P
cannot be smaller than Ω

�
sϵr/4
� ≥ Ω�sϵk/t2�

(recall that r ≥ 4k/t2 according to Defini-
tion A.5.3).

To conclude the proof it remains only to establish Lemmas A.5.7 and A.5.8.

Proof of Lemma A.5.7. Consider any path in the support of D. As we already remarked,
this path ends in the i∗th clique axiom for some i∗ ∈ [k] which in particular implies
that V 1

i∗ (b) = ; and that i∗ is not forgotten at any b along this path. By Claim A.5.6,
the path sets at most k variables to 1 and hence we can split it into t pieces by nodes
a0, a1, . . . , at (a0 is the source, at the sink) so that between a j and a j+1 at most ⌈k/t⌉
variables are set to 1. It remains to prove that for at least one j ∈ [t] the set

Wj = V 0
i∗ (a j) \ V 0

i∗ (a j−1) (A.7)

is (r, q)-neighbour-dense. Note that this will prove Lemma A.5.7 since by construction
(a j−1, a j) is then a pair that is usefully traversed by the path.
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Towards contradiction, assume instead that no Wj is (r, q)-neighbour-dense, i.e.,
that for all j ∈ [t] there exists a set of vertices R j ⊆ V with |R j | ≤ r such that

��ÒNWj
(R j)
��≤

q. Let R=
∪

j∈[t] R j . Since the path ends in the i∗th clique axiom we have V 0
i∗ (at) = Vi∗ .

It follows that the sets W1, . . . , Wt in (A.7) form a partition of Vi∗ , and therefore��ÒNVi∗ (R)
��=∑

j∈[t]

��ÒNWj
(R)
��≤∑

j∈[t]

��ÒNWj
(R j)
��≤ tq . (A.8)

Since |R| ≤∑ j∈[t]|R j | ≤ t r this contradicts the assumption that Vi∗ is (t r, tq)-neighbour-
dense. Lemma A.5.7 follows.

Proof of Lemma A.5.8. Fix a useful pair (a, b). Let E denote the event that a random
path sampled from D usefully traverses (a, b). Let i∗ = i(a, b), V 1(a) =

∪
j∈[k] V 1

j (a),
and W = V 0

i∗ (b) \ V 0
i∗ (a). Notice that W is guaranteed to be (r, q)-neighbour-dense by

our definition of i(a, b). Since G is (k, t, s,ϵ)-clique-dense by assumption, this implies
that W is (t r, r, q′, s)-mostly neighbour-dense, and we let S be the set that witnesses
this as per Definition A.5.2. We bound the probability of the event E by a case analysis
based on the size of the set V 1(a). We remark that all probabilities in the calculations
that follow are over the choice of α∼ D.

Case 1 (|V 1(a)| > r/2): In this case, we simply prove that already the probability
of reaching a is small. By definition of V 1(a), we have that |β1(a)| = |V 1(a)|. Recall
that every answer 1 is necessarily the result of a s−(1+ϵ)-biased coin flip, and that all
these decisions are irreversible. That is, if a path ever decides to set a variable in V 1(a)
to 0, then its case is lost and it is guaranteed to miss a. Thus we can upper bound the
probability of the event E by the probability that a random α passes through a, and, in
particular, by the probability of setting all variables in β1(a) to 1 as follows:

Pr[E]≤ Pr[α passes through a]≤ �s−(1+ϵ)�|β1(a)| ≤ s−ϵ|V 1(a)| ≤ 2s−ϵr/2 . (A.9)

Case 2 (|V 1(a)| ≤ r/2): For every path α, let R(α) denote the set of vertices u set to
1 by the path α at some node between a and b (with a included and b excluded); note
that R(α) = ; if α does not go through a and b, and that |R(α)| ≤ ⌈k/t⌉ for all paths α
that satisfy the event E. For the sets

R0 = {R : |R| ≤ ⌈k/t⌉ and ��ÒNW (R∪ V 1(a))
��< q′} (A.10a)

R1 = {R : |R| ≤ ⌈k/t⌉ and ��ÒNW (R∪ V 1(a))
��≥ q′} (A.10b)

we have that

Pr[E] = Pr[E and R(α) ∈R0] + Pr[E and R(α) ∈R1] . (A.11)

The first term in (A.11) is bounded from above by the probability of R(α) ∈ R0.
Note that |R| ≤ ⌈k/t⌉ ≤ 2k/t ≤ t r/2 (since r ≥ 4k/t2) for R ∈ R0. Hence we have
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|R ∪ V 1(a)| ≤ t r/2+ r/2 ≤ t r and therefore |(R ∪ V 1(a)) ∩ S| ≥ r by the choice of S.
Thus, the probability of R(α) ∈R0 is bounded by the probability that |R(α)∩ S| ≥ r/2
since |V 1(a)| ≤ r/2. But since S is small, we can now apply the union bound and
conclude that

Pr[E and R(α) ∈R0]≤ Pr[R(α) ∈R0] (A.12)

≤ Pr[|R(α)∩ S| ≥ r/2] (A.13)

≤
� |S|

r/2

�
(s−(1+ϵ))r/2 (A.14)

≤ |S|r/2s−(1+ϵ)r/2 (A.15)

≤ s−ϵr/2 , (A.16)

where for (A.14) we used the same “irreversibility” argument as in Case 1.
We now bound the second term in (A.11). First note that, by definition of W, if α is

a path that passes through a and b in this order, then all u ∈W must be set to 0 in α at
some node between a and b. For each path in the support of D that passes through a
and b, some of the vertices in W will be set to zero as a result of a coin flip and others
will be forced choices.

Fix a path α contributing to the second term in (A.11). We claim that along this
path all the ≥ q′ variables in ÒNW (R(α) ∪ V 1(a)) are set to 0 as a result of a coin flip.
Indeed, since V 1

i∗ (b) = ; and i∗ is not forgotten at b, by the monotonicity property the
same holds for every node along α before b. This implies that the answer to a query of
the form xu (u ∈W )made along α cannot be forced by neither item 1 (forgetfulness) in
the definition of D nor by a functionality axiom. Moreover, since V 1(c) ⊆ R(α)∪ V 1(a)
for any node c on the path α between a and b, it holds that all variables xu with u ∈ÒNW (R(α)∪ V 1(a)) can not be forced to 0 by an edge axiom either.

Now the analysis of the second term in (A.11) is completed by the same Markov
chain argument as in Case 1 above (noting that irreversibility of decisions still takes
place):

Pr[E and R(α) ∈R1]≤ Pr[α flips ≥ q′ coins and gets 0-answers] (A.17)

≤ (1− s−(1+ϵ))q′ (A.18)

≤ s−ϵr/2 . (A.19)

Adding (A.16) and (A.19) we obtain the lemma.

A.6 Random Graphs Are Almost Surely Clique-Dense

In this section we show that asymptotically almost surely an Erdős-Rényi random graph
G ∼ G (n, p) is (k, t, s,ϵ)-clique-dense for the right choice of parameters.
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Theorem A.6.1. For any real constant ϵ ∈ (0, 1/4), any sufficiently large integer n,
any positive integer k ≤ n1/4−ϵ, and any real ξ > 1, if G ∼ G (n, n−2ξ/(k−1)) is an
Erdős-Rényi random graph then with probability at least 1− exp(−pn) it holds that G is
(k, t, s,ϵ)-clique-dense with t = 32ξ/ϵ and s =

p
n.

As a corollary of Theorem A.5.5 and Theorem A.6.1 we obtain Theorem A.4.1, the
main result of this paper.

Proof of Theorem A.4.1. Clearly t ≥ 1 as required by Definition A.5.3. We can also
assume w.l.o.g. that t ≤ k since otherwise k/ξ2 ≤ 32/(ξε) ≤ O(1) and the bound be-
comes trivial. By plugging in the parameters given by Theorem A.6.1 to Theorem A.5.5
we immediately get the stated lower bound on the length of any regular refutation π
of Cliqueblock(G, k)

|π| ≥ Ω�sϵk/t2�≥ nΩ(k/ξ
2) .

We will spend the rest of this section proving Theorem A.6.1.
Let δ = 2ξ/(k − 1). We show that, with probability at least 1− e−

p
n, the random

graph G is (k, t, s,ϵ)-clique-dense for parameters as in the statement of the theorem,
r = 4k/t2 and q = n1−tδr

4kt .
Recall that q′ = ϵrs1+ϵ log s. Let us argue that the parameters we use satisfy con-

straints

tδr ≤ ϵ
2

, (A.20)

log k+ t r log n≤ n1−tδr

32k
· 2 log n

n1/2
, (A.21)

qn−tδrs
16t r

≥ n1+ϵ

256
, (A.22)

q′ ≤ qn−tδr

4
· log n

nϵ/2
, (A.23)

t r ≤ q
2

, (A.24)

which will be used further on in the proof.
As a first step note that

tδr =
8ξk

t(k− 1)
≤ ϵ

2
, (A.25)

and hence (A.20) holds. Equation (A.21) follows from the chain of inequalities

log k+ t r log n≤ 2t r log n=
8k log n

t
≤ k log n

16
≤ n1−tδr

32k
· 2 log n

n1/2
. (A.26)

To obtain (A.22) observe that

qn−tδrs
16t r

=
n1−2tδr+1/2

256k2
≥ n1−2tδr+2ϵ

256
≥ n1+ϵ

256
. (A.27)
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To see that (A.23) holds, note that

q′ = 2ϵkn(1+ϵ)/2 log n
t2

≤ k2n(1+ϵ)/2 log n
16kt

≤ n1−3ϵ/2 log n
16kt

≤ qn−tδr

4
· log n

nϵ/2
. (A.28)

Finally, for (A.24), we just observe that

t r =
4k
t
≤ k3

8k2
≤ n1−tδr

8kt
=

q
2

, (A.29)

using the fact that k ≥ t and k3 ≤ n1−tδr .

We must now prove that asymptotically almost surely G is (k, t, s,ϵ)-clique-dense
for the chosen parameterss. All probabilities in this section are over the choice of G,
and all previously introduced concepts like ÒNW (R), neighbour-denseness etc. should
be understood with respect to G as well (so that they are actually random variables
and events in this sample space). Let V = V (G) and V1 ∪ · · · ∪ Vk = V be a balanced
k-partition of V .

The fact that asymptotically almost surely Vi is (t r, tq)-neighbour-dense for all i ∈
[k] is quite immediate. First, for any i ∈ [k] and any R ⊆ V with |R| ≤ t r,

E
���ÒNVi

(R)
���= |Vi \ R|n−δ|R| ≥

�n
k
− t r
�

n−δt r ≥
�n

k
− q

2

�
n−δt r ≥ n1−δt r

2k
, (A.30)

where (A.30) follows from (A.24) and the trivial fact that q ≤ n
k . Hence, we can bound

the probability that there exists an i ∈ [k] such that Vi is not (t r, tq)-neighbour-dense
by

Pr
�∃i ∈ [k] ∃R ⊆ V, |R|= ⌊t r⌋ ∧ ��ÒNVi

(R)
��≤ tq
�

≤ k
�

n
t r

�
max

i,R
Pr
���ÒNVi

(R)
��≤ tq
�

(A.31)

≤ knt r max
i,R

Pr

���ÒNVi
(R)
��≤ n1−tδr

4k

�
(A.32)

≤ knt r exp

�
−n1−tδr

16k

�
(A.33)

≤ exp

�
−n1−tδr

32k
·
�

2− 2
log n
n1/2

��
(A.34)

≤ e−
p

n . (A.35)

We note that (A.31) is a union bound, (A.32) follows from the definition of q, (A.33) is
the multiplicative form of Chernoff bound (note that the events v ∈ ÒNVi

(R)(v ∈ V \R) are
mutually independent), (A.34) follows from (A.21), and (A.35) holds for large enough
n by (A.20) and the fact that ϵ < 1/4 and k < n1/4.



A.6. RANDOM GRAPHS ARE ALMOST SURELY CLIQUE-DENSE 51

All that is left to prove is that asymptotically almost surely G satisfies property 2 in
Definition A.5.3, that is that every (r, q)-neighbour-dense setW ⊆ V is (t r, r, q′, s)-mostly
neighbour-dense. For shortness let P be the event that G satisfies this property. We wish
to show that Pr[¬P] ≤ e−Ω(n), and it turns out that due to our choice of parameters we
can afford to use the crude union bound over all 2n choices of W .

To be more specific, let Q(W ) denote the event that W is (r, q)-neighbour-dense.
Given an (r, q)-neighbour-dense set W ⊆ V we will define a set SW which will be a “can-
didate witness” of the fact that W is (t r, r, q′, s)-mostly neighbour-dense. First observe
that, since W is (r, q)-neighbour-dense and q′ ≤ q by (A.23), any set R ⊆ V with |R| ≤ t r
and
��ÒNW (R)
�� ≤ q′ must be such that |R| > r. We will use a sequence of such sets R and

construct SW in a greedy fashion. To this end, the following definition will be useful. A
tuple of sets (R1, . . . , Rm) is said to be r-disjoint if

��Ri ∩
�∪

j<i R j

���≤ r for every i ∈ [m].
Fix an arbitrary ordering of the subsets of V . Define R⃗W = (R1, . . . , Rm) to be a

maximally long tuple such that, for every i = 1, . . . , m, the set Ri is the first in the
ordering such that |Ri | ≤ t r,

��ÒNW (Ri)
�� ≤ q′ and
��Ri ∩
�∪

j<i R j

��� ≤ r. Note that R⃗W is
r-disjoint. Now let SW =

∪
i≤m Ri .

Observe that, by maximality of R⃗W , any set R ⊆ V with |R| ≤ t r and
��ÒNW (R)
�� ≤ q′

must be such that |R ∩ S| > r. This implies that if |SW | ≤ s then SW witnesses the fact
that W is (t r, r, q′, s)-mostly neighbour-dense. Therefore we have that

Pr[¬P]≤ Pr[∃W ⊆ V, Q(W )∧ |SW |> s] . (A.36)

Moreover, letW be the collection of all pairs (W, R⃗) such thatW ⊆ V , R⃗= (R1, . . . , Rℓ)
for ℓ= ⌈s/t r⌉, R j ⊆ V and 0< |R j | ≤ t r for each j ∈ [ℓ], and R⃗ is r-disjoint. Notice that
if there exists an (r, q)-neighbour-dense W such that R⃗W = (R1, . . . , Rm) and |SW | > s,
then m ≥ ℓ and (W, (R1, . . . , Rℓ)) ∈ W. Furthermore, by definition of R⃗W , for every
j ∈ [ℓ] it holds that ��ÒNW (R j)

��≤ q′. Hence we can conclude that

Pr[¬P]≤ Pr
�∃(W, R⃗) ∈W, Q(W )∧∀ j ∈ [ℓ], ��ÒNW (R j)

��≤ q′
�

(A.37)

≤ 2nnt rℓ max
(W,R⃗)∈W

Pr
�
Q(W )∧∀ j ∈ [ℓ], ��ÒNW (R j)

��≤ q′
�

(A.38)

≤ 2nns max
(W,R⃗)∈W

Pr
�
Q(W )∧∀ j ∈ [ℓ], ��ÒNW (R j)

��≤ q
4

n−tδr
�

, (A.39)

where (A.39) follows for n large enough from the bound in (A.23).
Now fix (W, R⃗) ∈ W and let Rd

j (resp. Rc
j) be the subset of R j disjoint from (resp.

contained in)
∪

j′< j R j′ . Since |Rc
j | ≤ r by definition, it holds that if W is (r, q)-neigh-

bour-dense then
��ÒNW (Rc

j)
��> q. Let F( j) be the event that

��ÒNW (Rc
j)
��> q and
��ÒNW (R j)
��≤

q
4 n−tδr . Note that Pr

�
Q(W )∧∀ j ∈ [ℓ], ��ÒNW (R j)

��≤ q
4 n−tδr
�
is at most Pr
�∀ j ∈ [ℓ], F( j)�.

Let F′( j) be the event that F( j′) holds for all j′ ∈ [ j − 1]. We have that

Pr
�∀ j ∈ [ℓ], F( j)�=∏

j∈[ℓ]
Pr
�
F( j)
�� F′( j)� . (A.40)
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We can consider the factors of the previous product separately and bound each one by

Pr
�
F( j)
�� F′( j)�≤ ∑

U⊆W|U |≥q

Pr
h��ÒNU(R

d
j )
��≤ q

4
n−tδr
��� ÒNW (R

c
j) = U ∧ F′( j)
i

· Pr
hÒNW (R

c
j) = U
��� F′( j)i (A.41)

≤ ∑
U⊆W|U |≥q

Pr
h��ÒNU(R

d
j )
��≤ q

4
n−tδr
i
· Pr
hÒNW (R

c
j) = U
��� F′( j)i (A.42)

≤ ∑
U⊆W|U |≥q

exp

�
−qn−tδr

16

�
· Pr
hÒNW (R

c
j) = U
��� F′( j)i (A.43)

= exp

�
−qn−tδr

16

�
·∑

U⊆W|U |≥q

Pr
hÒNW (R

c
j) = U
��� F′( j)i (A.44)

≤ exp

�
−qn−tδr

16

�
. (A.45)

Equation (A.42) follows from the independence of any two events that involve disjoint
sets of potential edges and (A.43) follows from the multiplicative Chernoff bound and
the fact that

E
���ÒNU(R

d
j )
���= |U \ Rd

j |n−δ|Rd
j | ≥ (|U | − t r)n−δt r ≥ q

2
n−δt r . (A.46)

So, putting everything together, we have that

Pr[¬P]≤ 2nns exp

�
−qn−tδrℓ

16

�
≤ e(log2)n+

p
n log n−(n1+ϵ)/256 ≤ e−Ω(n) , (A.47)

where the last inequality holds for n large enough, and the second to last inequal-
ity follows immediately from the bound in (A.22). This concludes the proof of The-
orem A.6.1.

A.7 State-of-the-Art Algorithms for Clique

In this section we describe state-of-the-art algorithms for maximum clique and explain
how regular resolution proofs bound from below the running time of these algorithms.

At the heart of most (if not all) of the state-of-the-art algorithms for maximum clique
is a backtracking search, which in its simplest form examines all maximal cliques by
enlarging a set of vertices that form a clique and backtracking when it certifies that the
current set forms a maximal clique. A classical example of such a backtracking search is
the BronKerbosch [BK73] algorithm which enumerates all maximal cliques in a graph.
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This algorithm can be adapted to find a maximum clique as done in [CP90] improving
the running time considerably by using a branch and bound strategy. At some point in
the search tree it becomes clear that the current search-branch will not lead to a clique
larger than the largest one found so far—in such cases the algorithm cuts off the search
and backtracks immediately.

The most successful algorithms in practice are search trees with clever branch and
bound strategies. In this section we will discuss the algorithm by Östergård [Öst02] us-
ing Russian doll search and a collection of algorithms that use colour-based branch and
bound strategies [Woo97, Fah02, TS03, TK07, KJ07, TSH+10, ST10, SRJ11, SMRH13,
SLB14, SLB+16, TYH+16].

Östergård’s algorithm Östergård’s algorithm [Öst02] is a branch and bound algorithm
that uses Russian doll search as a pruning strategy: it considers smaller subinstances re-
cursively and solves them in ascending order using previous solutions as upper bounds.
This algorithm, which is the main component of the Cliquer software, is often used
in practice and has been available online since 2003 [NÖ03]. Cliquer is also the soft-
ware of choice to compute maximal cliques in the open source mathematical software
SageMath [S+17].

The Cliquer(G) algorithm described in Figure 2 is essentially the same as Algorithm
2 in [Öst02]. The algorithm first permutes the vertices of G according to some cri-
teria. Let v1, . . . , vn be the enumeration of V (G) induced by said permutation, and
Vi = {vi , . . . , vn} for i ∈ [n]. In practice this permutation has a large impact on the
running time of the algorithm, but for our analysis the knowledge of the specific or-
der is irrelevant. In the main loop (lines 5–8) subgraphs of G are considered and at
each iteration the size of a maximum clique containing only vertices of Vi is stored in
bounds[i]. The algorithm keeps the best solution (largest clique) found so far in the
global variable incumbent which is initially empty. The array bounds and the flag found
are global variables. The current growing clique is stored in solution and passed as an
argument of the subroutine expand together with the current subgraph H ⊆ G being
considered. The main subroutine expand recursively goes through all vertices of H from
smallest to largest index. First note that if the size of the current growing clique plus
|H| is not larger than the current maximum clique (line 13) then this branch can be
cut. Moreover, if vi is the smallest-index vertex in H then V (H) ⊆ Vi and bounds[i] is
an upper bound on the size of a maximum clique in H. This implies that this branch
can be cut if the size of the current growing clique plus bounds[i] is not larger than the
current maximum clique (line 15). If it is larger, the algorithm branches on the vertex
vi . First vi is taken to be part of the solution: it is added to (a copy of) the current
growing solution, (a copy of) the graph is updated to contain only neighbours of vi and
a recursive call is made (lines 16–18). If the recursive call finds a clique larger than
the current largest clique, it sets the flag found to true. This allows the algorithm can
return to the main routine (line 8) since a maximum clique containing only vertices of
Vi can be at most one unit larger than a maximum clique containing only vertices of
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Algorithm 2 Cliquer(G) algorithm

1 Cliquer(G):
2 begin
3 G← permute(G)
4 incumbent← ;
5 for i = n down to 1 do
6 found← false
7 expand(G[Vi ∩ N(vi)], {vi})
8 bounds[i]← |incumbent|
9 return incumbent

10 expand(H, solution):
11 begin
12 while V (H) ̸= ; do
13 if |solution|+ |V (H)| ≤ |incumbent| then return
14 i←min{ j | v j ∈ V (H)}
15 if |solution|+ bounds[i]≤ |incumbent| then return
16 solution′← solution∪ {vi}
17 V ′← V (H)∩ N(vi)
18 expand(H[V ′], solution′)
19 if found= true then return
20 H ← H \ {vi}
21 if |solution′|> |incumbent| then
22 incumbent← solution′
23 found← true

24 return

Vi+1. If no larger clique was found, the algorithm then proceeds to the opposite branch
choice, that is, taking vertex vi to not be in the solution (line 20) and considering the
next vertex in the ordering. If V (H) is empty and a larger clique has been found, the
best solution so far is updated and the flag found is set to true (lines 22–23).

We now argue that the running time of the Cliquer(G) algorithm is bounded from
below by the size of a regular resolution refutation of Cliqueblock(G, k) up to a constant
factor. First note that a straightforward modification of the Cliquer(G) algorithm gives
an algorithm that determines whether G contains a block-respecting k-clique.

Given a graph G that does not contain a block-respecting k-clique, the last call of the
subroutine expand in the main loop (lines 5–8, when i is set to 1) can be represented
by an ordered decision tree with labelled leafs. A decision tree is said to be ordered
if there exists a linear ordering of the variables such that if x is queried before y then
x ≺ y . In our setting, the order is determined by the permutation of the vertices, and
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without loss of generality we assume vi ≺ v j if i < j. For each leaf, if R is the set of
vertices identified as clique members by the branch leading to this leaf, then the leaf is
labelled either by a pair (u, v) such that u, v ∈ R and there is no edge between u and v
or by an index ℓ ∈ [k] such that all vertices in the ℓth block are outside the clique, or
by a vertex vi such that i = min{ j | v j ∈ N(R)} and the largest clique containing only
vertices of Vi has size at most k − |R| − 1. For each vertex vi that labels some leaf, we
construct the decision tree corresponding to the ith call of the subroutine expand.

In order to weave these decision trees into a read-once branching program, at each
leaf labelled vi we query to all non yet queried vertices v j such that j < i and v j is
in the same block as vi . Let Bi denote the set of vertices. Observe that taking any
vertex in Bi to be in the clique yields an immediate contradictions since Bi ∩ N(R) = ;
by definition of i. Moreover note that the branch leading to the leaf where all of Bi

is taken to be outside the clique does not contain any query to vertices in Vi . We can
therefore identify this leaf with the root of the decision tree corresponding to vi and still
maintain regularity. After repeating this procedure at every leaf labelled by some vertex,
only leafs labelled by indices ℓ ∈ [k] and by pairs (u, v) remain, which have a direct
correspondence to falsified clauses of Cliqueblock(G, k). Therefore, the directed graph
obtained by this process corresponds to a read-once branching program that solves the
falsified clause search problem on Cliqueblock(G, k) and the bound on the running time
follows immediately.

Colour-based branch and bound algorithms We consider a class of algorithmswhich
are arguably the most successful in practice. An extended survey together with a com-
putational analysis of algorithms published until 2012 can be found in [Pro12] and an
overview of algorithms reported since then in [McC17]. These algorithms are branch
and bound algorithms that use colouring as a bounding—and often also as a branching—
strategy. The basic idea is that if a graph can be coloured with ℓ colours then it does
not contain a clique larger than ℓ.

The MaxClique(G) algorithm described in Figure 3, a generalized version of Al-
gorithm 2.1 in [McC17], is a basic maximum clique algorithmwhich uses a colour-based
branch and bound strategy. The algorithm keeps the best solution (largest clique) found
so far in the global variable incumbent which is initially empty. The current growing
clique is stored in solution and passed as an argument of the subroutine expand together
with the current subgraph H ⊆ G being considered. The subroutine colourOrder(H)
(line 8) returns an ordering of the vertices in H, say v1, v2, . . . , vn, and for every i ∈ [n]
an upper bound on the number of colours needed to colour the graph induced by ver-
tices v1 to vi . The vertices are then considered in reverse order. If the vertex v is being
considered and the size of the current growing clique plus the (upper bound on the)
number of colours needed to colour the remaining graph is not larger than the current
maximum clique (line 11) then this branch can be cut. If it is larger, the algorithm
branches on the vertex v. First v is taken to be part of the solution: v is added to (a
copy of) the current growing solution, (a copy of) the graph is updated to contain only
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Algorithm 3 MaxClique(G) algorithm

1 MaxClique(G):
2 begin
3 global incumbent← ;
4 expand(G,;)
5 return incumbent

6 expand(H, solution):
7 begin
8 (order, bounds)← colourOrder(H)
9 while V (H) ̸= ; do

10 i← |V (H)|
11 if |solution|+ bounds[i]≤ |incumbent| then return
12 v← order[i]
13 solution′← solution∪ {v}
14 V ′← V (H)∩ N(v)
15 expand(H[V ′], solution′)
16 H ← H \ {v}
17 if |solution′|> |incumbent| then incumbent← solution′
18 return

neighbours of v and a recursive call is made (lines 13–15). If the recursive call finds a
clique larger than the current largest clique, the best solution so far is updated (line 17).
The algorithm proceeds to the opposite branch choice, that is, considering vertex v not
in the solution (line 16). Returning to the loop the algorithm continues to consider the
next vertex in the ordering.

It was reported in [CZ12] that it is possible to capture the algorithms for solv-
ing the maximum clique problem in [CP90, Fah02, TS03, TK07, KJ07, TSH+10] in
a same framework. The general algorithm they present is an iterative version of the
MaxClique(G) algorithm. We observe that MaxClique(G) captures also the more re-
cent algorithms in [ST10, SRJ11, SMRH13, SLB14, SLB+16, TYH+16]. The differences
in these algorithms reside in the colouring procedure and in how the graph operations
are implemented (see [Pro12, McC17] for details). For our purpose, that is, in order
to show that the running time of these algorithms can be bounded from below by the
length of the shortest regular resolution refutation of the k-clique formula, we assume
that the colouring algorithm and the graph operations take constant time and prove
the lower bound for this general framework. Moreover, we can assume that optimal
colouring bounds and optimal ordering of vertices are given.

We now argue that the running time of the MaxClique(G) algorithm is bounded
from below by the size of a regular resolution refutation of Cliqueblock(G, k) up to a
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multiplicative factor of 2knO(1). We first note that a straightforward modification of the
MaxClique(G) algorithm gives an algorithm, which we refer to as Clique(G, k), that
determines whether G contains a k-clique. Given a graph G that does not contain a
k-clique, an execution of Clique(G, k) can be represented by a search tree with leafs
labelled by a subgraph H ⊆ G of potential clique-members and a number q such that
the branch leading to this leaf has identified k−q clique members, has not queried any
vertex of H, and H is (q− 1)-colourable. Note that a read-once branching program can
simulate this search tree and, by Proposition A.3.3 and the equivalence between read-
once branching programs and regular resolution, at each leaf establish that H does not
contain a q-clique in size at most 2q ·q2 ·|V (H)|2. The bound on the running time follows
directly. Observe that establishing that H does not contain a q-clique is done in a read-
once fashion by querying only vertices of H. Since the vertices of H were not queried
earlier on this branch, the whole branching program is read-once.

A.8 Concluding Remarks

In this paper we prove optimal average-case lower bounds for regular resolution proofs
certifying k-clique-freeness of Erdős-Rényi graphs not containing k-cliques. These lower
bounds are also strong enough to apply for several state-of-the-art clique algorithms
used in practice.

The most immediate and compelling question arising from this work is whether
the lower bounds for regular resolution can be strengthened to hold also for general
resolution. A closer study of our proof reveals that there are several steps that rely on
regularity. However, there is no connection per se between regular resolution and the
abstract combinatorial property of graphs that we show to be sufficient to imply regular
resolution lower bounds. Thus, it is tempting to speculate that this property, or perhaps
some modification of it, might be sufficient to obtain lower bounds also for general
resolution. If so, a natural next step would be to try to extend the lower bound further
to the polynomial calculus proof system capturing Gröbner basis calculations.

Another interesting question is whether the lower bounds we obtain asymptotically
almost surely for random graphs can also be shown to hold deterministically under the
weaker assumption that the graph has certain pseudorandom properties. Specifically,
is it possible to get an nΩ(log n) length lower bound for the class of Ramsey graphs? A
graph on n vertices is called Ramsey if it has no set of ⌈2 log2 n⌉ vertices forming a clique
or independent set. It is known that for sufficiently large n a random graph sampled
from G (n, 1/2) is Ramsey with high probability. Is it true that for a Ramsey graph G
on n vertices the formula Clique(G, ⌈2 log2 n⌉) requires (regular) resolution refutations
of length nΩ(log n)? Such a lower bound is known for tree-like resolution [LPRT17] and
proving it for general resolution would have interesting consequences in other areas of
proof complexity [DMS11].
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Abstract

We obtain the first true size-space trade-offs for the cutting planes proof sys-
tem, where the upper bounds hold for size and total space for derivations with
constant-size coefficients, and the lower bounds apply to length and formula space
(i.e., number of inequalities in memory) even for derivations with exponentially
large coefficients. These are also the first trade-offs to hold uniformly for resolu-
tion, polynomial calculus and cutting planes, thus capturing the main methods of
reasoning used in current state-of-the-art SAT solvers.

We prove our results by a reduction to communication lower bounds in a round-
efficient version of the real communication model of [Krajíček ’98], drawing on and
extending techniques in [Raz and McKenzie ’99] and [Göös et al. ’15]. The commu-
nication lower bounds are in turn established by a reduction to trade-offs between
cost and number of rounds in the game of [Dymond and Tompa ’85] played on dir-
ected acyclic graphs.

As a by-product of the techniques developed to show these proof complexity
results, we obtain a separation between monotone-ACi−1 and monotone-NCi , and
an exponential separation betweenmonotone-ACi−1 andmonotone-ACi , improving
exponentially over the superpolynomial separation in [Raz and McKenzie ’99].
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B.1 Introduction

Ever since the discovery of NP-completeness by Cook and Levin in [Coo71, Lev73],
the problem of how hard it is to decide satisfiability of formulas in propositional logic
has played a leading role in theoretical computer science. Although the conventional
wisdom is that SAT should be a very hard problem—to the extent that the Exponential
Time Hypothesis [IP01] concerning its worst-case complexity is a standard assumption
used in many other hardness results—essentially no non-trivial lower bounds on the
time complexity of the SAT problem are known.

A less ambitious goal is to ask for lower bounds if not only the running time but
also the memory usage of the algorithm is restricted. Yet it took until [For00] to
rule out a linear-time, logarithmic-space algorithm for SAT. Later research has shown
that refuting unsatisfiable formulas on random-access machines cannot be done non-
deterministically in simultaneous time n41/3

and space no(1) [DvMW11] and SAT cannot
be decided deterministically in simultaneous time n1.8 and space no(1) [Wil08]. On Tur-
ing machines, no non-deterministic algorithm solving SAT in time T and space s can
achieve T ·s = n2/ log3 n [San01]. (See [vM07] for a good survey of the area with more
details on this kind of results.)

For a problem that is believed to require exponential time, the results listed above
might not seem very impressive. Yet they should not necessarily be viewed only as
an illustration of the weaknesses of current techniques for proving lower bounds. It
is important to realize that the adversary is formidable—applied research in the last
15–20 years has led to the development of amazingly efficient algorithms, so-called SAT
solvers, that solve many real-world instances with millions of variables, and do so in
linear time. Today, practitioners often think of SAT as an easy problem to reduce to,
rather than a hard problem to reduce from (we refer the reader to [BHvMW09] for
more on this fascinating topic).

Virtually the only tool currently available for a rigorous analysis of the perform-
ance of such SAT solvers is proof complexity [CR79], where one studies the methods of
reasoning used by the corresponding algorithms. The transcript of the computations
made can be viewed as a formal proof applying the relevant method of reasoning, and
proof complexity analyses the resources needed when all computational choices are
made optimally (i.e., non-deterministically). Even though this is quite a challenging
adversarial setting, proof complexity has nevertheless managed to give tight exponen-
tial lower bounds on the worst-case running time for many approaches for SAT used in
practice by lower-bounding proof size.

The focus of this paper is on time-space trade-offs in computational models describ-
ing current state-of-the-art SAT solvers. This research is partly driven by SAT solver run-
ning time and memory usage—in practice, space consumption can be almost as much
of a bottleneck as running time—but is also motivated by the fundamental importance
of time and space complexity in computational complexity.
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B.1.1 Previous Work on Proof Complexity Trade-offs

In resolution [Bla37], which is arguably the most well-studied proof system in proof
complexity, the input is an unsatisfiable formula in conjunctive normal form (CNF) and
new disjunctive clauses are derived from this formula until an explicit contradiction is
reached (in the form of the empty clause without literals). Resolution is also the method
of reasoning underlying the currently most successful SAT solving paradigm based on
so-called conflict-driven clause learning (CDCL) [BS97, MS99, MMZ+01]. The question
of time-space trade-offs for resolution was first raised by Ben-Sasson in 2002 (journal
version in [Ben09]), who also obtained such trade-offs for the restricted subsystem of
tree-like resolution. Size-space trade-offs for general, unrestricted resolution were later
shown in [Nor09b, BN11, BBI16, BNT13].

In contrast to the trade-off results for random-access and Turing machines reviewed
above, in these more limited models of computation one can obtain exponential lower
bounds on proof size (corresponding to running time) for proofs in sublinear but poly-
nomial space [Nor09b, BN11], and results in [BBI16, BNT13] even exhibit trade-offs
where size has to be superpolynomial and space has to be superlinear simultaneously.
Another difference is that these results are true trade-offs in the sense that it is actually
possible to refute the formulas both in small size and small space, only not simultan-
eously. A third nice feature of the trade-offs are that the upper bounds are on proof size
and total space, whereas the (sometimes tightly matching) lower bounds are on length
and formula space, meaning that one only charges one time unit for each derivation
step regardless of its complexity, and only one space unit per “formula” (for resolution:
per clause) regardless of how large it is. Thus, the upper bounds are algorithmically
achievable, while the lower bounds hold in a significantly stronger model.

A stronger proof system than resolution is polynomial calculus [CEI96, ABRW02],
where the clauses of a formula are translated to multilinear polynomials and calcu-
lations inside the ideal generated by these polynomials (basically corresponding to a
Gröbner basis computation) establishes unsatisfiability. Among other things, polyno-
mial calculus captures CDCL solvers extended with reasoning about systems of linear
equations mod 2. The first size-space trade-offs for polynomial calculus—which were
not true trade-offs in the sense discussed above, however—were obtained in [HN12],
and these results were further improved in [BNT13] to true trade-offs essentially match-
ing the results cited above for resolution except for a small loss in parameters.

Another proof system that is also stronger than resolution and that has been the fo-
cus of much research is cutting planes [CCT87], which formalizes the integer linear
programming algorithm in [Gom63, Chv73] and underlies so-called pseudo-Boolean
SAT solvers. In cutting planes the clauses of a CNF formula are translated to linear
inequalities, which are then manipulated to derive a contradiction. Thus, the question
of Boolean satisfiability is reduced to the geometry of polytopes over the real numbers.
Cutting planes is much more poorly understood than resolution and polynomial calcu-
lus, however, and size-space trade-offs have proven elusive. The results in [HN12] apply
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not only to resolution and polynomial calculus but also to cutting planes, and were im-
proved further in [GP18] to hold for even stronger proof systems, but unfortunately are
not true trade-offs in the sense discussed above.

The problem is that what is shown in [HN12, GP18] is only that proofs in small
space for certain formulas have to be very large, but it is not established that these
formulas can be refuted space-efficiently. In fact, for resolution it can be shown using
techniques from [BN08] that such small-space proofs provably do not exist, and for
polynomial calculus there is circumstantial evidence for a similar claim. As discussed
in Section B.3, this turns out to be an inherent limitation of the technique used.

In a recent surprising paper [GPT15], it was shown that cutting planes can refute
any formula in constant space if we only count the number of lines or formulas. Plug-
ging this result into [HN12, GP18] yields a trade-off of sorts, since “small-space” proofs
will always exist, but the catch is that such proofs will have exponentially large coeffi-
cients. This means that these trade-offs do not seem very “algorithmically relevant” in
the sense that such proofs could hardly be found in practice, and saying that a proof with
exponential-size coefficients has “constant space” somehow does not feel quite right.

B.1.2 Our Proof Complexity Contributions

In this paper we report the first true, algorithmically realizable trade-offs for cutting
planes, where the upper bounds hold for proof size and total space and the lower bounds
apply to proof length and formula space (i.e., number of inequalities). The trade-offs
also hold for resolution and polynomial calculus, making them the first trade-offs that
hold for essentially all methods of reasoning used in the most successful SAT solvers to
date.1

Below, we state two examples of the kind of trade-offs we obtain (referring the
reader to Section B.2 for the missing formal definitions). In the rest of this section we
will focus on cutting planes, since this proof system is the main target of this work.
However, all the lower bounds stated also hold for polynomial calculus (and for the
strictly weaker proof system resolution), and since all our upper bounds are actually
proven in resolution they transfer to both polynomial calculus and cutting planes.

The first result is a “robust trade-off” that holds all the way from polylogarithmic to
polynomial space as stated next.

Theorem B.1.1 (Informal). There exists an explicitly constructible family of 6-CNF for-
mulas {FN}∞N=1 of size Θ(N) such that:

1We remark that this ignores the issue of formula preprocessing techniques, which are heavily used in
most state-of-the-art SAT solvers, and some of which potentially require the full extended Frege proof system
for a complete formal description (but can also sometimes cause a provable exponential loss in reasoning
power). Since in practice SAT solvers fail to solve many of the combinatorial benchmark formulas that are
hard for resolution, polynomial calculus, and cutting planes but easy for (even non-extended) Frege, however,
and since in addition it is usually not hard to come up with formulas that foil any concrete preprocessing
techniques actually used, this seems like a reasonable simplification.
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Figure B.1: Pictorial illustrations of trade-offs in Theorems B.1.1 and B.1.2

1. FN can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O
�
N2/5
�
.

2. FN can be refuted by cutting planes with constant-size coefficients in total space
O(log4 N) and size 2O(log4 N).

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in
formula space less than N1/10−ε requires length greater than 2Ω(log2 N).

The second trade-off holds over a smaller space range, but causes an exponential
and not just superpolynomial blow-up in proof size.

Theorem B.1.2 (Informal). There exists an explicitly constructible family of 6-CNF for-
mulas {FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O
�
N2/5
�
.

2. FN can be refuted by cutting planes with constant-size coefficients in total space
O
�
N1/40
�
and size 2O(N1/40).

3. Any cutting planes refutation of FN , even with coefficients of unbounded size, in
formula space less than N1/20−ε requires length greater than 2Ω(N

1/40).

See Figure B.1 for an illustration of these results, where blue dots denote provable
upper bounds on time-space parameters of cutting planes refutations and the shaded
red areas show ranges of parameters that are impossible to achieve.
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B.1.3 Previous Work in Monotone Circuit Complexity

Since this paper also makes contributions to monotone circuit complexity, we next re-
view some relevant background in this area. After superpolynomial lower bounds on
the size of monotone circuits computing explicit functions were obtained in [Raz85,
And85] (see also [BS90]), the first step towards the natural next goal of establishing a
depth hierarchy for monotone circuits was taken in [KW90], proving that connectivity,
which is in monotone-NC2, requires depth Ω(log2 n) for monotone circuits with fan-in
2. This implies a separation between monotone-NC1 and monotone-NC2. The same
approach was used in [RM99] to prove a separation between monotone-NCi−1 and
monotone-NCi for every i. This result can be rephrased as saying that there is a family
of Boolean functions

�
f i
	
such that f i can be computed by monotone circuits of depth

logi n, fan-in 2, and polynomial size but cannot be computed by any monotone circuit
of depth o(logi n) and fan-in 2.

Going into more details, the function in [RM99] that witnesses the separation be-
tween monotone-NCi−1 and monotone-NCi can be computed by a monotone circuit
of depth logi−1 n, polynomial fan-in, and polynomial size, and therefore the separ-
ation is between monotone-NCi−1 and monotone-ACi−1. This separation was later
refined in [Joh01] to circuits of semi-unbounded fan-in—i.e., with AND-gates of fan-
in 2 and OR-gates of unbounded fan-in, leaving the question of a separation between
monotone-ACi−1 and monotone-NCi open.

We can also view the separation as between monotone-ACi−1 and monotone-ACi ,
since monotone-ACi−1 is contained in monotone-NCi , however, this separation only
guarantees a superpolynomial circuit size lower bound. Furthermore, the function f i

only depends on log40i n variables and so it can be computed by a monotone DNF of
size 2log40i n, i.e., there is a quasipolynomial upper bound.

We remark that it is clearly not possible to prove a superpolynomial separation
between monotone-NCi−1 and monotone-NCi in view of the simple fact that circuits
in these classes have fan-in 2, and hence it only makes sense to talk about superpolyno-
mial versus exponential separations in the monotone-AC hierarchy. It should be noted
that exponential separations between monotone circuits of bounded depth were previ-
ously known, but only for depth less than logarithmic. It was shown in [KPPY84] that
the complete tree of depth k, arity n1/k, and size Θ(n), with alternating levels of AND
and OR, requires size 2Ω(n

1/k/k) to compute with circuits of depth k− 1. This result was
later reproven in [NW93] using the communication complexity of the pointer jumping
function (see also [RY16]).

B.1.4 Our Monotone Circuit Complexity Contributions

In this paper we solve the open problem of [Joh01] by separatingmonotone-ACi−1 from
monotone-NCi .



B.1. INTRODUCTION 67

Theorem B.1.3. For every i ∈ N there is a Boolean function over n variables that can
be computed by a monotone circuit of depth logi n, fan-in 2, and size O(n), but for which
every monotone circuit of depth O(logi−1 n) requires superpolynomial size.

In addition we establish an exponential separation in the monotone-AC hierarchy.
More precisely, for each i ∈ Nwe exhibit a Boolean function f i that can be computed by
monotone circuits of depth logi n but such that every monotone circuit of depth at most
O(logi−1 n) requires size 2nΩ(1) (where the hidden constant in the lower bound depends
inversely on that in the upper bound).

Theorem B.1.4. For every i ∈ N there is a Boolean function over n variables that can be
computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but for which
every monotone circuit of depth q logi−1 n requires size 2Ω(n

1/(10+4ε)q).

B.1.5 Discussion of Techniques

Let us now briefly discuss the techniques we use to establish the above results, focusing
for concreteness on Theorems B.1.1 and B.1.2. These theorems are proven by a careful
chain of reductions as follows.

1. Our first step is to use the connection made explicit in [HN12], and also used
in [GP18], that short and space-efficient proofs for a CNF formula F can be con-
verted to efficient communication protocols for the falsified clause search problem
for F . Going beyond [HN12, GP18], however, we make the simple but absolutely
crucial additional observation that protocols obtained in this way are also round-
efficient. Furthermore, in contrast to [HN12, GP18] we do not study randomized
communication, but instead focus on the real communication model introduced
by Krajíček [Kra98] with the purpose of getting a tighter correspondence with
cutting planes.

2. We next generalize the communication-to-decision-tree simulation theorem for
composed search problem in the celebrated paper by Göös et al. [GPW15] to the
real communication model, and then extend it further to be able to handle rounds
using the parallel decision trees introduced by Valiant [Val75b]. This part is in-
spired by [BEGJ00], where the simulation theorem in the precursor [RM99]
of [GPW15] was proven for real communication but without taking round effi-
ciency into account.

3. To leverage this machinery we need a base CNF search problem, and just as in
[BN11, GP18, HN12, BNT13] (andmany other papers) the pebbling formulas PebG
from [BW01] turn out to be handy here, provided that they are defined over ap-
propriately chosen directed acyclic graphs G. These formulas are then lifted (cor-
responding to composition of search problems) as described in [BHP10], though
the parameters of the lifting are different (and unfortunately significantly worse
than in [HN12]).
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4. The following step is the relatively straightforward observation that efficient par-
allel decision trees for formulas PebG yield good strategies in the pebble game
of Dymond and Tompa [DT85] played on the underlying graph G. At the same
time, this is a somewhat unexpected twist, since in previous papers such as [BN08,
BN11, BNT13] size and space lower bounds for pebbling formulas always followed
from the black-white pebble game [CS76] on G, but we cannot make use of that
latter game here.

5. Sincewe have to use the Dymond–Tompa game rather than the black-white pebble
game, as a consequence we also have to use different graphs than in [BN11,
HN12, BNT13]—in particular, modifying the construction of graphs with good
black-white pebbling trade-offs in [LT82]—and as a concluding step we prove
Dymond–Tompa trade-offs for these graphs.

Putting all these pieces together, we obtain a general theorem saying that graphs
with Dymond–Tompa trade-offs yield explicit 6-CNF formulas with size-space trade-offs
for cutting planes (and polynomial calculus and resolution). Theorem B.1.4 follows by
a similar chain of reductions.

B.1.6 Paper Outline

The rest of this paper is organized as follows. In Section B.2 we give amore detailed over-
view of the steps in the proofs of our main theorems, introducing formal definitions of
the concepts discussed above as need arises. In Section B.3 we translate proofs into com-
munication protocols. The heart of the paper is then in Section B.4, where we establish
that communication protocols for lifted search problems can be simulated by decision
trees for the original search problems. In Section B.5 we show how decision trees for
our search problem for pebbling formulas can be converted to Dymond–Tompa game
strategies for the corresponding graphs, and in Section B.6 we show Dymond–Tompa
trade-offs. After having established the upper bounds needed for our proof complex-
ity trade-offs in Section B.7, we put all the pieces together in Section B.8. Section B.9
then discusses how we can use the same tools to obtain circuit complexity separations.
Finally, we make some concluding remarks in Section B.10.

B.2 Preliminaries and Proof Overview

In this section, we describe which components are needed for our results stated in
Section B.1 and how they fit together. Our goal is to give an accessible high-level outline
of the proofs, but still make clear what are the main technical points in the arguments
and also indicate some of the challenges that have to be overcome.

Let us start by reviewing the concepts we need from proof complexity. Throughout
this paper all logarithms are to base 2 unless otherwise specified, and we write [n] to
denote the set {1, 2, . . . , n}.
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B.2.1 Proof Complexity Basics and Cutting Planes

For x a Boolean variable, a literal over x is either the variable x itself or its negation,
denoted x . It will also be convenient to use the notation x1 = x and x0 = x . A clause
C = a1 ∨ · · · ∨ ak is a disjunction of literals and a CNF formula F = C1 ∧ · · · ∧ Cm is
a conjunction of clauses. We will think of clauses and CNF formulas as sets, so that
the ordering is inconsequential and there are no repetitions. A k-CNF formula is a CNF
formula consisting of clauses containing at most k literals.

We write α,β to denote truth value assignments, i.e., functions to {0, 1}, where we
identify 0 with false and 1 with true (thus, x b is the literal satisfied by setting x = b).
We have the usual semantics that a clause is true under α, or satisfied by α, if at least
one literal in it is true, and a CNF formula is satisfied if all clauses in it are satisfied. We
write ⊥ to denote the empty clause without literals, which is false under all truth value
assignments.

Following [ABRW02, ET01], we view a proof of unsatisifiability of a CNF formula F ,
or refutation of F , as a non-deterministic computation, with a special read-only input
tape from which the clauses of the formula F being refuted (which we refer to as ax-
ioms) can be downloaded and a working memory where all derivation steps are made.
In a cutting planes (CP) derivation, memory configurations are sets of linear inequalit-
ies
∑

j a j x j ≥ c with a j , c ∈ Z. We translate clauses C to linear inequalities L(C) by

identifying the clause
∨

j x
b j

j with the inequality
∑

j(−1)1−b j x j ≥ 1 −∑ j(1 − b j). A
CP refutation of F is a sequence of configurations (L0, . . . ,Lτ) such that L0 = ;, the
inequality 0 ≥ 1 occurs in Lτ, and for t ∈ [τ] we obtain Lt from Lt−1 by one of the
following rules:

Axiom download Lt = Lt−1 ∪ {L} for L being either the encoding L(C) of an axiom
clause C ∈ F or a variable axiom x j ≥ 0 or −x j ≥ −1 for any variable x j .

Inference Lt = Lt−1 ∪ {L} for L inferred by addition
∑

j a j x j ≥ c
∑

j b j x j ≥ d∑
j(a j + b j)x j ≥ c + d

,

multiplication
∑

j a j x j ≥ c∑
j ka j x j ≥ kc

, or division
∑

j ka j x j ≥ c∑
j a j x j ≥ ⌈c/k⌉

for k ∈ N+.

Erasure Lt = Lt−1 \ {L} for some L ∈ Lt−1.

The length of a CP refutation is the number of linear inequalities L appearing in
download and inference steps, counted with repetitions. We obtain the size of a refuta-
tion by also summing the sizes of the coefficients and constant terms in the inequalities,
i.e., each inequality

∑
j a j x j ≥ c contributes log|c|+∑ j log|a j |. The formula space of a

configuration L = {∑ j ai, j x i, j ≥ ci | i ∈ [s]} is the number of inequalities s in it, and
the total space of L is

∑
i∈[s]
�
log|ci |+∑ j log|ai, j |

�
. We obtain the formula space or total

space of a refutation by taking the maximum over all configurations in it. Finally, the
length, size, formula space, and total space of refuting a formula F is obtained by taking
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the minimum over all CP refutations of the formula with respect to the corresponding
complexity measure.

B.2.2 Composed Search Problems and Lifted CNF Formulas

Informally speaking, the idea behind lifting, or composition, is to take a relation over
some domain and extend it to tuples from the same domain by combining it with a se-
lector function that determines on which coordinates from the tuples the relation should
be evaluated.

Let S be any relation on the Cartesian product A×Q. We will think of S as a search
problem with input domain A and output range Q, where on any input a ∈ A the task
is to find some q ∈ Q such that (a, q) ∈ S (assuming that S is such that there always
exists at least one solution). Throughout this paper, we will have A= {0, 1}m for some
m ∈ N+, so for simplicity we fix A to be such a domain from now on.

