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ABSTRACT
We develop a technique for proving lower bounds in the setting of

asymmetric communication, a model that was introduced in the

famous works of Miltersen (STOC’94) and Miltersen, Nisan, Safra

and Wigderson (STOC’95). At the core of our technique is a novel

simulation theorem: Alice gets a p × n matrix x over F2 and Bob

gets a vector y ∈ Fn
2
. Alice and Bob need to evaluate f (x · y) for a

Boolean function f : {0, 1}p → {0, 1}. Our simulation theorems

show that a deterministic/randomized communication protocol

exists for this problem, with cost C · n for Alice and C for Bob, if

and only if there exists a deterministic/randomized parity decision
tree of cost Θ(C) for evaluating f .

As applications of this technique, we obtain the following results:

(i) The first strong lower-bounds against randomized data-struc-

ture schemes for the Vector-Matrix-Vector product problem over F2.

Moreover, our method yields strong lower bounds even when the

data-structure scheme has tiny advantage over random guessing.

(ii) The first lower bounds against randomized data-structures

schemes for two natural Boolean variants of Orthogonal Vector

Counting.

(iii) We construct an asymmetric communication problem and

obtain a deterministic lower-bound for it which is provably bet-

ter than any lower-bound that may be obtained by the classical

Richness Method of Miltersen et al.. This seems to be the first

known limitation of the Richness Method in the context of proving

deterministic lower bounds.
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1 INTRODUCTION
A central question in theoretical computer science is proving lower

bounds on the time needed to solve various algorithmic problems.

For general computation this is extremely difficult; indeed, over the

past many decades there has been only limited progress in this area

despite great effort. One of the main available techniques to prove

such lower bounds is the analysis of the flow of information during

computation. The area of communication complexity is devoted

entirely to the analysis of this information flow.

Data structure problems are computational problems having a

well structured form, where information bottlenecks can often be

established via communication complexity. In a static data structure
problem we have a domain D of possible data, a domain Q of

possible queries and a function f : D × Q → A where f (x ;y)
represents the answer to query y on data x . The goal is to store

the data x in memory, using space as efficiently as possible, so that

given a query y we can evaluate f (x ;y) quickly.1 A major theme

of research is to understand the space-query tradeoffs inherent to

such problems.

This paper explores this theme in data structures with problems

related to matrix-vector multiplication. In the vector-matrix-vector

problem VMVn×n , the data are matrices x ∈ Fn
2

over some field

F, queries are pairs of vectors (q,y) ∈ Fn × Fn , and the solicited

answers are f (x ; (q,y)) = q ·x ·y. In the orthogonal vector counting

problem OVCn×n