For any ℓ ∈ N+, we define the lift of length ℓ of S to be a new search problem
Liftℓ(S) ⊆
�
[ℓ]m×{0, 1}m·ℓ�×Q with input domain [ℓ]m×{0, 1}m·ℓ and output range Q

such that for any x ∈ [ℓ]m, any bit-vector {yi, j}i∈[m], j∈[ℓ], and any q ∈Q, it holds that

(x , y, q) ∈ Liftℓ(S) if and only if
�
(y1,x1

, y2,x2
, . . . , ym,xm

), q
� ∈ S . (B.1)

In what follows, we will refer to the coordinates of the x-vector as selector variables and
those of the y-vector as main variables, and we will sometimes use the notation

select(x i , yi) = yi,x i
(B.2)

to denote the bit in yi selected by x i . We extend this notation to vectors to write
select(x , y) = yx = (y1,x1

, . . . , ym,xm
).

As in [HN12, GP18], we obtain our results by studying lifted search problems defined
in terms of CNF formulas and proving communication lower bounds for such problems.
Syntactically speaking, however, these objects are not themselves CNF formulas, which
is what we use to feed to our proof system. Therefore, we need an additional step which
translates the lifted search problems back to CNF as follows.

Definition B.2.1 (Lifted formula [BHP10]). Given ℓ ∈ N+ and a CNF formula F over
variables u1, . . . , un, the lift of length ℓ of F , denoted Liftℓ(F), is the formula over vari-
ables {x i, j}i∈[n], j∈[ℓ] (selector variables) and {yi, j}i∈[n], j∈[ℓ] (main variables) containing
the following clauses:

• For every i ∈ [n], an auxiliary clause

x i,1 ∨ x i,2 ∨ · · · ∨ x i,ℓ . (B.3a)

• For every clause C ∈ F , where C = ui1 ∨ · · · ∨ uis ∨ uis+1
∨ · · · ∨ uit

for some i1, . . . , it∈ [n], and for every tuple ( j1, . . . , jt) ∈ [ℓ]t , a main clause

x i1, j1 ∨ yi1, j1 ∨ · · · ∨ x is , js ∨ yis , js ∨ x is+1, js+1
∨ y is+1, js+1

∨ · · · ∨ x it , jt ∨ y it , jt . (B.3b)
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Intuitively, we can think of the selector variables as encoding the vector x ∈ [ℓ]m
in the lifted search problem (B.1). Since x i, j ∨ yi, j is equivalent to the implication
x i, j → yi, j , we can rewrite (B.3b) as

(x i1, j1 → yi1, j1)∨ · · · ∨ (x it , jt → y it , jt ) , (B.4)

from which we can see that for every clause C the auxiliary clauses encode that there
is at least one choice of selector variables x i, j which are all true, and for this choice
of selector variables the yi, j-variables in the lifted main clause will play the role of the
ui-variables, giving us back the original clause C . It is easily verified that F is unsatis-
fiable if and only if H = Liftℓ(F) is unsatisfiable, and that if F is a k-CNF formula with
m clauses, then H is a max(2k,ℓ)-CNF formula with at most mℓk + n clauses. A small
technical issue for us compared to [HN12, GP18] is that ℓ≫ k will not be constant, but
we can convert the wide clauses in (B.3a) to constant width using extension variables,
and so we will just ignore this issue in our proof overview.

B.2.3 Pebbling Contradictions

An important role in many proof complexity trade-off results is played by so-called peb-
bling contradictions. For our purposes it suffices to say that they are defined in terms of
directed acyclic graphs (DAGs) G, where for simplicity we assume that all vertices have
indegree 0 or 2. We refer to vertices with indegree 0 as sources and assume that there
is a unique sink vertex with outdegree 0. What the pebbling contradiction over G says
is that the sources are true and that truth propagates from predecessors to successors,
but that the sink is false. The formal definition follows.

Definition B.2.2 (Pebbling contradiction [BW01]). Let G be a DAG with sources S
and a unique sink z, and with all non-sources having indegree 2. Then the pebbling
contradiction over G, denoted PebG , is the conjunction of the following clauses over
variables {v | v ∈ V (G)}:

• for every source vertex s ∈ S, a unit clause s (source axioms),

• For all non-sources w with immediate predecessors u, v, a clause u∨v∨w (pebbling
axioms),

• for the sink z, the unit clause z (sink axiom).

If G has n vertices, the formula PebG is an unsatisfiable 3-CNF formula with n+ 1
clauses over n variables. For an example of a pebbling contradiction, see the CNF for-
mula in Figure B.2b defined in terms of the graph in Figure B.2a.

To make the connection back to Definition B.2.1, in Figure B.3 we present the lift
of length 2 of the CNF formula in Figure B.2b, with the auxiliary clauses at the top of
the left column followed by the main clauses one by one, listed for all tuples of selector
indices (with the only difference that since the variables in this formula are u, v, w, x , y, z
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z

x y

u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u∨ v ∨ x)
∧ (v ∨w∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction Peb
Π2
.

Figure B.2: Example pebbling contradiction for the pyramid of height 2.

rather than u1, . . . , un, we denote the main variables by yu, j1 , yv, j2 , yw, j3 , et cetera, rather
than yi1, j1 , yi2, j2 , . . .). We will refer to the main clauses in Figure B.2b as source axioms,
pebbling axioms, and sink axioms, respectively, when they have been obtained by lifting
of the correspondingly named axioms in the pebbling contradiction.

B.2.4 Real Communication and Falsified Clause Search Problems

For our communication complexity results we study a two-player communicationmodel,
referring to the players as Alice and Bob following tradition. We first briefly discuss the
basic deterministic model, and then explain how we need to extend it, directing the
reader to [KN97] for any omitted standard communication complexity facts.

In the communication problem of computing a function f : X ×Y →Q, Alice is given
an input x ∈ X , Bob is given an input y ∈ Y , and they are required to find f (x , y)while
minimizing the communication between them. A communication protocol is a binary
tree where Alice and Bob start at the root, every node specifies who is going to speak,
the value of the spoken bit is only a function of the node v and the input x if Alice
speaks or y if Bob does, and leaves are labelled by correct values f (x , y). Similarly, for
any relation S ⊆ X × Y × Q, the communication problem for S is one in which Alice
is given x ∈ X , Bob is given y ∈ Y , and they are required to communicate to find
some q such that (x , y, q) ∈ S. The cost of a protocol is the maximum number of bits
communicated on any input, and the number of rounds is the maximum number of
alternations between Alice and Bob speaking.

In order to obtain trade-offs for cutting planes, we need to study the more general
real communication model in [Kra98], where Alice and Bob interact via a referee, and
also introduce the concept of rounds in this model. It is convenient to describe the
protocol as a (non-binary) tree, where at node v in the protocol tree Alice and Bob
send kv real numbers ϕv,1(x), . . . ,ϕv,kv

(x) and ψv,1(y), . . . ,ψv,kv
(y), respectively, to
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(xu,1 ∨ xu,2) ∧ (x v,1 ∨ y v,1 ∨ xw,1 ∨ yw,1 ∨ x y,1 ∨ yy,1)

∧ (xv,1 ∨ xv,2) ∧ (x v,1 ∨ y v,1 ∨ xw,1 ∨ yw,1 ∨ x y,2 ∨ yy,2)

∧ (xw,1 ∨ xw,2) ∧ (x v,1 ∨ y v,1 ∨ xw,2 ∨ yw,2 ∨ x y,1 ∨ yy,1)

∧ (xx ,1 ∨ xx ,2) ∧ (x v,1 ∨ y v,1 ∨ xw,2 ∨ yw,2 ∨ x y,2 ∨ yy,2)

∧ (x y,1 ∨ x y,2) ∧ (x v,2 ∨ y v,2 ∨ xw,1 ∨ yw,1 ∨ x y,1 ∨ yy,1)

∧ (xz,1 ∨ xz,2) ∧ (x v,2 ∨ y v,2 ∨ xw,1 ∨ yw,1 ∨ x y,2 ∨ yy,2)

∧ (xu,1 ∨ yu,1) ∧ (x v,2 ∨ y v,2 ∨ xw,2 ∨ yw,2 ∨ x y,1 ∨ yy,1)

∧ (xu,2 ∨ yu,2) ∧ (x v,2 ∨ y v,2 ∨ xw,2 ∨ yw,2 ∨ x y,2 ∨ yy,2)

∧ (x v,1 ∨ yv,1) ∧ (x x ,1 ∨ y x ,1 ∨ x y,1 ∨ y y,1 ∨ xz,1 ∨ yz,1)

∧ (x v,2 ∨ yv,2) ∧ (x x ,1 ∨ y x ,1 ∨ x y,1 ∨ y y,1 ∨ xz,2 ∨ yz,2)

∧ (xw,1 ∨ yw,1) ∧ (x x ,1 ∨ y x ,1 ∨ x y,2 ∨ y y,2 ∨ xz,1 ∨ yz,1)

∧ (xw,2 ∨ yw,2) ∧ (x x ,1 ∨ y x ,1 ∨ x y,2 ∨ y y,2 ∨ xz,2 ∨ yz,2)

∧ (xu,1 ∨ yu,1 ∨ x v,1 ∨ y v,1 ∨ x x ,1 ∨ yx ,1) ∧ (x x ,2 ∨ y x ,2 ∨ x y,1 ∨ y y,1 ∨ xz,1 ∨ yz,1)

∧ (xu,1 ∨ yu,1 ∨ x v,1 ∨ y v,1 ∨ x x ,2 ∨ yx ,2) ∧ (x x ,2 ∨ y x ,2 ∨ x y,1 ∨ y y,1 ∨ xz,2 ∨ yz,2)

∧ (xu,1 ∨ yu,1 ∨ x v,2 ∨ y v,2 ∨ x x ,1 ∨ yx ,1) ∧ (x x ,2 ∨ y x ,2 ∨ x y,2 ∨ y y,2 ∨ xz,1 ∨ yz,1)

∧ (xu,1 ∨ yu,1 ∨ x v,2 ∨ y v,2 ∨ x x ,2 ∨ yx ,2) ∧ (x x ,2 ∨ y x ,2 ∨ x y,2 ∨ y y,2 ∨ xz,2 ∨ yz,2)

∧ (xu,2 ∨ yu,2 ∨ x v,1 ∨ y v,1 ∨ x x ,1 ∨ yx ,1) ∧ (xz,1 ∨ yz,1)

∧ (xu,2 ∨ yu,2 ∨ x v,1 ∨ y v,1 ∨ x x ,2 ∨ yx ,2) ∧ (xz,2 ∨ yz,2)

∧ (xu,2 ∨ yu,2 ∨ x v,2 ∨ y v,2 ∨ x x ,1 ∨ yx ,1)

∧ (xu,2 ∨ yu,2 ∨ x v,2 ∨ y v,2 ∨ x x ,2 ∨ yx ,2)

Figure B.3: Lifted formula Lift2

�
PebΠ2

�
of length 2 obtained from the pebbling contra-

diction over Π2.

the referee. The referee announces the results of the comparisons ϕv,i(x)≤ψv,i(y) for
i ∈ [kv] as a kv-bit binary string, after which the players move to the corresponding next
node in the protocol tree. The number of rounds r of a protocol is the depth of the tree
and the cost c is the total number of comparisons made by the referee for any input. It
is easy to see that this model can simulate standard deterministic communication (for
instance, if Alice wants to send a message, she sends the complement of that message
to the referee and Bob sends a list of the same length with all entries 1/2) and is in fact
strictly stronger (since equality can be solved with just two bits of communication).

The communication problem that we are interested in is the (falsified) clause search
problem. This is the problem of, given an unsatisfiable CNF formula F and a truth
value assignment α, finding a clause C ∈ F falsified by α. We denote this problem by
Search(F). In fact, from a communication complexity point of view we will be interested
in lifts of this search problem Lift(Search(F)), while for our proof complexity trade-offs
the perspective is slightly different in that we need to study the CNF formula Lift(F) from
Definition B.2.1 and relate the hardness of this formula to the communication complex-
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ity of the falsified clause search problem Search(Lift(F)). Happily, this distinction does
not really matter to us, since a good communication protocol for Search(Lift(F)) can also
be used to solve Lift(Search(F)), and hence a lower bound for the latter communication
problem applies also to the former, as stated formally in the next observation.

Observation B.2.3. Suppose that F is an unsatisfiable CNF formula. Then any two-player
real communication protocol for Search(Liftℓ(F)) where all selector variables x i, j in the
same block are given to the same player can be adapted to a protocol for Liftℓ(Search(F))
with the same parameters.

We refer to, e.g., [HN12] for the easy proof (which is independent of the concrete
communication model under consideration). Thanks to this observation, we can freely
switch perspectives between Liftℓ(Search(F)) and Search(Liftℓ(F)) when we want to
prove lower bounds for the latter problem. The reason that such lower bounds are
interesting, in turn, is that if a CNF formula H has a CP refutation in short length and
small space, then such a proof can be used to construct a round- and communication-
efficient protocol for Search(H).

Lemma B.2.4. If a CNF formula H can be refuted by cutting planes in length L and for-
mula space s, then for any partition of the variables of H between Alice and Bob there is a
real communication protocol solving Search(H) in ⌈log L⌉ rounds with total communica-
tion cost at most s · ⌈log L⌉.

Sketching the proof very briefly, given a truth value assignment α Alice and Bob can
do binary search over the refutation (L0 = ;,L1, . . . ,LL) of H until they find a t ∈ [L]
such that Lt evaluates to true under α but Lt−1 evaluates to false. Then the derivation
step at time t must be a download of an axiom C ∈ H falsified by α. For the details we
can reuse the proof from [HN12] verbatim, just adding the one simple but absolutely
crucial observation that the protocol obtained in this way is also round-efficient, since
all communication needed to evaluate a particular configuration Lt can be performed
in parallel.

It is worth noting that although we state Lemma B.2.4 for cutting planes here, there
is nothing that really uses the syntactic properties of the cutting planes refutation. Thus,
the proof works equally well for resolution, polynomial calculus, or any proof system
for which configurations can be evaluated by round-efficient protocols where the com-
munication scales as the space of the configuration.

B.2.5 Simulations of Protocols by Parallel Decision Trees

A parallel decision tree [Val75b] for a search problem S ⊆ {0, 1}m ×Q is a tree T such
that each node v is labelled by a set of variables Vv and has exactly one outgoing edge
for each of the 2|Vv | possible assignments to these variables, and such that for every
α ∈ {0, 1}m the path from the root of T defined by the edges consistent with α ends at
a leaf labelled by some q ∈ Q such that (α, q) ∈ S (where again the tacit assumption
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is that S is such that such a solution always exists). The number of queries of T is the
maximal sum of set sizes |Vv | along any path in T , and the depth of T is the length of a
longest path.

Any decision tree T for a search problem S can be simulated by a communication
protocol for the lifted problem Lift(S) in a straightforward way, where if T wants to
query the ith variable Alice and Bob can communicate to find yi,x i

and then walk
in T according to this value. Such a walk will end in a leaf labelled by a q such that�
(y1,x1

, y2,x2
, . . . , ym,xm

), q
� ∈ S, i.e., a solution to the lifted search problem, and thus

the query complexity of the original search problem provides an upper bound on the
communication cost of the lifted problem. If in addition there is a parallel decision tree
with small depth, then a protocol simulating such a tree will also be round-efficient.
The main technical result of our paper is that simulating such a parallel decision tree is
essentially the best any round-efficient protocol can do (provided that the lifting of the
search problem is done with appropriate parameters).

Theorem B.2.5 (Simulation theorem). Let S be a relation with domain {0, 1}m and let
ℓ = m3+ε for some constant ε > 0. If there is an r-round real communication protocol in
cost c that solves Liftℓ(S), then there is a parallel decision tree in depth r solving S using
O(c/ logℓ) queries.

We remark that similar simulation theorems have previously been shown for both de-
terministic communication [RM99, GPW15] and real communication [BEGJ00], but un-
fortunately they fail to take round efficiency into account. Our proof of Theorem B.2.5
follows the approach in these papers to build a decision tree for the original problem
that simulates the communication protocol for the lifted problem. In order to obtain an
efficient simulation we have to maintain (in an amortized sense) that the decision tree
queries a variable only when a noticeable amount of communication has taken place.
To prove that the decision tree constructed in this way is correct, we need to show that
at the end of the simulation there exists a pair of inputs to Alice and Bob that are com-
patible both with the transcript and with a lift of the original input. Towards this end,
during the simulation we maintain a set of such compatible inputs, which must not be
allowed to shrink too fast.

In order for the proof to work we need to be able to handle two kinds of events:
communication events, where we simulate the players communicating; and query events,
where the decision tree under construction queries some variable and gets its actual
value. Both of these events force us to prune the set of compatible communication inputs.
In the first case we want to choose a communication message that removes as few inputs
as possible, whereas in the second case we have to restrict the communication inputs
to a subset that is compatible with the value returned by the decision tree query. We
make sure to query a variable only when the transcript “reveals too much information”
about Alice’s and Bob’s lifted input related to that variable, and thanks to this we can
argue that query events do not happen too often and that the amount of communication
provides an upper bound on the total number of queries.
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Extending these techniques to round-efficient protocols and simulations by parallel
decision trees causes significant additional complications, however. Very briefly, one
issue is that we cannot let the tree query an individual variable as soon as sufficient
information has been “revealed” about it during the simulation, but have to wait until
we can issue a whole set of queries corresponding to a single message of the protocol.
This makes it challenging to maintain a set of compatible inputs for variables we have
not yet been allowed to query. Another issue is that, in contrast to deterministic commu-
nication protocols, real protocols do not partition the input domain into combinatorial
rectangles. While this is not a big problem for a single comparison by the referee, it
becomes more challenging when we want to handle a round consisting of many simul-
taneous comparisons.

B.2.6 From Decision Trees to Dymond–Tompa Trade-offs

The Dymond–Tompa game [DT85]2 is played in rounds on a DAG G by two players
Pebbler and Challenger. In the first round, Pebbler places pebbles on a non-empty subset
of vertices of G including the unique sink z and Challenger picks some vertex in this set.
In all subsequent rounds, Pebbler places pebbles on some non-empty subset of vertices
not yet containing pebbles, and Challenger either challenges a vertex in this new set
(jumps) or re-challenges the previously chosen vertex (stays). This repeats until at the
end of a round Challenger is standing on a vertex with all immediate predecessors
pebbled (or on a source, for which the condition vacuously holds), at which point the
game ends. Intuitively, Challenger is challenging Pebbler to “catch me if you can” and
wants to play for as many rounds as possible, whereas Pebbler wants to “surround”
Challenger as quickly as possible. We say that Pebbler wins the r-round Dymond–Tompa
game on G in cost c if there is a strategy such that Pebbler can always finish the game
in at most r rounds placing a total of at most c pebbles regardless of how Challenger
plays.

In order to obtain lower bounds on the query complexity of parallel decision trees
of bounded depth, we use an adversary argument and describe strategies that give as
unhelpful answers as possible for variables queried by the decision trees. If we special-
ize this to the clause search problem for pebbling contradictions PebG , such adversary
strategies are equivalent to Challenger strategies in the Dymond–Tompa game on G. For
standard binary decision trees and the Dymond–Tompa game with unlimited number
of rounds this was proven in [Cha13],3 and we show that this equivalence extends also
to our more general setting where decision trees can issue queries in parallel and we
account for the number of rounds in the Dymond–Tompa game.

2We give a slightly different, but essentially equivalent, description of the Dymond–Tompa game that is
closer to recent papers such as [Cha13, CLNV15].

3This game on decision trees is called the Raz–McKenzie game in [Cha13].
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Lemma B.2.6. If there is a parallel decision tree for Search
�
PebG

�
in depth r using at most

c queries, then Pebbler has a winning strategy in the r-round Dymond–Tompa game on G
in cost at most c + 1.

It follows from this lemma that round-cost trade-offs for Dymond–Tompa pebbling
implies depth-query trade-offs for parallel decision trees. To conclude the proof of the
lower bound in our trade-off results, we need to find a family of graphs for which we can
prove lower bounds for the cost of Pebbler strategies in the Dymond–Tompa game with
bounded number of rounds. Towards this end, we establish that graphs that satisfy a cer-
tain connectivity property possess trade-offs between number of rounds and cost, and
then exhibit such graphs. These graphs were inspired by graphs for which black-white
pebbling trade-offs were shown in [LT82], but we need to make some modifications in
order to obtain Dymond–Tompa trade-offs. Round-cost trade-offs have been previously
studied in [KS90] but for a different range of parameters.

Lemma B.2.7. For any n, r ∈ N+ there exists an explicitly constructible DAG G(n, r) with
O(rn log n) vertices such that the cost of the r-round Dymond–Tompa game on G(n, r) is
at least Ω(n).

The graph G(n, r) is structured in r + 1 layers andwe obtain the lemma by designing
a strategy for Challenger such that as long as Pebbler does not place too many pebbles,
Challenger can make sure that in the ith round the challenged pebble is above the
ith layer. Hence, the game does not end within r rounds.

B.2.7 Proofs of Main Theorems

Combining all the components discussed above we can now prove the following trade-
off lower bound.

Theorem B.2.8. Let G be a DAG over m vertices such that any winning strategy for Pebbler
in the r-round Dymond–Tompa game on G has cost Ω(c), and let ε > 0 and ℓ = m3+ε.
Then Liftℓ
�
PebG

�
is a 6-CNF formula over Θ(m4+ε) variables and N = Θ(m10+3ε) clauses

such that any cutting planes refutation of it in formula space less than c
r log N , even with

coefficients of unbounded size, requires length at least 2Ω(r).

Proof. Suppose for the sake of contradiction that there is a cutting planes refutation
of Liftℓ
�
PebG

�
in length 2o(r) and formula space less than c

r log N . By Lemma B.2.4
this implies that there is a real communication protocol that solves Liftℓ

�
Search(PebG)
�

in o(r) rounds and total cost o(c log N). Using Theorem B.2.5 we obtain a parallel
decision tree computing Search(PebG) using o(c) queries and depth o(r). But if so, by
Lemma B.2.6 Pebbler wins the o(r)-round Dymond–Tompa game on G in cost o(c),
which contradicts the assumption of the theorem.
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In order to attain our trade-off results we also need upper bounds on refutations
of these formulas. Small-size upper bounds follow by essentially the same approach of
lifting black pebbling upper bounds as in [BN11, HN12], although more care is needed
since our lifts are of non-constant length. For the small-space refutations, this technique
does not work because the space loss due to the large lift length is larger than the
upper bound we are aiming for. Luckily, we can instead prove upper bounds in the
Dymond–Tompa game with unlimited rounds and then convert them into refutations
in small space. Theorems B.1.1 and B.1.2 then follow from Theorem B.2.8 applied to an
appropriate family of graphs that exhibit Dymond–Tompa trade-offs as in Lemma B.2.7.

The tools we have developed also allow us to prove the monotone circuit separa-
tion in Theorem B.1.4. The function that witnesses the separation is inspired by the
PYRAMID-GEN function of [RM99] adapted to the graphs in Lemma B.2.7. Then we
translate the Dymond–Tompa trade-off into a lower bound for deterministic commu-
nication protocols with few rounds, which we then transform into a lower bound for
circuits of small depth via the Karchmer–Wigderson game [KW90].

B.3 From Proofs to Communication Protocols

As mentioned in the preliminaries, length space trade-offs for a given proof system
can be obtained via reduction to the falsified clause search problem. Exactly which
communication model to consider for the search problem depends on the proof system.
Given a sequential proof system P and a communication model M, let cP,M and rP,M
be the maximum cost and the maximum number of rounds, respectively, required to
evaluate a line/formula of any configuration.

The idea behind the reduction is to, given a refutation as a sequence of configura-
tions, do a binary search in this sequence in order to find two consecutive configurations
such that the first is evaluated to true and the second to false. Since the proof system
is sound, this false configuration must be due to an axiom download and this axiom
must be falsified. Finally, observing that each line/formula of a configuration can be
evaluated in parallel, we get the following lemma.

Lemma B.3.1. Let π be a refutation in a sequential proof system P of a CNF formula F
in length L and formula space s. Then, in any (deterministic) communication model M
and for any partition of the variables of F between Alice and Bob there is a communication
protocol that solves Search(F) in rP,M · ⌈log L⌉ rounds with total communication cost at
most s · cP,M · ⌈log L⌉.
Proof. Suppose Alice and Bob are each given a part of an assignment α to F . Fix a
P-refutation π = {D0,D1, . . . ,DL} of F as in the statement of the lemma. By definition
of refutation, it must be the case that D0 = ; and ⊥ ∈ DL .

Alice and Bob consider the configurationDL/2 in the refutation at time L/2 and with
joint efforts (involving some communication, which wewill discuss shortly) evaluate the
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truth value of DL/2 under the assignment α. If DL/2 is true under α, they continue their
search in the subderivation {DL/2,D1, . . . ,DL}. If DL/2 is false, the search continues in
the first half of the refutation {D0,D1, . . . ,DL/2}Note thatD0 = ; is vacuously true under
any assignment, and since ⊥ ∈ DL this last configuration evaluates to false under any
assignment. The binary search is carried out so as tomaintain that the first configuration
in the current subderivation under consideration evaluates to true and the last one
evaluates to false under the given assignment α. Hence, after at most ⌈log L⌉ steps
Alice and Bob find a t ∈ [L] such that Dt−1 is true under α but Dt is false. Since the
proof system is sound, the derivation step to get from Dt−1 to Dt cannot have been an
inference or erasure, but must be a download of some axiom clause C ∈ H. This clause
C must be false under α, and so Alice and Bob give C as their answer.

Now all that remains is to discuss how much communication is needed to evaluate a
configuration in the refutation. Every line/formula in the configuration can be evaluated
with cost at most cP,M and in at most rP,M rounds. Moreover, the rP,M rounds to
evaluate each line can be done in parallel by simply concatenating, at each round i, all
the ith messages of the protocol for evaluating each line of the configuration. Since
each configuration has at most s lines, it can be evaluated with cost at most s · cP,M and
in at most rP,M rounds.

We note that, for randomized communication models (which we do not use in this
paper, but are used for example in [HN12, GP18]), the above theorem holds if cP,M

and rP,M are defined to be the maximum cost and the maximum number of rounds,
respectively, required to evaluate a line/formula of any configuration with high enough
probability of success so that the union bound of the probability of error over all the
evaluations of configurations is small enough.

Ideally, given a proof system P we want a communication model M such that rP,M

and cP,M are constants, or at least a slow growing function. We only consider semantic
versions of proof systems, where we specify the format of proof lines and use the fact that
derivation rules, whichever they are, are semantically sound (as defined in [ABRW02]).

For example, if P is resolution, where lines are clauses of the form
∨

j x
b j

j , then
Alice and Bob can evaluate a line in two rounds and two bits of communication in the
deterministic communication model.

If we consider polynomial calculus over any field F, where lines are polynomials
of the form
∑

m

∏
j am, j x j but the space measure is the number of monomials, Alice

and Bob first check that the assignment is {0, 1}-valued—and immediately output a
falsified axiom otherwise—and then run the binary search protocol, where they can
evaluate a monomial in two rounds and two bits of communication in the deterministic
communication model.

For cutting planes with bounded coefficients, Alice and Bob can evaluate a line in
two rounds and either O(log N) bits of communication in the deterministic communica-
tion model if the bound is a polynomial in the size of the formula or O(log L) bits if the
bound is a polynomial in the size of the refutation.
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For unrestricted cutting planes, Alice and Bob can evaluate a line in one round and
one comparison in the real communication model.

The small but key difference from previous papers [HN12, GP18] is that we explicitly
consider rounds. The theorem states that if there exists a refutation in small space and
small length, then there is a communication protocol that solves the falsified clause
search problem not only with small communication cost, but also in few rounds.

It seems unlikely that the techniques used so far (without rounds) would yield true
trade-offs; let us discuss why. For a trade-off of the form s · log L ≥ x to be a true trade-
off there must exist a refutation in small space and another one in small length. The
formulas for which trade-offs have been proven are lifted versions of pebbling formulas,
which have refutations in small (linear) length, but not necessarily small space: the
black-white pebbling number is a lower bound for resolution space, as proven in [BN11].

For the pyramid graphs studied in [HN12, GP18], the black-white pebbling number
is asymptotically equal to the Dymond–Tompa price, which in turn is an upper bound
for the communication complexity, as we argued in Section B.2. Therefore, for the
resolution proof system, the apparent trade-off is actually s · log L = Ω(s), giving only
an uninformative length lower bound for the feasible range of space, and so the formula
properties are better described by a space lower bound rather than a trade-off.

It seems plausible that the black-white pebbling number is also a lower bound for
polynomial calculus space and cutting planes total space, and thus the “trade-offs”
between PC-space or CP-total space and length, might also turn out to be unconditional
space lower bounds.

Even if we consider other graph families, the best separation between black-white
pebbling number and Dymond–Tompa price so far is logarithmic in the size of the graph
[CLNV15], which still does not give meaningful results for resolution. It seems more
promising to search for trade-offs in graphs where the black-white pebbling number is
small but nonetheless have trade-offs in resolution, established by some means other
than communication complexity.

To keep the discussion short and focused we only mention that trade-offs have been
proven for stacks of superconcentrators [BN11] and Carlson–Savage graphs [Nor12].
Yet in both cases the Dymond–Tompa price is too small to give meaningful trade-offs:
in the first case, it is enough to note that the Dymond–Tompa price is at most the depth,
and a stack of superconcentrators has small depth; for Carlson–Savage graphs, the proof
is similar, but the depth argument is not enough.

To sum up, we showed that the graphs for which the previous techniques yield trade-
offs are likely to have unconditional space lower bounds (but we cannot prove it), and
that for graph families that may have trade-offs—and indeed we prove that this is the
case for a special family of superconcentrators—the previous techniques cannot prove
them.
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B.4 From Real Communication to Parallel Decision Trees

We have reached the heart of the reduction. This is by far the most intriguing and also
the most difficult part of the paper. The reader that first wishes to have an overview of
the whole proof should skip Sections B.4.1 and B.4.2.

To prove Theorem B.2.5 we use the same high-level approach of [RM99, BEGJ00,
GPW15]: we build a decision tree that simulates a protocol computing the composed
search problem Lift(S) and it only queries a variable when, in a certain sense, the tran-
script reveals too much information about the index for that variable.

More precisely, we keep two sets of inputs A and B that are compatible with the
communication so far and that are large enough. Additionally for A we enforce that for
each coordinate i that we have not queried yet, if we fix every other coordinate to some
value, there are still many choices for what to set the index x i to.

To maintain the invariant, we need to handle two kinds of events: communication
events where we guess a message and restrict A and B to the new compatible inputs,
with some additional cleanup, and query events, where some coordinate i becomes too
dependent on other coordinates. Since for each coordinate there are more choices for
yi than Bob can expect to communicate, we will be able to find an input for the players
such that select(x i , yi) agrees with zi , and then restrict A and B appropriately.

At the end of the protocol, if we were to query the remaining variables, we would
have a pair of inputs (x , y) that are compatible with the transcript, therefore the pro-
tocol answers correctly, and such that select(x i , yi) = zi in every coordinate, therefore
the answer is also correct for the decision tree.

To argue that we do not make too many queries we keep a density function that
measures how many choices we have for Alice’s input over not queried coordinates.
This function increases on communication, decreases after a query, and is nonnegative,
which gives us a bound on the number of queries in terms of communication.

The description up to this point is common to all flavours of the simulation theorem,
with or without rounds and with deterministic or real communication. The differences
will surface once we try to implement it.

The first challenge we encounter is when exactly should we query a variable. If we
do not have any bound on depth, then we can do that as soon as we detect that the
invariant is broken and we need to restore it. Since we want to measure the effect of
rounds, however, this exact approach will not work for us, because we might need to
query a variable mid-message. Indeed, if Alice sends the message x1 x2, we would first
simulate sending some bits of x1, then query z1 and restrict the inputs to those such
that select(x1, y1) = z1, keep simulating sending bits of x1 and x2, then query z2 and
restrict the inputs, and finish sending bits. We had to use two rounds of queries in a
single round of communication.

It seems natural to delay querying the variables until the end of the message, but
now we have another problem. Assume that Bob had sent that the 0-th bit of y1 is a
0, and that Alice’s message is x1. If we guess that the message is x1 = 0 but after we
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query z1 we get that z1 = 1, then the inputs compatible with the communication stop
being compatible with the gadget select.

Our solution is to indeed delay querying the variables until the end of the message
but still restrict the inputs as soon as the invariant breaks, in a way that, after fixing x1,
select(x1, y1) can take any value. During the interval of communication between the
restriction and the query we keep a set C that acts as a proxy for B over the coordinates
that we have not queried (and do not intend to). This is a harder task, but still feasible
because only Alice speaks during this time, so we do not need to know B precisely.

The second challenge is to adapt the simulation to a real communication protocol.
As opposed to deterministic protocols, the set of compatible inputs does not necessarily
form a rectangle. However, as observed by [Joh98], the result of one comparison splits
the matrix of inputs in such a way that one quadrant—thus a rectangle—is monochro-
matic, and [BEGJ00] uses this fact to decide the outcome of each comparison.

Since we want to query variables only at the end of each round we might not know
what B is at the time we want to extract a rectangle from a comparison matrix, and
unfortunately the proxy does not help. Therefore we need to extract rectangles from
the input when we do know B, this is before we start simulating the message. We could
easily extract a rectangle of size a 2−k×2−k-fraction of the inputs, where k is the size of
the message, but that would be equivalent to simulating the message in one go, which
we argued does not work in the deterministic case.

Our solution is to extract a rectangle of size a 1/4× 2−k log k-fraction of the inputs.
Even though this is equivalent to simulating a long Bob message at once, it has the
advantage that the equivalent message for Alice is very short, so we can still use the
very same techniques to recover the invariants as in the deterministic case.

B.4.1 Simulation of Deterministic Communication Protocols by Decision
Trees

Webegin by proving the simulation theorem for themore common deterministic commu-
nication model. Throughout this section we assume that the arity of the select function
is ℓ= m3+ε for some small constant ε > 0, where m is the size of the input.

Theorem B.4.1. If there is a deterministic communication protocol computing Lift(S)
using communication c and r rounds, then there is a parallel decision tree computing S
using O(c/ logℓ) queries and depth r.

Wemention in Section B.2 that we have to use a lift of polynomial length as opposed
to constant length; this is needed for the simulation theorem to apply. In [GPW15]
and [RM99] the lift is of size m20, while in [BEGJ00] the lift is of size m14, and a more
careful analysis shows that m4+ε is enough. Using a combinatorial approach to the
analysis we can lower the lift length to m3+ε, but getting beyond this seems hard.
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To be able to prove Theorem B.4.1 we need to introduce some notation. Let γ =
1/(3+ ε), δ, λ, µ be numbers strictly between 0 and 1 such that the inequalities

λ− γ > µ (B.5a)
µ+δ− 1> γ (B.5b)

γ+δ < 1 (B.5c)

hold. Note that a solution exists iff γ < 1/3. For concreteness, we can think of γ =
1/3− 2ξ, λ= 1− ξ, µ= 2/3, and δ = 2/3 for some ξ > 0.

LetΠ be an r-round deterministic communication protocol computing Lift(S) in cost
c. Let X and Y be inputs to Alice and Bob. Let X v and Y v be the inputs compatible with
node v of the protocol tree. We are going to keep two sets A ⊆ [ℓ]m and B ⊆ {0, 1}ℓm
of inputs that are compatible with the communication so far, this is A⊆ X v and B ⊆ Y v ,
but have been cleaned up.

We will often be interested in the coordinates that the decision tree has not yet
queried, which we denote I ⊆ [m]. We denote a vector with coordinates in I by x I ={x i : i ∈ I} and, as a reminder, we denote a set of such vectors by SI . We denote the
projection of a set to I coordinates by πI (SJ ) = {x I ∈ {0, 1}I : x ∈ SJ for some xJ\I ∈{0, 1}J\I}.

In order to formalize the property of having little information about a coordinate,
we define Graphi(AI ) as the bipartite graph where left vertices x i are elements of [ℓ],
right vertices x I\{i} are elements of [ℓ]|I |−1, and there is an edge between two vertices
if x I ∈ AI . Analogously, let Graphi(BI ) be the bipartite graph where left vertices yi

are elements of {0, 1}ℓ, right vertices yI\{i} are elements of {0, 1}ℓ(|I |−1), and there is
an edge between two vertices if yI ∈ BI . Now let MinDegi(AI ) and AvgDegi(AI ) be the
minimum and average right degree of Graphi(AI ), both taken over the set of vertices
of positive degree. We consider that we do not know too much about a coordinate i
if AvgDegi(AI ) ≥ ℓλ. Moreover, we say AI is thick if MinDegi(AI ) ≥ ℓµ for all i ∈ I , a
property we will make sure to keep throughout the simulation. Observe that, since |AI |
is the number of edges in Graphi(AI ) and |πI\{i}(AI )| is the number of right vertices with
positive degree, the definition of average degree is equivalent to

AvgDegi(AI ) =
|AI |

|πI\{i}(AI )| , (B.6)

which is more convenient to work with.
A useful observation is that minimum degree (and therefore thickness) is monotone

with respect to projections.

Observation B.4.2 ([RM99]). MinDeg j(πI\{i}(A))≥MinDeg j(πI (A)) for all j ∈ I \ {i}.

Proof. For each index j ∈ I \ {i}, if there is an edge between x I\{ j} and x j in Graph j(AI ),
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then there is also an edge between x I\{i, j} and x j in Graph j(πI\{i}(AI )). Formally,

N j(x I\{i, j}) = {x j : x I\{i} ∈ πI\{i}(A)}= {x j : ∃x i x I ∈ πI (A)} (B.7)

=
∪
x i

{x j : x I ∈ πI (A)}=
∪
x i

N j(x I\{ j}) , (B.8)

so for any x i with positive right degree we have

|N j(x I\{i, j})| ≥ |N j(x I\{ j})| ≥MinDeg j(πI (A)) .

Finally, we define two density measures for inputs over non-queried coordinates.
For AI ⊆ [ℓ]|I |, let α(AI ) = − log |AI |

ℓ|I | = |I | logℓ− log|AI |. Analogously, for BI ⊆ {0, 1}ℓ|I |,
let β(BI ) = − log |BI |

2ℓ|I | = |I |ℓ− log|BI |. We will make sure to keep these measures small,
so that at any point there are many inputs compatible with the communication so far.

In fact, density even increases with projections.

Observation B.4.3 ([GPW15]). α(πI\{i}(A)) = α(πI (A))− logℓ+ log AvgDegi(πI (A))

Proof. By definition of α, this is equivalent to |πI\{i}(A)| = |πI (A)|/AvgDegi(πI (A)),
which follows from the definition of average degree (B.6).

We have an auxiliary procedure prune, which we use to restore the thickness of A
after Alice speaks, with the following properties.

Lemma B.4.4 (Thickness Lemma [RM99]). If AvgDegi(πI (A)) ≥ ℓλ/4 for all i ∈ I ,
then the return value A′ of prune(A, I) satisfies

1. πI (A′) is thick;

2. α(πI (A′))≤ α(πI (A)) + 1.

To restrict the inputs on one coordinate i to a set U ⊆ [ℓ] we write ρi,U(A) = {x ∈
A : x i ∈ U}, and similarly for V ⊆ {0, 1}ℓ, we have ρi,V (B) = {y ∈ B : yi ∈ V}. The set
of b-monochromatic colourings of U is V b(U) = {w ∈ {0, 1}ℓ : ∀ j ∈ U w j = b}.

We have another auxiliary procedure project, which we use to pick the appro-
priate U after we make a query in order to recover the density of A with respect to
the remaining coordinates, with the following properties. Note that in the descrip-
tion of Algorithm B.4 we employ sets CI that act as a proxy for πI (B). We denote
CI\{i}(b)(U) = πI\{i}(ρi,V b(U)(CI )).

Lemma B.4.5 (Projection Lemma). If πI (A) is thick, and β(CI ) ≤ 2ℓγ log2 ℓ, then the
return value U of project(A, CI , I , i) satisfies

1. πI\{i}(ρi,U(A)) is thick ;

2. α(πI\{i}(ρi,U(A)))≤ α(πI (A))− logℓ+ log AvgDegi(πI (A)) ;
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1 let A= [ℓ]m, B = {0, 1}ℓm, I = [m], v be the root of Π
2 while v is not a leaf do
3 let Q = ;, CI = πI (B)
4 while v is a node where Alice speaks do
5 while ∃i ∈ I such that AvgDegi(πI (A))< ℓλ do
6 let Ui = project (A, CI , I , i)
7 let A= ρi,Ui

(A), CI\{i} = CI\{i}(0)(Ui)∩ CI\{i}(1)(Ui)
8 let I = I \ {i}, Q =Q ∪ {i}
9 let b = argmax|πI (A∩ X vb)|

10 let A= prune(A∩ X vb , I), v = vb

11 query coordinates Q to get string zQ
12 for i ∈Q do
13 let B = ρi,V (B), where V = V zi (Ui)

14 while v is a node where Bob speaks do
15 let b = argmax|πI (B ∩ Y vb)|
16 let B = B ∩ Y vb , v = vb

17 return the answer at v

Figure B.4: Procedure eval(Π,z)

3. β(CI\{i}(0)(U)∩ CI\{i}(1)(U))≤ β(CI ) + 1.

The decision tree that witnesses Theorem B.4.1 is Algorithm eval. The difference
from the algorithm in [RM99, GPW15] is that, when we need to restrict the sets A and
B, instead of making a query we consider both possible outcomes for Bob. We can delay
committing to either outcome until the moment before Bob starts to speak, at which
point we make all queries at once. We assume that Q is a queue, this is, its elements are
sorted in insertion order. We also assume that argmax decides arbitrarily in case of tie,
and observe that if b = argmax|πI (A∩ X vb)|, then α(πI (A∩ X vb))≤ α(πI (A)) + 1.

Lemma B.4.6 (Main Lemma). IfΠ is a protocol that computes Lift(S) using communica-
tion c < m

2 (1−λ) logℓ and r rounds, then eval computes S using at most 2c/(1−λ) logℓ
queries and depth r.

Observe that Theorem B.4.1 follow from this lemma, since if c ≥ m
2 (1−λ) logℓ then

a parallel decision tree that queries all variables in depth 1, satisfies the theorem. Before
proving Lemma B.4.6, let us consider some possible protocols and what Algorithm B.4
does.

Consider the trivial protocol where Alice in one round sends all of her input to
Bob, who outputs the answer. To be fair, this is a bit too much communication for
Lemma B.4.6 to apply, but let us look over this fact and try to get an intuition of what
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happens. While Alice is speaking, the algorithm has to commit to the values of her co-
ordinates, and therefore, for all coordinates i, AvgDegi(πI (A)) eventually becomes too
small and i is marked to be queried. After she finishes speaking the algorithm queries all
coordinates and restricts Bob’s input to be compatible with the queries and with Alice’s
message, i.e., it only keeps inputs that have the queried value on the corresponding po-
sition. Finally, the algorithm answers what Bob would output for any of the compatible
inputs. Note that the decision tree in this case is the depth-1 decision tree that queries
all coordinates at once and answers accordingly.

Another possible protocol is the one that follows a parallel decision tree T , as ex-
plained in Section B.2: Alice and Bob communicate to find the value of the coordinates
queried on each node and then continue on T according to these values. For this pro-
tocol, Algorithm B.4 marks to be queried all the coordinates Alice and Bob talk about
because the corresponding average degree gets too low. Note that the final decision tree
is exactly the same as the one Alice and Bob were following.

Now we consider what happens in a more extreme case. Suppose the protocol is
very unbalanced in the sense that Alice’s first bit is a 0 if her first coordinate is 42, and
otherwise is a 1. In this case, when at line 9 the algorithm chooses a bit for Alice to
speak, it will always choose 1 since it is compatible with the most inputs.

Proof of Lemma B.4.6. Let Rv be the rectangle of inputs compatible with node v, and
let cA

v (resp. cB
v ) be the number of bits sent by Alice (resp. Bob) up to node v. Let χ be

the number of queries so far, i.e., χ = m− |I |. We show that the following invariants
hold throughout the algorithm:

1. πI (A) is thick;

2. A× B ⊆ Rv;

3. χ ≤ 2cA
v/(1−λ) logℓ;

4. β(CI )≤ χ + cB
v ;

and the following invariant holds at the beginning of each round:

5. β(πI (B))≤ χ + cB
v ;

6. select(x i , yi) = zi for all (x , y) ∈ A× B and i /∈ I .

All six invariants are true at the beginning of the algorithm. To prove invariants 1
through 4, we assume they hold up to the current point of the algorithm and prove they
hold after executing the next line.

The set A is modified at lines 7 and 10, both of which ensure that πI (A) is thick,
therefore invariant 1 holds. We need to argue, though, that the assumptions of the
corresponding lemmas hold and therefore we are allowed to apply them. For line 7
we need to argue that Lemma B.4.5 applies, and that is the case, since we assume
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invariant 1 holds before this point, and since invariants 3 and 4 together with the as-
sumption of Lemma B.4.6 that cA

v + cB
v ≤ m logℓ= ℓγ logℓ imply that β(CI )≤ χ + cB

v ≤
2cA

v/(1−λ) logℓ+cB
v ≤ cA

v+cB
v ≤ ℓγ logℓ. For line 10 we need to argue that Lemma B.4.4

applies and, indeed, we have that

AvgDegi(πI (A∩ X vb)) =
|πI (A∩ X vb)|
|πI\{i}(A∩ X vb)| ≥

1
2 |πI (A)|
|πI\{i}(A)| =

1
2

AvgDegi(πI (A))≥ ℓλ/2 .

(B.9)
We note that the conditions for Lemmas B.4.4 and B.4.5 to apply are more relaxed than
what we prove. This is so because we will apply the same lemmas when dealing with
real communication and there we will need this extra slack.

For invariant 2, first note that A and B never increase. Moreover, the rectangle of
compatible inputs Rv changes when v is modified at lines 10 and 16, and in both cases
we restrict A (resp. B) to a subset of X b (resp. Y b).

To see that we make at most 2cv/(1− λ) logℓ queries, we observe that each query
comes from a call to project in line 6, which decreases α by at least (1 − λ) logℓ
because AvgDegi(AI )< ℓλ. However, α(πI (A))≤ 2cA

v since, at line 9, b is chosen so that
α(πI (A∩ X vb)) ≤ α(πI (A)) + 1 and thus, by Lemma B.4.4, α increases by at most 2 at
line 10, i.e., after one bit of communication. Since α ≥ 0 at all times by definition, the
upper bound in invariant 3 follows.

Note that CI is only updated at lines 3 and 7. At line 3 it holds by the fact that
invariant 5 is true at the beginning of a round. At line 7, Lemma B.4.5 guarantees that
β(CI\{i}(0)(U)∩ CI\{i}(1)(U))≤ β(CI ) + 1. Note that it is possible to apply Lemma B.4.5
as argued before. Therefore, invariant 4 follows.

To prove that invariant 5 holds at the end of a round we distinguish whether Alice
or Bob spoke. If Bob spoke, B was updated at line 16 and the invariant clearly holds
since each bit b that Bob says is chosen such that β(πI (B ∩ Y vb)) increases by at most 1.

If Alice spoke, B is updated in line 13. LetQ = {i1, . . . , i|Q|}. Let I0 be the non-queried
coordinates at the beginning of the round and Iη = Iη−1 \ {iη}, for η ∈ [|Q|]. Moreover,
let B0 be the value of B at the beginning of the round and Bη = ρi,V (Bη−1), for η ∈ [|Q|]
and i = iη. We prove by induction over η that πIη(Bη) ⊇ CIη . Recall that CIη is a set
whose elements are vectors with coordinates in Iη and is not the projection of a set C
to Iη. Therefore, the subscript serves not only as a reminder of the form of its elements,
but also as an identifier of the set. At the beginning of the round πI0

(B0) = CI0
. At each

iteration,

πIη(Bη) = πIη(ρi,V (Bη−1)) ⊇ πIη(ρi,V (πIη−1
(Bη−1))) (B.10)

⊇ πIη(ρi,V (CIη−1
)) = CIη−1

(zi)(Ui) ⊇ CIη (B.11)

so at the end β(πI|Q|(B|Q|)) ≤ β(CI|Q|) ≤ χ + cB
v , where the last inequality follows from

invariant 4.
For invariant 6, recall that A and B never increase. Furthermore, each time I is

modified at line 8, we add to Q the coordinate i for which invariant 6 no longer holds
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(since the element i was removed from I and it has not been queried yet). Then we
restore the invariant before the next iteration by restricting B at line 13. Indeed, if
(x , y) ∈ A×B, then x i ∈ Ui and yi ∈ V zi (Ui), so by definition of V it holds that yi x i

= zi .
We have finished proving the invariants. From now on we assume that the algorithm

ended and reached a leaf v. It is clear that the decision tree has depth r and the total
number of queries is at most 2c/(1− λ) logℓ < m by invariant 3. It remains to prove
correctness, that is, for any z ∈ {0, 1}m that we fix, the decision tree answered S(z).

In order to prove this, we show that there exists an input (x , y) ∈ Rv such that
select(x , y) = z, which implies eval(Π, z) = Π(x , y) = (Lift(S))(x , y) = S(select(x , y))
= S(z). This is done by restricting A and B to A′ and B′ so that any input in A′ and any
input in B′ are compatible with z and finally arguing that A′ and B′ are non-empty. For
every queried coordinate i, we have already restricted A and B so that for any x ∈ A and
any y ∈ B, select(x i , yi) = zi; thus we are left to deal with the non-queried coordinates.

Note that Graphi(π{i}(A)) has only one vertex on the right with label ;, and an edge
from this vertex to an element x i ∈ [ℓ] if x i ∈ π{i}(A). Although Graphi(π;(A)) is not
defined (which is the reason we have to apply Claims B.4.7 and B.4.8 directly and not
Lemma B.4.5), the projection π;(A) is well-defined and it is either the empty set, in
which case A is empty, or it is the singleton set containing the empty string, in which
case there exists at least one element x ∈ A. The same holds for B, π;(B) is either empty
or it is the singleton set containing the empty string. Therefore, by the definition of α
and β , if α(π;(A)) (resp. β(π;(B))) is finite, then A (resp. B) is non-empty.

We start with A′ = A, B′ = B and I ′ = I such that πI ′(A′) is thick, β(πI ′(B′)) ≤
χ+ cB

v ≤ ℓγ logℓ and I ′ is non-empty since we queried less than m coordinates. While I ′
is not empty, we choose i ∈ I ′ and apply Claims B.4.7 and B.4.8 to get a set U such that
πI ′\{i}(ρi,U(A′)) = πI ′\{i}(A′) and β(πI ′\{i}(B′)(0)(U)∩πI ′\{i}(B′)(1)(U))≤ β(πI (B′))+1.
We then set A′ = ρi,U(A′) and B′ = ρi,V (B′), where V = V zi (U), and thus, by definition
of V , for all x ∈ A′ and y ∈ B′ it holds that select(yi , x i) = zi . Finally we set I ′ = I ′ \ {i}
and repeat. Note that these claims can indeed be applied while I ′ is not empty, since the
fact that thickness is monotone (Observation B.4.2) implies πI ′(A′) is thick, and since
β(πI ′(B′)) ≤ cB

v + (χ + |I |) ≤ c +m < 2ℓγ logℓ, because β(πI ′(B′)) is increasing by at
most 1 for every i ∈ I .

At the end of this process, the set B′ is such that β(πI ′(B′)) ≤ 2ℓγ logℓ <∞, and
thus B′ is non-empty. Moreover, we have that π;(A′) = π;(A), and since A is non-empty
(because α(πI (A)) ≤ 2cA

v ), π;(A′) is the singleton set containing the empty string and,
therefore, A′ is non-empty.

Now we explain the auxiliary procedures. Procedure prune just removes vertices
with too small degree. Thus, we only need to argue that this process does not last for
too long.

Proof of Lemma B.4.4. A′I = πI (A′) is thick by construction. It remains to show that
|A′I | ≥ |πI (A)|/2. For each coordinate i ∈ I we observe that, by the definition of average
degree, there are at most |πI (A)|/AvgDegi(πI (A)) right vertices of positive degree in
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1 let AI = πI (A)
2 while ∃i such that MinDegi(AI )< ℓµ do
3 let x ′I\{i} ∈ V (Graphi(AI )) be a right vertex of degree less than ℓµ

4 let AI = {x ∈ AI : x I\{i} ̸= x ′I\{i}}
5 return {x ∈ A : x I ∈ AI}

Figure B.5: Procedure prune(A, I)

1 let U ⊆ [ℓ] be a set such that
2 πI\{i}(ρi,U(A)) = πI\{i}(A)
3 β(CI\{i}(0)(U)∩ CI\{i}(1)(U))≥ β(CI ) + 1
4 return U

Figure B.6: Procedure project(A, CI , I , i)

Graphi(πI (A)), and, moreover, since Graphi(A
′
I ) ⊆ Graphi(πI (A)), there are at most

|πI (A)|/AvgDegi(πI (A)) right vertices of positive degree in Graphi(A
′
I ). Clearly this is an

upper bound on the number of iterations of the procedure prune for coordinate i, since
every iteration removes a right vertex of positive degree.

Since AvgDegi(πI (A)) ≥ ℓλ/4 for all i ∈ I , the total number of iterations for each
coordinate is at most |πI (A)|/AvgDegi(πI (A)) ≤ 4|πI (A)|/ℓλ, which makes a total of at
most 4|I ||πI (A)|/ℓλ ≤ 4ℓγ−λ|πI (A)| iterations overall. Each iteration removes deg(X ′I\{i}),
which is less than ℓµ, elements from A′I , for a total of at most 4ℓγ+µ−λ|πI (A)| ≤ |πI (A)|/2
elements removed. The last inequality holds because of assumption (B.5a). Thus, at
least |πI (A)|/2 elements remain.

Our Lemma B.4.5 is slightly stronger than the projection lemmas in [RM99, GPW15]
because it needs to handle both outcomes of the query to zi , so we care not only about
each of ρi,V b(U)(B) separately but about B(0)(U)∩ B(1)(U). Nonetheless, essentially the
same proof of [RM99] using the probabilistic method works—but not that of [GPW15],
where the probabilities are too small for us. Procedure project, therefore, just asserts
the existence of a return value U with the required properties.

The probabilities in the claims below are with respect to U picked uniformly among
all subsets of [ℓ] of size ℓδ.

Claim B.4.7 ([RM99]). If A is thick, then πI\{i}(ρi,U(A)) = πI\{i}(A) with probability
1− o(1).

Claim B.4.8. If β(CI ) ≤ 2ℓγ logℓ, then β(CI\{i}(0)(U) ∩ CI\{i}(1)(U)) ≤ β(CI ) + 1 with
probability 1− o(1).
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yi yI\{i}

V 0

V 1

C (0)I

C (1)I

C (∗)I

bCI

Figure B.7: Sets used in the proof of Claim B.4.8

Proof of Lemma B.4.5. By union bound there exists U that satisfies Claim B.4.7 and
Claim B.4.8. Item 1 then follows from Observation B.4.2, and item 2 from Observa-
tion B.4.3.

Proof of Claim B.4.7. We observe that the equality holds if every right vertex of the
graph Graphi(πI (A)) with positive degree has an edge into U . Since MinDegi(πI (A))≥
ℓµ, the probability that U is contained within the non-neighbours of any right vertex
x I\{i} is �ℓ−|Ni(x I\{i})|

ℓδ

��
ℓ
ℓδ

� ≤
�
ℓ−ℓµ
ℓδ

��
ℓ
ℓδ

� ≤ (1− ℓµ−1)ℓ
δ ≤ e−ℓµ+δ−1

. (B.12)

By a union bound over all right vertices, the probability of the equality not holding is
at most

ℓ|I |−1e−ℓµ+δ−1
< e|I | logℓ−ℓµ+δ−1 ≤ eℓ

γ logℓ−ℓµ+δ−1
= o(1) . (B.13)

The last equality holds because of assumption (B.5b).

The proof of Claim B.4.8 follows [RM99] except that our version of Claim B.4.10 is
stronger and we apply it twice.

Proof of Claim B.4.8. We begin by observing that CI\{i}(b)(U), the set of right vertices
that can be completed to b over U , is equal to N j(V b(U)) (see Figure B.7). We want
to prove that the set C (∗)I\{i}(U) = CI\{i}(0)(U) ∩ CI\{i}(1)(U) of right vertices that can be

completed to any colour over U is large, namely that |C (∗)I\{i}|/2ℓ(|I |−1) ≥ ψ/2 where
ψ= |CI |/2ℓ|I | = 2−β(CI ).

Right vertices of degree larger than 2ℓψ/4 can be completed to any colour with
high probability. Indeed, |Ni(yI\{i})| ≥ 2ℓ ·ψ/4 = 2ℓ · 2−β(C)/4 ≥ 2ℓ · 2−2ℓγ log2 ℓ/4 ≥
2ℓ · 2−3ℓγ log2 ℓ, so for each b ∈ {0, 1} we can apply Claim B.4.10 with ϕ = 3 log2 ℓ to
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show that Ni(yI\{i})∩ V b(U) ̸= ; with probability 1− o(1). Taking a union bound, we
can assume that Ni(yI\{i})∩V b(U) ̸= ; holds for both b ∈ {0, 1} except with probability
o(1). In other words, yI\{i} ∈ C (b)I\{i} for b ∈ {0, 1}, so yI\{i} ∈ C (∗)I\{i}.

We have shown that for every yI\{i} ∈ bCI\{i} = {yI\{i} : deg(yI\{i})≥ 2ℓψ/4} it holds
that yI\{i} ∈ C (∗)I\{i} with probability 1 − o(1). By Observation B.4.9, with probability
1− o(1),

|C (∗)I\{i}| ≥ 2/3 · |bCI\{i}| . (B.14)

In fact, 2/3 can be chosen to be any arbitrary number strictly smaller than 1, and the
statement would still hold.

Therefore it is enough to prove that the set bCI\{i} of right vertices with large degree
is large. Indeed, we have

2ℓ|I |ψ= |CI | ≤ |bCI\{i}| · 2ℓ + |{0, 1}ℓ(|I |−1) \ bCI\{i}| · 2ℓ ·ψ/4 (B.15)

≤ |bCI\{i}| · 2ℓ + 2ℓ(|I |−1) · 2ℓ ·ψ/4= |bCI\{i}| · 2ℓ + 2ℓ|I | ·ψ/4 , (B.16)

from where
|bCI\{i}| ≥ 3/4 ·ψ · 2ℓ(|I |−1) . (B.17)

and the claim follows by combining equations (B.14) and (B.17). We observe that the
1/4 in the definition of right vertices with large degree can be any arbitrarily small
constant.

Observation B.4.9. Let T be a set and S a set-valued random variable. If Pr[s ∈ S] ≥ p
for every s ∈ T , then Pr[|S| ≥ q|T |]≥ (p− q)/(1− q).

Proof. Let x = Pr[|S| ≥ q|T |]. Then
p ≤ Pr[s ∈ S] (B.18)
= Pr[s ∈ S||S| ≥ q|T |]Pr[|S| ≥ q|T |] + Pr[s ∈ S||S|< q|T |]Pr[|S|< q|T |] (B.19)
≤ 1 · x + q · (1− x) , (B.20)

from which the observation follows.

As before, we think of W ⊆ {0, 1}ℓ as a set of binary colourings of [ℓ] and denote
by πU(W ) the projection of W to a subset U ⊆ [ℓ], i.e. πU(W ) = {wU ∈ {0, 1}U : w ∈
W for some w[ℓ]\U ∈ {0, 1}[ℓ]\I}. Note that this is the same operation as πI (A), except
they apply to different domains.

Claim B.4.10. Let W ⊆ {0, 1}ℓ be any set of size at least 2−ϕℓγ ·2ℓ, whereϕ is any function
of ℓ such that logϕ = o(logℓ). Let U be a uniformly random subset of [ℓ] of size ℓδ. Then,
for any b ∈ {0, 1}, {b}|U | ∈ πU(W ) with probability at least 1− o(1).

In the original paper [RM99] the constants are set to γ = 2/20, δ = 5/20. The same
probabilistic argument works for any choice of constants such that γ+3δ/2< 1. Here we
present a combinatorial proof that works for any constants such that γ + δ < 1, and in
particular holds for γ= 1/3− ξ and δ = 2/3, for any ξ > 0.
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Proof. We will prove the following equivalent statement: if PrU[{b}|U | ̸∈ πU(W )] ≥ q

(for, say, q = ϕ/ logℓ), then |W | ≤ 2ℓ−ϕℓγ . We will only use the fact that γ+δ < 1+
log q

ϕ

logℓ

(for q = ϕ/ logℓ this says that γ+δ < 1− log logℓ
logℓ ). The following statement, which is a

corollary of Kruskal–Katona Theorem, will be proved later on.

Claim B.4.11. Let U be any family of subsets of [ℓ], where every U ∈ U is of size u. If
|U | ≥∑ti=0

�
ℓ−1−i
ℓ−u−i

�
and if W ⊆ {0, 1}ℓ is such that {b}|U | ̸∈ πU(W ) for every U ∈ U , then

it holds that |W | ≤ 2ℓ −∑ℓ−u
j=0

∑t
i=0

�
ℓ−1−i
ℓ−u−i− j

�
.

Let U be the set of all U ⊂ [ℓ] of size ℓδ such that {b}|U | ̸∈ πU(W ). We have that

|U |�
ℓ
ℓδ

� = Pr
U
[{b}|U | ̸∈ πU(W )]≥ q . (B.21)

Hence we get

|U | ≥ q
�
ℓ

ℓδ

�
= q

ℓ

ℓδ

�
ℓ− 1
ℓδ − 1

�
≥

q ℓ

ℓδ∑
i=0

�
ℓ− 1− i
ℓδ − 1

�
=

q ℓ

ℓδ∑
i=0

�
ℓ− 1− i
ℓ− ℓδ − i

�
. (B.22)

We can therefore apply Claim B.4.11 with u= ℓδ and t = q ℓ
ℓδ

to get

|W | ≤ 2ℓ −
ℓ−ℓδ∑
j=0

q ℓ

ℓδ∑
i=0

�
ℓ− 1− i

ℓ− ℓδ − i − j

�
≤ 2ℓ−q ℓ

ℓδ
+1 + 2ℓ

δ logℓ ≤ 2ℓ−ϕℓγ , (B.23)

where the second inequality is a straightforward calculation that we prove in Claim B.4.15;

and the last inequality follows from γ+δ < 1+
log q

ϕ

logℓ .

To prove Claim B.4.11 we need to introduce some terminology from extremal com-
binatorics.

We use the following terminology from [Juk11]. If w is a binary colouring of [ℓ]
(i.e. a binary vector of length ℓ), we say a neighbour of a w is a colouring which can
be obtained from w by flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}ℓ
of binary colourings is the set ∂ (A) of all its neighbours. A set A is k-regular if every
colouring in A colours exactly k elements 1. Note that in this case ∂ (A) is (k−1)-regular.
The best possible lower bounds for the size of ∂ (A) were obtained independently by
Kruskal [Kru63] and Katona [Kat68].

Theorem B.4.12 (Kruskal–Katona Theorem). If A⊆ {0, 1}ℓ is k-regular, and if

|A|=
�

ak

k

�
+
�

ak−1

k− 1

�
+ . . .+
�

as

s

�
then

|∂ (A)| ≥
�

ak

k− 1

�
+
�

ak−1

k− 2

�
+ . . .+
�

as

s− 1

�
.
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Let P(S) denote the power set of S. In [Fra84] it is proven that there exists an
explicit compression function C : P({0, 1}ℓ)→ P({0, 1}ℓ) such that, given a k-regular
set A ⊆ {0, 1}ℓ, C(A) is k-regular, |C(A)| = |A| and |∂ (C(A))| matches the lower bound
in Theorem B.4.12, and, furthermore, the following proposition holds.

Proposition B.4.13. ∂ (C(A)) ⊆ C(∂ (A)).

Although this follows directly from the proposition in Section 2 of [Fra84], the for-
mulation above is from [And87].

We define the iterated shadow of a k-regular set A⊆ {0, 1}ℓ to be ∂ ≤k(A) = ∪k
j=0A j ,

where A0 = A and A j = ∂ (A j−1) for 0 < j ≤ k. The following corollary follows immedi-
ately from Theorem B.4.12 and Proposition B.4.13.

Corollary B.4.14. If A⊆ {0, 1}ℓ is k-regular, and if

|A|=
�

ak

k

�
+
�

ak−1

k− 1

�
+ . . .+
�

as

s

�
then

|∂ ≤k(A)| ≥
k∑

j=0

�
ak

k− j

�
+
�

ak−1

k− 1− j

�
+ . . .+
�

as

s− j

�
.

Proof of Claim B.4.11. Given U , define WU to be the largest set of colourings {0, 1}ℓ
such that {b}|U | ̸∈ πU(W ) for all U ∈ U . For simplicity, we will consider b = 0, i.e. WU
is the set that contains all the colourings of [ℓ] that do not colour any U ∈ U completely
0.

Let U ′ ⊆ U be a set of size exactly
∑t

i=0

�
ℓ−1−i
ℓ−u−i

�
. Obviously, WU ′ is at least as large

as WU .
Let 1UC ∈ {0, 1}ℓ be the indicator functions for the complement of a set U , i.e. 1UC =

1−1U . Let A be the set of 1UC ∈ {0, 1}ℓ for U ∈ U ′. Note that A is (ℓ−u)-regular and that
the iterated shadow of A is exactly the set of colourings that are not in WU ′ . Applying
Corollary B.4.14 to A, we get

|∂ ≤k(A)| ≥
k∑

j=0

t∑
i=0

�
ℓ− 1− i
k− i − j

�
=
ℓ−u∑
j=0

t∑
i=0

�
ℓ− 1− i
ℓ− u− i − j

�
.

Therefore, |WU | ≤ |WU ′ |= 2ℓ − |∂ ≤k(A)| ≤ 2ℓ −∑ℓ−u
j=0

∑t
i=0

�
ℓ−1−i
ℓ−u−i− j

�
.

For completeness we include the calculations needed in Claim B.4.10.

Claim B.4.15. It holds that

ℓ−u∑
j=0

t∑
i=0

�
ℓ− 1− i
ℓ− u− i − j

�
≥ 2ℓ − 2ℓ−t+1 + 2u logℓ .
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Proof. The claim follows from the following sequence of elementary calculations

ℓ−u∑
j=0

t∑
i=0

�
ℓ− 1− i
ℓ− u− i − j

�
=
ℓ−u∑
j=0

t∑
i=0

�
ℓ− 1− i
ℓ− 1− j

�
(∗)

=
ℓ−u∑
j=0

�
ℓ−1∑
i=0

�
i

ℓ− 1− j

�
−
ℓ−t∑
i=0

�
i

ℓ− 1− j

��

=
ℓ−u∑
j=0

��
ℓ

ℓ− j

�
−
�
ℓ− t + 1
ℓ− j

��
(∗∗)

=
ℓ−u∑
j=0

�
ℓ

j

�
−
ℓ−u−t+1∑

j=0

�
ℓ− t + 1

j

�
(∗)

= 2ℓ −
ℓ∑

j=ℓ−u+1

�
ℓ

j

�
− 2ℓ−t+1 +

ℓ−t+1∑
j=ℓ−u−t+2

�
ℓ− t + 1

j

�
≥ 2ℓ − 2ℓ−t+1 +

u−1∑
j=0

�
ℓ

j

�
≥ 2ℓ − 2ℓ−t+1 + ℓu = 2ℓ − 2ℓ−t+1 + 2u logℓ ,

where the equalities in (∗) follow from renaming of variables and the fact that
�n

k

�
=� n

n−k

�
; the equality in (∗∗) follows from

∑n−1
i=0

� i
k−1

�
=
�n

k

�
.

B.4.2 Simulation of Real Communication Protocols by Decision Trees

In this section we show how to adapt the simulation theorem to real communication.

Theorem B.4.16. If there is a real communication protocol computing Lift(S) using com-
munication c and r rounds, then there is a parallel decision tree computing S that uses
O(c/ logℓ) queries and depth r.

The proof follows the same strategy as in the deterministic case, this is we are go-
ing to construct a decision tree by simulating a real communication protocol and only
querying the coordinates where the communication protocol would have too much in-
formation on x i .

The major difference in analyzing real communication protocols as opposed to de-
terministic ones is that the set of compatible inputs is not a rectangle, but a monotone
set as defined next.

Definition B.4.17. A Boolean matrix M is monotone if Mi1 j1 ≤ Mi2 j2 , for all pairs of
entries such that i1 ≤ i2 and j1 ≤ j2.
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0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure B.8: Monotone matrix partitioned in 5 × 5 blocks; the 3rd block-column has 4
monochromatic blocks.

Recall that each communication step is a comparison ϕ(x) ≤ ψ(y) and that we
restrict our attention to inputs in a set A×B. We lay out the results of the comparison in
the matrix (⟦ϕ(x)≤ψ(y)⟧)x ,y indexed by x ∈ A, y ∈ B, with rows sorted decreasingly
according to ϕ and columns increasingly according to ψ. Note that we use the Iverson
bracket notation

⟦Z⟧= ¨1 if the Boolean expression Z is true;
0 otherwise.

(B.24)

The communication matrix is monotone: if ϕ(x1) ≥ ϕ(x2) and ψ(x1) ≤ ψ(x2) then
ϕ(x2)≤ ϕ(x1)≤ψ(y1)≤ψ(y2).

The fact that the set of compatible inputs is not a rectangle can be circumvented,
since as observed in [Joh98] in every monotone matrix there exists one quadrant—thus
a large rectangle—that is monochromatic. It is therefore possible to restrict the set of
compatible inputs to a quadrant when we want to choose the outcome of a comparison,
as done in [BEGJ00].

However, this is not enough for us. Since we want to query variables only at the end
of each round of k comparisons, and after using procedure project we no longer know
what B is, we need to restrict the inputs to rectangles beforehand. This means we have
to avoid shrinking A too much, and definitely less than the 2k factor we would get by
picking quadrants.

Our solution is to partition the matrix into (k + 1)× (k + 1) blocks of size |A|/(k +
1) × |B|/(k + 1) and then restrict Bob’s input to one of the (k + 1) block-columns, so
that Alice’s input forms a rectangle in k out of the k + 1 block-rows (see Figure B.8).
Formally, we have the following lemma.

Lemma B.4.18. Let M be a monotone matrix partitioned into (k + 1) × (k + 1) blocks.
There is a block-column such that k of its blocks are monochromatic.
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Proof. Consider a non-monochromatic block. Since its bottom-right corner has value 1,
all blocks below and to the right are 1-blocks. This is, if we consider non-monochromatic
blocks left-to-right in a sequence, then a block cannot be below its predecessor, which
means that there are at most 2k + 1 non-monochromatic blocks overall. By the pi-
geonhole principle, at least one of the column-blocks contains at most one non-mono-
chromatic block.

We take advantage of this lemma with the following construction. Given two sets
A⊆ [ℓ]m and B ⊆ {0, 1}ℓm, we define the b-monochromatic part of A with respect to B
as A[b, B]ϕ,ψ = {x ∈ A : ∀y ∈ B ⟦ϕ(x)≤ψ(y)⟧= b}.

For technical reasons we want each element in πI (A) to have a unique completion to
A. Therefore we define a new operatorσI (A) = {x ∈ A : ∀x ′ ∈ A if x ′I = x I then x < x ′},
where the order is, say, the lexicographic order. In other words, each element of σI (A)
is the minimum among all elements of A that share the same I coordinates. Observe
that πI (A) = πI (σI (A)). We define σI (B) analogously.

We have all the ingredients to explain the simulation procedure eval. Note that the
comparisons at lines 4 and 9 are the same.

Lemma B.4.19 (Main Lemma). If Π is a real protocol that computes Lift(S) using com-
munication c < m

2 (1−λ) logℓ and r rounds, then eval computes S using 5c/(1−λ) logℓ
queries and depth r.

Proof. The proof is very similar to the proof of Lemma B.4.6. Let Rv be the set (not
necessarily a rectangle) of inputs compatible with node v, let cv be the amount of com-
munication up to node v, and let rv be the number of rounds up to node v. Let χ be the
number of queries so far, i.e., χ = m− |I |. We show that the following invariants hold
throughout the algorithm:

1. πI (A) is thick;

2. A× B ⊆ Rv;

3. χ ≤ (2cv + 3rv)/(1−λ) logℓ;

4. β(CI )≤ (cv + kv) log(cv + 1) +χ;

and the following invariants hold at the beginning of each round:

5. β(πI (B))≤ cv log(cv + 1) +χ;

6. select(x i , yi) = zi for all (x , y) ∈ A× B and i /∈ I .

All five invariants are true at the beginning of the algorithm.
The main difference with the proof of Lemma B.4.6 is proving invariant 1, because

we modify A not only at lines 12 and 15, but also at line 7. At each point A is modified,
the corresponding procedure ensures that πI (A) is thick. We need to argue, though,
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1 let A= [ℓ]m, B = {0, 1}ℓm, I = [m], v be the root of Π
2 while v is not a leaf do
3 let A′ = σI (A), B = σI (B)
4 foreach comparison ϕ vs ψ do
5 let B = argmax|B′|=|B|/(kv+1)|A′[0, B′]ϕ,ψ ∪ A′[1, B′]ϕ,ψ|
6 let A′ = A′[0, B]ϕ,ψ ∪ A′[1, B]ϕ,ψ

7 let A = prune (A′, I)
8 let Q = ;, CI = πI (B)
9 foreach comparison ϕ vs ψ do

10 while ∃i ∈ I such that AvgDegi(πI (A))< ℓλ do
11 let Ui = project (A, CI , I , i)
12 let A= ρi,Ui

(A), CI\{i} = CI\{i}(0)(Ui)∩ CI\{i}(1)(Ui)
13 let I = I \ {i}, Q =Q ∪ {i}
14 let b j = argmax|πI (A[b, B]ϕ,ψ)|
15 let A= prune(A[b j , B]ϕ,ψ, I)

16 query coordinates Q to get string zQ
17 for i ∈Q do
18 let B = ρi,V (B), where V = V zi (Ui)

19 let v = vb1,...,bk

20 return the answer at v

Figure B.9: Procedure eval(Π,z)

that the assumptions of the corresponding lemmas hold, and therefore it is correct to
apply them. The argument for applying prune in line 15 is the same as in the proof
of Lemma B.4.6. For line 12, we note that, by invariants 4 and 3, β(CI ) ≤ (cv + kv) ·
log(cv + 1) +χ ≤ m

2 (logℓ) · 2(log m) + 5cv ≤ ℓγ log2 ℓ+ 5ℓγ logℓ≤ 2ℓγ log2 ℓ. Hence we
only need to prove that we can apply Lemma B.4.4 in line 7.

We begin by observing that at line 3, AvgDegi(πI (A′)) ≥ ℓλ, since πI (A′) = πI (A).
Furthermore, at line 6, the size of A′ decreases by atmost a 1−1/(kv+1) fraction. Indeed,
if we divide the comparison matrix (⟦ϕ(x)≤ψ(y)⟧)x ,y into (kv + 1)× (kv + 1) blocks
of size |A′|/(kv + 1)× |B|/(kv + 1), by Lemma B.4.18 at least one of the column-blocks
contains kv monochromatic blocks, i.e., a 1− 1/(kv + 1) fraction is monochromatic.

Since we have at most kv comparisons, the size of A′ at line 7 is at least a (1−1/(kv+
1))kv ≥ 1/4 fraction of the original. Also, after line 3 there is a bijection between A′ and
πI (A′), so the size of πI (A′) is also at least a 1/4 fraction and Lemma B.4.4 applies.

For invariant 2, note that Aand B never increase and that the set of compatible inputs
Rv only changes when v is modified at line 19. However, A was restricted at line 15 so
that ⟦ϕ(x)≤ψ(y)⟧ = b for every x ∈ A and y ∈ B; in other words A × B ⊆ Rvb ,
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therefore invariant 2 holds. Note that we can only restrict A in this manner because we
had already restricted B in line 5.

To see that we make at most (2cv +3rv)/(1−λ) logℓ queries, we observe that each
query comes from a call to project in line 11, which decreases α by at least (1−λ) logℓ
because AvgDegi(AI )< ℓλ. However, α only increases (by at most 2) at line 15, i.e., after
one bit of communication, and (by at most 3) at line 7, i.e., once per round. Since α≥ 0
at all times by definition, the upper bound in invariant 3 follows.

To prove invariants 4 and 5 we observe that B shrinks at two points. One is at line 5,
where β increases by log(kv + 1) ≤ log c with every bit of communication. Therefore,
when we set CI = πI (B) at line 8 invariant 4 holds. In line 12, Lemma B.4.5 guarantees
that β(CI ) increases by at most 1 with every query, therefore β(CI ) ≤ (cv + kv) log(c +
1)+χ holds at all times. Finally, we note that β(πI (B))≤ β(CI ), by the same argument
as in the proof of invariant 5 of Lemma B.4.6, and that cv is updated to cv + kv before
the next round.

For invariant 6, recall that A and B never increase. Moreover, each time I is modified
at line 13, we add the coordinate i for which invariant 6 breaks to Q. Then we restore
the invariant before the next iteration by restricting B at line 18. Indeed, if (x , y) ∈ A×B,
then x i ∈ U and yi ∈ V zi (U), so by definition of V it holds that yi x i

= zi .
It is clear that the decision tree has depth r and the total number of queries is at

most 5c/(1 − λ) logℓ by invariant 3. The proof of correctness is identical to that of
Lemma B.4.6.

B.5 From Parallel Decision Trees to Dymond–Tompa Games

In this section we prove that the adversary argument on a parallel decision tree for
the falsified search problem of a pebbling contradiction gives a Pebbler strategy for the
Dymond–Tompa game.

It is more convenient to work with the Dymond–Tompa game when there is a chal-
lenged pebble at all times. Therefore in this and the following section we use an alternat-
ive but equivalent definition. Initially the unique sink has a pebble and it is challenged,
and then the game starts without a special first round. The number of rounds is the
number of actual rounds, not counting the setup, and the cost is the total number of
pebbles, including the initial pebble on the sink.

Lemma B.2.6 (Restated). If there is a parallel decision tree for Search
�
PebG

�
in depth r

using at most c queries, then Pebbler has a winning strategy in the r-round Dymond–Tompa
game on G in cost at most c + 1.

We prove that, in fact, the parallel decision tree complexity of the falsified clause
search problem of a pebbling contradiction is equivalent to the Dymond–Tompa game
on the graph with an extra sink on top. Formally, we define bG as a graph with vertices
V (G)∪{t} and edges E(G)∪{(z, t)}, where z is the unique sink of G. Clearly the game
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on bG needs as many pebbles as G, and one more pebble is enough, so Lemma B.2.6
follows from Lemma B.5.1.

Lemma B.5.1. There is a parallel decision tree for Search
�
PebG

�
in depth r using c queries

if and only if Pebbler has a winning strategy in the r-round Dymond–Tompa game on bG in
cost c + 1.

Proof. Assume there is a parallel decision tree for Search
�
PebG

�
in depth r using c quer-

ies. We construct a strategy for Pebbler in r rounds and c + 1 pebbles. We say that
a vertex s reaches a vertex t if there is a (possibly empty) path from s to t where all
intermediate vertices are not queried. We keep these invariants.

1. The challenged pebble in the Dymond–Tompa game is false.

2. A false vertex is reachable from another false vertex if and only if it is not chal-
lenged in the Dymond–Tompa game.

3. In the subtree of the challenged pebble a vertex has a pebble if and only if it has
been queried.

When it is Pebbler’s turn, Pebbler looks at the decision tree and places pebbles in
those vertices being queried that can reach the challenged pebble. After Challenger’s
turn, Pebbler follows the branch in the decision tree in which the challenged pebble
is false and other vertices are false if they are reachable from a false vertex or true
otherwise.

Dymond–Tompa moves are valid and the invariants are kept. When we reach a leaf
in the decision tree we made at most c queries in r rounds by assumption, therefore
Pebbler also used at most c pebbles on vertices of G plus one pebble on the extra sink and
r rounds. It remains to show that the Dymond–Tompa game also ended. The decision
tree points to a falsified clause, which is not the sink axiom because the sink is always
false. Therefore we have a false vertex whose predecessors are true. By item 2, that
false pebble is challenged, and by item 3 all of its predecessors have pebbles, therefore
the Dymond–Tompa game also ended.

Assume there is a Pebbler strategy in r rounds and c + 1 pebbles. We construct a
parallel decision tree for Search

�
PebG

�
in depth r using c queries.

We look at the strategy for Pebbler and add a node to the decision tree that queries
the variables corresponding to vertices being pebbled that can reach the challenged
pebble. For each branch, we simulate a Challenger move. We consider the set of new
vertices coloured false and that are not reachable by any false vertex. If this set is empty,
then Challenger stays. Otherwise Challenger jumps to any of these vertices.

Dymond–Tompa moves are valid and the invariants are kept. When the Dymond–
Tompa game ends, Pebbler has used at most c + 1 pebbles in r rounds by assumption,
one of which outside G, therefore the decision tree also made at most c queries in r
rounds. It remains to show that we can label the leaves of the decision tree in such a
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way that the assignment induced by the decision tree falsifies a clause. At the end of the
Dymond–Tompa game, all of the predecessors of the challenged pebble have pebbles. By
item 1 it is false, and by item 3 its predecessors are queried. By item 2, its predecessors
are true, therefore we can label the leaf with the clause claiming that if the predecessors
of the challenged vertex are true then the challenged vertex is true.

B.6 Dymond–Tompa Trade-offs

In this section we prove upper and lower bounds for the Dymond–Tompa game on
graphs of a given family. The lower bounds are the final missing piece in order to get
length-space trade-offs for cutting plane proofs, and the upper bounds will be used to
obtain space-efficient proofs, as explained in Section B.7.

Our goal is to prove the following lemma.

Lemma B.6.1. For any n, d ∈ N+ such that n is a power of 2, there exists an explicitly
constructible DAG G(n, d) of depth d with O(dn) vertices and indegree at most 2 such that:

1. for any r ≤ d, the cost of an r-round DT game is at most min{r2(2⌈d/r⌉ − 1),
rn(2⌈⌈log d⌉/r⌉ − 1)};

2. for any r ≤ d, the cost of an r-round DT game is at least min{ r2d/r

8 , n
8}.

We first define a family of graphs for which we will prove the lemma.

Definition B.6.2 (Butterfly graph). A k-dimensional butterfly graph G is a DAG with
vertices labelled by pairs (w, i) for 0 ≤ w ≤ 2k − 1 and 0 ≤ i ≤ k, and with edges from
vertex (w, i) to (w′, i + 1) if the binary representations of w and w′ are equal except
for possibly in the (i + 1)st most significant bit. Note that G has (2k + 1)k vertices, has
2k sources and 2k sinks, and that all vertices that are not sources have indegree two.

Moreover, if H is a graph with n sinks and n sources, we say a graph is a stack of s
Hs, if it consists of s copies of H such that sources on level i are identified with sinks on
level i + 1 for i ∈ {1, . . . , s− 1}.

For any n, d ∈ N such that n is a power of 2, the graph G(n, d) we will consider for
the Dymond–Tompa game consists of a (possibly fractional) stack of butterfly graphs
of dimension log n, with an attached binary tree on top such that the depth of this
graph is exactly d (see Figure B.10a). Note that if d is a multiple of log n, then this
graph has exactly d/ log n blocks (the 1st block is a binary tree). Moreover, if d ≤ log n,
then G(n, d,) is just a binary tree of depth d. Observe that, if d ≥ log n, G(n, d) has
(d − log n)n+ 2n− 1 vertices.

B.6.1 Upper Bounds for the Cost of the Dymond–Tompa Game on
Butterfly Graphs

Given a graph G, we say T is a Pebbler strategy for G if the following holds.
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(a) Stacks of graphs with binary tree on top
(dashed lines represent vertex identification)

(b) 3-dimensional butterfly graphs

Figure B.10: Stack of butterflies

1. Each node x ∈ V (T ) is labelled with a set of vertices S(x) ⊂ V (G) (corresponding
to a valid set of vertices where Pebbler can place pebbles at the current stage
of the game). We note that in order for S(x) to be a valid move for Pebbler at
node x , it must be the case that if P is the path from the root of T to x , then
S(x)∩ (∪y∈V (P) S(y)) = ; (Pebbler cannot repebble a vertex) and S(x) ̸= ; if any
vertex in
∪

y∈V (P) S(y) has an immediate predecessor that is unpebbled (if the
game has not ended, Pebbler must place at least one pebble).

2. Each edge leaving a node x ∈ V (T ) is labelled with a set of vertices Sx y ⊆ S(x)∪
Sp(x)x of possible Challenger moves (corresponding to pebbles that Challenger
challenges and that lead to the same Pebbler strategy), where p(x) is the parent
of x in T . In the case where x is the root of the tree, define Sp(x)x = ;. In
order for T to be a complete strategy, i.e., for T to describe how to deal with
all possible Challenger moves, it must be the case that at every node x either∪

y:x y∈E(T ) Sx y = S(x)∪ Sp(x)x or all immediate predecessors of S(x)∪ Sp(x)x are
pebbled, and in this latter case x is a leaf.

Proposition B.6.3. If there is a winning Pebbler strategy tree T with max degree a, depth
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d and such that the label of each node is of size at most b, then the cost of a r-round DT
game, for any r ≤ d, is at most r b(a⌈d/r⌉ − 1).

Proof. Pebbler’s strategy will be as follows: at round i Pebbler will be playing according
to the strategy tree Ti . At the first rounds, let T1 = T . Let r ≤ d. For every i ≤ r,
let T ′i be a subtree of Ti consisting of all nodes at distance less than ⌈d/r⌉ of the root.
Note that there are at most a⌈d/r⌉ − 1 nodes in T ′i . At rounds i, Pebbler places pebbles
on all the vertices that are in some label of nodes in V (T ′i ). Since each node has at
most b labels, Pebbler places at most b(a⌈d/r⌉−1) pebbles at each rounds. If Challenger
challenges a vertex v that does not have all its immediate predecessors pebbled, then v
must be in the label of some edge x y where x is a leaf of T ′i . Let Ti+1 be the subtree of
Ti having y as root.

This is a valid strategy for Pebbler and since for every i, the depth of Ti+1 is ⌈d/r⌉
smaller than the depth of Ti and r⌈d/r⌉ ≥ d, the game will end in at most r rounds.
Thus the total number of pebbles placed is at most r b(a⌈d/r⌉ − 1).

We state an immediate corollary of Proposition B.6.3, which is to weak to imply the
upper bounds we stated, but has the advantage that it doesn’t depend on strategy trees
and might be useful for other purposes.

Corollary B.6.4. If Pebbler has a winning strategy in d rounds and x pebbles per round,
then the cost of a r-round DT game, for any r ≤ d, is at most r x((x + 1)⌈d/r⌉ − 1) ≤
r(x + 1)⌈d/r⌉+1.

All that is left to prove the upper bounds is to show that there exists Pebbler strategy
trees with certain properties. We prove two propositions below which together with
Proposition B.6.3 implies the upper bounds in Lemma B.6.1

Proposition B.6.5. There is a Pebbler strategy tree T for the graph G(n, d) with max
degree 2, depth d and such that the label of each vertex is of size at most 2.

The proof follows from the following straightforward claim.

Claim B.6.6. For any graph with depth d and indegree at most δ, there is a winning
Pebbler strategy in d rounds and using at most δ pebbles per round. Moreover, this strategy
is such that if Challenger stays the game immediately ends.

Proof. The Pebbler strategy is simply to, at every round, pebble all in-neighbours of the
challenged vertex.

Proposition B.6.7. There is a winning Pebbler strategy tree T for the graph G(n, d) with
max degree 2, depth ⌈log d⌉ and such that the label of each vertex is of size at most n.
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Proof. The winning Pebbler strategy is to do a binary search in the rows of G(n, d). The
strategy only depends on whether Challenger stays or moves, but does not depend on
what particular pebble Challenger chooses to pebble. Thus the Pebbler strategy tree T
has max degree 2. The proposition then follows from the fact that G(n, d) has depth d
and has at most n vertices per row.

B.6.2 Lower Bounds for the Cost of the Dymond–Tompa Game on
Butterfly Graphs

Now we would like to show that the strategies described in the previous subsection are
essentially the best Pebbler can do. As a warm up, and to give some intuition on the
strategy, we prove a special case of Lemma B.6.1. In order to keep the proof simple,
we use the alternative definition of the Dymond–Tompa game and consider a stack of
butterflies with an extra vertex on top, bG, as defined in Section B.5.

Lemma B.6.8. For any n, r ∈ N+ such that n is a power of 2, there exists an explicitly
constructible DAG bG(n, r log n) of depth r log n+ 1 with O(nr log n) vertices and indegree
at most 2 such that for any r ≤ d, the cost of an r-round DT game is at least n

4 .

This lemma holds not only for stacks of butterfly graphs, but also for stacks of other
kinds of graphs as long as they have a strong version of the grate property [Val77].

Definition B.6.9. A graphwith n sources and sinks is aα-uniform grate if after removing
α vertices, there still are at least n/2+1 sources, each of which can reach n/2+1 sinks.

Throughout the Dymond–Tompa game, we say a vertex t is reachable from s if there
is a path from s to t with no pebbles neither on internal vertices of the path nor on the
vertex s (but t may be pebbled). We say a sink at level ℓ is good if it is unpebbled and
is reachable by at least n/2 + 1 sources at level ℓ. Furthermore, we say a source s is
disconnected from a sink t if there is no completely (including end points) unpebbled
path from s to t, and we consider the number of source-sink disconnections in a graph
as the number of pairs (t, s) such that s is disconnected from t.

Observation B.6.10. Butterfly graphs are (n/4− 1)-uniform grates.

Proof. If there are less than n/2+1 good sink-vertices, then the number of source-sink
disconnections is at least n/2 · n/2 (at least n/2 non-good sinks are not reached by at
least n/2 sources). Note that any vertex in a butterfly graph is in exactly n distinct
source-sink paths. So if α is the number of vertices removed, then there are at most αn
source-sink disconnections. This implies that α≥ n/4.

We can now proceed to the proof of the warm-up lemma.
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Proof of Lemma B.6.8. We give a strategy for Challenger in the Dymond–Tompa game
over the graph bG(n, r log n) defined above so that, assuming Pebbler has at most n/4−1
pebbles, the game will not end within r rounds.

At a high level, Challenger’s strategy will be to keep in mind, before every round,
a good sink that can reach the challenged vertex; more precisely, before round ℓ + 1
Challenger will have a good sink at level ℓ in mind, say tℓ. After the Pebbler places
pebbles on the graph, Challenger chooses a good sink at level ℓ + 1 that is reachable
from tℓ and decides to have that in mind. He will then check if there are any new
pebbles that are causing the challenged vertex to be unreachable from tℓ, and if so,
challenges one that is reachable from tℓ.

The proof goes as follows. We maintain the invariant that before round ℓ, Chal-
lenger’s chosen vertex tℓ is a good sink at level ℓ and reaches the challenged vertex.
Before the first rounds, the challenged vertex is the sink of bG (the vertex that is not in
G) and Challenger’s chosen vertex is the original sink of G, t1, which clearly is a good
sink at level 1 (it is unpebbled and reachable from all sources at level 1) and reaches
the challenged vertex.

Suppose that the invariant was true until round ℓ, i.e. suppose that before Pebbler’s
(ℓ−1)st move, Challenger’s chosen vertex tℓ−1 is a good sink at level ℓ−1 and reaches
the challenged vertex. At round ℓ−1, Pebbler places some pebbles. Since Pebbler has at
most n/4−1 pebbles in total, we can conclude by the uniform grate property that there
are at least n/2+1 good sinks at level ℓ. Since tℓ−1 was a good sink before round ℓ−1,
there must be a good sink at level ℓ, say tℓ, which was reachable from tℓ−1 before round
ℓ−1. Challenger decides tℓ will be the next chosen vertex. Since before round ℓ−1, tℓ
reached tℓ−1 and tℓ−1 reached the challenged vertex, the only possible pebbles that are
disconnecting tℓ from the challenged vertex are the newly put pebbles. If there are no
such blocking pebbles, i.e., if tℓ reaches the challenged vertex, Challenger stays. If there
are newly put pebbles that block all paths from tℓ to the challenged vertex, Challenger
challenges one that is reachable from tℓ. Thus, before round ℓ, Challenger’s chosen
vertex tℓ is a good sink at level ℓ and reaches the challenged vertex, and the invariant
is maintained.

We conclude that before round (r + 1), Challenger’s chosen vertex t r+1 is an un-
pebbled vertex global source (which would have been a good sink at level r +1, if such
a level had existed) that reaches the challenged vertex, and hence the game has not
ended.

Now to prove the lower bound in Lemma B.6.1 in its full generality, we must allow
any number of rounds (at most the depth) and still get a good bound on the cost of the
game. We again describe a strategy for Challenger; the difference is that Challenger
cannot afford to jump log n rows every round. Intuitively, we do not think of the graph
as a stack of blocks, but as a continuous block such that any consecutive log n rows is
isomorphic to a butterfly graph.
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Note that given any vertex v ∈ V (G(n, d)) at distance d ′ from the set of sources, the
subgraph induced by all vertices that reach v is isomorphic to G(n, d ′). We therefore
refer to the top binary tree of the subgraph G(n, d ′) as the tree induced by the vertices
that reach v and are at distance at most log n from v.

We give a more general definition of a good vertex and define a partially good vertex.
Let T be a complete directed binary tree rooted at v. We say v (or T) is good if v can
be reached by strictly more than half of the leaves. If T has n leaves this is equivalent to
requiring that, for any h′ ≤ log n, v can be reached by strictly more than 2h′/2 vertices
at distance h′ from v. Given a vertex u ∈ V (T ) at distance h from the leaves, we say u
(or the subtree of T rooted at u) is T -partially good if, for any h′ ≤ h, u can be reached
by strictly more than 2h′/2 vertices at distance h′ from u. When T is clear from the
context, we just say u is partially good.

We are now ready to prove the lower bound.

Proof of Lemma B.6.1, item 2. We actually prove something stronger: we allow Pebbler
to place some pebbles before the game begins, provided that the top binary tree remains
good. We charge only for the pebbles placed outside the binary tree. Challenger is not
allowed to challenge any pebble that was placed in this initial stage. We denote this
game DT*.

Formally, we prove the following claim. Given a graph G and a challenged vertex on
this graph, if there is a vertex v in G that reaches the challenged vertex and that is the
sink of a graph G(n, d), then cost of the r-round DT* game on G is at least min{ γ2d/γ

8 , n
8},

where γ=min{d, r}.
We prove this claim by induction on γ. For γ = 1, either d > r = 1 or d = 1. If

d > r = 1, G(n, d) consists of at least a binary tree of depth d ′ = min{d, log n} with
2d ′+1 − 1 vertices and such that the sink reaches the challenged vertex. Since after
Pebbler places the initial pebbles the binary tree must be a good tree, at least half of
the tree reaches the challenged vertex (actually, strictly more than half of the pebbles
in every row must reach the challenged vertex, which makes a total of at least 2d ′ + d ′
vertices that reach the challenged vertex). Clearly Pebbler must pebble all the vertices
that reach the challenged vertex in order to finish the game in one round, therefore
the cost is more than min{ 2d

8 , n
8}. If d = 1, then clearly at least 1 pebble is needed and

1≥ 1/4= γ2d/γ/8, so the base case holds.
Now suppose γ ≥ 2 and that Pebbler has placed some initial pebbles on the graph,

but maintaining the top binary tree good. Pebbler then starts the first round by placing
some pebbles. Let x ≥ 1 be the number of pebbles Pebbler placed in the top binary
tree in the first round (note we are not counting the initial pebbles placed before the
game began). If d ≤ ⌈log4x⌉ (i.e., if the graph is shallow or if Pebbler placed too many
pebbles), the claim holds since this implies x ≥ 2d

8 and clearly 2d

8 ≥ 2d/γ+logγ

8 = γ2d/γ

8 , for
any γ and d that satisfy 2≤ γ≤ d. We thus assume d > ⌈log4x⌉.

Note that the row that is at distance ⌈log4x⌉ from the root of the top binary tree has
exactly y = 2⌈log 4x⌉ ≥ 4x vertices. Before the first round, at least y/2 of these vertices
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were partially good (with respect to the top binary tree). Since x ≤ y/4 pebbles were
placed, at least y/4 of these partially good trees were untouched at this round. We will
show that, provided that there are less than n/8 pebbles in the graph, then at least one
of these partially good trees is totally good.

Fix a set of y/4 partially good trees that were untouched at this round. If d ≤ log n,
then the partially good trees are all totally good. If d > log n, we consider the set S of
all the (pebbled or unpebbled) vertices at distance log n from the root of the top binary
tree that are in one of these y/4 partially good trees. Since these trees are disjoint there
are at least y/4 · (n/y) = n/4 such vertices. Consider the block consisting of vertices at
distance at most log y from S. Note that the number of source-sinks paths in this block
is at least n/4 · y and any vertex in this block is in at most y such paths. Therefore, if
there are less than n/8 pebbles, then there are more than ny/8 unpebbled source-sink
paths in this block. This means that at least one of the y/4 partially good tree has more
than n/2 unpebbled source-sink paths in this block, which implies that it is a totally
good tree.

Let v be the root of this totally good tree. We know that v reached the challenged
vertex before this rounds. This implies that if v no longer reaches the challenged vertex
then there are newly placed pebbles blocking a path between v and the challenged
vertex. If this is the case, Challenger challenges a newly placed pebble that is in such a
path and that is closest to v (i.e., is reachable from v). The graph induced by all vertices
that reach v satisfies the invariants and has depth d − log y ≥ d − log8x . We observe
that, the x pebbles we account for at this round were placed on the binary tree, and
therefore are not counted again when applying the induction hypothesis.

If r − 1 > d − log y (i.e., the number of rounds left is larger than the depth of
the remaining subgraph), we argue that claim follows. To show this, we consider two
cases: r < d/2 and d/2 ≤ r. In the first case, we show that the number of pebbles
placed has to be large since in one round the depth of the remaining subgraph was
reduced by a lot. Note that r < d/2 this implies that d − log y < d/2 − 1 and thus
8x ≥ y > 2d/2+1. Moreover, γ = min{r, d} = r < d/2 and since d/γ + logγ is a
monotone decreasing function for γ ∈ [2, d/2], we have that 8x > 2d/2+1 ≥ 2d/γ+logγ

and the claim follows. In the second case, the intuition is that the claim we want to
prove is not so strong. Indeed, note that d/2≤ r implies that d/2≤ γ=min{r, d} ≤ d,
and thus 2d/γ+logγ ≤ 2d, so it is enough to show that at least 2d/8 pebbles are needed.
Applying the induction hypothesis on the subgraph induced by all vertices that reach v
we have that the cost of this subgraph is at least min{ 2(d−log y)

8 , n
8}. The claim follows

by noting that 8x + 2(d − log y) ≥ 2d + 8x − 2 log 8x ≥ 2d, where the last inequality
follows since x ≥ 1.

We thus assume r − 1 ≤ d − log y (which implies r ≤ d and γ = r), and apply the
induction hypothesis on the subgraph induced by all vertices that reach v to get that the
cost of this subgraph with one less round is at least min{ (r−1)2(d−log8x)/(r−1)

8 , n
8}.
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It suffices to show that

(r − 1)2(d−log8x)/(r−1) + 8x ≥ r2d/r .

Let a = d
r − d−log8x

r−1 , so that 8x = 2d/r+a(r−1). Rewriting the equation above we have

(r − 1)2(d−log 8x)/(r−1) + 8x = (r − 1)2d/r−a + 2d/r+a(r−1) = r2d/r

�
(r − 1)2−a

r
+

2a(r−1)

r

�
.

Note that, for any r ≥ 1, (r − 1)2−a + 2a(r−1) ≥ r. Indeed, for any fixed r ≥ 1, a
straightforward calculation shows that the real function f (a) = (r −1)2−a − r +2a(r−1)

is minimized at a = 0 and f (0) = 0. This concludes the proof.

To conclude this section, we define a more general class of previously studied graphs
and prove that Lemma B.6.8 also applies for stacks of any graph in this class.

Definition B.6.11 (Grate). An (α,β)-grate is a DAG such that after removing any α ver-
tices, at least β pairs of a source and a sink are connected.

It is straightforward to verify that an (α, n2−(n/2+1)2)-grate is anα-uniform grate—
in fact, this is what we noted in the proof of Observation B.6.10—hence Lemma B.6.8
holds for stacks of grates. In the converse direction, an α-uniform grate is an (α, (n/2+
1)2)-grate. By Proposition 6.2 in [Val77], any (Ω(n),Ω(n1+ε))-grate of logarithmic depth
needs to have superlinear size, so butterfly graphs are close to optimal.

Other than butterfly graphs, an example of Ω(n)-uniform grates are the so-called
supergrates [KS90]. Supergrates are of linear size, but they are too deep for the strategy
of Proposition B.6.5 to give meaningful upper bounds. Another example are connector
graphs, as we proceed to show. Connector graphs can be shallow but require Ω(n log n)
edges [PV76].

Definition B.6.12 (Connector). An n-connector is a DAG with n sources S and n sinks
T , and that satisfies the following property: for any subsets S′ ⊆ S of sources and T ′ ⊆ T
of sinks of size |S′| = |T ′| and for any specification M of which source in S′ should be
connected to which sink in T ′ (one-to-one correspondence), it holds that there are |S′|
vertex-disjoint paths between S′ and T ′ satisfying M .

Proposition B.6.13. An n-connector is an (α, n2 −αn)-grate.

Proof. We prove that an n-connector satisfies the following two properties:

1. any source can reach any sink;

2. the removal of any set of α vertices causes at most αn source-sink disconnections,
i.e., the sum over all sinks v of the number of sources that cannot reach v is at
most αn.
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Let G be a n-connector. Obviously G satisfies property 1. Let A be any set of vertices
in G. Let α = |A|. We will show that the removal of A causes at most αn source-sink
disconnections, thus concluding that G also satisfies property 2. Let G′ be the graph
that results from G after the removal of A.

Let H = ((S, T ), E) be a bipartite graph, where S correspond to the sources in G and
T to the sinks, and there is an edge (s, t) if source s doesn’t reach sink t in G′. Let q′ be
the size of a maximum matching in H. This implies that H has a vertex cover of size q′
(Kőnig’s theorem). Since every vertex in H has degree at most n, we conclude that H has
at most q′n edges, which means that A caused at most q′n source-sink disconnections.

Suppose q′ > α, and let M = {(s1, t1), (s2, t2), . . . , (sα+1, tα+1)} be a matching of size
α+1 in H. Given the set S′ = {s1, s2, . . . , sα+1} of sources, the set T ′ = {t1, t2, . . . , tα+1}
of sinks and M as the specification of which source should be connected to which sink,
we have that in G there are α+1 disjoint paths connecting S′ to T ′ according to M . But
this is a contradiction, since all paths must contain a vertex in A.

Therefore, we conclude that q′ ≤ α and A caused at most rn ≤ αn source-sink
disconnections.

Interestingly, butterfly graphs and connectors also relate in that connecting two k-
dimensional butterfly graphs in a certain back-to-back fashion gives a 2k-connector. A
description of this construction and a proof of this fact can be found, e.g., in [Nor19].

B.7 Upper Bounds for Size and Space

We prove the upper bounds in terms of the weaker resolution proof system. A resolution
configuration C is a set of clauses. A resolution refutation of a CNF formula F is a
sequence of configurations C0, . . . ,Cτ such that C0 = ;, the empty clause ⊥ ∈ Cτ, and
for t ∈ [τ] we obtain Ct from Ct−1 by one of the following steps:

Axiom download Ct = Ct−1 ∪ {C}, for C ∈ F .

Inference Ct = Ct−1 ∪ {C ∨ D}, where C ∨ D is inferred by the resolution rule

C ∨ x D ∨ x
C ∨ D

.

Erasure Ct = Ct−1 \ {C}, for some C ∈ Ct−1.

The length of a refutation is the number of axiom downloads and inferences. The
line space of a configuration is the number of clauses, and the total space is the number
of literals. The (line/total) space of a refutation is the maximum over all configurations.

It is easy to see that cutting planes can simulate the resolution rule using at most w
additions and one division, where w is the width of the shortest clause, and therefore a
resolution refutation in length L, width w and space s gives a cutting planes refutation
in size O(w2 L) and space s+1 where the largest coefficient is 2. The refutation that we
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construct in Lemma B.7.3 is of constant width, so cutting planes can simulate it with
constant overhead, and in Lemma B.7.7 it is not but we can ignore polynomial factors.

The search depth of a formula F is the minimum number of queries of a decision
tree for the search problem of F . As observed in [LNNW95, BIW04], a search tree for
the falsified clause search problem is equivalent to a tree-like resolution refutation. We
can construct a refutation essentially by replacing each internal node labelled with a
variable x in the search tree with the result of resolving its two children over the variable
x . It is straightforward to check that this is indeed a valid resolution refutation.

Lemma B.7.1 ([ET01]). If a CNF formula has search depth d, then it has a refutation in
length 2d , width d, and space d simultaneously.

Proof. Consider the refutation tree T equivalent to aminimal depth search tree. Travers-
ing the refutation tree in depth-first order it is straightforward to reconstruct a tree-like
refutation of length |T | ≤ 2d , width d, and space d, where |T | is the order of T .

To show length upper bounds we simulate a black pebbling in resolution and then
lift that refutation, as done in for instance [BN11].

The black pebble game is played by a single player on a DAG. The allowed moves are
to place a pebble on a vertex if its predecessors have pebbles and to remove a pebble
from any vertex. A pebbling is a sequence of moves that begin with the empty graph and
end with a pebble on the sink. The number of moves of a pebbling is called the time, and
the maximum number of pebbles on the graph at the same time the space. An excellent
survey of pebbling up to ca 1980 is [Pip80], and some more recent developments are
covered in the upcoming survey [Nor19].

Lemma B.7.2. If there is a black pebbling for an indegree 2 graph G in space s and time
τ, then there is a resolution refutation of PebG in length O(τ), width 3, and total space
O(s).

Proof. We build a refutation π of PebG by keeping in memory the unit clause v for every
vertex v that has a pebble. This is trivial for sources because these clauses are already
axioms. For a vertex v with predecessors u1 and u2, when we place a pebble over v its
predecessors have pebbles, therefore the clauses u1 and u2 are in memory. We download
the axiom u1 ∨ u2 ∨ v, resolve it with u1 and u2 to obtain the clause v, and then delete
intermediate clauses.

We can use a generic procedure to transform any refutation into a refutation for the
corresponding lifted formula (see Lemma 4.3 in the ECCC version of [BN11]). However,
we obtain better upper bounds if we take the structure of the refutation into account.

Lemma B.7.3. Let G be a graph of indegree 2 with a black pebbling in space s and time
τ. Then there is a refutation of Liftℓ(PebG) in size O(τ · ℓ3) and total space O(s · ℓ).
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x1,u1
∨ y1,u1

∨ B x1,u1
∨ y1,u1

x1,u1
∨ B x1,u1

∨ s2,u1

s2,u1
∨ B

x2,u1
∨ y2,u1

∨ B x2,u1
∨ y2,u1

x2,u1
∨ B s2,u1

∨ x2,u1
∨ s3,u1

s2,u1
∨ s3,u1

∨ B

s3,u1
∨ B

...
sℓ,u1
∨ B

...
sℓ,u1
∨ B

B

Figure B.11: Simulation of a pebbling step

Proof. Let π be the refutation of PebG given by Lemma B.7.2. We build a refutation π′
of Lift(F) by deriving, for each unit clause v, the ℓ clauses Lift(v). This is trivial in the
axiom download and erasure cases, and we are left with inference. The only inference
steps we need to deal with are of the form

u1 ∨ u2 ∨ v u1

u2 ∨ v u2
v

(B.25)

and we handle both inference steps at once.
Recall that for a lifted formula to have constant width we have to split the wide

auxiliary clauses (B.3a), introducing extension variables, but we were not explicit about
how to do that. We split the clause

∨ℓ
a=1 xa,u into a clause x1,u ∨ s2,u, ℓ− 2 clauses of

the form sa,u ∨ xa+1,u ∨ sa,u, and a clause sℓ,u ∨ xℓ,u.
First we fix a clause C ∈ Lift(v) that we want to derive. Then we fix a clause B ∈

Lift(u2 ∨ v) that contains C as a subclause. We can derive B by resolving the clauses
xa,u1

∨ ya,u1
∨B, which are actual axioms of Lift(PebG), first with xa,u1

∨ ya,u1
, which are

in memory by hypothesis, and then with the axioms sa,u1
∨ xa,u1

∨ sa+1,u1
that result of

breaking
∨ℓ

a=1 xa,u1
into clauses of constant width. See Figure B.11 for details. Such a

derivation requires O(ℓ) steps and constant space.
We repeat this procedure for all of the ℓ clauses in B ∈ Lift(u2 ∨ v) that contain C as

a subclause, using at most O(ℓ2) steps and space ℓ+O(1). Now we have all the clauses
required to derive C by repeating the above procedure with the clauses Lift(u2)∨C that
we just derived, the clauses xa,u1

∨ ya,u1
, which are also in memory by hypothesis, and

the axioms sa,u1
∨ xa,u1

∨ sa+1,u1
. Such a derivation requires an additional O(ℓ) steps

and constant additional space, for a total of O(ℓ2) steps and space ℓ+O(1). Finally we
repeat the whole procedure ℓ times, once for each clause C ∈ Lift(v), for a total of O(ℓ3)
steps and space 2ℓ+O(1).

Observe that all clauses are of constant width, so the size and total space are also
O(ℓ3) and O(ℓ), and furthermore we can simulate the resolution proof in cutting planes
with constant overhead.
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If we only care about optimizing size, then a strategy that places pebbles in topolo-
gical order and never removes a pebble is a valid pebbling of any graph of order m in
time m and space m, which gives a short refutation in size O(mℓ3) and space O(mℓ).

Lemma B.7.4. Let G be a graph of order m and indegree 2. For any ℓ ≥ m3 there is a
refutation of Liftℓ(PebG) in size O(N) and total space O(N2/5), where N = Θ(mℓ) is the
size of Liftℓ
�
PebG

�
.

In terms of space, even the most space-efficient pebbling strategy would give a refut-
ation in space O(ℓ), which is too weak. Therefore to obtain good space upper bounds
we go through the Dymond–Tompa game and search depth instead of black pebbling.
The following Lemma follows from Lemma B.5.1 and was first proved in [Cha13].

Lemma B.7.5 ([Cha13]). If there is a Dymond–Tompa pebbling strategy for a graph G
in space s, then the formula PebG has search depth s.

If we lay out the extension variables so that their indices form an ordered binary tree
and attach two nodes labelled xa,u and xa+1,u to each leaf sa,u we get a search tree that
finds a selector variable set to true by any assignment that respects auxiliary clauses.
We can use this tree to build search trees for a lifted formula.

Lemma B.7.6. Given a CNF formula F of search depth d, the lifted formula Liftℓ(F) has
search depth d logℓ.

Proof. Given a decision tree T1 for the falsified clause search problem on F of depth d
and a decision tree T2 that finds a selector variable set to true of depth logℓ, we build
a decision tree T3 for the falsified clause search problem on Liftℓ(F) of depth d logℓ by
composing the trees as follows.

First we modify T2. We reinterpret the leaves as queries to selector variables xa,u,
and we attach two new nodes to every selector variable query. We label the 0-leaf of
xa,u with the falsified clause sa,u ∨ xa,u ∨ sa+1,u, and we label the 1-node with the main
variable ya,u. We add two unlabelled leaves to the ya,u node.

Then, starting at the root of T1, we apply the following recursive procedure. If the
root is an inner vertex labelled with a variable u, then we add a copy of T2 that queries
variables corresponding to u. To each 0-leaf we attach the result of this procedure on
the 0-subtree of T1, and to each 1-leaf we attach the result of this procedure on the
1-subtree.

Finally, for each leaf of T3 that we did not label yet, there is a corresponding leaf in
T1 labelled with a clause C . C is falsified by the assignment α induced by the branch
leading to C . By construction, the assignment β induced by the branch in T3 respects
auxiliary clauses and, for every variable u ∈ Vars(C) it sets xa,u = 1 and ya,u = α(u) for
some a ∈ [ℓ]. Therefore we can label the leaf of T3 with the main clause

∨
u∈Vars(C) xa,u∨

y1−α(u)
a,u .
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Lemma B.7.7. Let G be a graph of order m and indegree 2 with Dymond–Tompa price s.
For any ℓ ≥ m3 there is a refutation of Liftℓ

�
PebG

�
in size 2O(s log N) and space O(s log N),

where N = Θ(mℓ3) is the size of Liftℓ
�
PebG

�
.

Proof. This follows immediately from Lemmas B.7.5, B.7.6 and B.7.1.

B.8 Putting the Pieces Together

By the technical result proved in Section B.2, Theorem B.2.8, we know that if G is a
graph over m vertices such that the r-round Dymond–Tompa game on G costs Ω(c),
then for ℓ = m3+ε, Liftℓ

�
PebG

�
is a 6-CNF formula over Θ(m4+ε) variables and N =

Θ(m10+3ε) clauses such that for any CP refutation of Liftℓ
�
PebG

�
even with coefficients

of unbounded size in formula space less than c
r log N requires length greater than 2Ω(r).

This fact together with the lower and upper bounds proven in Sections B.6 and B.7 yield
the following theorem.

Theorem B.8.1. There is an explicitly constructible two-parameter family of unsatisfiable
6-CNF formulas F(n, d), for n, d ∈ N+, of size N = Θ((dn)10+ε) such that:

1. F(n, d) can be refuted by CP with small coefficients in size O(N) and total space
O(N2/5).

2. F(n, d) can be refuted by CP with small coefficients in total space O(d log N) and
size 2O(d log N).

3. For any r ≤ d, any CP refutation even with coefficients of unbounded size of F(n, d)
in formula space less than min{ 2d/r log N

8 , n log N
8r } requires length greater than 2Ω(r).

Proof. Let G be a stack of depth d of butterfly graphs of dimension log n which has a
total of Θ(dn) vertices. Let F(n, d) = Liftℓ(PebG).

Item 1 follows directly from Lemma B.7.4. Item 2 follows from setting r = d in the
upper bound stated in part 1 of Lemma B.6.1 and combining it with Lemma B.7.7.

By Lemma B.6.1 we get that for any r ≤ d, the r-round Dymond–Tompa game
played on G has cost at least at least min{ r2d/r

8 , n
8}. Thus, by Theorem B.2.8, we get

item 3.

Choosing the right values for d and r in Theorem B.8.1, we get the following to
corollaries. These are generalizations of Theorems B.1.1 and B.1.2.

Corollary B.8.2. For any positive constant K , there exists a family of 6-CNF formulas
{FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).
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2. FN can be refuted by CP with small coefficients in total space O(logK+2 N) and size
2O(logK+2 N).

3. Any CP refutation even with coefficients of unbounded size of FN in formula space
less than N1/10−ε requires length greater than 2Ω(logK N), for any constant ε > 0.

Proof. The proof follows from setting d = logK+1 n and r = d/ log n in Theorem B.8.1
and for every N , choosing n to be a power of 2 such that N is at most a factor off from
(nd)10+ε.

We note that log N = Θ(log n), so 2 holds. Moreover, N = o((nd)10+2ε), thus
N1/10−ε = o((nd)(10+2ε)(1/10−ε)) and

(nd)(10+2ε)(1/10−ε) = (n logK+1 n)(10+2ε)(1/10−ε)

≤ (n · nε)(1−9ε) < n(1−8ε)

<
n

8 logK n
<

n
8r

log N ,

and therefore 3 also holds.

Corollary B.8.3. For any positive constant K , there exists a family of 6-CNF formulas
{FN}∞N=1 of size Θ(N) such that:

1. FN can be refuted by CP with small coefficients in size O(N) and total space O(N2/5).

2. FN can be refuted by CP with small coefficients in total space O
�
N

1
10(K+1)
�
and size

2O
�

N
1

10(K+1)
�
.

3. Any CP refutation even with coefficients of unbounded size of FN in formula space

less than N
K−1

10(K+1)−ε requires length greater than 2Ω
�

N
1

10(K+1)
�
, for any constant ε > 0.

Proof. The proof follows from setting d = n1/K log n and r = d/ log n in Theorem B.8.1
and for every N , choosing n to be a power of 2 such that N is at most a factor off from
(nd)10+ε.

We note that N
1

10(K+1) = Θ((nd)
10+ε

10(K+1) ) and (nd)
10+ε

10(K+1) > d log N , hence 2 holds.
Moreover, N = o((nd)10+2ε), thus N

K−1
10(K+1)−ε = o((nd)(10+2ε)( K−1

10(K+1)−ε)) and

(nd)(10+2ε)( K−1
10(K+1)−ε) = (n(K+1)/K log n)(10+2ε)( K−1

10(K+1)−ε)

< n(10+2ε)( K−1
10K −ε) · nε < n(K−1)/K

8

<
n(K−1)/K

8
log N =

n
8r

log N ,

and, therefore 3 also holds.
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B.9 Exponential Separation of the Monotone AC Hierarchy

Unsurprisingly, we follow the same approach as [RM99]. Our function is a restriction
of the GEN function, except that instead of restricting the valid instances to pyramid
graphs, which are unconditionally hard, we restrict the valid instances to the graphs
from Section B.6 that exhibit round-space trade-offs. We then use our round-aware
simulation theorem to lift the trade-off to communication complexity and the Karchmer–
Wigderson game to translate it to a trade-off for monotone circuits.

Definition B.9.1. The Karchmer–Wigderson game [KW90] is the following communic-
ation problem: given a monotone function f , Alice gets an input x such that f (x) = 1
and Bob gets an input y such that f (y) = 0. Their task is to compute a coordinate i
such that x i = 1 and yi = 0

Theorem B.9.2 ([KW90]). If there is a monotone circuit for f of fan-in 2c and depth
r, then there is a protocol for the Karchmer–Wigderson game of communication rc and r
rounds.

Proof. The proof is a simple induction on the depth of the circuit. If the circuit has no
gates, the players just return the index of the output variable. Otherwise, assume the
output gate is an OR-gate, i.e., f =

∨
gi . Then gi(y) = 0 for all i and there exists

i such that gi(x) = 1. Alice sends i with cost at most c and we apply the induction
hypothesis on a circuit of one less level. If the output gate is an AND-gate, Bob acts
analogously.

Informally, the G-GEN function computes whether a subset of the lifted pebbling
formula on a graph G is unsatisfiable given the indicator vector of such subset. It can
be further generalized to CSP-SAT as in [GP18], but we give a definition specialized to
pebbling formulas that already suggests a circuit to compute it.

Definition B.9.3. Given a graph G of indegree 2 and ℓ ∈ N, the G-GEN Boolean function
is defined as follows. There is a variable (v, a) for every source v ∈ G and index a ∈
[ℓ]. There is a variable (v ∨ u1 ∨ u2, a, b, c) for every non-source vertex v ∈ G with
predecessors u1 and u2 and triple (a, b, c) ∈ [ℓ]3. There is a variable (z, a) for every
index a ∈ [ℓ]. A pair (v, a) is reachable if v is a source and (v, a) is 1, or there exist
(b, c) such that (v∨u1∨u2, a, b, c) is 1, (u1, b) is reachable, and (u2, c) is reachable. The
value of G-GEN is 1 if there exists some index a ∈ [ℓ] such that (z, a) is reachable and
(z, a) is 1.

Lemma B.9.4. There is a monotone circuit that computes G-GEN in depth 2d, fan-in ℓ2,
and size O(mℓ3), where d is the depth of G.

Proof. The circuit computes whether each of the pairs (v, a) is reachable. For v a source
we just have a variable. For a non-source v, we have, for each pair (b, c) ∈ [ℓ]2, an
AND-gate of fan-in 3 and inputs the gate that computes (u1, b), the gate that computes
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(u2, c), and the variable (v∨u1∨u2, a, b, c), and one OR-gate of fan-in ℓ2 with inputs all
of these gates. Finally, we have ℓ AND-gates with inputs the gate that computes (z, a)
and the variable (z, a), and an OR-gate of fan-in ℓ.

It remains to give a reduction from the Karchmer–Wigderson game on G-GEN to the
communication game for which we proved lower bounds, and this follows straightfor-
wardly from the corresponding reduction in [RM99].

LemmaB.9.5. If there is a deterministic communication protocol for the Karchmer–Wigder-
son game on G-GEN of communication c and r rounds, then there is a deterministic com-
munication protocol for Lift(Search(PebG)) of communication c and r rounds.

Proof. Let (x , y) be an input to assignment to Lift(Search(PebG)), this is a vector of
indices and a vector of binary strings such that select(xv , yv) is an assignment to a
variable v of PebG .

Alice builds a 1-input for the Karchmer–Wigderson game on G-GEN as follows. For
every source v ∈ G, Alice sets the variable (v, xv) to 1, and for every non-source vertex
v ∈ G, Alice sets the variable (v ∨ u1 ∨ u2, xv , xu1

, xu2
) to 1. Alice sets (z, xz) to 1. The

remaining variables are 0.
Bob builds an input as follows. For every source v ∈ G, Bob sets the variable (v, a) to

(yv)a, and for every non-source vertex v ∈ G, Bob sets the variable (v ∨ u1 ∨ u2, a, b, c)
to 0 if (yv)a = 0, (yu1

)b = 1, and (yu2
)c = 1, and to 1 otherwise. Bob sets (z, a) to

1− (yz)a. Observe that, in Bob’s input, if a pair (v, a) is reachable, then (yv)a = 1. For
the sink, this means that if (z, a) is reachable then (z, a) = 1− (yz)a = 0, so the input
evaluates to 0.

Both players then simulate the protocol for the Karchmer–Wigderson game and they
get a variable that Alice set to 1 and Bob set to 0. If it is (v, xv), then (yv)xv

= 0, so
axiom v is falsified. If it is (v ∨ u1 ∨ u2, xv , xu1

, xu2
), then (yv)xv

= 0, (yu1
)xu1
= 1, and

(yu1
)xu1
= 1, so axiom v ∨ u1 ∨ u2 is falsified. If it is (t, xv), then (yz)xv

= 1, so axiom z
is falsified.

We have all the ingredients to prove the two main theorems of this section.

Theorem B.1.3 (Restated). For every i ∈ N there is a Boolean function over n variables
that can be computed by a monotone circuit of depth logi n, fan-in 2, and size O(n), but
for which every monotone circuit of depth O(logi−1 n) requires superpolynomial size.

Proof. Let G be a stack of logi n/80i2 log log2 n butterflies with w= log2i n sources and
sinks. This is a graph of depth d = logi n/40i log log n and size m < log3i n, so we
can set ℓ = m3+ε < log10i n. By Lemma B.9.4 there is a monotone circuit of depth 2d,
fan-in ℓ2, and size O(mℓ3) that computes G-GEN, which we can expand into a circuit
of depth 4d logℓ < logi n, fan-in 2, and size O(mℓ4) = O(log43i n). By Theorem B.9.2,
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Lemma B.9.5, Theorem B.4.1, Lemma B.2.6, and Lemma B.6.1, any circuit of depth at
most q logi−1 n that computes G-GEN requires size

2Ω((w logℓ)/(q logi−1 n)) = 2Ω(logi+1 n) , (B.26)

that is superpolynomial.

The function above only depends on a polylogarithmic number of variables, with
the remaining being padding, so that we can use a small enough gadget to keep the
function in NCi . This implies that we can only obtain a superpolynomial lower bound,
but if we are willing to forfeit the function belonging in NCi then we can achieve an
exponential lower bound.

Theorem B.1.4 (Restated). For every i ∈ N there is a Boolean function over n variables
that can be computed by a monotone circuit of depth logi n, fan-in n4/5, and size O(n), but
for which every monotone circuit of depth q logi−1 n requires size 2Ω(n

1/(10+4ε)q).

Proof. Let G be a stack of logi−1 n butterflies with w = (n1/(10+3ε))/(logi−1 n) sources
and sinks. This is a graph of depth d ≤ logi n/(10 + 3ε) and size m ≤ n1/(10+3ε), so
we can set ℓ = m3+ε ≤ n(3+ε)/(10+3ε), and the number of variables of G-GEN is indeed
at most mℓ3 ≤ n. By Lemma B.9.4 there is a monotone circuit of depth 2d ≤ logi n,
fan-in ℓ2 ≤ n4/5, and size O(n) that computes G-GEN. By Theorem B.9.2, Lemma B.9.5,
Theorem B.4.1, Lemma B.2.6, and Lemma B.6.1, any circuit of depth at most q logi−1 n
that computes G-GEN requires size

2(w
1/q logℓ)/(4r) = 2Ω(n

1/(10+4ε)q) (B.27)

as we wanted to show.

A simulation theorem with a smaller gadget would allow us to obtain a stronger
separation betweenmonotone-ACi−1 andmonotone-NCi , but we leave that as an open
problem.

B.10 Concluding Remarks

In this paper we report the first true size-space trade-offs for cutting planes, exhibiting
CNF formulas which have small-size and small-space proofs with constant-size coeffi-
cients but for which any short proofs must use a lot of memory, even when using ex-
ponentially large coefficients and even when we measure just the number of lines (i.e.,
inequalities) rather than total size. Furthermore, these results also hold for resolution
and polynomial calculus, and are thus the first trade-offs to uniformly capture the proof
systems underlying the currently best SAT solvers.
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The main technical component in our proof is a reduction to communication com-
plexity as in [HN12, GP18], but with the crucial difference that we reduce to round-
efficient protocols in the real communication model of [Kra98]. Extending the tech-
niques in [RM99, GPW15, BEGJ00] to this more general setting, and combining them
with new trade-off results for Dymond–Tompa pebbling [DT85], yields our results. Us-
ing the same approach we are also able to obtain an exponential separation between
monotone-ACi−1 and monotone-ACi , improving on the superpolynomial separation
in [RM99].

An interesting challenge would be to extend our reduction to stronger communica-
tion models such as two-party randomized or multi-party real communication, which
would yield trade-offs for stronger proof systems. A recent result in this direction
is [GLM+16], but unfortunately it seems hard to incorporate round-efficiency in this
framework.

Another question concerns the size of the lifting gadgets we need to construct for-
mulas exhibiting trade-offs. Our gadgets have large polynomial size, which incurs a
substantial loss in the results. It would be nice to construct constant-size gadgets, which
could lead to tighter trade-off results.

Many proof complexity trade-offs have been obtained by reducing to the black-white
pebble game [CS76], but in this paper we use the Dymond–Tompa game. It would be
desirable to obtain a better understanding of the role of these games and what kind of
trade-offs can be obtained from them.

Finally, from a proof complexity perspective we have very few examples of formula
families that exhibit size-space trade-offs. Apart from the pebbling formulas studied in
this work, the only natural examples4 are the Tseitin contradictions over long, narrow
grids in [BBI16, BNT13]. It would be interesting to prove size-space trade-offs for the
latter formulas also in cutting planes, or to find other formulas with size-space trade-offs
for this or other proof systems.
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Paper C

Lifting with Simple Gadgets and
Applications to Circuit and Proof
Complexity
Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann
Pitassi, Robert Robere, and Marc Vinyals

Abstract

We significantly strengthen and generalize the theorem lifting Nullstellensatz
degree to monotone span program size by Pitassi and Robere (2018) so that it works
for any gadget with high enough rank, in particular, for useful gadgets such as
equality and greater-than. We apply our generalized theorem to solve two open
problems:

• We present the first result that demonstrates a separation in proof power
for cutting planes with unbounded versus polynomially bounded coefficients.
Specifically, we exhibit CNF formulas that can be refuted in quadratic length
and constant line space in cutting planes with unbounded coefficients, but for
which there are no refutations in subexponential length and subpolynomial
line space if coefficients are restricted to be of polynomial magnitude.

• We give the first explicit separation between monotone Boolean formulas and
monotone real formulas. Specifically, we give an explicit family of functions
that can be computed with monotone real formulas of nearly linear size but
require monotone Boolean formulas of exponential size. Previously only a
non-explicit separation was known.

An important technical ingredient, which may be of independent interest, is
that we show that the Nullstellensatz degree of refuting the pebbling formula over
a DAG G over any field coincides exactly with the reversible pebbling price of G.
In particular, this implies that the standard decision tree complexity and the parity
decision tree complexity of the corresponding falsified clause search problem are
equal.

121
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C.1 Introduction

Lifting theorems in complexity theory are a method of transferring lower bounds in a
weak computational model into lower bounds for amore powerful computational model,
via function composition. There has been an explosion of lifting theorems in the last
ten years, essentially reducing communication lower bounds to query complexity lower
bounds.

Early papers that establish lifting theorems include Raz and McKenzie’s separation
of the monotone NC hierarchy [RM99] (by lifting decision tree complexity to determ-
inistic communication complexity), and Sherstov’s pattern matrix method [She11]
which lifts (approximate) polynomial degree to (approximate) matrix rank. Recent
work has established query-to-communication lifting theorems in a variety of models,
leading to the resolution of many longstanding open problems in many areas of com-
puter science. Some examples include the resolution of open questions in communica-
tion complexity [GPW15, GLM+16, GKPW17, GJPW17, GPW18], monotone complex-
ity [RPRC16, PR17, PR18], proof complexity [HN12, GP18, dRNV16, GGKS18], exten-
sion complexity of linear and semidefinite programs [KMR17, GJW18, LRS15], data
structures [CKLM18] and finite model theory [BN16].

Lifting theorems have the following form: given functions f : {0, 1}n → {0, 1} (the
“outer function”) and g : X ×Y → {0, 1} (the “gadget”), a lower bound for f in a weak
computational model implies a lower bound on f ◦gn in a stronger computational model.
The most desirable lifting theorems are the most general ones. First, it should hold for
any outer function, and ideally f should be allowed to be a partial function or a relation
(i.e., a search problem). Indeed, nearly all of the applications mentioned above require
lifting where the outer function is a relation or a partial function. Secondly, it is often
desirable that the gadget is as small as possible. The most general lifting theorems estab-
lished so far, for example lifting theorems for deterministic and randomized communic-
ation complexity, require at least logarithmically-sized gadgets; if these theorems could
be improved generically to hold for constant-sized gadgets then many of the current the-
orems would be vastly improved. Some notable examples where constant-sized gadgets
are possible include Sherstov’s degree-to-rank lifting [She11], critical block-sensitivity
lifting [GP18, HN12], and lifting for monotone span programs [PR17, PR18, Rob18].

C.1.1 A New Lifting Theorem

In this paper, we generalize a lifting theorem of Pitassi and Robere [PR18] to use any
gadget that has nontrivial rank. This theorem takes a search problem associated with
an unsatisfiable CNF, and lifts a lower bound on the Nullstellensatz degree of the CNF
to a lower bound on a related communication problem.

More specifically, let C be an unsatisfiable k-CNF formula. The search problem asso-
ciated with C, Search(C), takes as input an assignment to the underlying variables, and
outputs a clause that is falsified by the assignments. [PR18] prove that for any unsat-
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isfiable C, and for a sufficiently rich gadget g, deterministic communication complexity
lower bounds for the composed search problem Search(C) ◦ gn follow from Nullstel-
lensatz degree lower bounds for C.1 We significantly improve this lifting theorem so
that it holds for any gadget of large enough rank.

Theorem C.1.1. Let C be a CNF over n variables, let F be any field, and let g be any gadget
of rank at least r. Then the deterministic communication complexity of Search(C ◦ gn) is
at least NSF(C), the Nullstellensatz degree of C, as long as r ≥ cn/NSF(C) for some large
enough constant c.

An important special case of our generalized theorem is when the gadget g is the
equality function. In this work, we apply our theorem to resolve two open problems in
proof complexity and circuit complexity. Both solutions depend crucially on the ability
to use the equality gadget.

We note that lifting with the equality gadget has recently been the focus of another
paper. Loff and Mukhopadhyay [LM19] observed that a lifting theorem for total func-
tions with the equality gadget can be proven using a rank argument. Surprisingly, they
also observed that it is not possible to lift query complexity to communication complex-
ity for arbitrary relations! Concretely, [LM19] give an example of a relation with linear
query complexity but whose composition with equality has only polylogarithmic com-
munication complexity. Nonetheless, they are able to prove a lifting theorem for gen-
eral relations using the equality gadget by replacing standard query complexity with a
stronger complexity measure (namely, the 0-query complexity of the relation).

Unfortunately, we cannot use either of the lifting theorems of [LM19] for our applic-
ations. Specifically, in our applications we lift a search problem (and therefore cannot
use their result for total functions), and this search problem has small 0-query complex-
ity (and therefore we cannot use their lifting theorem for general relations). Indeed,
this shows that our lifting theorem is incomparable to the results of [LM19], even when
specialized to the equality gadget. We note that our theorem, too, bypasses the im-
possibility result of [LM19] by using a stronger complexity measure, which in our case
is the Nullstellensatz degree.

C.1.2 A Separation in Proof Complexity

The main application of our lifting theorem is the first separation in proof complexity
between cutting planes proofs with high-weight versus low-weight coefficients. The
cutting planes proof-system is a proof system that can be used to refute an unsatisfiable
CNF by translating it into a system of integer inequalities and showing that this system
has no integer solution. The latter is achieved by a sequence of steps that derive new
integer inequalities from old ones, until we derive the inequality 0 ≥ 1 (which clearly
has no solution). The efficiency of such a refutation is measured by its length (i.e., the

1In fact the result is quite a bit stronger—it applies to Razborov’s rank measure [Raz90], which is a strict
strengthening of deterministic communication complexity.
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number of steps) and its space (i.e., the maximal number of inequalities that have to be
stored simultaneously during the derivation).

The standard variant of the cutting planes proof system, commonly denoted by CP,
allows the inequalities to use coefficients of arbitrary size. However, it is also interest-
ing to consider the variant in which the coefficients are polynomially bounded, which
is commonly denoted by CP∗. This gives rise to the natural question of the relative
power of CP vs. CP∗: are they polynomially equivalent or is there a super-polynomial
length separation? This question appeared in [BC96] and remains stubbornly open to
date. In this work we finally make progress by exhibiting a setting in which unbounded
coefficients afford an exponential increase in proof power.

Theorem C.1.2. There is a family of CNF formulas of size N that have cutting planes
refutations of length Õ(N2) and space O(1), but for which any refutation in length L and
space s with polynomially bounded coefficients must satisfy s log L = Ω̃(N).

Our result is the first result in proof complexity demonstrating any situation where
high-weight coefficients are more powerful than low-weight coefficients. In comparison,
for computing Boolean functions, the relative power of high-weight and low-weight lin-
ear threshold functions has been understood for a long time. The greater-than function
can be computed by high-weight threshold functions, but not by low-weight threshold
functions, and weights of length polynomial in n suffice [Mur71] for Boolean functions.
For higher depth threshold formulas, it is known that depth-d threshold formulas of
high-weight can efficiently be computed by depth-(d + 1) threshold formulas of low-
weight [GHR92].

In contrast to our near-complete knowledge of high versus low weights for functions,
almost nothing is known about the relative power of high versus low weights in the
context of proof complexity. Buss and Clote [BC96], building onwork by Cook, Coullard,
and Turán [CCT87], proved an analog of Muroga’s result for cutting planes, showing
that weights of length polynomial in the length of the proof suffice. Quite remarkably,
this result is not known to hold for other linear threshold proof systems: there is no
nontrivial upper bound on the weights for more general linear threshold propositional
proof systems (such as stabbing planes [BFI+18], and Krajíek’s threshold logic proof
system [Kra95b] where one can additionally branch on linear threshold formulas). Prior
to our result, there was no separation between high and low weights, for any linear
threshold proof system.

C.1.3 A Separation in Circuit Complexity

A second application of our lifting theorem relates to monotone real circuits, which
were introduced by Pudlák [Pud97]. A monotone real circuit is a generalization of
monotone Boolean circuits where each gate is allowed to compute any non-decreasing
real function of its inputs, but the inputs and output of the circuit are Boolean. A for-
mula is a tree-like circuit, that is, every gate has fan-out one. The first (exponential)
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lower bound for monotone real circuits was proven already in [Pud97] by extending
the lower bound for computing the clique-colouring function with monotone Boolean
circuits [Raz85, AB87]. This lower bound, together with a generalization of the inter-
polation technique [Kra97] which applied only to CP∗, was used by Pudlák to obtain
the first exponential lower bounds for CP.

Shortly after monotone real circuits were introduced, there was an interest in under-
standing the power of monotone real computation in comparison to monotone Boolean
computation. By extending techniques in [RM99], Bonet et al. prove that there are
functions with polynomial size monotone Boolean circuits that require monotone real
formulas of exponential size [Joh98, BEGJ00]. This illustrates the power of DAG-like
computations in comparison to tree-like. In the other direction, we would like to know
whether monotone real circuits are exponentially stronger than monotone Boolean cir-
cuits. Rosenbloom [Ros97] presented an elegant, simple proof that monotone real for-
mulas are exponentially stronger than (even non-monotone) Boolean circuits, since slice
functions can be computed by linear-size monotone real formulas, whereas by a count-
ing argument we know that most slice functions require exponential size Boolean cir-
cuits.

The question of finding explicit functions that demonstrate that monotone real cir-
cuits are stronger than general Boolean circuits is much more challenging since it in-
volves proving explicit lower bounds for Boolean circuits—a task that seems currently
completely out of reach. A more tractable problem is that of finding explicit functions
showing that monotone real circuits or formulas are stronger than monotone Boolean
circuits or formulas, but prior to this work, no such separation was known either. We
provide an explicit separation for monotone formulas, that is, we provide a family of ex-
plicit functions that can be computed with monotone real formulas of near-linear size
but require exponential monotone Boolean formulas. This is the first explicit example
that illustrates the strength of monotone real computation.

Theorem C.1.3. There is an explicit family of functions fn over O(n polylog n) variables
that can be computed by monotone real formulas of size O(n polylog n) but for which every
monotone Boolean formula requires size 2Ω(n/ log n).

Anothermotivation for studying lifting theoremswith simple gadgets, and in particu-
lar the equality gadget, are connections with proving non-monotone formula size lower
bounds. As noted earlier, lifting theorems have been extremely successful in proving
monotone circuit lower bounds, and it has also been shown to be useful in some compu-
tational settings that are only “partially” monotone; notably monotone span programs
[RPRC16, PR17, PR18] and extended formulations [GJW18, KMR17].

This raises the question of to what extent lifting techniques can help prove non-
monotone lower bounds. The beautiful work by Karchmer, Raz andWigderson [KRW95]
initiated such an approach for separating P from NC1—this opened up a line of research
popularly known as the KRW conjecture. Intriguingly, steps towards resolving the KRW
conjecture are closely connected to proving lifting theorems for the equality gadget. The
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first major progress wasmade in [EIRS01]where lower bounds for the universal relation
game are proven, which is an important special case of the KRW conjecture. Their
result was recently improved in several papers [GMWW17, HW93, KM18], and Dinur
and Meir [DM18] gave a new top-down proof of the state-of-the-art Ω(n3) formula-size
lower bounds via the KRW approach.

The connection to lifting using the equality gadget is obtained by observing that the
KRW conjecture involves communication problems in which Alice and Bob are looking
for a bit on which they differ—this is exactly an equality problem. Close examination of
the results in [EIRS01, HW93] show that they are equivalent to proving lower bounds
for the search problem associated with the pebbling formula when lifted with a 1-bit
equality gadget on a particular graph [Pit16]. Our proof of Theorem C.4.1 actually es-
tablishes near-optimal lower bounds on the communication complexity of the pebbling
formula lifted with equality for any graph, but where the size of the equality is not 1.
Thus if our main theorem could be improved with one-bit equality gadgets this would
imply the results of [EIRS01, HW93] as a direct corollary and with significantly better
parameters.

C.1.4 Overview of Techniques

We conclude this section by giving a brief overview of our techniques, also trying to
convey some of the simplicity of the proofs which we believe is an extra virtue of these
results.

Lifting theorem In order to prove their lifting theorem, Pitassi and Robere [PR18]
defined a notion of a “good” gadget. They then showed that if we compose a polynomial
p with a good gadget g, the rank of the resulting matrix p ◦ gn is determined exactly by
the non-zero coefficients of p and the rank of g. Their lifting theorem follows by using
this correspondence to obtain bounds on the ranks of certain matrices, which in turn
yield the required communication complexity lower bound.

In this work, we observe that every gadget g can be turned into a good gadget using
a simple transformation. This observation allows us to get an approximate bound on
the rank of p ◦ gn for any g with nontrivial rank. While the correspondence we get in
this way is only an approximation and not an exact correspondence as in [PR18], it
turns out that this approximation is sufficient to prove the required lower bounds. We
thus get a lifting theorem that works for every gadget g with sufficiently large rank.

Cutting planes separation The crux of our separation between CP and CP∗ is the
following observation: CP can encode a conjunction of linear equalities with a single
equality, by using exponentially large coefficients. This allows CP refutations to obtain
a significant saving in space when working with linear equalities. This saving is not
available to CP∗, and this difference between the proof systems allows the separation.
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In order to exploit this observation, one of our main innovations is to concoct the
separating formula. To do this, we must come up with a candidate formula that can
only be refuted by reasoning about a large conjunction of linear equalities, to show that
cutting planes (CP) can efficiently refute it, and to show that low-weight cutting planes
(CP∗) cannot.

To find such a candidate formula family we resort to pebbling formulas which have
played a major role in many proof complexity trade-off results. Interestingly, pebbling
formulas have short resolution proofs that reason in terms of large conjunctions of lit-
erals. When we lift such formulas with the equality gadget this proof can be simulated
in cutting planes by using the large coefficients to encode many equalities with a single
equality. This yields cutting planes refutation of any pebbling formula in quadratic
length and constant space.

On the other hand we prove our time-space lower bound showing that any CP∗
refutation requires large length or large space for the same formulas. To prove this
lower bound, the first step is to instantiate the connection in [HN12] linking time/space
bounds for many proof systems to communication complexity lower bounds for lifted
search problems. This connection means that we can obtain the desired CP∗-lower
bounds for our formulas PebG◦EQn by proving communication complexity lower bounds
for the corresponding lifted search problem Search(PebG) ◦ EQn.

In order to prove the latter communication lower bounds, we prove lower bounds on
the Nullstellensatz degree of Search(PebG), and then invoke our new lifting theorem
to translate them into communication lower bounds for Search(PebG) ◦ EQn. To show
the Nullstellensatz lower bounds, we prove the following lemma, which establishes an
equivalence between Nullstellsatz degree and the reversible pebbling number, and may
be interesting in its own right. (We remark that connections between Nullstellensatz
degree and pebbling were previously shown in [BCIP02]; however their result was not
tight.)

Lemma C.1.4. For any field F and any directed acyclic graph G the Nullstellensatz degree
of PebG is equal to the reversible pebbling number of G.

Using this equivalence we obtain near-linear Nullstellensatz degree refutations for a
family of graphs with maximal pebbling number, which completes our time/space lower
bound for CP∗.

We remark that we require a very specific gadget and lifting theorem in order to
separate CP from CP∗. Specifically, the gadget should be strong enough, so that lifting
holds for deterministic communication complexity (which can efficiently simulate small
time/space CP∗ proofs), but on the other hand also weak enough, so that lifting does
not hold for stronger communicationmodels (randomized, real) that can efficiently com-
pute high-weight inequalities. The reason that we are focusing on the equality gadget
is that it hits this sweet spot—it requires large deterministic communication complex-
ity, yet has short randomized protocols, and furthermore equalities can be represented
with a single pair of inequalities.
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Separation for monotone formulas As was the case for the separation between CP
and CP∗, to obtain a separation between monotone Boolean formulas and monotone
real formulas we must find a function that has just the right level of hardness.

To obtain a size lower bound for monotone Boolean formulas we invoke the charac-
terization of formula depth by communication complexity of the Karchmer–Wigderson
game [KW90]. By choosing a function that has the same Karchmer–Wigderson game
as the search problem of a lifted pebbling formula, we get a depth lower bound for
monotone Boolean formulas from the communication lower bound of the search prob-
lem. Note that since monotone Boolean formulas can be balanced, a depth lower bound
implies a size lower bound.

In the other direction, we would like to show that these functions are easy for real
computation. Analogously to the Karchmer–Wigderson relation, it was shown in [HP18]
that there is a correspondence between real DAG-like communication protocols (as
defined in [Kra98]) and monotone real circuits. Using this relation, a small monotone
real circuit can be extracted from a short CP proof of the lifted pebbling formula. How-
ever, we would like to establish a monotone real formula upper bound. One way to
achieve this is by finding small tree-like CP refutations of lifted pebbling formulas. The
problem is that for many gadgets lifted pebbling formulas require exponentially long
tree-like proofs. Nevertheless, for pebbling formulas lifted with the equality gadget we
are able to exhibit a short semantic tree-like CP refutation, which via real communica-
tion yields a small monotone real formula.

C.1.5 Organization of This Paper

Section C.2 contains formal definitions of concepts discussed above and some useful
facts. Our main lifting theorem is proven in Section C.3. Section C.4 is devoted to prov-
ing our separation between high-weight and low-weight cutting planes. In Section C.5
we prove the separation between monotone real and Boolean formulas. We conclude in
Section C.6 with some open problems.

C.2 Preliminaries

In this section we review some background material from communication complexity
and proof complexity.

C.2.1 Communication Complexity and Lifted Search Problems

Given a function g : X × Y → I, we denote by gn : X n × Yn → In the function that
takes as input n independent instances of g and applies g to each of them separately. A
total search problem is a relation S ⊆ I×O such that for all z ∈ I there is an o ∈O such
that (z, o) ∈ S. Intuitively, S represents the computational task in which we are given
an input z ∈ I and would like to find an output o ∈O that satisfies (z, o) ∈ S.
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An important example of a search problem, which has proved to be very useful
for proof complexity results, comes from unsatisfiable k-CNF formulas. Given a k-CNF
formula C over variables z1, . . . , zn, the search problem Search(C) ⊆ {0, 1}n×C takes as
input an assignment z ∈ {0, 1}n and outputs a clause C ∈ C that is falsified by z.

Given a search problem S ⊆ In × O with a product input domain and a function
g : X × Y → I, we define the composition S ◦ gn ⊆ X n × Yn ×O in the natural way:
(x , y, o) ∈ S◦g if and only if (gn(x , y), o) ∈ S. We remark that this composition notation
extends naturally to functions: for instance, if f : In → F is a function taking values
in some field F, for example, then the composition f ◦ gn is a X n × Yn matrix over F.
Second, we remark that we will sometimes write S ◦ g instead of S ◦ gn if n is clear from
context.

A communication search problem is a search problem with a bipartite input domain
I =A×B. A communication protocol for a search problem S ⊆A×B×O is a strategy for
a collaborative game where two players Alice and Bob hold x ∈ A, y ∈ B, respectively,
and wish to output an o ∈ O such that ((x , y), o) ∈ S while communicating as few bits
as possible. Messages are sent sequentially until one player announces the answer and
only depend on the input of one player and past messages. The cost of a protocol is the
maximum number of bits sent over all inputs, and the communication complexity of a
search problem, which we denote by Pcc(S), is the minimum cost over all protocols that
solve S. For more details on communication complexity, see, for instance, [KN97].

Given a CNF formula C on n variables z1, z2, . . . , zn and a Boolean function g : {0, 1}q×
{0, 1}q → {0, 1}, we define a lifted formula C ◦ gn as follows. For each variable zi of C,
we have 2q new variables x i,1, . . . , x i,q, yi,1, . . . , yi,q. For each clause C ∈ C we replace
each literal zi or ¬zi in C by a CNF encoding of either g(x i,1, . . . , x i,q, yi,1, . . . , yi,q) or¬g(x i,1, . . . , x i,q, yi,1, . . . , yi,q) according to the sign of the literal. We then expand the
resulting expression into a CNF, which we denote by C ◦ g, using de Morgan’s rules. The
substituted formula is C ◦ g =

∪
C∈C C ◦ g.

For the sake of an example, consider the clause u ∨ v, and we will substitute with
the equality gadget on two bits. Formally, we replace u with xu,1 xu,2 = yu,1 yu,2 and v
with xv,1 xv,2 = yv,1 yv,2. We can encode a two-bit equality as the CNF formula

(x1 x2 = y1 y2)≡ (x1 ∨ y1)∧ (x1 ∨ y1)∧ (x2 ∨ y2)∧ (x2 ∨ y2),

and a two-bit disequality as the CNF formula

(x1 x2 ̸= y1 y2)≡ (x1∨x2∨y1∨y2)∧(x1∨x2∨y1∨y2)∧(x1∨x2∨y1∨y2)∧(x1∨x2∨y1∨y2).

So, in the clause u∨v, we would substitute u for the CNF encoding of xu,1 xu,2 = yu,1 yu,2

and v with the CNF encoding of xv,1 xv,2 ̸= yv,1 yv,2; finally, we would convert the new
formula to a CNF by distributing the top ∨ over the ∧s from the new CNF encodings.

While Search(C) ◦ gn is not the same problem as Search(C ◦ gn), we can reduce
the former to the latter. Specifically, suppose we are given a protocol Π for Search(C ◦
gn). Consider the following protocol Π′ for Search(C) ◦ gn: Given an input (x , y), the
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protocol Π′ interprets (x , y) as an input to Π. Now, assume that Π′ outputs on (x , y)
a clause D of C ◦ gn, which was obtained from a clause C of C. Then, the clause C is a
valid Search(C) on (x , y), so Π′ outputs it. Let us record this observation.

Observation C.2.1. Pcc(Search(C ◦ g)) ≥ Pcc(Search(C) ◦ g) for any unsatisfiable CNF
C and any Boolean gadget g.

C.2.2 Nullstellensatz

As a proof system, Nullstellensatz allows verifying that a set of polynomials does not
have a common root, and it can also be used to refute CNF formulas by converting
them into polynomials. It plays an important role in our lower bounds.

Let F be a field, and let P = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable sys-
tem of polynomial equations in F[z1, z2, . . . , zn]. A Nullstellensatz refutation of P is a
sequence of polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 piqi = 1 where

the equality is syntactic. The degree of the refutation is maxi deg(piqi); the Nullstel-
lensatz degree of P, denoted NSF(P), is the minimum degree of any Nullstellensatz
refutation of P.

Let C = C1 ∧ C2 ∧ · · · ∧ Cm be an unsatisfiable CNF formula over Boolean variables
z1, z2, . . . , zn. We introduce a standard encoding of each clause Ci as a polynomial equa-
tion. If C is a clause then let C+ denote the set of variables occurring positively in C
and C− denote the set of variables occurring negatively in C; with this notation we can
write C =
∨

z∈C+ z ∨∨z∈C− z. From C define the polynomial

E(C)≡∏
z∈C+
(1− z)
∏
z∈C−

z,

over formal variables z1, z2, . . . , zn. Observe that E(C) = 0 is satisfied (over 0/1 assign-
ments to zi) if and only if the corresponding assignment satisfies C . We abuse notation
and let E(C) = {E(C) : C ∈ C} ∪ {z2

i − zi}i∈[m], and note that the second set of polyno-
mial equations restricts the zi inputs to {0, 1} values. The F-Nullstellensatz degree of C,
denoted NSF(C), is the Nullstellensatz degree of refuting E(C).

How do we know that a Nullstellensatz refutation always exists? One can deduce
this from Hilbert’s Nullstellensatz, but for our purposes it is enough to use a simpler
version proved by Buss et al. (Theorem 5.2 in [BIK+97]): if P is a system of polynomial
equations over F[z1, . . . , zn] with no {0, 1} solutions, then there exists a Nullstellensatz
refutation of P ∪ {z2

i − zi = 0}i∈[n].

C.2.3 Cutting Planes

The Cutting planes (CP) proof system was introduced in [CCT87] as a formalization of
the integer linear programming algorithm in [Gom63, Chv73]. Cutting planes proofs
give a formal method to deduce new linear inequalities from old that are sound over
integer solutions—that is, if some integral vector x∗ satisfies a set of linear inequalities
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I, then x∗ will also satisfy any inequality ax ≥ b deduced from I by a sequence of
cutting planes deductions. The allowed deductions in a cutting planes proof are the
following:

Linear combination
∑

i ai x i ≥ A
∑

i bi x i ≥ B∑
i (cai + d bi)x i ≥ cA+ dB

Division
∑

i cai x i ≥ A∑
i ai x i ≥ ⌈A/c⌉

where ai , bi , c, d, A, and B are all integers and c, d ≥ 0.
In order to use cutting planes to refute unsatisfiable CNF formulas, we need to trans-

late clauses to inequalities. It is easy to see how to do this by example: we translate the
clause x ∨ y ∨¬z to the inequality x + y + (1− z) ≥ 1, or, equivalently, x + y − z ≥ 0
if we collect all constant terms on the right-hand side. For refuting CNF formulas we
equip cutting planes proofs with the following additional rules ensuring all variables
take {0, 1} values:

Variable axioms
x ≥ 0 −x ≥ −1

The goal, then, is to prove unsatisfiability by deriving the inequality 0 ≥ 1. This is
possible if and only if there is no {0, 1}-assignment satifying all constraints.

As discussed in the introduction, we are interested in several natural parameters
of cutting planes proof—length, space, and the sizes of the coefficients. So, we define
a cutting planes refutation as a sequence of configurations (this is also known as the
blackboard model). A configuration is a set of linear inequalities with integer coefficients,
and a sequence of configurations C0, . . . ,CL is a cutting planes refutation of a formula
C if C0 = ;, CL contains the contradiction 0 ≥ 1, and each configuration Ct+1 follows
from Ct either by adding an inequality in C, by adding the result of one of the above
inference rules where all the premises are in Ct , or by removing an inequality present
in Ct . The length of a refutation is then defined to be the number of configurations L;
the space2 is maxt∈[L]|Ct |, the maximum number of inequalities in a configuration; and
the coefficient bit size is the maximum size in bits of a coefficient that appears in the
refutation.

For any proof system, it is natural to ask what is the minimal amount of space needed
to prove tautologies. Indeed, there has been much work in the literature studying this,
and for proof systems such as resolution (e.g. [ET01, ABRW02, BG03, BN08]) and poly-
nomial calculus (e.g. [ABRW02, FLN+15, BG15, BBG+17]) it is known that there are
unsatisfiable CNF formulas which unconditionally require large space to refute. In con-
trast (and quite surprisingly!) it was shown in [GPT15] that for cutting planes proofs,
constant line space is always enough. The proof presented in [GPT15] does use coef-
ficients of exponential magnitude, but the authors are not able to show that this is
necessary—only that coefficients of at most constant magnitude are not sufficient.

Similarly, one can ask whether cutting planes refutations require large coefficients
to realize the full power of the proof system. Towards this, define CP∗ to be cutting

2Formally, this is known as the line space.
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planes proofs with polynomially-bounded coefficients or, in other words, a cutting planes
refutation Π of a formula C with n variables is a CP∗ refutation if the largest coefficient
in Π has magnitude poly(n, L).

The question of how CP∗ relates to unrestricted cutting planes has been raised in
several papers, e.g., [BPR97, BEGJ00]. This question was studied already in [BC96],
where it was proven that any cutting planes refutation in length L can be transformed
into a refutation with LO(1) lines having coefficents of magnitude exp(O(L)) (here the
asymptotic notation hides a mild dependence on the size of the coefficients in the input).
The authors write, however, that their original goal had been to show that coefficients
of only polynomial magnitude would be enough, i.e., that CP∗ would be as powerful as
cutting planes except possibly for a polynomial loss, but that they had to leave this as
an open problem. To the best of our knowledge, there has not been a single example of
any unsatisfiable formulawhere CP∗ could potentially performmuch worse than general
(high-weight) cutting planes.

Finally, as observed in [BPS07, HN12], we can use an efficient cutting planes refut-
ation of a formula C to solve Search(C) by an efficient communication protocol. Since
the first configuration C0 is always true and the last configuration CL is always false,
the players can simulate a binary search by evaluating the truth value of a configuration
according to their joint assignment and find a true configuration followed by a false con-
figuration. It is not hard to see that the inequality being added corresponds to a clause
in C and it is a valid answer to Search(C).

Lemma C.2.2 ([HN12]). If there is a cutting planes refutation of C in length L, line
space s, and coefficient bit size c, then there is a deterministic communication protocol for
Search(C) of cost O(s(c + log n) log L).

C.3 Rank Lifting from Any Gadget

In this section we discuss our new lifting theorem, restated next.3

Theorem C.3.1. Let C be any unsatisfiable k-CNF on n variables and let F be any field.
For any Boolean valued gadget g with rank(g)≥ 12enk/NSF(C) we have

Pcc(Search(C) ◦ g)≥ NSF(C).

This generalizes a recent lifting theorem from [PR18], which only allowed certain
“good” gadgets. The main technical step of that proof showed that “good” gadgets
can be used to lift the degree of multilinear polynomials to the rank of matrices. In
this section, we improve this, showing that any gadget with non-trivial rank can be
used to lift polynomial degree to rank. Given this result, Theorem C.3.1 is proved by

3In fact, we prove a somewhat more general theorem (see Theorem C.3.8 in Section C.3.3 for details). We
also remark that this theorem in fact holds for a stronger communication measure (Razborov’s rank measure
[Raz90]), and so implies lower bounds for other models—see Section C.3.3 for details.
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reproducing the proof of [PR18] with a tighter analysis. With this in mind, in this
section we will prove our new lifting argument for degree to rank, and then relegate
the rest of the proof of Theorem C.3.1 to Section C.3.3.

Let us now make these arguments formal. We start by recalling the definition of a
"good" gadget of [PR18].

Definition C.3.2 (Definition 3.1 in [PR18]). Let F be a field. A gadget g : X ×Y → F
is good if for any matrices A, B of the same size we have

rank(1X ,Y ⊗ A+ g ⊗ B) = rank(A) + rank(g)rank(B)

where 1X ,Y denotes the X ×Y all-1s matrix.

In [PR18] it is shown that good gadgets are useful because they lift degree to rank
when composed with multilinear polynomials.

TheoremC.3.3 (Theorem 1.2 in [PR18]). Let F be any field, and let p ∈ F[z1, z2, . . . , zn]
be a multilinear polynomial over F. For any good gadget g : X ×Y → F we have

rank(p ◦ gn) =
∑

S:p̂(S)̸=0

rank(g)|S|.

In the present work, we show that a gadget being good is not strictly necessary to
obtain the above lifting from degree to rank. In fact, composing with any gadget lifts
degree to rank!

Theorem C.3.4. Let p ∈ F[z1, z2, . . . , zn] be any multilinear polynomial and let g : X ×
Y → F be any non-zero gadget with rank(g)≥ 3. Then∑

S:p̂(S)̸=0

(rank(g)− 3)|S| ≤ rank(p ◦ gn)≤ ∑
S:p̂(S)̸=0

rank(g)|S|.

We remark that the lower bound in the theorem can be sharpened to rank(g)− 2 if
the gadget g is not full rank. While the previous theorem does not require the gadget
g to be good, the notion of a good gadget will still play a key role in the proof. The
general idea is that every gadget with non-trivial rank can be transformed into a good
gadget with a slight modification. With this in mind, en-route to proving Theorem C.3.4
we give the following characterization of good gadgets which may be of independent
interest.

Lemma C.3.5. A gadget g is good if and only if the all-1s vector is not in the row or
column space of g.

In the remainder of the section we prove Theorem C.3.4 and Lemma C.3.5.
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C.3.1 Proof of Lemma C.3.5

We begin by proving Lemma C.3.5, which is by a simple linear-algebraic argument.
Given a matrix M over a field, let row(M) denote the row-space of M and let col(M)
denote the column-space of M . The following characterization of when rank is additive
will be crucial.

Theorem C.3.6 ([MS72]). For any matrices A, B of the same size over any field, rank(A+
B) = rank(A) + rank(B) if and only if row(A)∩ row(B) = col(A)∩ col(B) = {0}.

The previous theorem formalizes the intuition that rank should be additive if and
only if the corresponding linear operators act on disjoint parts of the vector space.
Lemma C.3.5 follows almost immediately from the previous theorem.

Proof of Lemma C.3.5. Let g : X × Y → F and let a = |X | and b = |Y|. Let 1n denote
the all-1s vector of dimension n and we will write 1 when n is clear from context. By
Theorem C.3.6, the gadget g is good if and only if for any matrices A, B of the same size
we have

row(1⊗ A)∩ row(g ⊗ B) = col(1⊗ A)∩ col(g ⊗ B) = {0}.
We prove that there exist matrices A, B such that col(1⊗ A) ∩ col(g ⊗ B) ̸= {0} if and
only if 1 ∈ col(g). A similar claim holds for the row spaces, and together they imply
that g is not good if and only if either 1 ∈ row(g) or 1 ∈ col(g).

We start by proving that if 1 ∈ col(g) then there exist matrices A, B such that col(1⊗
A)∩ col(g ⊗ B) ̸= {0}. Assume that 1 ∈ col(g). Let A= B = (1) be the size-1 identity
matrix, so 1 = 1 ⊗ A and g = g ⊗ B. Since 1 ∈ col(1) and 1 ∈ col(g) it follows that
1 ∈ col(1⊗ A)∩ col(1⊗ g), and it follows that g cannot be good; the same argument
applies to the row spaces.

Conversely, suppose there exists matrices A, B and a non-zero vector u such that
u ∈ col(1⊗ A)∩ col(g ⊗ B). It is easy to see that the column space of 1⊗ A is

col(1⊗ A) =




Ax
Ax
...

Ax

 : x ∈ Fn


On the other hand, the column space of g ⊗ B is

col(g ⊗ B) =




∑b

j=1 g(1, j)Bx⃗ j∑b
j=1 g(2, j)Bx⃗ j

...∑b
j=1 g(m, j)Bx⃗ j

 : x⃗1, x⃗2, . . . , x⃗b ∈ Fn
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It follows that a non-zero vector u is in col(1⊗ A)∩ col(g ⊗ B) if and only if there are
vectors x , x⃗1, x⃗2, . . . , x⃗b such that u= Ax and for each row index i ∈ [m]

Ax =
b∑

j=1

g(i, j)Bx⃗ j .

By the above system of equations, we can choose x , x⃗1, x⃗2, . . . , x⃗b such that Ax = u
and

b∑
j=1

g(i, j)Bx⃗ j = u

for all row indices i. Let A1 denote the top row-vector of A and B1 denote the top row-
vector of B; we therefore have

b∑
j=1

g(i, j)B1 x⃗ j = u1 = A1 x

for all row indices i. Let β be the vector whose jth component is β j = B1 x⃗ j; it follows
from the above equations that

b∑
j=1

g(i, j)B1 x⃗ j =
b∑

j=1

g(i, j)β j = u1

for all i ∈ X ; or, in other words,

gβ =


u1

u1
...

u1

 .
Setting α= β/u1 we have gα= 1, finishing the proof of the lemma.

C.3.2 Proof of Theorem C.3.4

In this section we prove Theorem C.3.4 using Lemma C.3.5. The theorem follows by in-
duction using the following lemma, and the proof mimics the proof from [PR18, Rob18].

Lemma C.3.7. Let F be any field, and let g : X ×Y → F be any gadget with rank(g)≥ 3.
For any matrices A, B of the same size we have

rank(1X ,Y ⊗ A+ g ⊗ B)≥ rank(A) + (rank(g)− 3)rank(B)

where 1X ,Y is the X ×Y all-1s matrix.
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Proof. Assume without loss of generality that |X | ≥ |Y| and let 1 = 1X ,Y . Thinking of
g as a matrix, let u be any column vector of g. If we zero the entries of u in g, then
the remaining matrix cannot have full rank, implying that some row-vector v of the
remaining matrix will become linearly dependent. Let g1 be the X ×Y matrix consists
of the u column and v row of g, and let g2 be the X ×Y matrix obtained by zeroing out
u and v in g. Observe g = g1 + g2, and also since that g2 contains an all-0 row and an
all-0 column it is good by Lemma C.3.5 (as any linear combination of rows/columns of
g must contain a zero coordinate).

Now, observe that

rank(1⊗ A+ g ⊗ B) = rank(1⊗ A+ g1 ⊗ B + g2 ⊗ B)

≥ rank(1⊗ A+ g2 ⊗ B)− rank(g1 ⊗ B)

= rank(1⊗ A+ g2 ⊗ B)− rank(g1)rank(B)

where the inequality follows since adding a rank-R matrix can decrease the rank by at
most R. Since g1 consists of a single non-zero row and column we have rank(g1) ≤ 2;
by the construction of g2 we have rank(g2) = rank(g) − 1. Using these facts and the
fact that g2 is good, we have

rank(1⊗ A+ g2 ⊗ B)− rank(g1)rank(B)≥ rank(A) + rank(g2)rank(B)− 2 rank(B)

= rank(A) + (rank(g)− 3)rank(B).

With the lemma in hand we can prove Theorem C.3.4.

Proof of Theorem C.3.4. We prove

rank(p ◦ gn)≥ ∑
S:p̂(S)̸=0

(rank(g)− 3)|S|

by induction on n, the number of variables.
Observe that the inequality is trivially true if n= 0. Assume n> 0, and let 1= 1X ,Y .

Write p = q+ z1r for multilinear polynomials q, r ∈ F[z2, z3, . . . , zn]. Note that it clearly
holds that p ◦ gn = 1⊗ (q ◦ gn−1)+ g ⊗ (r ◦ gn−1). From the claim we have by induction
that

rank(p ◦ gn) = rank(1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1))

≥ rank(q ◦ gn−1) + (rank(g)− 3)rank(r ◦ gn−1)

=
∑

S:q̂(S)̸=0

(rank(g)− 3)|S| + (rank(g)− 3)
∑

T :r̂(T )̸=0

(rank(g)− 3)|T |

=
∑

S:p̂(S)̸=0
z1 ̸∈S

(rank(g)− 3)|S| + (rank(g)− 3)
∑

T :p̂(T )̸=0
z1∈T

(rank(g)− 3)|T |−1

=
∑

S:p̂(S)̸=0

(rank(g)− 3)|S|.
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For the upper bound, by subadditivity of rank we have

rank(1⊗ A+ g ⊗ B)≤ rank(1⊗ A) + rank(g ⊗ B)

= rank(1)rank(A) + rank(g)rank(B)

= rank(A) + rank(g)rank(B).

Apply the above induction argument using this inequality mutatis mutandis.

C.3.3 Lifting Nullstellensatz Degree for All Gadgets

In this section we prove Theorem C.3.1. In fact, we prove the following stronger result,
which implies Theorem C.3.1 as a corollary.

Theorem C.3.8. Let C be an unsatisfiable k-CNF on n variables and let F be any field. Let
g be any Boolean-valued gadget with rank(g)≥ 4. Then

Pcc(Search(C) ◦ gn)≥ NSF(C) log
�NSF(C)rank(g)

en

�
− 6n log e

rank(g)
− log k.

The proof of the theorem follows the proof of a similar lifting theorem from [PR18].
As such, we will need some notation from that paper. Let us begin by introducing a
key notion: Razborov’s rank measure. Given sets U ,V, a rectangle cover R of U × V is a
covering of U × V by combinatorial rectangles.

Definition C.3.9. Let U ,V be sets and let R be any rectangle cover of U × V. Let A be
any U × V matrix over a field F. The rank measure of R at A is the quantity

µF(R, A) =
rank(A)

max
R∈R rank(A ↾ R) .

Using the rank measure we can lower bound the deterministic communication com-
plexity of composed CNF search problems as follows. The key observation is that any
deterministic communication protocol outputs a rectangles that lie in a “structured” rect-
angle cover in the following sense. We note below that if A is a collection of tuples from
some product set In then we write Ai to mean the projection of A to the ith coordinate
and AI for I ⊆ [n] to mean the projection onto the coordinates in I .

Definition C.3.10. Let C be an unsatisfiable k-CNF on n variables and let g : X ×Y →
{0, 1} be a gadget. For a clause C ∈ C, a combinatorial rectangle R ⊆ X n × Yn is
C-structured if gn(x , y) falsifies C for all (x , y) ∈ R and for all i ̸∈ Vars(C) we have
Ri = X ×Y. A rectangle coverR of X n×Yn is C-structured if every R ∈R is C-structured
for some C ∈ C.
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Lemma C.3.11. Let C be an unsatisfiable k-CNF on n variables and let g : X ×Y → {0, 1}
be a gadget. Let F be any field and let A be any X n ×Yn matrix over F. Then

Pcc(Search(C) ◦ g)≥min
R

logµF(R, A)

where the minimum is taken over C-structured rectangle covers of X n ×Yn.

Proof. Let Π be any communication protocol solving Search(C) ◦ g, and let T be the
monochromatic rectangle partition corresponding to Π. Since Π solves the search prob-
lem, for every rectangle R ∈ T there is a clause C such that for all (x , y) ∈ R, gn(x , y)
falsifies C . We can write R = A× B for some sets A ⊆ X Vars(C) × X [n]\Vars(C) and B ⊆
YVars(C) × Y[n]\Vars(C). Consider R′ = A′ × B′ where A′ = AVars(C) × X [n]\Vars(C) and B′ =
BVars(C) ×X [n]\Vars(C). Since C only depends on indices in Vars(C) we have that gn(x , y)
falsifies C for all (x , y) ∈ R′ and, moreover, R′i = X × Y for all i ̸∈ Vars

�
C
�
. It follows

that R′ is C-structured. Let R be the C-structured rectangle covering obtained from T
by relaxing all rectangles of T in this way.

We now have an C-structured rectangle cover R such that every T ∈ T is contained
in some rectangle of R. Razborov [Raz90] proved that if T is a rectangle partition and
R is a rectangle cover such that for each T ∈ T there is an R ∈ R such that T ⊆ R it
holds that

|T | ≥ µF(R, A)

for any matrix A. Since log |T | ≤ |Π|= Pcc(Search(C) ◦ g) the lemma follows.

We now introduce the notion of a certificate of an unsatisfiable CNF formula.

Definition C.3.12. Let C be an unsatisfiable Boolean formula on n variables in conjunct-
ive normal form, and let C be a clause in C. The certificate of C , denoted Cert(C), is the
partial assignment π : [n]→ {0, 1,∗} which falsifies C and sets the maximal number of
variables to ∗s. Let Cert(C) denote the set of certificates of clauses of C.

We say that an assignment z ∈ {0, 1}n agrees with a certificate π ∈ Cert(C) if π(i) =
zi for each i assigned to a {0, 1} value by π. Since the CNF formula C is unsatisfiable,
it follows that every assignment in z ∈ {0, 1}n agrees with some {0, 1}-certificate of C.
Next we introduce an alternative definition of Nullstellensatz degree called the algebraic
gap complexity.

Definition C.3.13. Let F be a field. Let C be an unsatisfiable CNF on n variables. The
F-algebraic gap complexity of C is the maximum positive integer gapF(C) ∈ N for which
there exists a multilinear polynomial p ∈ F[z1, z2, . . . , zn] such that

deg(p) = n and ∀π ∈ Cert(C) : deg(p ↾ π)≤ n− gapF(C) .

When the field is clear from context we will write gap(C).
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In [PR18, Rob18] it was shown that the algebraic gap complexity is equal to Null-
stellensatz degree.

Theorem C.3.14. For any unsatisfiable CNF formula C on n variables and any field F,
gapF(C) = NSF(C).

We now prove a lifting theorem from Nullstellensatz degree to the rank measure,
from which Theorem C.3.8 follows by applying Lemma C.3.11.

Theorem C.3.15. Let C be an unsatisfiable k-CNF on n variables and let F be any field.
Let g be any Boolean-valued gadget with rank(g) ≥ 4. There is a matrix A such that for
any C-structured rectangle cover R we have

µF(R, A)≥ 1
k

�NSF(C)rank(g)
en

�NSF(C)
exp(−6n/rank(g)) .

Proof. Let p ∈ F[z1, z2, . . . , zn] be the polynomial witnessing the algebraic gap complex-
ity gap(C), and let A= p◦ gn be the pattern matrix obtained by composing p and g. We
need to analyze

µF(R, p ◦ gn) =
rankF(p ◦ gn)

max
R∈R rankF(p ◦ gn ↾ R) .

Let us first analyze the denominator. Let R be an arbitrary rectangle from the cover
R, and suppose that R is C-structured for the clause C ∈ C. Let π = Cert(C). We want
to show that

rankF(p ◦ gn ↾ R)≤ ∑
S:Ôp↾π(S)̸=0

rank(g)|S| . (C.1)

To prove this, we claim that p ◦ gn ↾ R is column-equivalent to the block matrix

[(p ↾ π) ◦ g[n]\Vars(C), (p ↾ π) ◦ g[n]\Vars(C), . . . , (p ↾ π) ◦ g[n]\Vars(C)]

for some number of copies of the matrix (p ↾ π) ◦ g[n]\Vars(C). Indeed Equation C.1
immediately follows from this claim as

rankF(p ◦ gn ↾ R) = rankF((p ↾ π) ◦ g[n]\Vars(C))≤ ∑
S:Ôp↾π(S)̸=0

rank(g)|S|

by Theorem C.3.4. So, we now prove the claim.
Write R = A× B. Fix assignments α ∈ AVars(C) and β ∈ BVars(C), and note that since

R is C-structured we have that gVars(C)(α,β) = π and (α, x ′) ∈ A and (β , y ′) ∈ B for all
x ′, y ′. Thus, by ranging x[n]\Vars(C), y[n]\Vars(C) over all values yields the matrix (p ↾ π) ◦
g[n]\Vars(C). Then, ranging xVars(C) and yVars(C) over all α,β such that gVars(C)(α,β) = π
yields the claim and Equation C.1.
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Now, consider the rank measure µF(R), which by Theorem C.3.4 and Equation C.1
satisfies

µF(R)≥ rankF(p ◦ gn)
max
R∈R rankF(p ◦ gn ↾ R) =

∑
S:p̂(S)̸=0

(rank(g)− 3)|S|

max
π∈Cert(C)

∑
S:Ôp↾π(S)̸=0

rank(g)|S|

By definition of gap(C) we have deg p = n and thus the numerator is at least (rank(g)−
3)n. For the denominator, since p witnesses the algebraic gap of C, we have that deg p ↾
π≤ n−gap(C) for all π ∈ Cert(C). We may assume that p̂(S) = 0 when |S|< n−gap(C)
as the definition of algebraic gaps depends only on the coefficients of monomials of p
with degree larger than n− gap(C). So, for any restriction π:

∑
S:Ôp↾π(S)̸=0

rank(g)|S| ≤
k∑

i=0

�
n

gap(C)− i

�
rank(g)n−gap(C)−i

≤ k
�

en
gap(C)

�gap(C)
rank(g)n−gap(C)

Putting it all together, and using the fact that rank(g)≥ 6en/gap(C), we have

µF(R, p ◦ gn)≥ (rank(g)− 3)n

k(en/gap(C))gap(C)rank(g)n−gap(C)

=
1
k

�
gap(C)rank(g)

en

�gap(C)

·
�

1− 3
rank(g)

�n
≥ 1

k

�
gap(C)rank(g)

en

�gap(C)

exp(−6n/rank(g)) .

Since gap(C) = NS(C) the theorem is proved.

Theorem C.3.8 follows immediately from Theorem C.3.15 and Lemma C.3.11.

C.4 Application: Separating Cutting Planes Systems

In this section we prove a new separation between high-weight and low-weight cutting
planes proofs in the bounded-space regime.

Theorem C.4.1. There is a family of O(log log n)-CNF formulas over O(n log log n) vari-
ables and Õ(n) clauses that have CP refutations in length Õ(n2) and line space O(1), but for
which any CP∗ refutation in length L and line space s must satisfy s log L = Ω(n/ log2 n).

By the results of [GPT15], any unsatisfiable CNF formula has a cutting planes re-
futation in constant line space, albeit with exponential length and exponentially large
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coefficients. In Theorem C.4.1 we show that the length of such a refutation can be
reduced to polynomial for certain formulas, described next.

At a high level, we prove Theorem C.4.1 using the reversible pebble game. Given any
DAG G with a unique sink node t, the reversible pebble game [Ben89] is a single-player
game that is played with a set of pebbles on G. Initially the graph is empty, and at each
step the player can either place or remove a pebble on a vertex whose predecessors
already have pebbles (in particular the player can always place or remove a pebble on a
source). The goal of the game is to place a pebble on the sink while using as few pebbles
as possible. The reversible pebbling price of a graph, denoted rpeb(G), is the minimum
number of pebbles required to place a pebble on the sink.

The family of formulas witnessing Theorem C.4.1 are pebbling formulas composed
with the equality gadget. Intuitively, the pebbling formula [BW01] PebG associated with
G is a formula that claims that it is impossible to place a pebble on the sink (using any
number of pebbles). Since it is always possible to place a pebble by using some amount
of pebbles, this formula is clearly a contradiction.

Formally, the pebbling formula PebG is the following CNF formula. For each vertex
u ∈ V there is a variable zu (intuitively, zu should take the value "true" if and only if
it is possible to place a pebble on u using any number of pebbles). The variables are
constrained by the following clauses.

• a clause zs for each source vertex s (i.e., we can always place a pebble on any
source),

• a clause
∨

u∈pred(v)¬zu∨zv for each non-source vertex v with predecessors pred(v)
(i.e., if we can place a pebble on the predecessors of v, then we can place a pebble
on v), and

• a clause ¬zt for the sink t (i.e., it is impossible to place a pebble on t).

Proving Theorem C.4.1 factors into two tasks: a lower bound and an upper bound.
By applying our lifting theorem from the previous section, the lower bound will follow
immediately from a good lower bound on the Nullstellensatz degree of pebbling formu-
las. In order to prove lower bounds on the Nullstellensatz degree, we show in Section
C.4.1 that over every field, the Nullstellensatz degree required to refute PebG is exactly
the reversible pebbling price of G. We then use it together with our lifting theorem
to prove the time-space tradeoff for bounded-coefficient cutting planes refutations of
PebG ◦ g in Section C.4.2 for any high-rank gadget g. Finally, in Section C.4.3 we prove
the upper bound by presenting a short and constant-space refutation of PebG ◦ EQ in
cutting planes with unbounded coefficients.

C.4.1 Nullstellensatz Degree of Pebbling Formulas

In this section we prove that the Nullstellensatz degree of the pebbling formula of a
graph G equals the reversible pebbling number of G.
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Lemma C.4.2. For any field F and any graph G, NSF(PebG) = rpeb(G).

We crucially use the following dual characterization of Nullstellensatz degree by
designs [Bus98].

Definition C.4.3. Let F be a field, let d be a positive integer, and let P be an unsatis-
fiable system of polynomial equations over F[z1, z2, . . . , zn]. A d-design for P is a linear
functional D on the space of polynomials satisfying the following axioms:

1. D(1) = 1.

2. For all p ∈ P and all polynomials q such that deg(pq)≤ d, we have D(pq) = 0.

Clearly, if we have a candidate degree-d Nullstellensatz refutation 1=
∑

piqi , then
applying a d-design to both sides of the refutation yields 1 = 0, a contradiction. Thus,
if a d-design exists for a system of polynomials then there cannot be a Nullstellensatz
refutation of degree d. Remarkably, a converse holds for systems of polynomials over
{0, 1}n.
Theorem C.4.4 (Theorems 3, 4 in [Bus98]). Let F be a field and let P be a system of
polynomial equations over F[z1, z2, . . . , zn] containing the Boolean equations z2

i − zi = 0
for all i ∈ [n]. Then P does not have a degree-d Nullstellensatz refutation if and only if it
has a d-design.

With this characterization in hand we prove Lemma C.4.2.

Proof of Lemma C.4.2. Let G be a DAG, and consider the pebbling formula G. Follow-
ing the standard translation of CNF formulas into unsatisfiable systems of polynomial
equations, we express PebG with the following equations:

Source Equations. The equation (1− zs) = 0 for each source vertex s.

Sink Equations. The equation zt = 0 for the sink vertex t.

Neighbour Equations.The equation (1−zv)
∏

u∈pred(v) zu = 0 for each internal vertex v.

Boolean Equations. The equation z2
v − zv = 0 for each vertex v.

We prove that a d-design for the above system exists if and only if d < rpeb(G), and this
implies the lemma. Let D be a d-design for the system. First, note that since the Boolean
axioms are satisfied and since D is linear, it follows that D is completely specified by its
value on multilinear monomials zT :=

∏
i∈T zi (with this notation note that z; := 1).

Moreover, D must satisfy the following properties:

Empty Set Axiom. D(z;) = 1.

Source Axioms.D(zT ) = D(zT zs) for every source s and every T ⊆ [n]with |T ∪ {s}| ≤ d.
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Neighbour Axioms. D(zT zpred(v)) = D(zT zpred(v)zv) for every non-source vertex v and
every T ⊆ [n] with |T ∪ pred(v)∪ {v}| ≤ d.

Sink Axiom. D(zT zt) = 0 for the sink t and every T ⊆ [n] with |T ∪ {t}| ≤ d.

We may assume without loss of generality that D(zT ) = 0 for any set T with |T |> d.
Given a set S of vertices of G, we think of S a the reversible pebbling configuration

in which there are pebbles on the vertices in S and there are no pebbles on any other
vertex. We say that a configuration T is reachable from a configuration S if there is a
sequence of legal reversible pebbling moves that changes S to T while using at most d
pebbles at any given point.

Now, we claim that the only way to satisfy the first three axioms is to set D(xT ) = 1
for every configuration T that is reachable from ;. To see why, observe that those
axioms are satisfiable if and only if the empty configuration is assigned the value 1,
any configuration containing the sink is labelled 0, and D(zS) = D(zT ) for any two
configurations S, T with at most d pebbles that are mutually reachable via a single
reversible pebbling move. Hence, this setting of D is the only one we need to consider.

Finally, observe that this specification of a design D satisfies the sink axiom if and
only if d < rpeb(G), since the sink is reachable from ; using rpeb(G) pebbles but not
with less (by the definition of rpeb(G)). Therefore, a d-design for PebG exists if and
only if d < rpeb(G), as required.

C.4.2 Time-Space Lower Bounds for Low-Weight Refutations

In this section we prove the lower bound part of the time-space trade-off for CP∗.

Lemma C.4.5. There is a family of graphs {Gn} with n vertices and constant degree, such
that every CP∗ refutation of PebGn

◦ EQ in length L and line space s must have s log L =
Ω(n/ log2 n).

Our plan is to lift a pebbling formula that is hard with respect to Nullstellensatz
degree, and as we just proved it is enough to find a family of graphs whose reversible
pebbling price is large. Paul et al. [PTC77] provide such a family (and in fact prove
their hardness in the stronger standard pebbling model).

Theorem C.4.6. There is a family of graphs {Gn} with n vertices, constant degree, and
for which rpeb(Gn) = Ω(n/ log n).

Since we collected our last ingredient, let us begin the proof.

Proof of Lemma C.4.5. Let PebG be the pebbling formula of a graph G = Gn from the
family given by Theorem C.4.6. By Lemma C.4.2 the Nullstellensatz degree of the for-
mula is

NSF(PebG) = rpeb(G) = Ω(n/ log n) . (C.2)
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This allows us to use our lifting theorem, Theorem C.3.1, with an equality gadget of
arity q = O(log(n/NSF(PebG)) = O(log log n), and obtain that the lifted search problem
Search(PebG) ◦ EQ requires deterministic communication

Pcc(Search(PebG) ◦ EQ)≥ NSF(PebG) = Ω(n/ log n) . (C.3)

As we noted in Observation C.2.1, this implies that the search problem of the lifted
formula also requires deterministic communication

Pcc(Search(PebG ◦ EQ))≥ Pcc(Search(PebG) ◦ EQ) = Ω(n/ log n) . (C.4)

Finally, using Lemma C.2.2 we have that every cutting planes refutation of the lifted
formula in length L, line space s, and coefficient length c must satisfy

s(c + log n) log L = Ω(Pcc(Search(PebG ◦ EQ))) = Ω(n/ log n) . (C.5)

Since the size of the lifted formula PebG ◦EQ is Õ(n), the coefficients of a CP∗ refut-
ation are bounded by a polynomial of n in magnitude, and hence by O(log n) in length.
Substituting the value of c = O(log n) in (C.5) we obtain that

s log L = Ω(n/ log2 n) (C.6)

as we wanted to show.

C.4.3 Time-Space Upper Bounds for High Weight Refutations

We now prove Theorem C.4.7, showing that cutting planes proofs with large coefficients
can efficiently refute pebbling formulas composed with equality gadgets in constant line
space. Let EQq denote the equality gadget on q bits.

Theorem C.4.7. Let PebG be any constant-width pebbling formula. There is a cutting
planes refutation of PebG ◦ EQlog log n in length Õ(n2) and space O(1).

We also use the following lemma, which is a “derivational” analogue of the recent
result of [GPT15] showing that any set of unsatisfiable integer linear inequalities has a
cutting planes refutation in constant space. As the techniques are essentially the same
we postpone the proof to Section C.4.4.

Lemma C.4.8 (Space Lemma). Let C be a set of integer linear inequalities over n variables
that implies a clause C . Then there is a cutting planes derivation of C from C in length
O(n22n) and space O(1).

Let us begin by outlining the high level proof idea. We would like to refute the lifted
formula PebG ◦EQq using constant space. Consider first the unlifted formula PebG . The
natural way to refute it is the following: Let v1, . . . , vn be a topological ordering of the
vertices of G. The refutation will go over the vertices in this order, each time deriving the
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equation that says that the variable zvi
must take the value "true" by using the equations

that were derived earlier for the predecessors of vi . Eventually, the refutation will derive
the equation that says that the sink must take the value "true", which contradicts the
axiom that says that the sink must be false.

Going back to the lifted formula PebG ◦ EQq, we construct a refutation using the
same strategy, except that now the equation of zvi

is replaced with the equations

xvi ,1 = yvi ,1, . . . xvi ,q = yvi ,q.

The main obstacle is that if we implement this refutation in the naive way, we will
have to store all the equations simultaneously, yielding a refutation of space O(q · n).
The key idea of our proof is that CP can encode the conjunction of many equations
using a single equation. We can therefore use this encoding in our refutation to store
at any given point all the equations that were derived so far in a single equation. The
implementation yields a refutation of constant space, as required.

To see how we can encode multiple equations using a single equation, consider the
following example. Suppose we wish to encode the equations

x1 = y1, x2 = y2, x3 = y3,

where all the variables take values in {0, 1}. Then, it is easy to see that those equations
are equivalent to the equation

4 · x1 + 2 · x2 + x3 = 4 · y1 + 2 · y2 + y3.

This idea generalizes in the straightforward to deal with more equations, as well as with
arbitrary linear gadgets, to be discussed below.

The rest of this section is devoted to the proof of Theorem C.4.7. The following
notion is central to the proof. Say a gadget g(x , y) : {0, 1}q × {0, 1}q → {0, 1} is linear
if there exists a linear expression with integer coefficients

L(x , y) = c +
q∑

i=1

ai x i + bi yi

such that g(x , y) = 1 if and only if L(x , y) = 0. Note that the equality gadget is linear,
as it corresponds to the linear expression

∑q
i=1 2i−1(x i − yi).

Let g be any linear gadget with corresponding linear expression L. Let K = 1 +
maxx ,y |L(x , y)|, and let G be the underlying DAG of the composed pebbling formula
PebG ◦ gn. Note that for each vertex u of G the composed formula has corresponding
variables xu, yu ∈ {0, 1}q. Once and for all, fix an ordering of the vertices of G and
assume that all subsets are ordered accordingly. For a subset of vertices U ⊆ V define

L(U) :=
∑
ui∈U

K i L(xui
, yui
).
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The following claim states that L(U) encodes the truth value of the conjunction∧
ui∈U

g(xui
, yui
) . (C.7)

Claim C.4.9. For a set of vertices U and any x , y ∈ {0, 1}qn, L(U) = 0 if and only if∧
ui∈U g(xui

, yui
) = 1.

Proof. Since g is linear, if g(xui
, yui
) = 1 for all ui ∈ U then it follows that L(xui

, yui
) = 0

for all ui ∈ U , which in turn implies L(U) = 0. Conversely, suppose g(xui
, yui
) = 0 for

some vertex ui , and let i be the largest such index. It follows that L(ui) ̸= 0, and clearly�����∑
j<i

K j L(xu j
, yu j
)

�����≤∑
j<i

K j |L(xu j
, yu j
)| ≤ (K − 1)
∑
j<i

K j < K i . (C.8)

This implies L(U) ̸= 0, since

|L(U)|=
�����K i · L(ui) +
∑
j<i

K j L(xu j
, yu j
)

�����
≥ ��K i · L(ui)
��− �����∑

j<i

K j L(xu j
, yu j
)

�����
≥ K i −
�����∑

j<i

K j L(xu j
, yu j
)

�����> 0

From here on in the proof, we consider L(U) = 0, or L(U) for short, as being syn-
tactically represented in cutting planes as the pair of inequalities L(U)≥ 0, −L(U)≥ 0.
The bulk of the proof lies in the following lemma, which shows how to “encode” and
“decode” unit literals in the expressions L(U).

Lemma C.4.10 (Coding Lemma). Let U be any set of vertices. Then

1. For any u ∈ U there is a cutting planes derivation of L(u) from L(U) in length
O(q|U |) and space O(1).

2. Let C = ¬zu1
∨¬zu2

∨· · ·∨¬zuk−1
∨zuk

be an axiom of PebG with u1, u2, . . . , uk−1 ∈ U .
Let ℓg and sg be such that there exists a derivation of L(u) from a CNF encoding of
g(u) in length ℓg and space sg . From L(u1), L(u2), . . . , L(uk−1) and C ◦ gn there is
a cutting planes derivation of L(uk) in length O(2kqℓg) and space O(sg).

3. For any u ̸∈ U there is a cutting planes derivation of L(U ∪{u}) from L(U) and L(u)
in length O(1) and space O(1).

Let us first use the Coding Lemma to complete the proof. We show a more general
statement fromwhich TheoremC.4.7 follows immediately by setting k = 3 and g = EQq,
with q = O(log log n), and bounding ℓEQ = O(q) and sEQ = O(1).
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Lemma C.4.11. If PebG is a width-k pebbling formula on n variables and g is a linear
gadget of arity q then there is a cutting planes refutation of PebG ◦ gn in length O(n(kqn+
2kqℓg)) and space O(k+ sg).

Proof. We begin with L(;), which is represented as the pair of inequalities 0≥ 0, 0≥ 0.
By combining Parts (2) and (3) of the Coding Lemma we can derive L(S), where S is
the set of sources of G. We then follow a unit-propagation proof of PebG , deriving L(u)
for each vertex of G in topological order. Suppose at some point during the derivation
we have derived L(U) for some subset U of vertices. For any axiom C of PebG of the
form C = ¬zu1

∨¬zu2
∨ · · · ∨ ¬zuk−1

∨ zuk
with u1, u2, . . . , uk−1 ∈ U we do the following:

first apply Part (1) of the Coding Lemma to obtain L(ui) for each i ∈ [k − 1]. Apply
Part (2) to derive L(uk), forget L(ui) for each i ∈ [k − 1], and then apply Part (3) to
L(U) and L(uk) to derive L(U ∪{uk}). Continue in this way until we derive L(z) where
z is the sink vertex of G. Since {L(z),¬z ◦ g} is an unsatisfiable set of linear inequalities,
it follows by the Space Lemma (Lemma C.4.8) that we can deduce a contradiction in
length O(q22q) and space O(1).

In the above proof we need to derive L(u) for each of the n vertices of the graph.
Deriving L(u) requires at most O(k) applications of Part (1), one application of Part (2),
and one application of Part (3). Thus, in total, we require length O(n(kqn+2kqℓg)) and
space O(k+ sg).

It remains to prove the Coding Lemma (Lemma C.4.10).

Proof of Coding Lemma. Let U = {u1, u2, . . . , ut} be an arbitrary subset of vertices of size
t. Recall the definition of L(U) =

∑t
i=1 K i−1 L(ui). For any ui ∈ U a term of L(U) will be

one of the terms K i−1 L(ui), which is a sum of 2q variables itself. We begin by defining
two auxiliary operations that allow us to trim both the least and the most significant
terms from L(U).

To trim the i least significant terms of an inequality we essentially divide by K i .
More formally, for every variable v with a positive coefficient a j less than K i we add the
inequality −a j v ≥ −a j , and for every variable with a negative coefficient greater than
−K i we add the inequality a j v ≥ 0. This takes length O(qi), since each term contributes
2q coefficients, and space O(1).

At this point all the remaining coefficients on the LHS are divisible by K i , so we
can apply the division rule. By construction the RHS is greater than −K i −∑ j≥i cK j ,
therefore when we divide by K i the coefficient on the RHS becomes −∑ j≥i cK j−i .

Finally, to restore the values of the coefficients to the values they had before dividing,
we multiply by so we multiply by K i at the end to restore them.

To trim the m− i most significant terms of an inequality with m terms we need to
use the opposite inequality, since the remaining part only has a semantic meaning when
the most significant part vanishes. Hence we first trim the i least significant terms of the
opposite inequality, keeping exactly the negation of the terms that we want to discard.
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Then we add both inequalities so that only the i least significant terms remain. This
takes length O(qi) and space O(1).

Using the trimming operations we can prove items 1–3 in the lemma.

1. We must show that for any u ∈ U there is a cutting planes derivation of L(u) from
L(U) in length O(qt) and space O(1). This is straightforward: begin by making
copies of the pair of inequalities L(U) ≥ 0 and −L(U) ≥ 0 encoding L(U) = 0.
Trim the terms that are strictly more and strictly less significant than L(u) from
both of the inequalities, in length O(qt) and space O(1).

2. Recall that we assumed there is a derivation Π of L(uk) from the CNF formula
zuk
◦ g in length ℓg and space sg , so our goal is to produce the set of clauses zuk

◦ g.
Any such clause D is implied by the set of inequalities {L(ui)}k−1

i=1 together with
the CNF encoding of C ◦ gn, therefore it has a derivation ΠD in length O(2kq)
and space O(1) by the Space Lemma (Lemma C.4.8). Replacing each usage of a
clause D ∈ zuk

◦ g in Π as an axiom by the corresponding derivation ΠD we obtain
a sound derivation L(ut+1) in length O(2tqℓg) and space O(sg).

3. Simply add K t+1 L(u) ≥ 0 to L(U) ≥ 0 and −K t+1 L(u) ≥ 0 to −L(U) ≥ 0; this
clearly uses bounded length and space.

This completes the proof of Theorem C.4.7.
Note that the largest coefficient used in the refutation is bounded by Kn. Indeed,

the argument can be generalized to give a continuous trade-off between the size of the
largest coefficient and the number of inequalities, simply by adding a new pair of empty
inequalities once the coefficient required to add a vertex to an existing pair would be
too large. This means that if we allow up to ξ inequalities then we can use coefficients
of size bounded by KO(n/ξ).

C.4.4 Proof of the Space Lemma

In this section we prove the Space Lemma (Lemma C.4.8), restated next.

Lemma C.4.12. Let C be a set of inequalities over n variables that implies a clause C . Then
there is a cutting planes derivation of C from C in length O(n22n) and space O(1).

We do so by adapting the proof in [GPT15] that any formula has a cutting planes
refutation in constant space in order to show that, in fact, we can derive any clause that
follows from a set of inequalities in constant space.

At a bird’s eye view, the proof in [GPT15] has two steps. The primary step is building
a refutation of the complete tautology, the formula that contains all 2n clauses with n
variables each forbiding one of the possible 2n assignments, in constant space. The
authors come up with an order and a way to encode that the first K clauses are all true
in small space for an arbitrary K , and the rest of the primary step consists of showing
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how to operate with this encoding also in small space, starting with no clause being
true and adding clauses one by one until a contradiction arises. The secondary step is
to transform the original set of linear inequalities into the complete tautology.

If we do not start with an unsatisfiable set of linear inequalities we obviously cannot
reach a contradiction, but given a clause C that follows from C we can still encode that
all the clauses that are a superset of C must be true, and this expression is equivalent
to C .

Let us set up some notation. We number the variables from 0 to n−1. If α is a total
assignment, we denote by Cα the clause over n variables that is falsified exactly by α.
We overload notation and also denote by Cα the standard translation of the clause Cα
into an inequality. We say that an assignment is less than a natural number B and write
α < B if α is lexicographically smaller than the binary representation of B, that is if∑n−1

i=0 2iα(x i) < B. We write TB to denote the inequality
∑n−1

i=0 2i x i ≥ B that is falsified
exactly by the assignments {α ∈ {0, 1}n | α < B}.

We can reuse the following two intermediate lemmas from [GPT15], corresponding
to the primary and the secondary steps.

Lemma C.4.13 ([GPT15]). There is a cutting planes derivation of TB from the set of
clauses {Cα | α < B} in length O(nB) and space O(1).

Lemma C.4.14 ([GPT15]). If a total assignment α falsifies a set of inequalities C, then
there is a cutting planes derivation of Cα from C in length O(n) and space O(1).

Lemma C.4.13, which contains the core of the argument, follows from the proof of
Lemma 3.2 in [GPT15]. We repeat Claim 3 in that proof, which shows how to inductively
derive TB′+1 from TB′ and CB′ , not 2n but B times.

In turn Lemma C.4.14 follows from the proof of Theorem 3.4 in [GPT15]: since α
must falsify some inequality I from C, we only need to reproduce the derivation of Cα
from I verbatim.

Proof of Lemma C.4.8. Assume for now that C = xn−1 ∨ · · · ∨ xn−k. Consider the deriv-
ation Π of the inequality T2n−k from {Cα | α < B}, which is equivalent to C , given by
Lemma C.4.13. We build a new derivation Π′ extending Π as follows.

Every time that we add an axiom Cα to a configuration in Π, we replace that step by
the derivation of Cα from C given by Lemma C.4.14. Observe that we only add axioms
Cα with α < 2n−k, and since any such assignment falsifies C we meet the conditions to
apply Lemma C.4.14.

Finally we obtain C from T2n−k by considering {T2n−k} as a set of inequalities over
the k variables xn−1 . . . xn−k and applying Lemma C.4.14 with α = 0k being the only
assignment over these variables that falsifies T2n−k . The result is C0 = C .

To derive a general clause C that contains k′ negative literals, say C = ¬xn−1 ∨· · · ∨ ¬xn−k′ ∨ xn−k′−1 ∨ · · · ∨ xn−k, we build a derivation with the same structure as Π′,
except that we replace every occurrence of x i by (1− x i) for n− k′ ≤ i < n. To do so,
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we replace each derivation of an axiom Cα with a derivation of the axiom Cα+(0n−k′1k′ )
and, for n − k′ ≤ i < n, replace each use of x i ≥ 0 and −x i ≥ −1 by −x i ≥ −1 and
x i ≥ 0, respectively. Linear combination and division steps go through unchanged, we
only observe that at a division step the coefficient on the right hand side differs by a
multiple of the divisor, so rounding is not affected.

C.5 Application: Separating Monotone Boolean and Real Formulas

In this section we exhibit an explicit function that exponentially separates the size of
monotone Boolean formulas and monotone real formulas.

Theorem C.5.1. There is an explicit family of functions fn over O(n polylog n) variables
that can be computed by monotone real formulas of size O(n polylog n) but for which every
monotone Boolean formula requires size 2Ω(n/ log n).

To prove the lower bound part of Theorem C.5.1 we use the characterization of for-
mula depth by communication complexity [KW90]. Given amonotone Boolean function
f , themonotone Karchmer–Wigderson game of f is a search problemmKW( f ): {0, 1}n×
{0, 1}n→ [n] defined as ((x , y), i) ∈mKW( f ) if f (x) = 1, f (y) = 0, x i = 1, and yi = 0.
In other words, given a 1-input x and a 0-input y for f , the task is to find an index i ∈ [n]
such that x i = 1, and yi = 0. Such an index always exists because f is monotone.

If we denote by mD( f ) the minimum depth of a monotone Boolean formula required
to compute a Boolean function f , then we can write the characterization as

Lemma C.5.2 ([KW90]). For every function f , it holds that mD( f ) = Pcc(mKW( f )).

The analogue of this characterization for real circuits is in terms of DAG-like real
protocols [Kra98, Sok17, HP18]. Since we are only interested in formulas rather than
circuits we only consider tree-like protocols, which we call locally real protocols to distin-
guish them from the stronger model of real protocols, also known as real games [Kra98].

A locally real communication protocol, then, is a communication protocol where
the set of inputs compatible with a node is defined by one half-space, as opposed to
a real protocol where the set of compatible inputs is defined by the intersection of all
half-spaces in the path leading to that node.

Formally, a locally real protocol for a search problem Search: X × Y → Z is a tree
where every internal node v is labelled with a halfspace Hv ⊆ X × Y , and every leaf is
additionally labelled with an element z ∈ Z. The root is labelled with the full space
X × Y , children are consistent in the sense that if a node x has children u and v then
Hx ⊆ Hu∪Hv . Given an input (x , y), the protocol produces a nondeterministic output z
as follows. We start at the root and at each internal node we nondeterministically move
to a child that contains (x , y), which exists by the consistency condition. The output
of the protocol is the label of the resulting leaf. A protocol is correct if for any input
(x , y) ∈ X ×Y it holds that z ∈ Z.
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It is not hard to turn a real formula into a locally real protocol, and the converse
also holds.

LemmaC.5.3 ([HP18]). Given a locally real protocol for themonotone Karchmer–Wigder-
son game of a partial function f , there exists a monotone real formula with the same
underlying graph that computes f .

In order to obtain a function whose Karchmer–Wigderson game we can analyse we
use the fact that every search problem can be interpreted as the Karchmer–Wigderson
game of some function. To state the result we need the notion of a nondeterministic
communication protocol, which is a collection N of deterministic protocols such that
((x , y), z) ∈ S if and only if there exists some protocol π ∈ N such that π(x , y) = z. The
cost of a nondeterministic protocol is log|N |+maxπ∈N depth(π).

Lemma C.5.4 ([Raz90, Gál01], see also [Rob18]). Let S be a two-party total search
problem with nondeterministic communication complexity k. There exists a partial mono-
tone Boolean function f : {0, 1}2k → {0, 1,∗} such that S is exactly themonotone Karchmer–
Wigderson game of f .

We use as a search problem the falsified clause search problem of a hard pebbling
formula composed with equality given by Lemma C.4.5. To exhibit a real formula for
the function it induces, we first build a tree-like cutting planes proof of small size of the
composed pebbling formula.

Theorem C.5.5. If C is the pebbling formula of a graph of indegree 2, then there is a
tree-like semantic cutting planes refutation of C ◦ EQlog log n in length O(n log n log log n).

It is not hard to see that we can extract an efficient locally real protocol from a
tree-like cutting planes refutation of small size, but let us record this fact formally.

Lemma C.5.6 (Folklore, see [Sok17]). Given a semantic cutting planes refutation of a
formula F , there is a locally real protocol for the monotone Karchmer–Widgerson game of
Search(F) with the same underlying graph.

Before we move into the proof of Theorem C.5.5, let us complete the proof of The-
orem C.5.1.

Proof of Theorem C.5.1. Let S = Search(PebG ◦ EQlog log n) be the search problem given
by Lemma C.4.5. The non-deterministic communication complexity of f is log(|PebG ◦
EQlog log n|) + 1, since given a certificate consisting of a clause falsified by the inputs
each party can independently verify that their part is falsified and communicate so
to the other party. Therefore by Lemma C.5.4 there is a partial monotone function f ∗
over O(n polylog n) variables whose monotone Karchmer–Wigderson game is equivalent
to S. By Theorem C.5.5 there is a semantic cutting planes refutation of the formula
PebG◦EQlog log n of length O(n polylog n), which we convert into a locally real protocol for
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S of size O(n polylog n) using Lemma C.5.6, and then into a monotone real formula for
f ∗ of size O(n polylog n) using Lemma C.5.3. Add a threshold gate on top of the formula
to ensure that the output is always Boolean and let f be the total function that the
formula computes. Since f extends f ∗, by Lemma C.5.2 and Lemma C.4.5 f requires
monotone Boolean formulas of depth Ω(n/ log n), and therefore size 2Ω(n/ log n).

C.5.1 A Short Tree-like Refutation

For simplicity in this sectionwe reinterpret the pebbling formula of a graph G of indegree
2 lifted with equality of q bits as the pebbling formula of a graph G′ lifted with equality
of 1 bit or XNOR, where G′ is the graph where we replace every vertex in G by a blob
of q vertices and we replace every edge by a bipartite complete graph between blobs,
and with the difference that instead of having axioms asserting that all sinks are false,
the axioms assert that some sink is false.

Without further ado, let us prove Theorem C.5.5, which follows by setting q =
log log n in the following Lemma.

Lemma C.5.7. If C is the pebbling formula of a graph of indegree 2, then there is a tree-like
semantic cutting planes refutation of C ◦ EQq in length O(nq2q).

As in Section C.4.3 we fix a topological order of G and we build a refutation by
keeping two inequalities L(W ) ≥ 0 and −L(W ) ≥ 0. The main difference is that we
cannot use the Coding Lemma to isolate the value of a single vertex, since then we
would lose the information on the rest of vertices, therefore we have to simulate the
inference steps in place as we describe next.

Let us set up some notation. If W is a set of vertices, let g(W ) =
∧

v∈W XNOR(v).
We represent XNOR(v) with L(v) = 0, where L(v) = x v− y v , and g(W ) with L(W ) = 0,
where L(W ) =

∑
v j∈W 2 j L(v j). We begin with W = ; and with the trivial inequalities

0= L(;) = 0. Let us show how to derive each vertex.

Lemma C.5.8. There is a tree-like semantic derivation of L(W ∪{w})≥ 0 from L(W )≥ 0
and the axioms in 2q steps.

Proof. If w is a source, then the inequality L(w) ≥ 0 is already an axiom, hence it is
enough to multiply L(W )≥ 0 by 2 and add L(w).

The complex case is when w has predecessors u1, . . . , uq. Let ℓ(v, b) = b + (−1)b v
be the literal over variable v and polarity 1− b. Consider the 2q axioms Ib ≥ 0 indexed
by b ∈ {0, 1}q and defined as

Jb =
q∑

j=1

ℓ(xu j , b j) + ℓ(y
u j , b j) (C.9)

Ib = L(w) + Jb . (C.10)
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We start with an inequality L(W ) ≥ 0. In order to have enough working space for
the axioms we multiply the inequality by 2q, and using weakening axioms we add a
slack term defined as

S =
q∑

j=1

2 j−1 xu j (C.11)

to obtain L+0 ≥ 0 with
L+0 = 2q L(W ) + S . (C.12)

The coefficients for S are chosen so that if we evaluate S on a string b ∈ {0, 1}q, the result
is b interpreted as a binary number. We use it to keep track of which axioms we have
processed so far, in a similar fashion to how the space-efficient refutation of the complete
tautology [GPT15] that we reproduce in Section C.4.4 keeps track of processed truth
value assignments.

The next step is to add each axiom to L+0 , but for this to work we need to represent
each intermediate step with one inequality as follows.

Claim C.5.9. We can represent the Boolean expression

g+B = ⟦L(W )≥ 0⟧∧�g(W )→ ∧
b≤B

Ib

�
(C.13)

with the inequality L+B ≥ 0 defined as

L+B = (B + 1)L(w) + L+0 . (C.14)

Proof. Let us begin proving the claim by showing that g+B ⇒ L+B ≥ 0. First consider
an assignment α that satisfies L(W ) ≥ 0 but not g(W ), that is an assignment where
xu j = 1 and yu j = 0 for some predecessor u j of w. Then L+0 ↾α ≥ 2q, hence L+B↾α ≥−(B + 1) + 2q ≥ 0.

Now consider an assignment α that satisfies g(W ), hence L(W ) = 0. If αu1,...,uq
=

b ≤ B then, since α falsifies Jb ≥ 1, α must satisfy L(w) ≥ 0, so both L+0 ≥ 0 and
L(w) ≥ 0. Otherwise if αu1,...,uq

= b > B then S↾α = b ≥ B + 1, and we have L+B↾α ≥−(B + 1) + b ≥ 0.
Let us finish by showing that g+B ⇐ L+B ≥ 0. First consider an assignment α that

falsifies L(W )≥ 0. Then L+B↾α ≤ (B + 1)− 2q < 0.
Now consider an assignment α that satisfies g(W ) but not an axiom Ib with b ≤ B.

Then in particular α falsifies L(w)≥ 0, hence L+B↾α = (B+1)L(w)+S↾α = −(B+1)−b <
0. This concludes the proof of the claim.

Since L+B+1 ≥ 0 follows semantically from L+B ≥ 0 and IB, we can derive g+2q ≥ 0
from L+0 ≥ 0 and the set of axioms Ib ≥ 0 using 2q semantic inferences of arity 2. Also,
L+2q ≥ 0 is semantically (but not syntactically) equivalent to L(W ∪ {w})≥ 0, so we can
be ready for the next step with a semantic inference of arity 1.
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We can derive the upper bound inequality −L(W ∪ {w}) ≥ 0 similarly, the main
differences being that we start with −L(W ) ≥ 0 and that we use the other half of the
axioms, that is Ib = −L(w) + Jb.

We handle the sinks in a slightly different way. Instead of using the pebbling axioms
directly, we first use the pebbling axioms of all the sinks together with the axioms en-
forcing that some sink is false in order to derive a set of inequalities similar to pebbling
axioms but with−1 in place of L(w). We then use the same derivation as in Lemma C.5.8
using these inequalities in place of the axioms and we obtain L(W )−1≥ 0 and analog-
ously −L(W )− 1≥ 0. Adding both inequalities leads to the contradiction −2≥ 0.

To conclude the proof it is enough to observe that we do O(2q) inference steps for
each vertex in G′, which has order nq, hence the total length of the refutation is O(nq2q).

C.6 Concluding Remarks

In this paper, we show that the cutting planes proof system (CP) is stronger than its vari-
ant with polynomially bounded coefficients (CP∗) with respect to simultaneous length
and space. This is the first result in proof complexity demonstrating any situation where
high-weight coefficients are more powerful than low-weight coefficients. We also prove
an explicit separation between monotone Boolean formulas and monotone real formu-
las. Previously the result was only known to hold non-constructively. To obtain these
results we strengthen a lifting theorem of [PR18] to allow the lifting to work with any
gadget with sufficiently large rank, in particular with the equality gadget—a crucial
ingredient for obtaining the separations discussed above.

This work raises a number of questions. Prior to our result, no explicit function was
known separating monotone real circuits or formulas frommonotone Boolean circuits or
formula. Although we prove an explicit formula separation, it remains open to obtain an
explicit function that separates monotone real circuits from monotone Boolean circuits.

The most glaring open problem related to our cutting planes contribution is to
strengthen our result to a true length separation, without any assumption on the space
complexity. It is natural to ask whether techniques inspired by [Sok17, GGKS18] can
be of use. Another thing to note about our trade-off result for CP∗ is that it is not a “true
trade-off”: we know that length and space cannot be optimised simultaneously, but we
do not know if there in fact exist small space refutations. An interesting problem is,
therefore, to exhibit formulas that present “true trade-offs” for CP∗ but are easy with
regard to space and length in CP.

It follow from our results that standard decision tree complexity, parity decision tree
complexity, and Nullstellensatz degree are equal for the falsified clause search problem
of lifted pebbling formulas. In view of this we can ask ourselves what complexity meas-
ure we are actually lifting. We know that for general search problem decision tree
complexity is not enough for a lifting result. How about parity decision tree complex-
ity? Or can we leverage the fact that we have “well-behaved” rectangle covers and small
certificate complexity to lift weaker complexity models? It would be valuable to have
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a better understanding of the relation between gadgets, outer functions/relations and
complexity measures.
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Abstract

We establish an exactly tight relation between reversible pebblings of graphs
and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be
reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refut-
ation of the pebbling formula over G in size t+1 and degree s (independently of the
field in which the Nullstellensatz refutation is made). We use this correspondence
to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the
best of our knowledge are the first such results for this proof system.

D.1 Introduction

In this work, we obtain strong trade-offs in proof complexity by making a connection
to pebble games played on graphs. In this introductory section we start with a brief
overview of these two areas and then explain how our results follow from connecting
the two.

D.1.1 Proof Complexity

Proof complexity is the study of efficiently verifiable certificates for mathematical state-
ments. More concretely, statements of interest claim to provide correct answers to ques-
tions like:

159
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• Given a CNF formula, does it have a satisfying assignment or not?

• Given a set of polynomials over some finite field, do they have a common root?

There is a clear asymmetry here in that it seems obvious what an easily verifiable cer-
tificate for positive answers to the above questions should be, while it is not so easy to
see what a concise certificate for a negative answer could look like. The focus of proof
complexity is therefore on the latter scenario.

In this paper we study the algebraic proof system system Nullstellensatz introduced
by Beame et al. [BIK+94]. A Nullstellensatz refutation of a set of polynomials P = {pi |
i ∈ [m]} with coefficients in a field F is an expression

m∑
i=1

ri · pi +
n∑

j=1

s j · (x2
j − x j) = 1 (D.1)

(where ri , s j are also polynomials), showing that 1 lies in the polynomial ideal in the
ring F[x1, . . . , xn] generated byP∪�x2

j −x j

�� j ∈ [n]	. By (a slight extension of) Hilbert’s
Nullstellensatz, such a refutation exists if and only if there is no common {0, 1}-valued
root for the set of polynomials P.

Nullstellensatz can also be viewed as a proof system for certifying the unsatisfiability
of CNF formulas. If we translate a clause like, e.g., C = x ∨ y ∨ ¬z to the polynomial
p(C) = (1 − x)(1 − y)z = z − yz − xz + x yz, then an assignment to the variables in
a CNF formula C =

∧m
i=1 Ci (where we think of 1 as true and 0 as false) is satisfying

precisely if all the polynomials {p(Ci) | i ∈ [m]} vanish.
The size of a Nullstellensatz refutation (D.1) is the total number of monomials in all

the polynomials ri ·pi and s j ·(x2
j −x j) expanded out as linear combinations of monomials.

Another, more well-studied, complexity measure for Nullstellensatz is degree, which is
defined as max{deg(ri · pi), deg(s j · (x2

j − x j))}.
In order to prove a lower bound d on the Nullstellensatz degree of refuting a set of

polynomials P, one can construct a d-design, which is a map D from degree-d polyno-
mials in F[x1, . . . , xn] to F such that

1. D is linear, i.e., D(αp+ βq) = αD(p) + βD(q) for α,β ∈ F;
2. D(1) = 1;

3. D(rp) = 0 for all p ∈ P and r ∈ F[x1, . . . , xn] such that deg(rp)≤ d;

4. D(x2s) = D(xs) for all s ∈ F[x1, . . . , xn] such that deg(s)≤ d − 2.

Designs provide a characterization of Nullstellensatz degree in that there is a d-design
for P if and only if there is no Nullstellensatz refutation of P in degree d [Bus98].
Another possible approach to prove degree lower bounds is by computationally efficient
versions of Craig’s interpolation theorem. It was shown in [PS98] that constant-degree
Nullstellensatz refutations yield polynomial-sizemonotone span programs, and that this
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is also tight: every span program is a unique interpolant for some set of polynomials
refutable by Nullstellensatz. This connection has not been used to obtain Nullstellensatz
degree lower bounds, however, due to the difficulty of proving span program lower
bounds.

Lower bounds on Nullstellensatz degree have been proven for sets of polynomials
encoding combinatorial principles such as the pigeonhole principle [BCE+98], induc-
tion principle [BP98], house-sitting principle [CEI96, Bus98], matching [BIK+97], and
pebbling [BCIP02]. It seems fair to say that research in algebraic proof complexity soon
moved on to stronger systems such as polynomial calculus [CEI96, ABRW02], where the
proof that 1 lies in the ideal generated by P ∪ �x2

j − x j

�� j ∈ [n]	 can be constructed
dynamically by a step-by-step derivation. However, the Nullstellensatz proof system
has been the focus of renewed interest in a recent line of works [RPRC16, PR17, PR18,
dRMN+19] showing that Nullstellensatz lower bounds can be lifted to stronger lower
bounds for more powerful computational models using composition with gadgets. The
size complexity measure for Nullstellensatz has also received attention in recent papers
such as [Ber18, AO19].

In this work, we are interested in understanding the relation between size and de-
gree in Nullstellensatz. In this context it is relevant to compare and contrast Nullstel-
lensatz with polynomial calculus as well as with the well-known resolution proof sys-
tem [Bla37], which operates directly on the clauses of a CNF formula and repeatedly
derives resolvent clauses C ∨ D from clauses of the form C ∨ x and D∨¬x until contra-
diction, in the form of the empty clause without any literals, is reached. For resolution,
size is measured by counting the number of clauses, and width, measured as the num-
ber of literals in a largest clause in a refutation, plays an analogous role to degree for
Nullstellensatz and polynomial calculus.

By way of background, it is not hard to show that for all three proof systems upper
bounds on degree/width imply upper bounds on size, in the sense that if a CNF formula
over n variables can be refuted in degree/width d, then such a refutation can be carried
out in size nO(d). Furthermore, this upper bound has been proven to be tight up to
constant factors in the exponent for resolution and polynomial calculus [ALN16], and
it follows from [LLMO09] that this also holds for Nullstellensatz. In the other direction,
it has been shown for resolution and polynomial calculus that strong enough lower
bounds on degree/width imply lower bounds on size [IPS99, BW01]. This is known to
be false for Nullstellensatz, and the pebbling formulas discussed in more detail later in
this paper provide a counter-example [BCIP02].

The size lower bounds in terms of degree/width in [IPS99, BW01] can be established
by transforming refutations in small size to refutations in small degree/width. This
procedure blows up the size of the refutations exponentially, however. It is natural to
ask whether such a blow-up is necessary or whether it is just an artifact of the proof.
More generally, given that a formula has proofs in small size and small degree/width, it
is an interesting question whether both measures can be optimized simultaneously, or
whether there has to be a trade-off between the two.
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For resolution this question was finally answered in [Tha16], which established that
there are indeed strong trade-offs between size and width making the size blow-up in
[BW01] unavoidable. For polynomial calculus, the analogous question remains open.

In this paper, we show that there are strong trade-offs between size and degree
for Nullstellensatz. We do so by establishing a tight relation between Nullstellensatz
refutations of pebbling formulas and reversible pebblings of the graphs underlying such
formulas. In order to discuss this connection in more detail, we first need to describe
what reversible pebblings are. This brings us to our next topic.

D.1.2 Pebble Games

In the pebble game first studied by Paterson and Hewitt [PH70], one places pebbles on
the vertices of a directed acyclic graph (DAG) G according to the following rules:

• If all (immediate) predecessors of an empty vertex v contain pebbles, a pebble
may be placed on v.

• A pebble may be removed from any vertex at any time.

The game starts and ends with the graph being empty, and a pebble should be placed
on the (unique) sink of G at some point. The complexity measures to minimize are the
total number of pebbles on G at any given time (the pebbling space) and the number of
moves (the pebbling time).

The pebble game and its variants have been used to study flowcharts and recurs-
ive schemata [PH70], register allocation [Set75], time and space as Turing-machine
resources [Coo74, HPV77], and algorithmic time-space trade-offs [Cha73, SS77, SS79,
SS83, Tom78]. In the last two decades, pebble games have seen a revival in the context
of proof complexity (see, e.g., [Nor13]), and pebbling has also turned out to be useful
for applications in cryptography [DNW05, AS15]. An excellent overview of pebbling
up to ca. 1980 is given in [Pip80] and some more recent developments are covered in
the upcoming survey [Nor19].

Bennett [Ben89] introduced the reversible pebble game as part of a broader pro-
gram [Ben73] aimed at eliminating or reducing energy dissipation during computation.
Reversible pebbling has also been of interest in the context of quantum computing. For
example, it was noted in [MSR+18] that reversible pebble games can be used to capture
the problem of “uncomputing” intermediate values in quantum algorithms.

The reversible pebble game adds the requirement that the whole pebbling performed
in reverse order should also be a correct pebbling, which means that the rules for pebble
placement and removal become symmetric as follows:

• If all predecessors of an empty vertex v contain pebbles, a pebble may be placed
on v.

• If all predecessors of a pebbled vertex v contain pebbles, the pebble on v may be
removed.



D.1. INTRODUCTION 163

Reversible pebblings have been studied in [LV96, Krá04, KSS18] and have been used
to prove time-space trade-offs in reversible simulation of irreversible computation in
[LTV98, LMT00, Wil00, BTV01]. In a different context, Potechin [Pot10] implicitly
used reversible pebbling to obtain lower bounds in monotone space complexity, with
the connection made explicit in later works [CP14, FPRC13]. The paper [CLNV15] (to
which this overview is indebted) studied the relative power of standard and reversible
pebblings with respect to space, and also established PSPACE-hardness results for es-
timating the minimum space required to pebble graphs (reversibly or not).

D.1.3 Our Contributions

In this paper, we obtain an exactly tight correspondence between on the one hand re-
versible pebblings of DAGs and on the other hand Nullstellensatz refutations of pebbling
formulas over these DAGs. We show that for any DAG G it holds that G can be reversibly
pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the
pebbling formula over G in size t + 1 and degree s. This correspondence holds regard-
less of the field in which the Nullstellensatz refutation is operating, and so, in particular,
it follows that pebbling formulas have exactly the same complexity for Nullstellensatz
regardless of the ambient field.

We then revisit the time-space trade-off literature for the standard pebble game,
focusing on the papers [CS80, CS82, LT82]. The results in these papers do not im-
mediately transfer to the reversible pebble game, and we are not fully able to match
the tightness of the results for standard pebbling, but we nevertheless obtain strong
time-space trade-off results for the reversible pebble game.

This allows us to derive Nullstellensatz size-degree trade-offs from reversible peb-
bling time-space trade-offs as follows. Suppose that we have a DAG G such that:

1. G can be reversibly pebbled in time t1≪ t2.

2. G can be reversibly pebbled in space s1≪ s2.

3. There is no reversible pebbling of G that simultaneously achieves time t1 and
space s1.

Then for Nullstellensatz refutations of the pebbling formula PebG over G (which will be
formally defined shortly) we can deduce that:

1. Nullstellensatz can refute PebG in size t1 + 1≪ t2 + 1.

2. Nullstellensatz can also refute PebG in degree s1≪ s2.

3. There is no Nullstellensatz refutation of PebG that simultaneously achieves size
t1 + 1 and degree s1.
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We prove four such trade-off results, which can be found in Section D.4. The fol-
lowing theorem is one example of such a result (specifically, it is a simplified version of
Theorem D.4.1).

Theorem D.1.1. There is a family of 3-CNF formulas {Fn}∞n=1 of size Θ(n) such that:

1. There is a Nullstellensatz refutation of Fn in degree s1 = O
�

6
p

n log n
�
.

2. There is a Nullstellensatz refutation of Fn of nearly linear size and degree s2 =
O
�

3
p

n log n
�
.

3. Any Nullstellensatz refutation of Fn in degree at most 3
p

n must have exponential size.

It should be noted that this is not the first time proof complexity trade-off results
have been obtained from pebble games. Pebbling formulas were used in [Ben09, BN11]
to obtain size-space trade-offs for resolution, and later in [BNT13] also for polynomial
calculus. However, the current reductions between pebbling and Nullstellensatz are
much stronger in that they go in both directions and are exact even up to additive
constants.

With regard to Nullstellensatz, it was shown in [BCIP02] that Nullstellensatz degree
is lower-bounded by standard pebbling price. This was strengthened in [dRMN+19],
which used the connection between designs and Nullstellensatz degree discussed above
to establish that the degree needed to refute a pebbling formula exactly coincides with
the reversible pebbling price of the corresponding DAG (which is always at least the
standard pebbling price, but can be much larger). Our reduction significantly improves
on [dRMN+19] by constructing a more direct reduction, inspired by [GKRS18], that
can simultaneously capture both time and space.

D.1.4 Outline of This Paper

After having discussed the necessary preliminaries in Section D.2, we present the reduc-
tions between Nullstellensatz and reversible pebblings in Section D.3. In Section D.4,
we prove time-space trade-offs for reversible pebblings in order to obtain size-degree
trade-offs for Nullstellensatz. Section D.5 contains some concluding remarks with sug-
gestions for future directions of research.

D.2 Preliminaries

All logarithms in this paper are base 2 unless otherwise specified. For a positive integer n
we write [n] to denote the set of integers {1, 2, . . . , n}.

A literal a over a Boolean variable x is either the variable x itself or its negation ¬x
(a positive or negative literal, respectively). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals. A k-clause is a clause that contains at most k literals. A formula C in conjunctive
normal form (CNF) is a conjunction of clauses C = C1 ∧ · · · ∧ Cm. A k-CNF formula
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is a CNF formula consisting of k-clauses. We think of clauses and CNF formulas as
sets, so that the order of elements is irrelevant and there are no repetitions. A truth
value assignment ρ to the variables of a CNF formula C is satisfying if every clause in C
contains a literal that is true under ρ.

D.2.1 Nullstellensatz

Let F be any field and let x⃗ = {x1, . . . , xn} be a set of variables. We identify a set of
polynomials P = {pi( x⃗) | i ∈ [m]} in the ring F[ x⃗] with the statement that all pi( x⃗)
have a common {0, 1}-valued root. A Nullstellensatz refutation of this claim is a syntactic
equality

m∑
i=1

ri( x⃗) · pi( x⃗) +
n∑

j=1

s j( x⃗) · (x2
j − x j) = 1 , (D.2)

where ri , s j are also polynomials in F[ x⃗]. We sometimes refer to the polynomials pi( x⃗)
as axioms and (x2

j − x j) as Boolean axioms.
As discussed in the introduction, Nullstellensatz can be used as a proof system for

CNF formulas by translating a clause C =
∨

x∈P x ∨∨y∈N ¬y to the polynomial p(C) =∏
x∈P(1− x) ·∏y∈N y and viewing Nullstellensatz refutations of {p(Ci) | i ∈ [m]} as

refutations of the CNF formula C =
∧m

i=1 Ci .
The degree of a Nullstellensatz refutation (D.1) is max{deg(ri( x⃗) · pi( x⃗)), deg(s j( x⃗) ·

(x2
j − x j))}. We define the size of a refutation (D.2) to be the total number of monomials

encountered when all products of polynomials are expanded out as linear combinations
of monomials. To be more precise, let mSize(p) denote the number of monomials in a
polynomial p written as a linear combination of monomials. Then the size of a Nullstel-
lensatz refutation on the form (D.1) is

m∑
i=1

mSize
�
ri( x⃗)
� ·mSize
�
pi( x⃗)
�
+

n∑
j=1

2 ·mSize
�
s j( x⃗)
�

. (D.3)

This is consistent with how size is defined for the “dynamic version” of Nullstellensatz
known as polynomial calculus [CEI96, ABRW02], and also with the general size defini-
tions for so-called algebraic and semialgebraic proof systems in [ALN16, Ber18, AO19].

We remark that this is not the only possible way of measuring size, however. It can be
noted that the definition (D.3) is quite wasteful in that it forces us to represent the proof
in a very inefficient way. Other papers in the semialgebraic proof complexity literature,
such as [GHP02, KI06, DMR09], instead define size in terms of the polynomials in
isolation, more along the lines of

m∑
i=1

�
mSize
�
ri( x⃗)
�
+mSize
�
pi( x⃗)
��
+

n∑
j=1

�
mSize
�
s j( x⃗)
�
+ 2
�

, (D.4)

or as the bit size or “any reasonable size” of the representation of all polynomials
ri( x⃗), pi( x⃗), and s j( x⃗).
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In the end, the difference is not too important since the two measures (D.3) and
(D.4) are at most a square apart, and for size we typically want to distinguish between
polynomial and superpolynomial. In addition, and more importantly, in this paper we
will only deal with k-CNF formulas with k = O(1), and in this setting the two definitions
are the same up to a constant factor 2k. Therefore, we will stick with (D.3), which
matches best how size is measured in the closely related proof systems resolution and
polynomial calculus, and which gives the cleanest statements of our results.1

When proving lower bounds for algebraic proof systems it is often convenient to
consider amultilinear setting where refutations are presented in the ring F[ x⃗]/{x2

j −x j |
j ∈ [n]}. Since the Boolean axioms x2

j − x j are no longer needed, the refutation (D.2)
can be written simply as

m∑
i=1

ri( x⃗) · pi( x⃗) = 1 , (D.5)

where we assume that all results of multiplications are implicitly multilinearized. It is
clear that any refutation on the form (D.2) remains valid after multilinearization, and
so the size and degree measures can only decrease in a multilinear setting. In this
paper, we prove our lower bound in our reduction in the multilinear setting and the
upper bound in the non-multilinear setting, making the tightly matching results even
stronger.

D.2.2 Reversible Pebbling and Pebbling Formulas

Throughout this paper G = (V, E) denotes a directed acyclic graph (DAG) of constant
fan-in with vertices V (G) = V and edges edgesG = E. For an edge (u, v) ∈ E we say that
u is a predecessor of v and v a successor of u. We write predG(v) to denote the sets of all
predecessors of v, and drop the subscript when the DAG is clear from context. Vertices
with no predecessors/successors are called sources/sinks. Unless stated otherwise we
will assume that all DAGs under consideration have a unique sink z.

A pebble configuration on a DAG G = (V, E) is a subset of vertices P ⊆ V . A reversible
pebbling strategy for a DAG G with sink z, or a reversible pebbling of G for short, is
a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that P0 = Pt = ;, z ∈∪

0≤t≤t Pt , and such that each configuration can be obtained from the previous one by
one of the following rules:

1. Pi+1 = Pi ∪ {v} for v /∈ Pi such that predG(v) ⊆ Pi (a pebble placement on v).

2. Pi+1 = Pi \ {v} for v ∈ Pi such that predG(v) ⊆ Pi (a pebble removal from v).

The time of a pebbling P = (P0, . . . ,Pt) is time(P) = t and the space is space(P) =
max0≤t≤t{|Pt |}.

1We refer the reader to Section 2.4 in [AH18] for a more detailed discussion of the definition of proof
size in algebraic and semialgebraic proof systems.
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(a) Pyramid of height 2.

xp

∧ xq

∧ x r

∧ (¬xp ∨¬xq ∨ xu)

∧ (¬xq ∨¬x r ∨ xv)

∧ (¬xu ∨¬xv ∨ xz)
∧ ¬xz

(b) Pebbling formula in CNF.

xp − 1

xq − 1

x r − 1

xp xq(1− xu)

xq x r(1− xv)

xu xv(1− xz)
xz

(c) Polynomial translation.

Figure D.1: Example pebbling contradiction for the pyramid graph of height 2.

We could also say that a reversible pebbling P = (P0, . . . ,Pt) should be such that
P0 = ; and z ∈ Pt , and define the time of such a pebbling to be 2t. This is so since
once we have reached a configuration containing z we can simply run the pebbling
backwards (because of reversibility) until we reach the empty configuration again, and
without loss of generality all time- and space-optimal reversible pebblings can be turned
into such pebblings. For simplicity, we will often take this viewpoint in what follows.

For technical reasons it is sometimes important to distinguish between visiting peb-
blings, for which z ∈ Pt , and persistent pebblings, which meet the more stringent re-
quirement that z ∈ Pt = {z}. (It can be noted that for the more relaxed standard pebble
game discussed in the introductory section any pebbling can be assumed to be persistent
without loss of generality.)

Pebble games can be encoded in CNF by so-called pebbling formulas [BW01], or
pebbling contradictions. Given a DAG G = (V, E) with a single sink z, we associate a
variable xv with every vertex v and add clauses encoding that

• the source vertices are all true;

• if all immediate predecessors are true, then truth propagates to the successor;

• but the sink is false.

In short, the pebbling formula over G consists of the clauses xv ∨∨u∈pred(v)¬xu for all
v ∈ V (note that if v is a source pred(v) = ;), and the clause ¬xz .

We encode this formula by a set of polynomials in the standard way. Given a set
U ⊆ V , we denote by xU the monomial

∏
u∈U xu (in particular, x; = 1). For every

vertex v ∈ V , we have the polynomial

Av := (1− xv) · xpred(v) , (D.6)

and for the sink z we also have the polynomial

Asink := xz . (D.7)
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See Figure D.1 for an illustration, including how the CNF formula is translated to a set
of polynomials.

D.3 Reversible Pebblings and Nullstellensatz Refutations

In this section, we prove the correspondence between the reversible pebbling game on
a graph G and Nullstellensatz refutation of the pebbling contradiction of G. Specifically,
we prove the following result.

Theorem D.3.1. Let G be a directed acyclic graph with a single sink, let ϕ be the corres-
ponding pebbling contradiction, and let F be a field. Then, there is a reversible pebbling
strategy for G with time at most t and space at most s if and only if there is a Nullstellensatz
refutation for ϕ over F of size at most t+1 and degree at most s. Moreover, the same holds
for multilinear Nullstellensatz refutations.

We prove each of the directions of Theorem D.3.1 separately in Sections D.3.1
and D.3.2 below.

D.3.1 From Pebbling to Refutation

We start by proving the “only if” direction of Theorem D.3.1. Let

P= (P0, . . . ,Pt) (D.8)

be an optimal reversible pebbling strategy for G. Let Pt ′ be the first configuration in
which there is a pebble on the sink z. Without loss of generality, we may assume that
t = 2 · t ′: if the last t − t ′ steps were more efficient than the first t ′ steps, we could
have obtained a more efficient strategy by replacing the first t ′ steps with the (reverse
of) the last t − t ′ steps, and vice versa.

We use P to construct a Nullstellensatz refutation over F for the pebbling contradic-
tion ϕ. To this end, we will first construct for each step i ∈ [t ′] of P a Nullstellensatz
derivation of the polynomial xPi−1

−xPi
. The sum of all these polynomials is a telescoping

sum, and is therefore equal to

xP0
− xPt′ = 1− xPt′ . (D.9)

We will then transform this sum into a Nullstellensatz refutation by adding the polyno-
mial

xPt′ = Asink · xPt′−{z} . (D.10)

We turn to constructing the aforementioned derivations. To this end, for every i ∈
[t ′], let vi ∈ V denote the vertex which was pebbled or unpebbled during the i-th step,
i.e., during the transition from Pi−1 to Pi . Then, we know that in both configurations
Pi−1 and Pi the predecessors of vi have pebbles on them, i.e., pred(v) ⊆ Pi−1,Pi . Let us
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denote by Ri = Pi−{vi}−pred(vi) the set of other vertices that have pebbles during the
i-th step. Finally, let pi be a number that equals to 1 if vi was pebbled during the i-th
step, and equals to −1 if vi was unpebbled. Now, observe that

xPi−1
− xPi

= pi · xPi−1
(1− xvi

) = pi · xRi
Avi

, (D.11)

where the last step follows since the predecessors of vi are necessarily in Pi−1. Therefore,
our final refutation for ϕ is

t ′∑
i=1

Avi
· pi · xRi

+ Asink · xPt′−{z} = xPt′ +
t ′∑

i=1

xPi−1
− xPi

= xPt′ + (xP0
− xPt′ ) (D.12)

= xPt′ + (1− xPt′ ) = 1 .

Note, in fact, it is a multilinear Nullstellensatz refutation, since it contains only multi-
linear monomials and does not use the Boolean axioms. It remains to analyze its degree
and size.

For the degree, observe that every monomial in the proof is of the form xPi
, and

the degree of each such monomial is exactly the number of pebbles used in the corres-
ponding configuration. It follows that the maximal degree is exactly the space of the
pebbling strategy P.

Let us turn to considering the size. Observe that for each of the configurations
P1, . . . ,Pt ′ , the refutation contains exactly two monomials: for all i ∈ [t ′ − 1], one
monomial for Pi is generated in the i-th step, and another in the (i + 1)-th step, and for
the configuration Pt ′ the second monomial is generated when we add Asink · xPt′−{z}. In
addition, the refutation contains exactly one monomial for the configuration P0, which
is generated in the first step. Hence, the total number of monomials generated in the
refutation is exactly 2 · t ′ + 1= t + 1, as required.

D.3.2 From Refutation to Pebbling

We turn to prove the “if” direction of Theorem D.3.1. We note that it suffices to prove
it for multilinear Nullstellensatz refutations, since every standard Nullstellensatz refut-
ation implies the existence of a multilinear one with at most the same size and degree.
Let ∑

v∈V

Av ·Qv + Asink ·Qsink = 1 (D.13)

be a multilinear Nullstellensatz refutation ofϕ over F of degree s. We use this refutation
to construct a reversible pebbling strategy P for G.

To this end, we construct a “configuration graph” C, whose vertices consist of all
possible configurations of at most s pebbles on G (i.e., the vertices will be all subsets
of V of size at most s). The edges of C will be determined by the polynomials Qv of the
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refutation, and every edge {U1, U2} in C will constitute a legal move in the reversible
pebbling game (i.e., it will be legal to move from U1 to U2 and vice versa). We will
show that C contains a path from the empty configuration ; to a configuration Uz that
contains the sink z, and our pebbling strategy will be generated by walking on this path
from ; to Uz and back.

The edges of the configuration graph C are defined as follows: Let v ∈ V be a vertex
of G, and let q be a monomial of Qv that does not contain xv . Let W ⊆ V be the set
of vertices such that q = xW (such a set W exists since the refutation is multilinear).
Then, we put an edge eq inC that connects W∪pred(v) and W∪pred(v)∪{v} (we allow
parallel edges). It is easy to see that the edge eq connects configurations of size at most s,
and that it indeed constitutes a legal move in the reversible pebbling game. We note
that C is a bipartite graph: to see it, note that every edge eq connects a configuration of
an odd size to a configuration of an even size.

For the sake of the analysis, we assign the edge eq a weight in F that is equal to
coefficient of q in Qv . We define the weight of a configuration U to be the sum of the
weights of all the edges that touch U (where the addition is done in the field F). We
use the following technical claim, which we prove at the end of this section.

Claim D.3.2. Let U ⊆ V be a configuration in C that does not contain the sink z. If U is
empty, then its weight is 1. Otherwise, its weight is 0.

We now show how to construct the required pebbling strategy P for G. To this end,
we first prove that there is a path in C from the empty configuration to a configuration
that contains the sink z. Suppose for the sake of contradiction that this is not the case,
and let H be the connected component of C that contains the empty configuration. Our
assumption says that none of the configurations in H contains z.

The connected component H is bipartite since C is bipartite. Without loss of gen-
erality, assume that the empty configuration is in the left-hand side of H. Clearly, the
sum of the weights of the configurations on the left-hand side should be equal to the
corresponding sum on the right-hand side, since they are both equal to the sum of the
weights of the edges in H. However, the sum of the weights of the configurations on the
right-hand side is 0 (since all these weights are 0 by Claim D.3.2), while the sum of the
weights of the left-hand side is 1 (again, by Claim D.3.2). We reached a contradiction,
and therefore H must contain some configuration Uz that contains the sink z.

Next, let ;= P0,P1, . . . ,Pt ′ = Uz be a path from the empty configuration to Uz . Our
reversible pebbling strategy for G is

P= (P0, . . . ,Pt ′−1,Pt ′ ,Pt ′−1, . . . ,P0) . (D.14)

This is a legal pebbling strategy since, as noted above, every edge of C constitutes a
legal move of the reversible pebbling game. The strategy P uses space s, since all the
configurations in C contain at most s pebbles by definition. The time of P is t = 2 ·
t ′. It therefore remains to show that the size of the Nullstellensatz refutation from
Equation D.13 is at least t + 1.
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To this end, note that every edge eq in the path corresponds to some monomial q in
some polynomial Qv . When the monomial q is multiplied by the axiom Av , it generates
two monomials in the proof: the monomial q · xpred(v) and the monomial q · xpred(v) · xv .
Hence, the Nullstellensatz refutation contains at least 2 · t ′ monomials that correspond
to edges from the path. In addition, the product Asink ·Qsink must contains at least one
monomial, since the refutation must use the sink axiom Asink (because ϕ without this
axiom is not a contradiction). It follows that the refutation contains at least 2 · t ′ + 1=
t + 1 monomials, as required. We conclude this section by proving Claim D.3.2.

Proof of Claim D.3.2. We start by introducing some terminology. First, observe that a
monomial mmay be generatedmultiple times in the refutation of Equation D.13, andwe
refer to each time it is generated as an occurrence of m. We say that an occurrence of m
is generated by a monomial qv of Qv if it is generated by the product Av ·qv . Throughout
the proof, we identify a configuration U with the monomial xU .

We first prove the claim for the non-empty case. Let U ⊆ V be a non-empty con-
figuration. We would like to prove the weight of U is 0. Recall that the weight of U is
the sum of the coefficients of the occurrences of U that are generated by monomials qv

that do not contain the corresponding vertex v. Observe that Equation D.13 implies that
the sum of the coefficients of all the occurrences of U is 0: the coefficient of U on the
right-hand side is 0, and it must be equal to the coefficient of U on the left-hand side,
which is the sum of the coefficients of all the occurrences.

To complete the proof, we argue that every monomial qv that does contain the ver-
tex v contributes 0 to that sum. Let qv be a monomial of Qv that contains the vertex v
and generates an occurrence of U . Let α be the coefficient of q. Then, it must hold that

Av · qv = xpred(v) · qv − xv · xpred(v) · qv

= xpred(v) · qv − xpred(v) · qv (D.15)
= α · xU −α · xU ,

where the second equality holds since we qv contains v and we are working with a
multilinear refutation, and the third equality holds since we assumed that qv generates
an occurrence of U . It follows that qv generates two occurrences of U , one with coef-
ficient α and one with coefficient −α, and therefore it contributes 0 to the sum of the
coefficients of all the occurrences of U .

We have shown that the sum of the coefficients of all the occurrences of U is 0, and
that the occurrences generated by monomials qv that contain v contribute 0 to this sum.
Therefore, the sum of coefficients of occurrences that are generated by monomials qv

that do not contain v must be 0, as required. In the case that U is the empty configura-
tion, the proof is identical, except that the sum of the coefficients of all occurrences is 1,
since the coefficient of ; is 1 on the right-hand side of Equation D.13.
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D.4 Nullstellensatz Trade-offs from Reversible Pebbling

In this section we prove Nullstellensatz refutation size-degree trade-offs for different
degree regimes. Let us first recall what is known with regards to degree and size. In
what follows, a Nullstellensatz refutation of a CNF formula F refers to a Nullstellensatz
refutation of the translation of F to polynomials. As mentioned in the introduction, if
a CNF formula over n variables can be refuted in degree d then it can be refuted in
simultaneous degree d and size nO(d). However, for Nullstellensatz it is not the case
that strong enough degree lower bounds imply size lower bounds.

A natural question is whether for any given function d1(n) there is a family of CNF
formulas {Fn}∞n=1 of size Θ(n) such that

1. Fn has a Nullstellensatz refutation d1(n);

2. Fn has a Nullstellensatz refutation of (close to) linear size and degree d2(n) ≫
d1(n);

3. Any Nullstellensatz refutation of Fn in degree only slightly below d2(n)must have
size nearly nd1(n).

We present explicit constructions of formulas providing such trade-offs in several
different parameter regimes. We first show that there are formulas that require expo-
nential size in Nullstellensatz if the degree is bounded by some polynomial function,
but if we allow slightly larger degree there is a nearly linear size proof.

Theorem D.4.1. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that:

1. There is a Nullstellensatz refutation of Fn in degree d1 = O
�

6
p

n log n
�
.

2. For any constant ε > 0, there is a Nullstellensatz refutation of Fn of size O(n1+ε)
and degree d2 = O

�
d1 · 6
p

n
�
= O
�

3
p

n log n
�
.

3. There exists a constant K > 0 such that any Nullstellensatz refutation of Fn in degree
at most d = Kd2/ log n= O

�
3
p

n
�
must have size
�

6
p

n
�
! .

We also analyse a family of formulas that can be refuted in close to logarithmic
degree and show that even if we allow up to a certain polynomial degree, the Nullstel-
lensatz size required is superpolynomial.

Theorem D.4.2. Let δ > 0 be an arbitrarily small positive constant and let g(n) be any
arbitrarily slowly growing monotone function ω(1) = g(n)≤ n1/4. Then there is a family
of explicitly constructible unsatisfiable 3-CNF formulas {Fn}∞n=1 of size Θ(n) such that:

1. There is a Nullstellensatz refutation of Fn in degree d1 = g(n) log(n).
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2. For any constant ε > 0, there is a Nullstellensatz refutation of Fn of size O(n1+ε)
and degree

d2 = O
�
d1 · n1/2/g(n)2
�
= O
�
n1/2 log n/g(n)
�
.

3. Any Nullstellensatz refutation of Fn in degree at most

d = O
�
d2/n

δ log n
�
= O
�
n1/2−δ/g(n)
�

must have size superpolynomial in n.

Still in the small-degree regime, we present a very robust trade-off in the sense that
superpolynomial size lower bound holds for degree from log2(n) to n/ log(n).

Theorem D.4.3. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that:

1. There is a Nullstellensatz refutation of Fn in degree d1 = O(log2 n).

2. For any constant δ > 0, there is a Nullstellensatz refutation of Fn of size O(n) and
degree

d2 = O(d1 · n/ log3−δ n) = O(n/ log1−δ n).

3. There exists a constant K > 0 such that any Nullstellensatz refutation of Fn in degree
at most d = Kd2/ logδ n= O(n/ log n) must have size nΩ(log log n).

Finally, we study a family of formulas that have Nullstellensatz refutation of quad-
ratic size and that present a smooth size-degree trade-off.

Theorem D.4.4. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that any Nullstellensatz refutation of Fn that optimizes size given
degree constraint d = nΘ(1) (and less than n) has size Θ

�
n2/d
�
.

We prove these results by obtaining the analogous time-space trade-offs for revers-
ible pebbling and then applying the tight correspondence between size and degree in
Nullstellensatz and time and space in reversible pebbling.

D.4.1 Reversible Pebbling Time-Space Trade-offs

Our strategy for proving reversible pebbling trade-offs will be to analyse standard peb-
bling trade-offs. Clearly lower bounds from standard pebbling transfer to reversible
pebbling; the next theorem shows how, in a limited sense, we can also transfer up-
per bounds. It is based on a reversible simulation of irreversible computation proposed
by [Ben89] and analysed precisely in [LS90].

Theorem D.4.5 ([Ben89, LS90]). Let G be an arbitrary DAG and suppose G can be
pebbled (in the standard way) using s pebbles in time t ≥ 2s. Then for any ε > 0, G can
be reversibly pebbled in time t1+ε/sε using ε(21/ε − 1) s log(t/s) pebbles.
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We also use the following general proposition, which allows upper bounding the
reversible pebbling price of a graph by using its depth and maximum in-degree.

Proposition D.4.6. Any DAG with maximum indegree ℓ and depth d has a persistent
reversible pebbling strategy in space at most dℓ+ 1.

Proof. We will use the fact that if a graph has a persistent reversible strategy in space s
then it has a visiting reversible strategy in space s.

The proof is by induction on the depth. For d = 0 we can clearly persistently revers-
ibly pebble the graph with 1 pebble. For d ≥ 1, we persistently reversibly pebble all but
one of the (that is, at most ℓ− 1) immediate predecessors of the sink one at a time. By
the induction hypothesis, this can be done with at most ℓ− 2+ (d − 1)ℓ+ 1 = dℓ− 1
pebbles. At this point there are at most ℓ−1 predecessors of the sink which are pebbled
and no other pebbles on the graph. Let v be the only non-pebbled predecessor of the
sink. We do a visiting reversible pebbling of v until a pebble is placed on v. We now
pebble the sink and then reverse the visiting pebbling of v until the subtree rooted at
v has no pebbles on it. By the induction hypothesis, this can be done with at most
ℓ+ (d − 1)ℓ+ 1= dℓ+ 1 pebbles. All that is left to do is to to remove the ℓ− 1 pebbles
which are on predecessors of the sink. Again by the induction hypothesis, this can be
done with ℓ+ (d − 1)ℓ+ 1 pebbles.

D.4.2 Carlson-Savage Graphs

The first family of graphs for which we present reversible pebbling trade-offs consists of
the so-called Carlson-Savage graphs, which are illustrated in Figure D.2 and are defined
as follows.

Definition D.4.7 (Carlson-Savage graph [CS80, CS82, Nor12]). The two-parameter
graph family Γ (c, r), for c, r ∈ N+, is defined by induction over r. The base case Γ (c, 1) is
a DAG consisting of two sources s1, s2 and c sinks γ1, . . . ,γc with directed edges (si ,γ j),
for i = 1, 2 and j = 1, . . . , c, i.e., edges from both sources to all sinks. The graph
Γ (c, r + 1) has c sinks and is built from the following components:

• c disjoint copies Π(1)r , . . . ,Π(c)r of a pyramid graph of height r.

• one copy of Γ (c, r).

• c disjoint and identical line graphs called spines, where each spine is composed of
r sections, and every section contains 2c vertices.

The above components are connected as follows: In every section of every spine,
each of the first c vertices has an incoming edge from the sink of one of the first c
pyramids, and each of the last c vertices has an incoming edge from one of the sinks of
Γ (c, r) (where different vertices in the same section are connected to different sinks).



D.4. NULLSTELLENSATZ TRADE-OFFS FROM REVERSIBLE PEBBLING 175

z1 γ1z2 γ2z3 γ3

Π
(1)
r Π

(2)
r Π

(3)
r

Γ(3, r)

Figure D.2: Inductive definition of Carlson-Savage graph Γ (3, r + 1) with 3 spines and
sinks.
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Note that Γ (c, r) has multiple sinks. We define a (reversible) pebbling of a multi-sink
graph to be a (reversible) pebbling that places pebbles on each sink at some point (the
pebbles do not need to be present in the last configuration). Let Γ ′(c, r) be the single-
sink subgraph of Γ (c, r) consisting of all vertices that reach the first sink of Γ (c, r). Since
all sinks are symmetric, pebbling Γ ′(c, r) and pebbling Γ (c, r) are almost equivalent.

Proposition D.4.8. Any (reversible) pebbling P of Γ (c, r) induces a (reversible) pebbling
P ′ of Γ ′(c, r) in at most the same space and the same time. From any (reversible) pebbling
P ′ of Γ ′(c, r) we can obtain (reversible) pebbling P of Γ (c, r) by (reversibly) pebbling each
sink of Γ (c, r) one at a time, that is, simulating P ′ c times, once for each sink. Note that
space(P) = space(P ′) and time(P) = c · time(P ′).

Carlson and Savage proved the following properties of this graph.

Lemma D.4.9 ([CS82]). The graphs Γ (c, r) are of size Θ
�
cr3 + c2r2
�
, have in-degree 2,

and have standard pebbling price r + 2.

Theorem D.4.10 ([CS82]). Suppose that P is a standard pebbling of Γ (c, r) in space less
than (r + 2) + s for 0< s ≤ c − 3. Then

time(P)≥
� c − s

s+ 1

�r · r! .

This lower bound holds for space up to c+ r −1. By allowing only a constant factor
more pebbles it is possible to pebble the graph (in the standard way) in linear time.

Lemma D.4.11 ([Nor12]). The graphs Γ (c, r) have standard pebbling strategies in sim-
ultaneous space O(c + r) and time linear in the size of the graphs.

The standard pebbling price upper bound does not carry over to reversible pebbling
because the line graph requires more pebbles in reversible pebbling than in standard
pebbling. However, we can adapt the standard pebbling strategy to reversible pebbling
using the following fact on the line graph.

Proposition D.4.12 ([LV96]). The visiting reversible pebbling price of the line graph on
n vertices is ⌈log(n+ 1)⌉ and the persistent reversible pebbling price is ⌊log(n− 1)⌋+ 2.

Using this result, we get the following upper bound (which is slightly stronger then
what we would get by applying Theorem D.4.5).

Lemma D.4.13. The graphs Γ (c, r) have reversible pebbling price at most r(log(cr) + 3).

Proof. The proof is by induction on r. Clearly, Γ (c, 1) can be reversibly pebbled with
3 pebbles. In order to pebble any sink of Γ (c, r), we can reversibly pebble the corres-
ponding spine with the space-efficient strategy for reversibly pebbling a line graph (as
per Proposition D.4.12) and every time we need to place or remove a pebble on a given
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vertex of the spine, we reversibly pebble the subgraph that reaches this vertex. By Pro-
position D.4.6, pyramids of depth r−1 can be reversibly pebbledwith 2(r−1)+1 pebbles.
Therefore, by induction on r we get that the reversible pebbling price of Γ (c, r) is at most
max{(r−1)(log(cr)+3), 2(r−1)+1}+log(2cr)+2≤ (r−1)(log(cr)+3)+log(cr)+3.

In order to obtain nearly linear time reversible pebbling, we apply Theorem D.4.5
to Lemma D.4.11.

Lemma D.4.14. For any ε > 0, the graphs Γ (c, r) have reversible pebbling strategies in
simultaneous space O(ε21/ε(c+r) log(cr)) and time O(n1+ε) (where n denotes the number
of vertices).

We can now choose different values for the parameters c and r and obtain graphs
with trade-offs in different space regimes. The first family of graphs we consider are
those that exhibit exponential time lower-bounds.

Theorem D.4.15. There are explicitly constructible families of single-sink DAGs {Gn}∞n=1
of size Θ(n) and maximum in-degree 2 such that:

1. The graph Gn has reversible pebbling price s1 = O
�

6
p

n log n
�
.

2. For any constant ε > 0, there is a reversible pebbling of Gn in time O(n1+ε) and
space

s2 = O
�
s1 · 6
p

n
�
= O
�

3
p

n log n
�

.

3. There is a constant K > 0 such that any standard pebbling of Gn in space at most

s =
Ks2

log n
= O
�

3
p

n
�

must take time at least
�

6
p

n
�
! .

Proof. Let Gn be the single-sink subgraph of Γ (c(n), r(n)) consisting of all vertices that
reach the first sink, for c(n) = 3

p
n and r(n) = 6

p
n.

By Lemma D.4.9, Gn has Θ(n) vertices and by Proposition D.4.8, items 1–3 follow
from Lemma D.4.13, Lemma D.4.14 and Theorem D.4.10, respectively.

Given Theorem D.3.1 which proves the tight correspondence between reversible
pebbling and Nullstellensatz refutations, Theorem D.4.1 follow from Theorem D.4.15.

It is also interesting to consider families of graphs that can be reversibly pebbled
in very small space, close to the logarithmic lower bound on the number of pebbles
required to reversibly pebble a single-sink DAG. In this small-space regime, we cannot
expect exponential time lower bounds, but we can still obtain superpolynomial ones.
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Theorem D.4.16. Let δ > 0 be an arbitrarily small positive constant and let g(n) be any
arbitrarily slowly growing monotone function ω(1) = g(n)≤ n1/4. Then there is a family
of explicitly constructible single-sink DAGs {Gn}∞n=1 of size Θ(n) and maximum in-degree 2
such that:

1. The graph Gn has reversible pebbling price s1 ≤ g(n) log(n).

2. For any constant ε > 0 , there is a reversible pebbling of Gn in time O(n1+ε) and
space

s2 = O
�
s1 · n1/2/g(n)2
�
= O
�
n1/2 log n/g(n)
�

.

3. Any standard pebbling of Gn in space at most

s = O
�
s2/n

δ log n
�
= O
�
n1/2−δ/g(n)
�

requires time superpolynomial in n.

Proof. The proof is analogous to that of Theorem D.4.16 with parameters r(n) = g(n)
and c(n) = n1/2/g(n).

By applying Theorem D.3.1 to the above result we obtain Theorem D.4.2.

Remark D.4.17. We note that in the second items of both the foregoing theorems, we
could have reduced the time of the reversible pebbling to O(n1+o(1)) by applying The-
orem D.4.5 with ε= O

�
1

log log n

�
. This would have come at a cost of an extra logarithmic

factor in the corresponding space bounds.

D.4.3 Stacks of Superconcentrators

Lengauer and Tarjan [LT82] studied robust superpolynomial trade-offs for standard
pebbling and showed that there are graphs that have standard pebbling price O(log2 n),
but that any standard pebbling in space up to Kn/ log n, for some constant K , requires
superpolynomial time. For reversible pebbling we get almost the same result for the
same family of graphs.

Theorem D.4.18. There are explicitly constructible families of single-sink DAGs {Gn}∞n=1
of size Θ(n) and maximum in-degree 2 such that:

1. The graph Gn has reversible pebbling price s1 = O(log2 n).

2. For any constant δ > 0, there is a reversible pebbling of Gn in time O(n) and space

s2 = O(s1 · n/ log3−δ n) = O(n/ log1−δ n) .

3. There exists a constant K > 0 such that any standard pebbling Pn of Gn using at
most pebbles s = Ks2

logδ n
= O(n/ log n) requires time nΩ(log log n).
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Note that, together with Theorem D.3.1, this implies Theorem D.4.3. Now in order
to prove this theorem we must first introduce the family of graphs we will consider.

Definition D.4.19 (Superconcentrator [Val75a]). A directed acyclic graph G is an
m-superconcentrator if it has m sources S = {s1, . . . , sm}, m sinks Z = {z1, . . . , zm}, and
for any subsets S′ and Z ′ of sources and sinks of size

��S′�� = ��Z ′�� = ℓ it holds that there
are ℓ vertex-disjoint paths between S′ and Z ′ in G.

Pippenger [Pip77] proved that there are superconcentrators of linear size and log-
arithmic depth, and Gabber and Galil [GG81] gave the first explicit construction. For
concreteness, we will consider the explicit construction by Alon and Capalbo [AC03]
which has better parameters.

Theorem D.4.20 ([AC03]). For all integers k ≥ 6, there are explicitly constructible m-
superconcentrators for m= O(2k) with O(m) edges, depth O(log m), and maximum inde-
gree O(1).

It is easy to see that we can modify these superconcentrators so that the maximum
indegree is 2 by substituting each vertex with indegree δ > 2 by a binary tree with δ
leafs. Note that this only increase the size and the depth by constant factors.

Corollary D.4.21. There are m-superconcentrators with O(m) vertices, maximum inde-
gree 2 and depth O(log m).

Given an m-superconcentrator Gm, we define a stack of r superconcentrators Gm to
be r disjoint copies of Gm where each sink of the ith copy is connected to a different
source of the i + 1st copy for i ∈ [r − 1]. Since we want single-sink DAGs, we add a
binary tree with m leafs and depth ⌈log m⌉, and connect each sink of the rth copy of Gm

to a different leaf of the tree. Lengauer and Tarjan [LT82] proved the following theorem
for stacks of superconcentrators.

Theorem D.4.22 ([LT82]). Let Φ(m, r) denote a stack of r (explicitly constructible)
linear-size m-superconcentrator with bounded indegree and depth log m. Then the fol-
lowing holds:

1. The standard pebbling price of Φ(m, r) is O(r log m).

2. There is a linear-time standard pebbling strategy P for Φ(m, r) with space(P) =
O(m).

3. If P is a standard pebbling strategy for Φ(m, r) in space s ≤ m/20, then time(P)≥
m · � rm

64s

�r
.

With this result in hand we can now proceed to prove Theorem D.4.18.
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Figure D.3: A bit-reversal permutation graph.

Proof of Theorem D.4.18. Let Gn be a stack of log n linear-size (n/ log n)-superconcen-
trators as per Corollary D.4.21. Note that Gn has Θ(n) vertices, indegree 2 and depth
O(log2 n). By Proposition D.4.6 we have that Gn can be reversibly pebbled with O(log2 n)
pebbles (proving item 1).

By item 2 in Theorem D.4.22 and by choosing ε= 1/(δ log log n) in Theorem D.4.5
we conclude that Gn can be reversibly pebbled in simultaneous time O

�
n21/δ
�
and space

O
�
n/(δ log1−δ n)
�
, from which item 2 follows. Finally, item 3 in the theorem follows

from item 3 in Theorem D.4.22.

D.4.4 Permutation Graphs

Another family of graphs that has been studied in the context of standard pebbling
trade-offs is that of permutation graphs.

Definition D.4.23. Given a permutation σ ∈S([n]), the permutation graph G(σ) con-
sists of two lines (x1, . . . , xn) (the bottom line) and (y1, . . . , yn) (top line) which are
connected as follows: for every 1≤ i ≤ n, there is an edge from x i to yσ(i).

Lengauer and Tarjan [LT82] proved that permutation graphs present the following
smooth trade-off when instantiated with the permutation that reverses the binary rep-
resentation of the index i (see Figure D.3 for an illustration).

Theorem D.4.24 ([LT82]). Let G be a bit-reversal permutation graph on 2n vertices. For
any 3 ≤ s ≤ n, there is a standard pebbling in space s and time O

�
n2/s
�
. Moreover, any

standard pebbling P in space s satisfies time(P) = Ω
�
n2/s
�
.

We show that these graphs also present a smooth reversible pebbling trade-off and,
in particular, for s = nΘ(1) and s ≤ n, any reversible pebbling P in space s satisfies
time(Pn) = Ω
�
n2/s
�
and there are matching upper bounds. To this end, we use the

following proposition.

Proposition D.4.25. For every natural number k, the line graph over n vertices can be
reversibly pebbled using 2k · n1/k pebbles in time 2k · n.
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Proof. Observe that the line graph over n can be pebbled (in the standard way) using
2 pebbles in time 2n. The proposition follows now by applying Theorem D.4.5 with
ε= k/ log(n).

Using Proposition D.4.25, we obtain the following result.

Theorem D.4.26. Let Gn be a bit-reversal permutation graph on 2n vertices. Then Gn

satisfies the following properties:

1. The reversible pebbling price of Gn is at most 2 log n+ 2.

2. If s satisfies 4 log n≤ s ≤ 2n and k is such that s = 4kn1/k, then there is a reversible
strategy in simultaneous space s and time O

�
k22k · n2/s
�
.

3. Any standard pebbling Pn of Gn satisfies time(Pn) = Ω
�
n2/space(Pn)
�
.

Proof. The upper bounds (item 1 and item 2) hold for any permutation graph.
For item 1, we can simulate a reversible pebbling of the top line that uses space at

most log n+1 (as per Proposition D.4.12), and every time we need a pebble on a vertex
v of the bottom line in order to place or remove a pebble on the top line, we reversibly
pebble the bottom line until v is pebbled (can be done with log n+1 pebbles), make the
move on the top line, and then unpebble the bottom line.

To obtain item 2, we consider a two stage strategy. In the first phase, we place
n1/k pebbles spaced equally apart on the bottom line. We refer to these pebbles as fixed
pebbles, since they will remain on the graph until the sink is pebbled. In the second
phase, we simulate a reversible pebbling on the top line with 2kn1/k pebbles and every
time we need a pebble on a vertex v on the bottom line to make a move on the top line,
we reversibly pebble v (with 2(k− 1)n1/k pebbles) from the nearest fixed pebble, make
the move on the top line, and then unpebble the segment on the bottom line.

All that is left to show is that this can be done within the space budget of 4kn1/k

in time O(22k · n2/s). For the first phase, we reversibly pebble n1/k segments of length
m= n1−1/k. By Proposition D.4.25, each of the segments can be reversibly pebbled using
2(k − 1)n1/k = 2(k − 1)mk−1 pebbles in time 2k−1n1−1/k. Since every segment must be
pebbled and then unpebbled, the total time for the first phase is 2·2k−1n1−1/k ·n1/k = 2kn,
and the total number of pebbles used is less than 2kn1/k: n1/k for the fixed pebbles and
2(k− 1)n1/k for pebbling each segment.

We turn to analyze the second phase. By Proposition D.4.25, the top line can be
reversibly pebbled in simultaneous space 2kn1/k and time 2kn. For each move in the
top line, we need to pebble and unpebble a segment of length at most n1−1/k. As argued
before, this can be done in simultaneous space 2(k − 1)n1/k and time 2 · 2k−1n1−1/k.
Therefore, at any point in the pebbling strategy there are at most 2kn1/k pebbles on
the bottom line and at most 2kn1/k pebbles on the top line, and the total time of the
pebbling is at most 2kn+ 22kn2−1/k ≤ 4k22kn2/s.

Finally, we observe that item 3 follows from the standard pebbling lower bound in
Theorem D.4.24.
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From Theorem D.4.26 we obtain the following corollary that, together with The-
orem D.3.1, implies Theorem D.4.4.

Corollary D.4.27. Any reversible pebbling strategy Pn for Gn that optimizes time given
space constraint nΘ(1) (and less than n) exhibits a trade-off time(Pn) = Θ

�
n2/space(Pn)
�
.

D.5 Concluding Remarks

In this paper we prove that size and degree of Nullstellensatz refutations in any field
of pebbling formulas are exactly captured by time and space of the reversible pebble
game on the underlying graph. This allows us to prove a number of strong size-degree
trade-offs for Nullstellensatz. To the best of our understanding no such results have
been known previously.

The most obvious, and also most interesting, open question is whether there are also
size-degree trade-offs for the stronger polynomial calculus proof system. Such trade-
offs cannot be exhibited by the pebbling formulas considered in this work, since such
formulas have small-size low-degree polynomial calculus refutations, but the formulas
exhibiting size-width trade-offs for resolution [Tha16] appear to be natural candidates.

Another interesting question is whether the tight relation between Nullstellensatz
and reversible pebbling could make it possible to prove even sharper trade-offs for size
versus degree in Nullstellensatz, where just a small constant drop in the degree would
lead to an exponential blow-up in size. Such results for pebbling time versus space are
known for the standard pebble game, e.g., in [GLT80]. It is conceivable that a similar
idea could be applied to the reversible pebbling reductions in [CLNV15], but it is not
obvious whether just adding a small amount of space makes it possible to carry out the
reversible pebbling time-efficiently enough.

Finally, it can be noted that our results crucially depend on that we are in a set-
ting with variables only for positive literals. For polynomial calculus it is quite com-
mon to consider the stronger setting with “twin variables” for negated literals (as in
the generalization of polynomial calculus in [CEI96] to polynomial calculus resolution
in [ABRW02]). It would be nice to generalize our size-degree trade-offs for Nullstel-
lensatz to this setting, but it is not obvious whether the reductions in the current work
could be made to work or not.
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Abstract

We study space complexity and time-space trade-offs with a focus not on peak
memory usage but on overall memory consumption throughout the computation.
Such a cumulative space measure was introduced for the computational model of
parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results
in cryptography. We consider instead the nondeterministic black-white pebble game
and prove optimal cumulative space lower bounds and trade-offs, where in order to
minimize pebbling time the space has to remain large during a significant fraction
of the pebbling.

We also initiate the study of cumulative space in proof complexity, an area where
other space complexity measures have been extensively studied during the last
10–15 years. Using and extending the connection between proof complexity and
pebble games in [Ben-Sasson and Nordström ’08, ’11], we obtain several strong cu-
mulative space results for (even parallel versions of) the resolution proof system,
and outline some possible future directions of study of this, in our opinion, natural
and interesting space measure.

E.1 Introduction

The time and space complexity measures are at the heart of understanding compu-
tation. Unfortunately, there is little we can say about general computation models
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such as Boolean circuits, let alone Turing machines. But if we allow ourselves to work
with simpler models of computation, then we have a better chance at understanding
these resources, and in fact there has been impressive progress in restricted models like
bounded-depth circuits.

One of the first success stories in this direction are pebble games. The original (black)
pebble game is played by a single player on a directed acyclic graph (DAG) with a single
sink and all vertices having bounded indegree and consists of two simple rules:

1. we can add a pebble to a vertex if all its direct predecessors have pebbles, and

2. we can remove a pebble from a vertex at any time.

The goal of the game is to place a pebble on the sink of the graph. Time is measured
as the number of moves to reach this goal, and the space is the maximum number of
pebbles needed simultaneously at any point during the pebbling.

Quite surprisingly, this seemingly simple and innocent game can be used to ob-
tain strong results even for general computation models, as it is at the core of the
DTIME
�
t
� ⊆ SPACE
�
t/ log t
�
space upper bound for Turing machines in [HPV77]. Peb-

bling was first used in [PH70] to study flowcharts and recursive schemata, and dif-
ferent variants of the game have later been applied to a rich selection of problems in
computer science, including register allocation [Set75], algorithmic time and space
trade-offs [Cha73], parallel time [DT85], communication complexity [RM99], mono-
tone space complexity [CP14, FPRC13], cryptography [AS15, DNW05], and proof com-
plexity [BN08, BW01, BEGJ00] (where it should be emphasized that the above list of
references is far from exhaustive). An excellent overview of pebbling up to ca 1980 is
given in [Pip80] and another in-depth treatment of some pebbling-related questions
can be found in chapter 10 of [Sav98]. Some more recent developments are discussed
in the upcoming survey [Nor19].

Let us briefly discuss what is known about space in proof complexity, since this is one
of the two topics we are focusing on in this paper. The study of space in proof complexity
was initiated in [ET01], which introduced the clause space measure for the well-known
resolution proof system, a measure that has subsequently been thoroughly investigated.
Informally, the clause space of a resolution proof can be defined as the maximal number
of additional clauses—on top of the clauses in the original CNF formula—that a verifier
needs to keep inmemory at any time while checking the correctness of the proof.1 While
some formulas have proofs requiring only a small, sometimes even just constant, space
overhead during verification, other formulas require a linear amount of extra space
[ABRW02, BG03, ET01], and as shown in [ET01] no formula requires more than linear
clause space in resolution.

Other papers have studied how space relates to other proof complexity measures.
With respect to proof length, which can be viewed as a measure of (nondeterministic)
running time, there is a wide range of trade-off results. It has been shown that there are

1Though slightly different from the definition in [ET01], this is equivalent up to a small additive constant.
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formulas which have both short and space-efficient proofs, but as one of these measures
is optimized the other one can blow up to almost worst-case behaviour [BN11]. Not
only this, but there are even formulas where short proofs require more than the worst-
case linear space [BBI16, BNT13]. Yet other papers have studied other space measures
such as total space [ABRW02, Bon16, BGT14], measuring the total number of symbols
in a proof, and space complexity has also been considered for other proof systems than
resolution. We refer the reader to the survey [Nor13] for more details (although, for
obvious reasons, it fails to cover the very latest results on total space).

All the space measures discussed above have in common the fact that they refer to
the maximum space used at some point in the proof, but they are far from providing
a complete picture of space usage during the whole proof. If we only know that a for-
mula has high space complexity, it is not possible to distinguish between a formula that
requires large space only at the beginning of the proof, say, and another that requires
large space throughout the whole proof. This distinction might not be so important
if we are considering the memory requirements of a verifier, since in this case we are
chiefly interested in the maximum. However, it could be relevant for proof search: an
algorithm that searches for a proof by producing clauses needs to discard many of them
or risk exhausting its available memory. In this case, the difference between needing
large space once versus at all times is the difference between making one lucky choice
of which clauses to keep in memory versus being lucky all the time.

A similar issue occurs with so-called memory-hard functions in the context of cryp-
tography. The idea behind memory-hard functions is that they should require a large
amount of memory to evaluate, so that in order to compute such a function for many
inputs as a part of a brute-force attack either an infeasible amount of memory is needed
or the attack needs to be carried out sequentially. Yet, if the function only requires a
large amount of memory during a limited time of the computation, then it is possible
to reuse memory for different computations overlapping suitably in time as observed
in [AB16]. Therefore, a more appropriate measure to analyse memory-hard functions
is cumulative space complexity as introduced in [AS15], where one measures not the
maximum memory consumption but the total memory usage aggregated over the time
of the computation.

Although with hindsight this cumulative space complexity measure appears to be a
very natural way of quantifying memory usage, it does not seem to have received too
much attention in computational complexity theory, and to the best of our knowledge it
has not been considered at all in the context of proof complexity. One of the main contri-
butions of this paper is to transfer the concept of cumulative space to proof complexity
and to initiate a study of this complexity measure for the resolution proof system.

Pebble games turn out to be a useful tool also for analysing cumulative space. For
pebbling strategies cumulative space is straightforwardly defined as the sum over all
steps of the pebbling of the number of pebbles on the DAG at each point in time. Thus,
in the standard pebble game discussed above any DAG with n vertices can trivially be
pebbled in time n and cumulative space O

�
n2
�
by placing pebbles on all vertices in
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topological order. Since every vertex needs to be pebbled at some point, a trivial lower
bound for the cumulative space is n. However, depending on the intended application
one needs to consider other variations of this pebble game as discussed next.

In a proof complexity setting we need to study the black-white pebble game, which
was introduced in [CS76] with the objective of modelling nondeterministic computa-
tions. Here white pebbles, corresponding to nondeterministic guesses, can be placed at
any vertex at any time, but a white pebble can only be removed from a vertex when all
direct predecessors have (black or white) pebbles, corresponding to that the correctness
of the nondeterministic guess can be verified.

To model parallel computation in a cryptographic setting, [AS15] introduced yet
another pebble game, namely the parallel (black) pebble game. In this game, all the
pebbling moves that are legal at some point in time can be performed simultaneously
in one single step. This change of rules does not affect the maximal space required
to pebble a DAG, but typically changes the pebbling time. Any connected DAG with
a single sink requires linear time to pebble sequentially, but for a parallel pebbling it
is easy to see that the time required is upper-bounded by the depth of the graph (i.e.,
the length of a longest path). We remark that an attractive feature of parallel pebbling
is that it better captures the difference between maximal and cumulative space. Note
that in any sequential pebbling game placing s pebbles requires s time steps, and during
the last s/2 steps there will be at least s/2 pebbles on the DAG. Thus, any pebbling in
maximal space s requires cumulative space Ω

�
s2
�
. In contrast, in a parallel pebbling the

cumulative space can be small even when the maximal space is large.

E.1.1 Our Pebbling Contributions

In this paper, we study the cumulative space measure in the context of black-white
pebbling. In order to do so, we also extend black-white pebbling to a parallel version.
As pebble games go, this is a very powerful model, since it turns out that any DAG can
be pebbled with a parallel black-white pebbling in constant time and linear cumulative
space. Perhaps somewhat surprisingly, however, it is still possible to prove nontrivial
time-space trade-offs. It can be shown that the parallel and sequential versions of black-
white pebbling are closely connected (as discussed inmore detail later in the paper), and
therefore in this overview the exposition is focused on sequential black-white pebbling.

The first question we address is how the large cumulative space can be in the worst
case for sequential black-white pebbling. As noted above, a trivial (black-only) peb-
bling in linear time and space has cumulative space O

�
n2
�
for any graph over n vertices.

In the other direction, the Ω(n/ log n) space lower bound in [GT78] already gives a
Ω(n2/ log2 n) cumulative space lower bound for sequential black-white pebbling, as ex-
plained above. One cannot get a better cumulative space lower bound by this simple
argument from maximal space lower bounds, however, since any DAG of constant inde-
gree can be pebbled in maximal space O(n/ log n) [HPV77].
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We prove that the family of grate graphs in [Sch83] require Ω(n2) cumulative space
for sequential black-white pebbling. This shows that for cumulative space it is not pos-
sible to improve on the trivial quadratic upper bound, in contrast to the maximal space
measure where it is always possible to save a logarithmic factor from the trivial linear
upper bound. This is also different from the parallel black pebble game, where there
is a o(n2) worst-case upper bound for cumulative space [AB16] and the best known
cumulative space lower bound is Ω

�
n2/ log n
�
[ABP16]. In fact, it turns out that the

difference between the sequential black-white and parallel black pebble games can be
very large. We also prove that (a modified version of) the butterfly graphs in [SS77]
require cumulative space Ω(n2/ log n) in the sequential black-white pebble game but
can be pebbled in linear cumulative space in the parallel black pebble game. Butterfly
graphs also show that graphs that require large cumulative space do not necessarily
require large maximal space, as they have logarithmic depth and thus can be pebbled
in logarithmic space as observed in [HPV77]. We obtain these results by studying the
lower bounds on cumulative space in parallel black pebbling in [ABP16] in terms of
depth-robustness of graphs, and extending these lower bounds to other pebble games
and other families of graphs.

Our next set of results concern trade-offs between time and space. Here our starting
point is the family of bit-reversal permutation graphs studied in [LT82] which can be
pebbled either with 3 pebbles or (as any graph) in linear time, but for which any pebbling
in time t and space s must satisfy t = Ω(n2/s2), where as before n is the number of
vertices in the graph.

We strengthen this trade-off to cumulative space, proving that pebblings of these
graphs in space s require cumulative space Ω

�
n2/s
�
, which in particular implies that

a pebbling in time O
�
n2/s2
�
must use space Ω(s) not only at some point but most of

the time.2 Furthermore, we establish an unconditional Ω
�
n3/2
�
cumulative space lower

bound, which provides another example of graphs that require (at least somewhat)
large cumulative space but can be pebbled in very small (even constant) maximal space.
Our proofs of these results work by adapting the dispersion technique from [ABP16].
This technique has the advantage that it isolates an abstract combinatorial property of
the graph that makes the lower bound argument go through, and this cleaner approach
enables us to prove these results not only for bit-reversal graphs but also for random
permutation graphs (by showing that these graphs possess the required combinatorial
property with high probability). To the best of our knowledge no trade-offs (even non-
cumulative ones) were known for such graphs before for any flavour of the pebble game.

Finally, we consider a very concrete, extremal question regarding pebbling time-
space trade-offs. It is an easy observation that any sequential black-white pebbling in
constant space s can be carried out in time O

�
ns
�
, since there are only

∑s
k=0 2k
�n

k

�
pos-

sible different configurations of s pebbles in the graph, and no configuration repeats

2Note, importantly, that such a space lower bound is not implied by the simple “space s implies cumulative
space Ω
�
s2
�
” argument discussed previously.
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in a pebbling (or else the intermediate moves can be removed). In fact, a bit more
thought reveals that this time bound can be sharpened to O

�
ns−1
�
, since every config-

uration in space s is immediately followed by a pebble removal, and so we only need
to consider distinct configurations of s− 1 pebbles. It is a natural question whether this
simple counting argument is in fact tight, so that there are graphs that can be pebbled
in space s but where any such pebbling requires time Ω

�
ns−1
�
.

For pebbling space s = 3, the minimum space in which any nontrivial pebbling
strategy is possible, the bit-reversal graphs in [LT82] discussed above show that the
answer to this question is affirmative. It is not hard to see that by stacking s− 2 bit-
reversal DAGs on top of one another, identifying the top layer in one graph with the
bottom layer in the graph above, one obtains graphs that can be pebbled in space s but
where the obvious pebbling strategy achieving this bound requires time O

�
ns−1
�
. We

prove that this trivial upper bound is indeed asymptotically tight for any constant s.

E.1.2 Our Proof Complexity Contributions

Turning now to proof complexity, we consider the main contribution of our paper to be
that we initiate the study of the cumulative space measure. While the concept of cumu-
lative space seems to be as natural as maximal space, we are not aware of it having been
studied in the context of proof complexity before. As was the case for the first papers
on (maximal) space complexity in resolution [ET01], in this first paper on cumulative
space in proof complexity we focus on the resolution proof system.

An immediate observation is that proof length is always a lower bound on cumulative
space, and so exponential lower bounds on proof length—as shown for resolution in
[CS88, Hak85, Urq87] andmany later papers—trivially imply exponential lower bounds
on cumulative space. Therefore, it seems that the cumulative space measure will be
of independent interest mostly for formulas which have reasonably short proofs. An
obvious candidate family to study are pebbling formulas [BW01], which have proofs
in linear length, but which exhibit a rich variety of properties with respect to space
complexity depending on the underlying graphs in terms of which they are defined.

However, we also need to decide on an appropriate model of the resolution proof
system in which to study cumulative space. In the context of pebbling we concluded
that cumulative space makes most sense for parallel versions of the pebble games, and
so it is natural to ask whether one should consider a parallel version of resolution when
studying cumulative clause space. It is not hard to argue that such a parallel model
of resolution could be interesting in its own right, since it might be useful as a tool to
analyse attempts to parallelize state-of-the-art SAT solvers using so-called conflict-driven
clause learning (CDCL) [BS97, MS99].

We define and study several different versions of the resolution proof systems with
varying degrees of parallelity. The running time of parallel CDCL solvers has previously
been analysed using resolution depth and the related conflict resolution depth and sched-
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ule makespan measures introduced in [KSSS13], and our models of parallel resolution
allow us to reason about space in addition to time.

Similarly to what is the case for pebble games, our most general model of parallel
resolution, where clauses can be inferred not just by syntactic application of the resolu-
tion rule but by semantic inference, is extremely powerful, so much so that it can deal
with any formula in a constant number of steps and linear space. Since we can establish
a tight relation between space and parallel speedup also for resolution, however, we can
still obtain lower bounds when the maximal space is limited.

Studying pebbling formulas in these different models of resolution, and revisiting
the reductions between resolution and pebble games in [BN08, BN11], we can translate
the pebbling results in Section E.1.1 to results for the resolution proof system. Summar-
izing very briefly, we exhibit different formulas that have

• proofs in linear length but require quadratic cumulative space,

• proofs in logarithmic space but require Ω(n2/ log n) cumulative space, and

• trade-offs between proof length and cumulative space.

E.1.3 Paper Outline

The rest of this paper is organized as follows. In Section E.2 we present a more detailed
overview of our pebbling results, introducing formal definitions of the pebble games
and measures discussed above, and we give an analogous overview for resolution in
Section E.3. Section E.4 contains detailed proofs of our pebbling theorems. We conclude
in Section E.5 with a discussion of possible directions for future research.

E.2 Pebbling Results Overview

Let us start our pebbling overview by giving formal definitions of the basic concepts.

E.2.1 Definition of Pebble Games and Basic Properties

We say that a directed acyclic graph (DAG) G = (V, E) with |V |= n has size n. A vertex
v ∈ V has indegree δ if it has δ incoming edges {(u1, v), . . . , (uδ, v)} ⊆ E, ui ̸= u j for
i ̸= j, and we say that G has indegree δ if the maximum indegree of any vertex of G
is δ. A vertex with no incoming edges is called a source and a vertex with no outgoing
edges is called a sink. We say that a vertex u is a predecessor of a vertex v if there exists
a directed path from u to v; moreover, if this path consists of only one edge then u is
a direct predecessor of v. We denote by parents(v) the set of all direct predecessors of
v. For technical reasons, it will sometimes be convenient to allow paths of length 0 in
the definition above, so that a vertex can be a predecessor of itself. We will sometimes
consider graphs obtained from other graphs by removing subsets of vertices, and for
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U ⊆ V we write G − U =
�
V \ U , E \ ((U × V ) ∪ (V × U)

�
to denote the DAG obtained

from G by removing the vertices in U and all edges incident to U .
To get a unified description of all flavours of the pebble game discussed in Sec-

tion E.1, it is convenient to define pebbling as follows.

Definition E.2.1 (Pebble games). Let G = (V, E) be a DAG with a unique sink vertex
z. The black-white pebble game on G is the following one-player game. At any time i,
we have a black-white pebbling configuration Pi = (Bi , Wi) of black pebbles Bi and white
pebbles Wi on the vertices of G, at most one pebble per vertex. The rules of how a pebble
configuration Pi−1 = (Bi−1, Wi−1) can be changed to Pi = (Bi , Wi) are as follows:

1. A black pebble may be placed on a vertex v only if all immediate predecessors
of v are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Bi \ Bi−1) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

Note that, in particular, a black pebble can always be placed on a source vertex.

2. A black pebble on any vertex v in Pi−1 can be removed in Pi .

3. A white pebble can be placed on any vertex v in Pi .

4. A white pebble on a vertex v in Pi−1 may be removed in Pi only if all immediate
predecessors of v are covered by pebbles in both Pi−1 and Pi , i.e.,

v ∈ (Wi−1 \Wi) ⇒ parents(v) ⊆ Pi−1 ∩ Pi .

In particular, a white pebble can always be removed from a source vertex.

A legal pebbling P of G is a sequence P = (P0, . . . ,Pt) where every configuration Pi can
be obtained from Pi−1 using the rules 1–4. A complete pebbling is a legal pebbling where
P0 = Pt = (;,;) and z ∈∪ti=0(Bi ∪Wi) (i.e., the sink is pebbled at some point).

A black pebbling is a pebbling where Wi = ; for all i ∈ [t]. A pebbling is sequential if
at most one application of a single rule 1–4 is used to get from from Pi−1 to Pi for all i ∈
[t]. In a (fully) parallel pebbling an arbitrary number of applications of the rules 1–4 can
be made to Pi−1 to obtain Pi (but note that all pebble placements and removals have to
be legal with respect to Pi−1, and cannot make use of any pebble placements or removals
made in parallel). Finally, we also consider parallel-black sequential-white pebblings,
which allows parallel applications of black pebble rules 1–2 to Pi−1 to obtain Pi , but
only a single application of the white pebble rules 3–4. Note that, in the parallel setting,
a simultaneous application of rules 1 and 4 on a same vertex replaces a white pebble
by a black one.

The time of a pebbling P = (P0, . . . ,Pt) is t(P) = t; the (maximal) space is s(P) =
s =maxi∈[t]|Bi |+ |Wi |; and the cumulative space is c(P) = c =

∑
i∈[t]|Bi |+ |Wi | (where

we observe that c ≤ st).
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Parallel black pebbling was introduced in [AS15], where it was pointed out that
for certain graphs parallel pebblings can be much more efficient than sequential, while
for others they cannot do any better. For example, if we are considering time-space
tradeoffs, any sequential black pebbling in space s and time t of a bit-reversal graph
must satisfy st = Ω

�
n2
�
[LT82], while in the parallel black game one can pebble such

graphs in linear time and space O(
p

n) [AS15]. In contrast, it was shown in [ABP16]
that there are graphs that can be pebbled sequentially in space s and time t satisfying
st = O
�
n2/ log n
�
, but where these graphs even in the parallel model require not only

st = Ω
�
n2/ log n
�
but also cumulative space Ω

�
n2/ log n
�
.

Unlike the case of the black pebble game, we show that time and space in the black-
white sequential and parallel games are closely related. Up to constant factors, it holds
that if a parallel black-white pebbling P has maximal space s, then it is possible to save
a factor s, but not more than a factor s, in time compared to a sequential black-white
pebbling in the same space s.

Observation E.2.2. Let P be a parallel black-white pebbling of a DAG G in time t, space s,
and cumulative space c. Then there is a sequential black-white pebbling of G in time 2ts,
space 2s, and cumulative space cs.

Proof. Each parallel move places at most s pebbles and removes at most s pebbles, there-
fore we can simulate it by 2s sequential moves (making the pebble placements first, to
make sure that these moves remain legal).

Lemma E.2.3. Let P be a sequential black-white pebbling of G in time t, space s, and
cumulative space c, and let k be a positive integer. Then there is a parallel black-white
pebbling of G in time 3(⌈t/k⌉+ 1), space s+ ⌊k/2⌋, and cumulative space 3⌊c/k⌋+ t.

Proof. Suppose we divide P into at most ⌈t/k⌉+1 intervals of at most k moves. We can
then reorder the pebbling moves within each of these intervals so that we do all place-
ments first and removals afterwards. This is still essentially a valid pebbling, because
each configuration is a superset of the corresponding configuration in P, except that we
can possibly have vertices temporarily covered by several pebbles. The space usage in
any intermediate configuration increases to at most s + ⌊k/2⌋. We then collapse each
subsequence into one parallel placement of white pebbles, one step replacing white
pebbles with black pebbles as needed, and one parallel removal of black pebbles. If P is
the last configuration of the subsequence, then the white pebbles that are replaced by
black are the ones that are either black in P or that or not present at all in P, that is,
only the pebbles that are white in P are not replaced by black pebbles. This allows us
to make all black pebble placements in parallel even though later black pebbles might
be dependent on earlier pebble placements in the sequential pebbling, and similarly re-
move all white pebbles in parallel even though there might be dependencies inside the
interval. The total time decreases to 3(⌈t/k⌉+1). Note that this holds for any partition
of P into at most ⌈t/k⌉+ 1 intervals of at most k moves.
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To bound the cumulative space we need to specify which partition of P we con-
sider. First note that if a configuration Pi of P has space si and we consider a sequen-
tial interval (of any length) starting at i + 1 where x j pebble placements are made,
then the three parallel configurations corresponding to this interval have aggregate
space at most 3si + 2x j . Now consider the following k-partition of configurations of P:
{Pi ,Pi+k, . . . ,Pi+k(⌊(t−i)/k⌋)} for i ∈ [1, k]. Note that each part consists of at most ⌈t/k⌉
configurations, evenly spaced. By an averaging argument, at least one of these k parts,
say the i∗-th part, has cumulative space of at most ⌊c/k⌋. We can now divide P into
at most ⌈t/k⌉ + 1 intervals of at most k moves, where the 1st interval starts at P1

and ends at Pi∗ , the ( j + 1)-st interval starts at Pi∗+( j−1)k+1 and ends at Pi∗+ jk, for
j = 1, 2, . . . , ⌊(t − i∗)/k⌋ and if Pi∗+k(⌊(t−i∗)/k⌋) is not the last configuration, then there is
one last interval which starts at Pi∗+k(⌊(t−i∗)/k⌋)+1 and ends at Pt . Let x j be the number
of placements in the jth interval and let s j be the space of the configuration right before
the beginning of the jth interval. Note that

∑
j∈[⌈t/k⌉+1] s j ≤ ⌊c/k⌋. The total cumulative

space is therefore at most
∑

j∈[⌈t/k⌉+1](3s j +2x j) = 3
∑

j∈[⌈t/k⌉+1] si+ j +2
∑

j∈[t/k−1] x j ≤
3⌊c/k⌋+ 2t/2.

Observe that when k = Θ(s) the cumulative space in Lemma E.2.3 is dominated by
the term t, so we only save a factor s in cumulative space when the sequential pebbling
has cumulative space c = Θ(st). Since the graphs we will discuss in what follows have
cumulative space lower bounds of this form, studying the sequential game already gives
us all the information we want about the parallel game.

Corollary E.2.4. Let P be a black-white pebbling of G in time t and space s. Then there
is a parallel black-white pebbling of G in time at most ⌈t/2s⌉+3, space 4s, and cumulative
space 2t.

E.2.2 Robustness and High Cumulative Space Complexity

We proceed to define the concept of G-robustness of graphs, which is inspired by [EGS75,
PR80] and which will be central to our work.

Definition E.2.5 (G-robustness). Let G be a family of DAGs and let e, d ∈ N+ be positive
integers. We say that a DAG G = (V, E) is (e, d)-G-robust if for every subset of vertices
U ⊆ V of size at most e there exists a graph H ∈ G of size at least d that is a subgraph
of G − U .

When G is the class of directed paths, then we say that G is depth-robust, and when
G is the class of DAGs with one sink the DAG G is said to be predecessor-robust.3

For our pebbling lower bounds we are interested in graphs with very high robust-
ness, i.e., for as large values of e and d as possible. Depth-robustness was first studied by

3This choice of terminology is inspired by [PR80], which discusses the dual notions of “depth-separators”
and “predecessor-separators.”
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Erdős, Graham and Szemerédi [EGS75] who showed how to construct DAGs with inde-
gree Θ(log(n)) possessing (Ω(n),Ω(n))-depth-robustness. However, in our applications
it is important that the graphs have constant indegree. Valiant [Val77] showed that for
constant indegree and linear depth the best we can hope for is (O

�
n/log n
�
, O(n))-depth-

robustness. Fortunately for us, it was shown in [ABP16, PR80] that such extremal
(Θ
�
n/log n
�
,Θ(n))-depth-robust graphs do exist. Conversely, if we want constant in-

degree with the parameter e linear in the graph size, then (εn, n1−ε)-depth-robustness
is the best we can hope for [Val77]. In [Sch83] a family of (Θ(n),Θ(n1−ε))-depth-robust
graphs with constant indegree were presented.

The connection between depth-robustness and cumulative space was first made
in [ABP16], where it was shown that an (e, d)-depth-robust graph requires parallel
black cumulative space at least ed. In this work we give a more general theorem of this
form for the case of G-robustness. We then use this theorem to obtain the following
lower bounds for depth-robust and predecessor-robust graphs.

Corollary E.2.6. If G is an (e, d)-depth-robust DAG, then G requires sequential black-
white cumulative space at least ed, and parallel-black sequential-white cumulative space
at least e

p
d.

Corollary E.2.7. If G is an (e, d)-predecessor-robust DAG, then G requires sequential
black-white cumulative space at least ed.

Focusing on the range of parameters discussed above, we can see that it follows from
Corollaries E.2.6 and E.2.7 that a (Θ(n/log n),Θ(n))-depth-robust graph has sequen-
tial black-white cumulative space complexityΩ

�
n2/ log n
�
and parallel-black sequential-

white pebbling cumulative space complexity Ω
�
n3/2/ log n
�
.

A class of DAGs that are predecessor-robust are grates—graphs with n′ sources
and n′ sinks such that after the removal of an arbitrary set of kn′ vertices (for some
constant k) there are still a linear number of sources and sinks that are all pairwise
connected.4 Butterfly graphs [SS77] are grates with n = n′ log n′ vertices that are
(Θ(n/ log n),Θ(n/ log n))-predecessor-robust. Moreover, it is not hard to show that if
we append n′ single-sink DAGs of size log n′, one to each source of the butterfly graph,
the resulting graph is (Θ(n/ log n),Θ(n))-predecessor-robust. This implies that these
graphs require sequential black-white cumulative space Ω(n2/ log n). Note that butter-
fly graphs (also in the modified version just described) can be pebbled with O(log n)
pebbles (since the graphs have depth O(log n)), and thus it is not the case that high
cumulative space implies large maximal space.

Theorem E.2.8. Butterfly graphs of size n can be black pebbled with O(log n) pebbles but
require sequential black-white cumulative space Ω(n2/ log n).

4Strictly speaking, grates have multiple sinks and so do not conform to the DAG requirements in Defini-
tion E.2.1. However, it is easy to turn any multi-sink DAG of interest into a single-sink DAG with essentially
the same properties—we refer to Section E.4 for the details—and so we ignore this technicality here.
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Figure E.1: A bit reversal permutation graph

It has been established that extremal depth-robustness is both a necessary [AB16]
and sufficient [ABP16] condition to have high cumulative space in the parallel black
game. In particular, using the fact that no graph of size n with constant indegree is
(ω(n/log n),Θ(n))-depth-robust, it was shown in [AB16] that any constant-indegree
graph has parallel black cumulative space complexity o

�
n2/log1−ε n
�
, for any constant

ε > 0. A natural question is if this also holds for black-white pebbling. We show that this
is not the case: there are graphs that have maximum cumulative space complexityΩ(n2)
in the black-white pebble game. This follows from Corollary E.2.7 and the existence of
grates of size linear in the number of sources and sinks [Sch83].

Theorem E.2.9. There are graphs of size n that require sequential black-white cumulative
space Ω(n2).

E.2.3 Dispersion and Cumulative Space Trade-Offs

Another property of graphs that is important in the current paper is dispersion. This
notion was used in [ABP16] to obtain another condition ensuring high parallel black
cumulative space complexity. We define two similar concepts and then use them to
obtain cumulative space trade-offs. The results we get are for two classes of permuta-
tion graphs—graphs that consist of two ordered paths of vertices, where in addition
an edge is added from each vertex in the first path to its image under some specified
permutation σ in the second path.

A family of permutations that will be of particular interest to us are the so-called bit-
reversal permutations, which are defined for n= 2m and which simply reverse the binary
representations of numbers. That is, if j = (b1 · · · bm)(2), then the bit-reversal permuta-
tion σ sends j to σ( j) = (bm · · · b1)(2) (see Figure E.1). It was previously known [LT82]
that any sequential black-white pebbling of a bit-reversal permutation graph on 2n ver-
tices in time t and space s satisfies st = Ω

�
n2/s
�
. Moreover, it was shown in [LT82] that

this is tight up to constant factors and that there is a black-white pebbling in time t and
space s such that st = O

�
n3/2
�
.



E.2. PEBBLING RESULTS OVERVIEW 199

We observe that while bit-reversal graphs are not (2
p

n, 2
p

n)-depth-robust, they
can be shown to be (

p
n, n)-predecessor-robust. Therefore, in constrast to [ABP16],

where it was not possible to establish a parallel black cumulative space lower bound
of n3/2 using depth-robustness, we are able to obtain a black-white cumulative space
lower bound of n3/2 using predecessor-robustness.

Our reason for studying dispersion properties of bit-reversal graphs is to characterize
how cumulative space increases when space decreases. We show that the time-space
trade-off in [LT82] can be strengthened to a cumulative space trade-off. Our result
implies that if P is a sequential black-white pebbling of a bit-reversal graph in space s
and time n2/s2, then it needs to use space s not only at some point of the pebbling, but
during a large part of the time.

Theorem E.2.10. If G is a bit-reversal graph on 2n vertices, then it holds that in the
sequential black-white pebble game G requires cumulative space Ω(n3/2) and any pebbling
P of G in maximal space s has cumulative space Ω(n2/s).

An advantage of our approach is that we identify a general property of graphs that
imply cumulative space trade-offs, so that the task of establishing a trade-off reduces to
proving that the graph has this desired property. As a consequence of this simplification,
we are able to prove the same kind of trade-off results not only for bit-reversal graphs
but also for random permutation graphs, a class of graphs for which it seems nothing
was known before. We note that a property of graphs is said to hold asymptotically
almost surely on a random permutation graph on 2n vertices if it holds with probability
that approaches 1 as n approaches infinity.

Theorem E.2.11. If G is a random permutation graph on 2n vertices, then it holds asymp-
totically almost surely that in the sequential black-white pebble game G requires cumulative
space Ω(n3/2) and any pebbling P of G in maximal space s has cumulative space Ω(n2/s).

E.2.4 Pebbling in Small Space Can Require Maximum Length

Let us finally consider the question of how long a shortest sequential pebbling of a graph
can be, given constraints on the maximal pebbling space. Without loss of generality, a
black pebbling in space s takes time at most

� n
≤s

�≤ ns, simply because there is no need
to repeat any pebble configuration. A moment of thought reveals that in fact we get
the upper bound

� n
s−1

�
+
� n
≤s−1

� ≤ ns−1, since every configuration in maximal space s is
followed by an erasure yielding a space-(s− 1) configuration, and these configurations
also do not repeat. For black-white pebbling the upper bound becomes 2s−1

�� n
s−1

�
+� n

≤s−1

��≤ 2s−1ns−1.
As discussed in the introduction, it can be read off from [LT82] that for space-3

pebblings the O
�
n2
�
upper bound is tight up to constant factors—bit-reversal DAGs are

examples of graphs for which pebblings in optimal space 3, or indeed any constant space,
require quadratic time. We extend this result to any s = O(1) by exhibiting graphs that
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can be pebbled in space s but where any such pebbling requires timeΩ
�
ns−1
�
. We do this

by generalizing permutation graphs to multiple layers, where we have k directed path
graphs of length n and k−1 layers of permutations between the vertices in consecutive
paths (so that the permutation graphs considered in [LT82] are 2-layer bit-reversal
graphs with paths of length n). We state two theorems below for the black and black-
white sequential pebble games, and just as for the 2-layer graphs in [LT82] our bounds
can be stated not just for minimal space but also an arbitrary space parameter s greater
than this minimum.

Theorem E.2.12. Let k be a constant and let B be a k-layer bit-reversal graph with paths
of length n. Then for any s such that k+1≤ s ≤pn there exists a sequential black pebbling
of B in space s and time O(nk/s2k−3). Furthermore, every sequential black pebbling of B in
space s requires time Ω(nk/s2k−3).

Theorem E.2.13. Let k be a constant and let B be a k-layer bit-reversal graph with paths
of length n. Then for any s such that k+ 1≤ s ≤pn there exists a sequential black-white
pebbling of B in space s and time O(nk/s2k−2). Furthermore, every sequential black-white
pebbling of B in space s, requires time Ω(nk/s2k−2).

Our proofs of these results are inspired by the reasoning in [LT82] for 2-layer per-
mutation graphs, but we also need to overcome some new challenges. The essence of
the argument is that in order to place a pebble on the jth layer we need to do some
work on the preceding layer. If we only have two layers the argument ends here, but
when we want to apply the argument recursively we need to be more careful. Indeed,
placing pebbles on the ( j − 1)st layer will now require placing more pebbles on the
( j − 2)nd layer, but if we choose the order in which we do the pebble placements wisely,
we may be able to reuse part of the work in the ( j − 2)nd layer for several pebble place-
ments in the ( j − 1)st layer. We are able to find a strategy to exploit this insight and
obtain optimal upper bounds, but also to make the lower bound argument resilient
enough to get asymptotically matching lower bounds.

E.3 Cumulative Space for the Resolution Proof System

We now proceed to describe in more detail the proof complexity results in our paper.
We start this section by a brief review of some standard proof complexity preliminaries,
after which we discuss how to refine the definition of the resolution proof system to
be able to make meaningful and precise claims about maximal space and cumulative
space. This then allows us to make the connection to the pebbling results in Section E.2
and what proof complexity implications they have.

A literal over a Boolean variable x is either x itself (a positive literal) or its nega-
tion ¬x (a negative literal). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals ai over
pairwise disjoint variables. A k-clause is a clause that contains at most k literals. A CNF
formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses and a k-CNF formula is a CNF
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formula consisting of k-clauses. We think of clauses and CNF formulas as sets: order is
irrelevant and there are no repetitions.

The standard definition of a resolution refutation π : F ⊢⊥ of an unsatisfiable CNF
formula F—or a resolution proof for (the unsatisfiability of) F—is as an ordered se-
quence of clauses π = (D1, . . . , Dt) such that Dt =⊥ is the empty clause containing no
literals, and each clause Di , i ∈ [t], is either an axiom Di ∈ F or is derived from clauses
Dj and Dk, j, k < i, by the resolution rule

B ∨ x C ∨¬x
B ∨ C , (E.1)

where we refer to B ∨ C as the resolvent over x of B ∨ x and C ∨¬x .
In order to study space in general, and cumulative space in particular, we refine the

above definition into a family of proof systems as follows.

Definition E.3.1 (Resolution). A resolution refutationπ : F ⊢⊥ of a CNF formula F is a
sequence of configurations, or sets of clauses, π= (C0, . . . ,Ct) such that C0 = ;,⊥ ∈ Ct ,
and for all i ∈ [t] we obtain Ci from Ci−1 by applying exactly one of the following type
of rules:

Axiom download Add A∈ F .

Inference Add D derived from clauses in Ci−1.

Erasure Remove clauses from Ci−1.

We say that a refutation is (a) sequential if at every time step we apply the chosen rule
exactly once; (b) inference-parallel if only one clause can be downloaded but the infer-
ence rule can be applied an arbitrary number of times (but always deriving from Ci−1);
and (c) fully parallel (or just parallel) if both axiom download and inference rules can
be applied an arbitrary number of times (but note that we cannot mix applications of
different rules in the same step). Furthermore, a refutation is said to be (1) syntactic if
inferences use the resolution rule (E.1) and (2) semantic if instead any clause D such
that Ci−1 ⊨ D can be inferred immediately.

The length of a resolution refutation π is the number of derivation steps t and the
size is the total number of clauses introduced in downloads and inference steps (counted
with repetitions). 5 The maximal (clause) space, or just space, of π is max{|Ci | : Ci ∈ π}
and the cumulative (clause) space is

∑
Ci∈π|Ci |.

Note that Definition E.3.1 yields a total of six different flavours of resolution 1(a)–
2(c) depending on the amount of parallelism and on whether inferences are syntactic or

5For standard resolution as defined in the literature it is most often the case that the length and size defin-
itions coincide, and we could have achieved this here also by counting only axiom download and inference
steps when measuring length. Including also erasure steps seems slightly more natural in the current context,
however, and also changes the measure by at most a constant factor 2, which is completely immaterial for
our purposes.
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semantic. In what follows, we will discuss our motivation for considering these different
models and what we can say about them.

A first, general comment is that from a proof complexity point of view we are mainly
interested in syntactic versions of the proof systems in Definition E.3.1. Strictly speaking,
the semantic versions are not even propositional proof systems in the sense of Cook and
Reckhow [CR79], since we do not know how to verify semantic implications in polyno-
mial time. In any semantic system we can download all axioms in the formula and then
derive contradiction in a single inference step, and efficiently verifying such an infer-
ence means solving Sat in polynomial time. However, most results on (clause) space in
the proof complexity literature actually hold in the stronger semantic setting. For max-
imal space this is not so surprising, since the semantic and syntactic space measures are
within a constant factor of each other [ABRW02], but even for trade-offs one tends to get
results in the semantic setting for free (with the notable exceptions of [BBI16, BNT13]).

Syntactic sequential resolution is the standard definition discussed at the beginning
of this section (and note that for this version of resolution the length and size measures
are essentially the same). A somewhat unsatisfactory feature of this model is that (ana-
logously to what is the case for pebbling) a maximal space lower bound s immediately
implies a cumulative space lower bound Ω

�
s2
�
. The reason is completely analogous:

since we can only infer one new clause per time step, during the s/2 time steps before
reaching space s we must have had at least s/2 clauses in memory. It turns out, however,
that we can actually beat this lower bound in certain settings, and we also remark that
cumulative length-space trade-offs do not necessarily follow from such trivial arguments
and so make sense even for syntactic sequential resolution.

By allowing parallel application of inference steps we want to try to get away from
cumulative space lower bounds that hold only for the trivial reason just discussed. In
syntactic inference-parallel resolutionwe therefore allow clauses to be derived in parallel.
As it turns out, anything we are currently able to prove for this model we can also
establish for the stronger semantic inference-parallel resolution system.

We can also go in the other direction from the syntactic sequential model and intro-
duce a parallelism of sorts by studying semantic sequential resolution. As already alluded
to, this is a very powerful system since any formula can be refuted in linear size and
space by downloading all its axioms in a linear number of steps and then deriving con-
tradiction in just one semantic inference step, but nevertheless the space lower bounds
and length-space trade-offs in [BN08, BN11] hold in this model, and can in fact be
verified to hold even for semantic inference-parallel resolution.

The most challenging models in terms of lower bounds are the fully parallel ones.
Syntactic parallel resolution could be viewed as a potentially interesting model for prov-
ing lower bounds on parallel SAT solvers using conflict-driven clause learning, where
one could imagine an arbitrarily large number of solvers producing resolvents in parallel
and having perfect access to shared memory. It is not hard to see that if a standard res-
olution proof is represented as a DAG in the natural way, then syntactic parallel length,
which would be a proxy for execution time, is just the depth of this DAG.
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In the semantic model, adding also parallel axiom downloads makes the proof sys-
tem exceptionally powerful, since now any formula can be refuted in constant length 2,
linear size, and linear cumulative space. This seems a bit too strong to be really in-
teresting (and can be viewed as a reason for preferring the inference-parallel version
described previously). However, even for semantic fully parallel resolution it is still
possible to obtain nontrivial trade-off results if the maximal (non-cumulative) space is
bounded. In fact, the speed-up from parallelism can be at most proportional to the
maximal space. Note that Observation E.2.2 states an analogous fact for black-white
pebbling.

Observation E.3.2. Let π be a semantic parallel resolution refutation of a formula F in
length L, maximal clause space s, and cumulative clause space c. Then there is a semantic
sequential refutation of F in length Ls, maximal clause space 2s, and cumulative clause
space 2cs.

Proof. Each parallel axiom download or inference adds at most s new clauses, therefore
we can simulate it by s sequential axiom downloads or inferences respectively.

Similarly to Lemma E.2.3, it is also the case here that parallelism can indeed obtain
a speed-up proportional to the extra space used.

Lemma E.3.3. Let π be a syntactic sequential resolution refutation of a formula F in
length L, maximal space s, and cumulative space c, and let ℓ ∈ N+ be a positive integer.
Then there is a semantic parallel resolution refutation of F in length 3(⌈L/ℓ⌉+1), maximal
space s+ ⌊ℓ/2⌋, and cumulative space 3⌊c/ℓ⌋+ L.

Proof sketch. Analogously to the proof of Lemma E.2.3, we divide π into ⌈L/ℓ⌉+ 1 in-
tervals of at most ℓ steps each. We reorder derivation steps within every interval so
that we do all axiom downloads first, inferences next, and removals at the end of the
interval. We then collapse each sequence into one axiom download, one inference, and
one removal step.

Before discussing our main results, we observe that although proving strong lower
bounds for the fully parallel versions of resolution looks like a formidable challenge,
which we leave as future work, we can obtain a simple separation between semantic
and syntactic fully parallel resolution.

Proposition E.3.4. Every syntactic, fully parallel resolution refutation of a minimally
unsatisfiable CNF formula with m clauses in space s ≤ m requires length at least m/s +
log s− 2.

Proof. Let F be a minimally unsatisfiable CNF formula with m clauses and let π =
(C1, . . . ,Ct) be a syntactic, fully parallel refutation of F in space s ≤ m. We wish to
show that t ≥ m/s+ log s− 2. Let t ′ ≤ t be the smallest index such that ⊥ ∈ Ct ′ . Note
that π= (C1, . . . ,Ct ′) is also a syntactic, fully parallel refutation of F in space s ≤ m.
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We recursively define the notion of a useful clause (in time step i). The empty clause
is always useful. A clause is useful in time step i if it is used in some time step j ≥ i to
infer a useful clause.

Now let us work our way backwards in the refutation. The only useful clause in Ct ′
is ⊥. Since the inference rule is binary, the number of useful clauses in the second-to-
last configuration is at most 2. By the same reasoning, the number of useful clauses in
the ith last configuration is at most 2i . Hence, in the last log s steps there are at most
2s useful clauses.

Since F is minimally unsatisfiable, every axiom is needed to derive contradiction
and thus must be useful in some configuration. Therefore, apart from the last log s con-
figurations, we still need at least (m−2s)/s other configurations (by the fact that there
are at most s clauses per configuration). We conclude that t ≥ t ′ ≥ m/s+ log s− 2.

In particular, any syntactic, fully parallel refutation of a minimally unsatisfiable CNF
formula with m clauses requires length log m, and a refutation in this length requires
space Ω(m). This is in contrast to semantic fully parallel refutations, which have proofs
in length 2, and no space lower bound other than the trivial m/L, where L is the length
of the refutation.

By way of example, consider a pebbling formula on a directed path of size m − 1.
A syntactic, fully parallel refutation in length log m requires space Ω(m), while there
exists a semantic fully parallel refutation in length log m and space 2m/ log m+O(1):
just download the axioms corresponding to 2m/ log m consecutive vertices at a time and
infer one new clause.

While this is technically a separation, it is also very brittle. There are syntactic, fully
parallel refutations of this pebbling formula in length 2 log m and space 2m/ log m+O(1).
More generally, for any k ∈ N+, there are syntactic, fully parallel refutations in length
(1 + 1/k) log m and space 2km/ log m + O(1). Indeed, the refutation can be done as
follows. First, download the axioms corresponding to evenly spaced vertices at distance
(log m)/2k. Then repeat the following two operations log m/2k times: download the
clauses corresponding to the next vertex in the path and apply a parallel inference step.
This leaves us with a path of length km/ log m, which we can trivially refute in length
at most log(km/ log m)< log m and space km/ log m.

It remains an interesting open problem whether there are stronger, more robust
separations between semantical and syntactic, fully parallel resolution models.

Moving on from this philosophical discourse to a more concrete discussion of res-
ults, we note that most of the proof complexity consequences we derive from the peb-
bling results in Section E.2 are for semantic inference-parallel resolution, and thus hold
for all models above except the fully parallel ones. We start by reporting a somewhat
disappointing—and perhaps surprising—fact: even in semantic inference-parallel res-
olution cumulative space is at least maximal space squared.

Lemma E.3.5. If F requires maximal space s in syntactic sequential resolution, then any
semantic inference-parallel refutation of F has cumulative space Ω

�
s2
�
.



E.3. CUMULATIVE SPACE FOR THE RESOLUTION PROOF SYSTEM 205

Proof. We first note that, by Theorem 3.7 in [ABRW02], if syntactic sequential resolu-
tion requires space s, then semantic sequential resolution requires space at most s/2.
Moreover, by Observation E.3.2, if semantic sequential resolution requires space s/2,
then semantic parallel, and consequently also semantic inference-parallel, requires space
at least s/4.

For simplicity let us think of each step in a semantic inference-parallel resolution re-
futation as being either an inference-plus-erasure step or a download step. Clearly, this
can only affect the clause space measure by a factor 2, and thus there is a configuration
that contains at least s/8 clauses.

An inference-plus-erasure step can be seen as a compression operation. Since the
proof system is semantic, we only care about the information contained in a configura-
tion, and since an inference step cannot increase the information but only add explicitly
clauses that are already implied by the configuration, there is no need to add any ex-
tra clauses on top of the minimum amount needed to encode the semantic information
we want the proof to maintain at this point. Therefore, we can assume the number of
clauses only increases at download steps, and since these are sequential we can con-
clude that the number of clauses increases by at most 1 at every step. This means that
we can apply the same argument as for syntactic sequential resolution above: during the
s/16 time steps preceding a space-s/8 configuration we must have at least s/16 clauses
in memory, and hence a cumulative lower bound Ω

�
s2
�
follows.

It is important to note, though, that Lemma E.3.5 has no implications for cumulative
space trade-offs for formulas where the maximal space complexity is at most O

�p
N
�

measured in the formula size N , since in this setting the max-space-squared argument
only implies a trivial Ω(N) cumulative space lower bound, and we present such trade-
off results that do not follow from Lemma E.3.5 below. We also report results that
asymptotically beat the maximal-space-squared lower bound for cumulative space.

In order to obtain these results, we need to review how our cumulative pebbling
results in Section E.2 can be translated to claims about resolution refutations of so-
called XORified pebbling formulas. We just state the reduction that we need below, since
we can use it in a completely black-box fashion without knowing any details about what
these formulas are. The interested reader is referred to [BN11] for the missing details.6

For the upper bound, the pebbling-to-resolution reduction follows from Theorem 2
(substitution space theorem) in [BN11] and the fact that syntactic sequential resolution
can simulate black pebbling (which was perhaps first observed in [BIW04], see also
Lemma 4 in [BN11]). From the proof of the substitution space theorem (see the proof
of Theorem 2.1 in [BN10] for details) it is quite immediate to see that the space bound
translates to cumulative space, and therefore we have the following result.

6It might be worth noting, though, that just as in [BN11] our results hold not only for pebbling formulas
substituted with exclusive or—substitution with any so-called non-authoritarian (or robust) function that can
never be fixed by restricting any single variable to some value works fine. Binary exclusive or is just the
simplest example of such a function, whereas standard or is a simple non-example since setting a single
variable to true fixes the value of the function to true.
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Theorem E.3.6 ([BN11]). Let P be a sequential black pebbling of a DAG G in time L,
space s, and cumulative space c. Then there is a syntactic sequential resolution refuta-
tion of the XORified pebbling formula PebG[⊕] in length O(L), maximal space O(s), and
cumulative clause space O(c).

For the lower-bound, all that needs to be done is to verify that the resolution-to-
pebbling reduction in [BN10] preserves cumulative space and works not only for se-
mantic sequential resolution but also for semantic inference-parallel resolution. This is
not hard to see given that the main technical step in this proof is Lemma 6.3 (a result
from [Ben09]) which is oblivious to inference steps—only axiom downloads are taken
into consideration, and semantic inference-parallel resolution is sequential on axiom
downloads.

TheoremE.3.7 (by the proof of Theorem 6.2 in [BN10]). Letπ be a semantic inference-
parallel resolution refutation of a XORified pebbling formula PebG[⊕] in length L, maximal
space s, and cumulative clause space c. Then there is a sequential black-white pebbling of
the underlying DAG G in time 3L, space s, and cumulative space 3c.

Analogously to what is the case in [BN11], the generic reductions in Theorems E.3.6
and E.3.7 can now be applied to a multitude of different graph families with different
pebbling properties to yield CNF formulas with the same properties in resolution. Below
we just give a sample of such results that we find particularly interesting.

For maximal space it is known that formulas refutable in linear size O(N) never
require space more than O(N/ log N). For cumulative space the lower bound can be
truly quadratic, however, beating the max-space-squared bound in Lemma E.3.5 by a
factor log2 N .

Theorem E.3.8. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) that have
syntactic sequential resolution refutations in size O(N), and hence also in maximal clause
space O(N/ log N), but for which any semantic inference-parallel refutation requires cu-
mulative clause space Ω(N2).

This theorem follows from studying pebbling formulas defined in terms of grate
graphs as in [Sch83] and using that the high predecessor-robustness of these graphs
imply strong lower bounds on cumulative space as stated in Theorem E.2.9.

A natural question is what cumulative space tells us about maximal space, and in
particular whether high cumulative space complexity implies that the maximal space
complexity must also be large. This might sound intuitively plausible, but turns out to
be false in a very strong sense.

Theorem E.3.9. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) that can be
refuted in syntactic sequential resolution in size O(N) and also in maximal clause space
O(log N), but for which any semantic inference-parallel refutation requires cumulative
clause space Ω(N2/ log N).
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Here the graphs we need are surprisingly simple, namely butterfly graphs. They
again have high cumulative space, as stated in Theorem E.2.8, but since they are shallow
the pebbling formulas generated from them have refutations in small maximal space.

Finally, we turn to the question of length-space trade-offs. We remark that in a
cumulative space setting formulas for which small-space proofs require superpolynomial
length, as in the strongest results in [BN11, BNT13, BBI16], are not too interesting,
since length is trivially a lower bound on cumulative space. Rather, we focus on formulas
for which small-space proofs incur only a polynomial blow-up in proof length. Can we
find such formulas for which it holds not only that short proofs must have large maximal
space s, but where such short proofs must be memory-intensive in that this amount
of space s must be used essentially throughout the whole proof? The answer to this
question is yes, and one example are pebbling formulas over the bit-reversal permutation
graphs studied in [LT82]. The upper bound in the next theorem is from [Nor12] and the
lower bound follows by combining the reduction in Theorem E.3.7 with the cumulative
space lower bound for bit-reversal permutation graphs stated in Theorem E.2.10.

Theorem E.3.10. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) such that
for any s = O
�p

N
�
the formula FN has a syntactic sequential resolution refutation in size

O
�
N2/s2
�
and maximal clause space O(s), but any semantic inference-parallel refutation

of FN in maximal clause space s requires cumulative clause space Ω(N2/s).

In particular, a proof in maximal space s has length Ω(N2/s2), and if furthermore
the proof has length O(N2/s2), then Ω(N2/s2) of the configurations have space Ω(s).
Hence, these formulas have syntactic sequential resolution refutations in simultaneous
length O(N) and space O

�p
N
�
, but any semantic inference-parallel refutation with

the same parameters has Ω(N) configurations with space Ω(
p

N). We remark that this
result makes sense even in the weaker syntactic sequential model, since maximal space
Ω(
p

N) only implies a trivial Ω(N) cumulative space lower bound.
As already noted, semantic fully parallel resolution is an extremely powerful model,

since we can refute any formula with just one (parallel) axiom download step followed
by one (semantic) inference step, but if we limit the available space then the usefulness
of parallelism is restricted. Using Observation E.3.2 we can transfer the trade-offs above
from inference-parallel to fully parallel semantic resolution by sacrificing a factor s. For
example, the result below follows directly from this observation and Theorem E.3.10.

Corollary E.3.11. There is a family of 6-CNF formulas {FN}N∈N+ of size Θ(N) such that
for any s = O
�p

N
�
the formula FN has a syntactic sequential resolution refutation in size

O
�
N2/s2
�
and maximal clause space O(s), but any semantic parallel refutation of FN in

maximal clause space s requires cumulative clause space Ω(N2/s2).
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E.4 Pebbling Cumulative Space Lower Bounds and Trade-offs

In this section we return to pebbling and we show that two combinatorial properties of
graphs, namely G-robustness and subgraph-dispersion, yield lower bounds on pebbling
cumulative space. We also prove that for any constant s there are graphs that can be
pebbled in space s but where any such pebbling requires time Ω

�
ns−1
�
.

We first introduce some notation which we use throughout this section. Recall that
the time of a pebbling P = (P0, . . . ,Pt), where Pi = (Bi , Wi), is t(P) = t; the (maximal)
space is s(P) =maxi∈[t]|Bi |+ |Wi |; and the cumulative space is cc(P) =

∑
i∈[t]|Bi |+ |Wi |.

As mentioned in the introduction, we consider five different models of pebbling
games: sequential black (·), parallel black (∥), sequential black-white (bw), parallel-
black sequential-white (pbsw), and parallel black-white pebbling (∥bw), Given a DAG G
with one sink and a pebbling model M ∈ {·,∥, bw, pbsw,∥bw}, let S be the set of legal
M pebbling of G. The minimum space required to M-pebble G is defined as

sM(G) =min
P∈SΠs(P) . (E.2)

Similarly, the minimum time required to M-pebble G is

tM(G) =min
P∈SΠt(P) , (E.3)

and the minimum cumulative space required to M-pebble G is

ccM(G) =min
P∈SΠcc(P) . (E.4)

We omit the subscript M when it is clear from the context.

E.4.1 Robustness Implies Cumulative Space Lower Bounds

The first property we consider is G-robustness. Recall that a DAG G is said to be (e, d)-G-
robust if for every U ⊆ V (G) of size at most e it holds that there exists a graph H ∈ G of
size at least d that is a subgraph of G − U .

For the special case of depth-robustness, i.e., G-robustness when G is the class of
directed paths, it was proven in [ABP16] that if G is (e, d)-depth-robust then the cumu-
lative space complexity of parallel-black pebbling G is at least ed. We generalise this
result for other classes of DAGs G and other pebbling models.

Before enunciating the main theorem of this section, we state two facts which will
be used in the proof. Both these facts hold for any pebbling model we consider in this
paper.

Fact E.4.1. Any complete legal pebbling of a DAG G with only one sink must pebble all
vertices in G at least once.
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Fact E.4.2. Let G be a single-sink DAG, and H be a single-sink subgraph of G. If P =
(Pi ,Pi+1, . . . ,Pm) is a legal pebbling of G, then P ′ = (Pi ∩ H,Pi+1 ∩ H, . . . ,Pm ∩ H) is
a legal pebbling of H. Moreover, if P is a complete pebbling of G, then P ′ is a complete
pebbling of H.

The following notation is used throughout this section. Let G be a class of graphs
each with a single sink, let M be a pebbling model and let d be a positive integer. We
define

τd(G,M) =min
�
ΠM

t (H) : H ∈ G, |V (H)| ≥ d
	− 1 , (E.5)

that is, τd(G,M) is largest number such that any graph H ∈ G of size at least d requires
at least time τd(G,M) + 1 to be M-pebbled.

Theorem E.4.3. Let G be a class of graphs each with a single sink and let e and d be
positive integers. If G is an (e, d)-G-robust DAG then for any M ∈ {·,∥, bw, pbsw,∥bw} it
holds that ΠM

cc (G)> e ·τd(G,M).

Proof. Fix a pebbling model M ∈ {·,∥, bw, pbsw,∥bw} and let τd = τd(G,M). All state-
ments and all complexity measures in this proof refer to M.

We prove the contrapositive of the theorem statement, that is, we show that if
Πcc(G) ≤ eτd then there exists a set of vertices U ⊆ V (G), |U | ≤ e, such that no H ∈ G
is a subgraph of G − U and therefore G is not (e, d)-G-robust.

AssumeΠcc(G)≤ eτd and letP = (P0,P1, . . . ,Pt), where Pi = (Bi , Wi), be a pebbling
of G with minimal cumulative space complexity, that is

∑t
i=1|Bi |+ |Wi | = Πcc(G). For

i ∈ [0,τd − 1] let
Pi = {Pi ,Pi+τd

,Pi+2τd
, . . .} . (E.6)

Note that {P0,P1, . . . ,Pτd−1} form a τd -partition of the pebbling configurations in P.
Moreover, let

Ui = {v ∈ B j ∪Wj | P j ∈ Pi} (E.7)

for i ∈ [0,τd − 1]. By construction
∑τd−1

i=0 |Ui | ≤ Πcc(G) ≤ eτd . By an averaging argu-
ment at least one of the Ui ’s, say Ui∗ , has size at most e.

It remains to show that G − Ui∗ contains no subgraph H ∈ G of size (at least) d.
Suppose, for the sake of contradiction, that some H ∈ G of size at least d is a subgraph
of G − Ui∗ . By Fact E.4.2, P ′ = (P0 ∩ H,P1 ∩ H, . . . ,Pt ∩ H) is a complete pebbling of
H. However, V (H)∩Ui∗ = ;, that is, there are no pebbles on H in any configurations in
Pi∗ = {Pi∗ ,Pi∗+τd

,Pi∗+2τd
, . . .}. This implies that H must be completely pebbled between

Pi∗+ jτd
and Pi∗+( j+1)τd

for some j ∈ N. But this is a contradiction since, by definition of
τd , H requires at least time τd + 1 to be completely pebbled.

Let us first consider what Theorem E.4.3 implies for different pebbling models in
the case of depth-robustness, i.e., when G is the class of directed paths. For parallel
black pebbling, the notion of depth-robustness was already studied in [ABP16] where
they prove the following result.
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Corollary E.4.4 ([ABP16]). If G is an (e, d)-depth-robust graph, then the cumulative
space complexity of parallel-black pebbling G is at least ed.

We show that Theorem E.4.3 implies the same bound for black-white pebbling and
a somewhat weaker bound for parallel-black sequential-white pebbling.

Corollary E.2.6 (Restated). If G is an (e, d)-depth-robust DAG, then G requires sequen-
tial black-white cumulative space at least ed, and parallel-black sequential-white cumulat-
ive space at least e

p
d.

Proof. For sequential black-white lower bound, by Theorem E.4.3 it is enough to show
that the path on d vertices requires d + 1 time to sequential black-white pebble. This
follows trivially from Fact E.4.1 and the fact that in the sequential model at most one
pebble is placed on G per time step.

For the parallel-black sequential-white lower bound, again by Theorem E.4.3 it is
enough to show that the path on d vertices requires

p
d+1 time to pebble in this model.

Let L be a path on d vertices and let ℓ be the number of white pebbles placed on L
during the pebbling. There must be (at least) one subpath L′ of L of size (d−ℓ)/(ℓ+1)
that is never pebbled with a white pebble. By Fact E.4.1, each node in L′ must have been
pebbled at some point, so L′ must be completely pebbled with black pebbles. Since a
node can not be black pebbled before its predecessors are pebbled, placing black pebbles
requires time at least (d − ℓ)/(ℓ+ 1). Observing that we are sequential on placement
of white pebbles yields a total time for placements of at least ℓ+ (d − ℓ)/(ℓ+ 1) which
is greater than

p
d for ℓ ≥ 0, and hence a total time including removals of at leastp

d + 1.

Let us now consider the relation between predecessor-robustness and cumulative
space complexity. We first note that predecessor-robustness does not imply hardness for
parallel black pebbling since there are very shallow graphs which are predecessor-robust
(as, for example, the butterfly graphs discussed in Section E.2). However, for sequential
black-white pebbling it follow from Theorem E.4.3 that (e, d)-predecessor-robustness
implies cumulative space at least ed. In particular, this implies that the linear sized
grates of [Sch83] have Θ(n2) black-white cumulative space complexity and that butter-
fly graphs, which can be black pebbled with log n pebbles, require Θ(n2/ log n) black-
white cumulative space.

Corollary E.2.7 (Restated). If G is an (e, d)-predecessor-robust DAG, then G requires
sequential black-white cumulative space at least ed.

Proof. As was the case for the sequential black-white lower bound in Corollary E.2.6,
this corollary also follows trivially from Theorem E.4.3 and Fact E.4.1.



E.4. PEBBLING CUMULATIVE SPACE LOWER BOUNDS AND TRADE-OFFS 211

E.4.2 Dispersion and Cumulative Space Trade-offs

In [ABP16] it is proven that (path-)dispersion implies cumulative space lower bounds
for parallel black pebbling. In this section we introduce the more general property
subgraph-dispersion and show that it implies both cumulative space lower bounds and
cumulative space trade-offs for black-white pebbling. We also prove that random per-
mutations are path-dispersed and therefore exhibit such trade-offs.

E.4.2.1 Dispersion Implies Cumulative Space Trade-offs

Intuitively, A DAG is (k, z, g)-path-dispersed if it contains a path that can be partitioned
into k segments such that each segment has at least z disjoint incoming paths of length
at least g. The following definitions make this concept precise.

Definition E.4.5. A DAG is (k, z, g)-path-dispersed if it contains a directed path L that
can be partitioned into k subpaths L1, L2, . . . , Lk such that for every L i there are z dir-
ected paths ϕ i

1,ϕ i
2, . . . ,ϕ i

z , each with at least g vertices, that satisfy the following:

• for every i ∈ [k] and every j, j′ ∈ [z] such that j ̸= j′ it holds that ϕ i
j ∩ϕ i

j′ = ;;
• for every i, i′ ∈ [k] and every j ∈ [z], it holds that L i ∩ϕ i′

j = ;; and
• for every i ∈ [k] and every j ∈ [z] there is a vertex v i

j ∈ L i such that there is an
edge from the sink of ϕ i

j to v i
j and moreover, if j′ ∈ [z] and j ̸= j′, then v i

j ̸= v i
j′ .

Note that the paths ϕ i
j coming into one subpath L i have to be disjoint among them-

selves, but not necessarily among paths coming into other subpaths.

Definition E.4.6. A DAG is (k, z, g)-subgraph-dispersed if it contains k disjoint sub-
graphs L1, L2, . . . , Lk such that for every L i there are z subgraphs ϕ i

1,ϕ i
2, . . . ,ϕ i

z , each
with at least g vertices, that satisfy the following:

• for every i ∈ [k] and every j, j′ ∈ [z] such that j ̸= j′ it holds that ϕ i
j ∩ϕ i

j′ = ;;
• for every i, i′ ∈ [k] and every j ∈ [z] it holds that L i ∩ϕ i′

j = ;; and
• for every i ∈ [k] and every j ∈ [z] there is a vertex v i

j ∈ L i such that v i
j is the only

sink of the subgraph induced by {v i
j}∪ V (ϕ i

j) and moreover, if j′ ∈ [z] and j ̸= j′,
then v i

j ̸= v i
j′ .

Note that a (k, z, g)-path-dispersed graph is also (k, z, g)-subgraph-dispersed. Al-
though we prove that subgraph-dispersion implies high cumulative space complexity,
we only apply this result to obtain cumulative space trade-offs on graphs that are path-
dispersed.
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Lemma E.4.7. If G is a (k, z, g)-subgraph-dispersed graph, then the black-white cumulat-
ive space complexity of pebbling G is

Πbw
cc (G)≥ k min{gz/2, z2/4} . (E.8)

Furthermore, if P is a sequential black-white pebbling of G in space Πs(P) = s ≤ z/2, then

Πcc(P)≥ k min{g(z − s), g(z − 2s) + s2} . (E.9)

Proof. Consider k disjoint subgraphs, L1, L2, . . . , Lk, and the corresponding subgraphs
ϕ i

j for i ∈ [k] and j ∈ [z] that witness the fact that G is (k, z, g)-subgraph-dispersed
graph. We refer to the subgraphs ϕ i

j as incoming-subgraphs.
We keep an account for each L i . For each pebbling move, we charge some of the

pebbles in the configuration to each account, ensuring that we do not charge the same
pebble in the same configuration to more than one account. It is enough to prove that
the number of pebbles charged to each L i is at least min{gz/2, z2/4} and, if Πs(P) =
s ≤ z/2, at least min{gz, g(z − 2s) + s2}.

We charge pebbles according to the following rules:

1. When a black pebble is placed or a white pebble is removed from L i , charge all
pebbles on incoming-subgraphs to the account of L i .

2. When a black is placed or a white is removed from some incoming-subgraph,
charge, for all i ∈ [k], all pebbles on L i to the account of L i .

Observe that at every configuration a pebble is never charged to two different sup-
graphs L i . This is so because if a black pebble is placed or a white pebble is removed
from L i then it is not being placed or removed from any ϕ nor from any other L i′ , i ̸= i′,
because these subgraphs are disjoint and hence any pebble charged at this configura-
tion is only being charged to L i . Moreover, if a black is placed or a white is removed
from some ϕ i

j , then the pebbles charged to each L i are only the pebbles on L i , and since
these subgraphs are disjoint, no pebble is being charged twice.

We now focus on a given subgraph L i , so we drop the superscript and denote it
L. We consider a time interval during which L is pebbled, i.e., there is no pebble on L
before the the interval, every vertex in L is pebbled at some point, there is no pebble on
L after the interval, and there is some pebble on L at all times during the interval. This
interval exists because L has a unique sink.

We order incoming-subgraphs according to the time they are first “used” for pebbling
L, i.e., a black pebble is placed or a white pebble is removed from the vertex in L which
is the sink of the incoming-subgraph. Let ϕ1,ϕ2, . . . ,ϕz be the incoming-subgraphs
according to this ordering. Note that when ϕ j is used there is at least one pebble in ϕ j .

For each incoming-subgraph ϕ j we distinguish three cases depending on when, dur-
ing the pebbling of L, the incoming-subgraph ϕ j is completely unpebbled.
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Case 1 (01): There is a pebble on ϕ j from the moment it is used until the end of the
interval. We charge at least z − j pebbles according to rule 1, since there is a
pebble on ϕ j when the last z − j incoming-subgraphs are used.

Case 2 (10): There is a pebble on ϕ j from the beginning of the interval until the mo-
ment it is used. We charge at least j pebbles according to rule 1, since there is a
pebble on ϕ j when the first j incoming-subgraphs are used.

Case 3 (010): There is no pebble on ϕ j at the beginning nor at the end of the interval.
Note that in this case ϕ j must be completely pebbled within the interval. We
charge at least |ϕ j | ≥ g pebbles according to rule 2, since there is always a pebble
on L while ϕ j is pebbled.

Consider a partition Φ01
.∪Φ10

.∪Φ010 of the incoming-subgraphs according to what
case they fall into. If there is an incoming-subgraph that falls into both Case 1 and 2,
then we can choose arbitrarily whether to include it in Φ01 or Φ10. Let c(L) be the
number of pebbles charged to the account of L. We have that c(L) ≥ ∑ j∈Φ01

(z − j) +∑
j∈Φ10

j+ g|Φ010|. The minimum is attained when {z− j : ϕ j ∈ Φ01}= { j : ϕ j ∈ Φ10}=
[|Φ01|], and therefore c(L)≥ |Φ01|2 + g|Φ010|.

Without any restriction on the maximal space, there are two possible minima: if
g ≥ z/2, then the minimum is attained when |Φ01|= |Φ10|= z/2, in which case we get
Πcc(L) ≥ z2/4; and if g < z/2 then the minimum is attained when |Φ01| = |Φ10| = g
and |Φ010|= z − 2g, in which case we get Πcc(L)≥ g2 + g(z − 2g) = g(z − g)≥ gz/2.

If we enforce that the maximal space is at most s ≤ z/2, then |Φ01| ≤ s and |Φ10| ≤ s
and we again get two minima, analogously to the two above. If g ≥ s the minimum is
attained when |Φ01|= |Φ10|= s and |Φ010|= z− 2s, giving Πcc(L)≥ g(z− 2s)+ s2; and
if g < s then the minimum is again attained when |Φ01|= |Φ10|= g and |Φ010|= z−2g
and yields Πcc(L)≥ g(z − g)≥ g(z − s).

E.4.2.2 Permutation Graphs are Disperse

We now use Lemma E.4.7 to show that two subclasses of permutation graphs, namely
bit-reversal and random permutation graphs, exhibit cumulative space trade-offs.

Definition E.4.8. Given an interval [a, b] and a permutation σ ∈ S([a, b]), the per-
mutation graph G(σ) is the graph G with vertex set {xa, xa+1, . . . , xb, ya, ya+1, . . . , yb}
and edges {(x i , x i+1), (yi , yi+1) | a ≤ i < b} ∪ {(x i , yσ(i)) | a ≤ i ≤ b}.

Recall that for n = 2m the bit-reversal permutation reverses the binary represent-
ation of a number j ∈ [0, n − 1], i.e., if j = (b1 . . . bm)(2) then σ( j) = (bm . . . b1)(2).
Lemma E.4.7 implies the following theorem, which is a more precise version of The-
orem E.2.10.
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Theorem E.4.9. If G is a bit-reversal permutation graph on 2n vertices, then the sequential
black-white cumulative space complexity of pebbling G is

Πbw
cc (G)≥ n3/2

4
, (E.10)

and any sequential black-white pebbling P of G in space s = Πs(P) is such that

Πcc(P)≥ n2

9s
+

n
6

. (E.11)

Proof. For every z ≤ n = 2m that is a power of 2 it is easy to see that G is (n/z, z, n/z)-
path-dispersed by partitioning the path (y1, y2, . . . , yn) in G in n/z paths of length z.
From Lemma E.4.7 we get that Πbw

cc (G) ≥ n3/2/4 by taking z = 2⌈m/2⌉. Moreover,
Lemma E.4.7 also implies that if P is a sequential black-white pebbling of G in space
s = Πs(P)≤ z/2, then

Πcc(P)≥ n2(z − 2s)
z2

+
ns
z

min
nn

z
, s
o

. (E.12)

If s ≥ n/3, then Πcc(P) ≥ n2

9s +
n
6 holds trivially. So let us assume that s ≤ n/3, and

hence by setting z = 2⌈log3s⌉, we have that z ≤ n. Note that 3s ≤ z ≤ 6s, and that
min3s≤z≤6s(z−2s)/z2 = 1/9s. The result follows by observing that min{n/z, s} ≥ 1.

We now focus on the study of random permutation graphs. Consider the following
distribution of permutation graphs.

Let j1, j2 . . . , jn, k1, k2 . . . , kn be integers in [1, n] chosen independently uniformly at
random. Let G′ = (X ∪ Y, A) be a digraph such that

• X = {x1, x2, . . . , xn},
• Y = {y1, y2, . . . , yn}, and
• A= {(x i , x i+1), (yi , yi+1) | 1≤ i < n} ∪ {(x ji , yki

) | 1≤ i ≤ n}.
We perform two operations on G′ to obtain the graph G: edge contraction and degree
reduction. Edge contraction consists of contracting one by one any edge (x i , x i+1) or
(yi , yi+1) that has an endpoint which is not adjacent to any vertex in the opposite par-
tition. Degree reduction consists of substituting vertices of high degree by paths and
distributing the edges adjacent to that vertex to the vertices on the path. Formally, for
all vertices x ∈ X that are adjacent to d ≥ 2 vertices in Y , say {yi1 , . . . , yid }, substitute
x by a path on d vertices, say {x i1 , . . . , x id }, and for ℓ ∈ [d] include the edge (x iℓ , yiσ(ℓ)),
where σ is a random permutation in Sd . The analogous operation is done for vertices
y ∈ Y of high degree.

We claim this distribution is equivalent to choosing a permutation uniformly at ran-
dom, but we omit the proof. We are now ready to prove the following theorem.
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Figure E.2: An example of a random graph G′ and its corresponding bipartite graph H,
for k = 4 and z = 3

Proposition E.4.10. A random permutation graph is asymptotically almost surely an
(αk, (β − 1/2)z,αk)-path-dispersed graph, for α,β < 1, α+ β − αβ ≪ (1− e−n/kz) and
kz = O(n).

Proof. Let G′ be a digraph sampled as described above, and let G be any graph ob-
tained from G′ by edge contraction and degree reduction. We define a bipartite graph
H from G′ in the following manner. Let H = ((U , V ), F) with U = {u1, u2, . . . , uk}
and V = {v1, v2, . . . , vz}. Each node ui ∈ U is a super-node that represents the set
{x(i−1)n/k+1, x(i−1)n/k+2, . . . , x in/k} and similarly each node vi ∈ V is a super-node that
represents the set {y(i−1)n/z+1, y(i−1)n/z+2, . . . , yin/z}, where for simplicity we assume
both k and z divide n. For a node w ∈ U ∪ V let R(w) ⊂ X ∪ Y be the set of ver-
tices that w represents. There is an edge from u ∈ U to v ∈ V if there is at least one
edge from some vertex in R(u) to some vertex in R(v) (see Figure E.2).

Proposition E.4.10 follows from the following claim which we prove later on.

Claim E.4.11. Let Z be an integer random variable in [1, kz] that represents the number
of edges in H. Let p = (1−1/kz)n and q = (1−1/(kz−1))n. Then for any 0< δ ≤ (1−p)

Pr[Z ≤ δkz]≤ p(q− p)
(1− p−δ)2 .

Note that limn→∞ q − p = 0 and that limn→∞ p≪ 1 if kz = O(n). This means that
for any δ ≪ (1− p) the probability that Z is less than δkz goes to 0 as n increases.
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In other words, with high probability the number of edges in the bipartite graph is
extremely close to its expected value.

All that remains to show is that if Z > δkz, then G is (αk, (β − 1/2)z,αk)-path-
dispersed. The proposition then follows by choosing δ = α+ β −αβ ≪ (1− e−n/kz) ≤
(1− p) so that, by Claim E.4.11, the probability that G is not path-dispersed goes to 0
as n increases.

Suppose Z > δkz. Then for any α, β that satisfy α+β−αβ ≤ δ there are αk nodes
in U with outdegree at least βz, and βz nodes in V with indegree at least αk. This is
indeed the case, because if there were not αk nodes in U with outdegree at least βz,
then there would be strictly less than (1−α)βkz+αkz = (α+β −αβ)kz ≤ δkz edges
in H, and the same holds if there were not βz nodes in V with indegree at least αk.

We say a node u ∈ U (v ∈ V , respectively) is significant if it has outdegree (indegree,
respectively) at least βz (αk, respectively). Let u ∈ U be a significant node and let
vi1 , vi2 , . . . , viℓ be the significant nodes adjacent to u, where i j < ik if j < k. Observe that,
since u has outdegree at least βz and at least βz of the z nodes in V are significant, it
must be the case that ℓ≥ (2β − 1)z.

Now note that between any vertex (in G) represented by vi j
and any vertex repres-

ented by vi j+2
there is a path of length at least αk (since vi j+1

has indegree at least αk).
By considering only vi j

for j odd, we can conclude that G is (αk, (β − 1/2)z,αk)-path-
dispersed.

Proof of Claim E.4.11. Let us consider the probability of a given edge not being present
in H. Let u, u′ ∈ U and v, v′ ∈ V be nodes chosen independently at random conditioned
on u ̸= u′ or v ̸= v′. We define p = Pr[uv ̸∈ E] = (1−1/kz)n and q = Pr[u′v′ ̸∈ E | uv ̸∈
E] = (1− 1/(kz − 1))n, so that Pr[uv ̸∈ E and u′v′ ̸∈ E] = pq.

From Chebyshev’s inequality, we have that

Pr[Z ≤ δkz]≤ Pr[|E[Z]− Z | ≥ |E[Z]−δkz|] (E.13)

≤ Var(Z)
(E[Z]−δkz)2

(E.14)

=
E[Z2]− E[Z]2

(E[Z]−δkz)2
. (E.15)

By linearity of expectation we have that E[Z] = kz(1− p). To compute E[Z2], let
X v be an integer random variable in [1, z] that represents the degree of v ∈ V . Note
that Z =
∑

v∈V X v . Let Yuv be a binary random variable that indicates whether uv ∈ E.
We observe that

E[X 2
v ] =
∑

u,u′∈U

E[YuvYu′v] = z(1− p) + z(z − 1)(1− 2p+ pq) , (E.16)

and that for v′ ̸= v

E[X vX v′] =
∑

u,u′∈U

E[YuvYu′v′] = z2 Pr[Yuv = 1 and Yu′v′ = 1] = z2(1−2p+ pq) . (E.17)
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Therefore, we obtain

E[Z2] =
∑

v,v′∈V

E[X vX v′] (E.18)

= k E[X 2
v ] + k(k− 1)E[X vX v′ ̸=v] (E.19)

= (kz)2(1− 2p+ pq)− kzp(q− p) . (E.20)

Thus, we can conclude that

Pr[Z ≤ δkz]≤ E[Z2]− E[Z]2

(E[Z]−δkz)2
≤ (kz)2p(q− p)
(kz(1− p)−δkz)2

≤ p(q− p)
(1− p−δ)2 .

We can now conclude that random permutation graphs exhibit cumulative space
trade-offs. The theorem below is a more precise version of Theorem E.2.11.

Theorem E.4.12. If G is a random permutation graph, then asymptotically almost surely
the black-white cumulative space complexity of pebbling G is

Πbw
cc (G)≥ n3/2/125 , (E.21)

and any black-white pebbling P of G in space s = Πs(P) is such that

Πcc(P)≥ n2/1250s . (E.22)

Proof. Let k = n/4z, α = 4/5 and β = 9/10, so that α+ β − αβ = 98/100 and (1−
e−n/kz) = (1−e−4)> 0.9816. Note that the conditions of Proposition E.4.10 are satisfied
and we can therefore conclude that with high probability G is (n/5z, 2z/5, n/5z)-path-
dispersed. By setting z =

p
n, Lemma E.4.7 implies that Πbw

cc (G) ≥ n3/2/53; and by
setting z = 10s, Lemma E.4.7 implies that any black-white pebbling P of G in space s
is such that Πcc(P)≥ n2/1250s.

E.4.3 Pebbling in Small Space Can Require Maximum Length

In this section we prove Theorems E.2.12 and E.2.13 which give tight upper and lower
bounds for black and for black-white pebbling a k-layer bit-reversal graph.

The graphs we work with are stacks of permutation graphs, which as mentioned in
Section E.2 consist of k directed path graphs of length n and k−1 layers of bit-reversal
permutations between the vertices 1, 2, . . . , n in consecutive paths. Layer 1 is the layer
that contains the source, and layer k contains the sink.

Definition E.4.13. Given an interval [a, b] and a permutation σ ∈S([a, b]), a k-layer
permutation graph is the graph B = (W, E) such that W = {x i, j | (i, j) ∈ [k]× [a, b]}
and E = {(x i, j , x i, j+1) | (i, j) ∈ [k]×[a, b−1]}∪{(x i, j , x i+1,σ( j)) | (i, j) ∈ [k−1]×[a, b]}.
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More concretely we use the bit-reversal permutation which for n = 2m reverses
the binary representation of a number j ∈ [0, n − 1], i.e., if j = (b1 . . . bm)(2) then
σ( j) = (bm . . . b1)(2). Observe that the bit-reversal permutation is an involution, that is
σ2 = 1. For simplicity we assume that m is even so that

p
n is an integer.

As a warm-up before proving general upper bounds, we begin by proving a k
p

n
upper bound on space. The main ideas we need for the general case are already present
in the proof of Lemma E.4.14.

Lemma E.4.14. Let B be a k-layer bit-reversal graph. There is a sequential black pebbling
P of G in space Πs(P) = k

p
n+O(1) and time Πt(P)≤ k2n3/2.

Proof. We divide each path in
p

n blocks of length
p

n. Observe that the image of a block
are
p

n evenly separated vertices at distance
p

n (see Figure E.3, where the predecessors
of the black block are marked in grey).

We pebble the graph layer by layer, from layer 1 to layer k, keeping the invariant
that when we begin to pebble a layer i there are

p
n pebbles in each layer below, one at

the beginning of each block. With “pebble layer i” we mean that we are pebbling it for
the first time. If we are currently pebbling layer i, we call layers even or odd depending
on the distance to layer i. We have two types of operations, each of which consists of
several moves:

1. advance a (new) pebble through a block on an odd layer, and

2. advance each pebble on an even layer to the next position.

To pebble layer i we add a pebble at the beginning of the layer (which we can
by the invariant) and then we proceed in

p
n rounds. In a round we apply

p
n times

operation 2 so that every pebble in layer i advances
p

n steps, and then we add a pebble
at the beginning of layer i again. At each round the number of pebbles in the layer
increases by 1, until after round

p
n we have

p
n pebbles on positions that are multiples

of
p

n.
We maintain the following invariant between operations: there are

p
n pebbles on

each layer below, and while pebbles on odd layers are on positions that are multiples
of
p

n, after the j-th operation on layer i, pebbles on even layers are on positions con-
gruent to j modulo

p
n. Observe that after a round, this is

p
n operations, all pebbles

are on positions that are multiples of
p

n.
We prove inductively that given the operation invariant the cost of an operation on

layer ℓ is ℓ
p

n. If want to advance all
p

n pebbles on an even layer ℓ to the next position,
say a position that is congruent to j modulo

p
n, we just need to advance one (new)

pebble along the preimage of the destination vertices, which is the σ−1( j)-th block in
layer ℓ−1, and at each of these advances we are able to advance one of the pebbles on
layer ℓ. Since there is a pebble at the beginning of each block on layer ℓ−1, this can be
done by one application of operation 1 on layer ℓ−1, which by the induction hypothesis
has cost (ℓ− 1)

p
n. The total cost is therefore

p
n+ (ℓ− 1)

p
n.
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Figure E.3: The predecessors of a block are evenly distributed

Figure E.4: An operation on layer i requires the same operation on layer i − 2

If instead we want to advance a pebble through blockσ−1( j) on an odd layer ℓ, then
we need to have pebbles in the preimage of the block, which is the set of vertices in layer
ℓ− 1 that are congruent to σ−2( j) = j modulo

p
n. By the operation invariant, the set

of vertices in layer ℓ−1 that are congruent to j−1 modulo
p

n all have pebbles, so it is
enough to advance each pebble on layer ℓ−1 to the next position (see Figure E.4, where
the configuration after the 2nd operation is marked in black and the nodes needed for
the 3rd operation are marked in grey). This can be done with by one application of
operation 2 on layer ℓ−1, which by the induction hypothesis has cost (ℓ−1)

p
n. Again

the total cost is
p

n+ (ℓ− 1)
p

n.
Therefore, the cost of pebbling layer i is in3/2 since it requires n applications of

operation 2. We can conclude that the total time of pebbling the graph, that is, the time
needed to pebble each layer, is

∑k
i=1 in3/2 ≤ k2n3/2.

Lemma E.4.15. Let B be a k-layer bit-reversal graph. There is a sequential black-white
pebbling P of B in space Πs(P) = 2k

p
n+O(1) and time Πt(P)≤ kn.

Proof. We use the same approach as the black-only case, except that nowwe can initially
setup each layer with white pebbles, and we convert these white pebbles into black
whenever we have the opportunity.
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Figure E.5: The predecessors of evenly distributed blocks are evenly distributed blocks

More precisely, we initially place k
p

n white pebbles, one at the beginning of each
block. Then we apply

p
n even layer operations on layer k. Observe that at the end of

each operation on each odd layer we replace a white pebble with a black pebble, and
at the very end we replace all white pebbles with black pebbles on each even layer.

The final cost is the cost to do
p

n advance operations on the last layer, this is time
kn.

The general upper bounds use the same approach, except that some times the blocks
we want to pebble through do not have a pebble at the beginning, so we have to do a
setup phase. By choosing the order in which we pebble blocks, however, we are able to
reuse the same setup for pebbling s consecutive blocks, thus saving on time.

Lemma E.4.16. Let B be a k-layer bit-reversal graph. Then for any s such that k + 1 ≤
s ≤pn there is a sequential black pebbling P of B in space Πs(P) = 2k2s+O(1) and time
Πt(P)≤ nk/s2k−3 +O(nk−1/s2k−5).

Proof. We divide each path in n/s blocks of length s. Observe that the preimage of s
blocks at distance n/s are s (different) blocks at distance n/s (see Figure E.5).

Our approach is again to pebble the graph layer by layer, but now we only keep s
pebbles in each layer. More precisely, when we begin to pebble a layer i there are s
pebbles on positions that are multiples of n/s on the layers below.

We have one type of operation: advance every pebble on layer i through a block.
This operation combines the two operations on Lemma E.4.14, and in fact it uses them
internally. In order to apply an operation on layer i, we setup the pebbles on each layer
below so that layer ℓ is the preimage of layer ℓ+1 for ℓ ∈ [i−1]. Then, for s rounds, we
do the following, in ascending layer order. On an even layer, we advance each pebble
to the next position. On an odd layer, we advance a pebble through whichever block
happens to be the image of the previous layer.

Let T (i) be the time of applying one operation on layer i and Σ(i) =
∑i
ℓ=1 T (i). The

time to setup layer ℓ is at most the time of applying n/s2 operations on layer ℓ, which
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gives a cost of
∑
ℓ∈[i−1] n/s

2T (ℓ) for the setup phase. Then for each round we only need
to do s moves in each layer, which gives a cost of is2 for s rounds.

We get the recurrence

T (1) = s2 T (i) = (n/s2)Σ(i − 1) + is2

Σ(1) = T (1) Σ(i) = Σ(i − 1) + T (i) ,

which we can solve to get

T (i) =
∑
ℓ∈[i]

�
i

ℓ− 1

�
ni−ℓ/s2(i−ℓ−1)

Σ(i) =
∑
ℓ∈[i]

�
i + 1
ℓ− 1

�
ni−ℓ/s2(i−ℓ−1) .

The total time to pebble the graph is the time needed for n/s operations on each
layer from 1 to k, that is (n/s)Σ(k) = nk/s2k−3 +O(nk−1/s2k−5).

Lemma E.4.17. Let B be a k-layer bit-reversal graph. Then for any s such that k + 1 ≤
s ≤ pn there is a sequential black-white pebbling P of B in space Πs(P) = 2k2s + O(1)
and time Πt(P)≤ nk/s2k−2 +O(nk−1/s2k−4).

Proof. As in the proof of Lemma E.4.15, we begin by adding s white pebbles on each
layer, so that we only need n/s2 operations per layer.

We prove the lower bounds for space smaller than
p

n since for space larger thanp
n we can just observe that a k-layer permutation graph contains a 2-layer permutation

graph and use the lower bounds in [LT82].

Lemma E.4.18. Let B be a k-layer bit-reversal graph. Let P be a sequential black pebbling
of B in space Πs(P) = s ≤pn/4. Then

Πt(P)≥ nk/23ks2k−3 .

Proof. It is enough to prove that T ≥ nk/23k−1s2k−3 for s a power of 2. Consider a
pebbling in space s. We divide each path in n/2s blocks of length 2s.

We show that pebbling a block, this is starting with an empty block and placing a
pebble on the sink, on the i-th layer requires time ni−1/23i−2s2i−4 for i ≥ 2. Observe
that to pebble the graph we have to consecutively pebble n/2s blocks on the k-th layer,
for a total of nk/23k−1s2k−3 as we wanted to show.

For i = 2, consider the 2s predecessors in layer 1 of the block we want to pebble. By
construction of the bit-reversal permutation, the distance between these predecessors
is n/2s. Since there are at most s − 1 pebbles in layer 1, there are at least s + 1 such
predecessors whose closest pebble is at distance n/2s. Therefore, at least n/2 steps on
layer 1 are needed before each predecessor has a pebble.
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For i > 2, by the same argument there is at least one predecessor in layer i−1 whose
closest pebble is at distance n/2s, therefore we can find n/4s2−2≥ n/8s2 empty blocks
in layer i − 1 that need to be consecutively pebbled during the time interval we are
considering. By induction hypothesis, pebbling a block on the (i − 1)-th layer requires
time ni−2/23i−5s2i−6. Since the blocks are pebbled in disjoint time intervals we can add
the costs, so the total time is ni−1/23i−2s2i−4.

Observe that in the induction step, even if we try to use the fact that there are s+ 1
blocks in layer i − 1 that need to be pebbled, we cannot simply sum the individual cost
of each block: their pebbling times can overlap, so a pebble placed in layer i−1 or below
and used for one block in layer i may also be used for another block in layer i.

Lemma E.4.19. Let B be a k-layer bit-reversal graph. Let P be a sequential black-white
pebbling of B in space Πs(P) = s ≤pn/4. Then

Πt(P)≥ nk/23k−3s2k−2 .

Proof. It is enough to prove that T ≥ nk/23k−3s2k−2 for s a power of 2. Consider a
pebbling in space s. As in the proof of Lemma E.4.18, we divide each path in n/2s
blocks of length 2s.

For black-white pebbling we say that a block is pebbled during some time interval if
it is empty at the beginning, there is a pebble at the end of the block at some point in the
interval, and there are only black pebbles left at the end of the interval. In contrast to the
proof of Lemma E.4.18, we cannot assume that blocks need to be pebbled consecutively,
but we can still show that, for any i ∈ [k], in any time interval of length ni−1/23i−4s2i−4

at most s blocks are pebbled.
This is true for i = 1. For i > 1, consider a set of s blocks and the first time interval in

which a block is completely pebbled. Arguing analogously to the proof of Lemma E.4.18,
at the beginning of the interval there are s vertices in layer i−1 whose closest pebble is
at distance n/2s, so we can find s(n/4s2 − 2) ≥ n/8s blocks in layer i − 1 that are also
empty at the beginning of the interval. By induction hypothesis, we can find n/8s2 sets
of blocks that are being pebbled in consecutive time intervals, and each such interval
lasts for at least ni−2/23i−7s2i−6 steps. Now, it is possible that some of these moves
could be reused to make progress on some other block in layer i than the one we are
considering, but since the pebbling uses only s pebbles and we assumed that this is the
first block to be pebbled, there are at most s − 1 other blocks on layer i that may also
finish being pebbled, those that already had a pebble on them. At the end of the time
interval, we discard these blocks from the set, consider the next time interval in which
a block is completely pebbled, and repeat until we finish handling all blocks.

Observe that to pebble the graph we have to pebble n/2s blocks on the k-th layer,
and since we can only pebble at most s blocks in an interval of length nk−1/23k−4s2k−4

we need at least n/2s2 intervals of this length. This gives a total of nk/23k−3s2k−2 steps,
as stated in the lemma.
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E.5 Concluding Remarks

In this paper we study space complexity with a focus not on peak memory usage but
on aggregated memory consumption over the whole computation. We consider two
computational models, namely pebble games on DAGs and the resolution proof system
in proof complexity.

For black-white pebbling we prove optimal cumulative space lower bounds and also
time-space trade-offs where in order to achieve optimal time the space needs to be large
not only at a single point in time but throughout essentially the whole computation. We
do so by studying the concepts of depth-robustness and dispersion of graphs, drawing
on and extending work in [AB16, AS15, ABP16] and other papers, and proving that
different graph families of interest possess these properties.

In the context of proof complexity we are not aware of the cumulative space measure
having been studied before, and so our first contribution here is to give a suitable formal
definition, and also to consider different, more or less parallel, versions of the resolution
proof system in which it makes sense to study cumulative space. We then use, and
slightly extend, the reductions between pebbling and resolution in [BN08, BN11] to
transfer our lower bounds and trade-off results for pebbling also to resolution.

Since, to the best of our knowledge, ours is the first paper to study cumulative space
both for black-white pebbling and for proof complexity, it is perhaps not so surprising
that there is a wealth of open problems that this paper does not resolve. Below, we
briefly discuss some possible directions for future research.

One set of questions on which we make progress but which we do not answer com-
pletely concern the relation between maximal space and cumulative space. For sequen-
tial black-white pebblings of n-vertex DAGs we prove an optimalΩ

�
n2
�
cumulative space

lower bound for a particular family of DAGs, but for graphs that can be pebbled in max-
imal space O(log n) we only obtain a Ω

�
n2/ log n
�
cumulative space lower bound and

for graphs that can be pebbled in space O(1) the best cumulative bound we can get
is Ω
�
n3/2
�
. Could it be the case that there are graphs that can be pebbled in maximal

space O(1) but nevertheless require cumulative space Ω
�
n2
�
? Or do strong enough cu-

mulative space lower bounds by necessity imply also nontrivial maximal space lower
bounds?

We briefly mentioned a pebble game between sequential black-white and parallel
black-white pebbling, the parallel-black sequential-white game, as an example of how
to apply the depth-robustness lemma to other pebbling models. Does this pebble game
have other interesting properties or applications?

It has been shown for parallel black pebbling that extremal depth-robustness is both
necessary and sufficient for a graph to have high cumulative space complexity. We
prove that for black-white pebbling predecessor-robustness is sufficient to imply high
cumulative space, but leave open whether this condition is necessary or not.

For standard time-space trade-offs in sequential pebbling, it was shown in [LT82]
that bit-reversal DAGs have a black pebbling trade-off of the form t = Θ

�
n2/s
�
whereas
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for black-white pebbling the trade-off is a slightly weaker t = Θ
�
n2/s2
�
. It was con-

jectured in [LT82] that there are other permutation graphs for which the black-white
pebbling trade-off could also be shown to be an optimal t = Θ

�
n2/s
�
. One natural

candidate class of graphs to consider in this context are graphs obtained from random
permutations, and this is the original reason why we were interested to study them in
this paper. So far we were only able to obtain trade-offs with the same parameters as for
bit-reversal DAGs, but it is an interesting question whether our tools could be sharpened
to prove even stronger trade-offs results for random permutation graphs.

Turning to our proof complexity results, they can be seen to be yet another contri-
bution to the sequence of papers [Nor09a, NH13, BN08, Nor12, BN11] obtaining space
bounds and time-space trade-offs in proof complexity by instead studying pebble games
and reductions between pebblings of DAGs and resolution refutations of so-called peb-
bling formulas defined in terms of these DAGs. While these connections have turned out
to be very fruitful, it would also be interesting to go beyond pebbling formulas and ex-
plore whether cumulative space results could be obtained for, e.g., Tseitin formulas on
long and narrow rectangular grids as studied in [BBI16, BNT13] or for other formulas.

One motivation behind our models of parallel resolution was the connection to par-
allel SAT solving, but our models do not take into account practical limitations such
as the number of computing nodes or the communication between nodes. Could there
be natural ways to incorporate such limitations, and could this also provide a better
understanding of parallel resolution?

Another, somewhat related, question is whether formulas possessing strong cumulat-
ive space lower bounds are hard also in practice for (sequential or parallel) SAT solvers.
Just maximal space lower bounds do not seem to be sufficient to imply practical hard-
ness, as shown, e.g., in the fairly extensive empirical experiments on pebbling formulas
in [JMNŽ12], but perhaps cumulative space could be a more relevant concept in this
context.

Finally, it can be noted that our study of cumulative space in proof complexity as
initiated in this paper is limited to the resolution proof system. This is mostly because
resolution is the proof system where space complexity is best understood, and where
the toolbox for studying these questions is most well developed. However, different
concepts of maximal space and time-space trade-offs have been studied also for other
proof systems such as polynomial calculus [ABRW02, BNT13, BG15, FLM+13, FLN+15]
and cutting planes [dRNV16, GPT15, GP18, HN12], and it would be interesting to
extend the study of cumulative space to these proof systems.
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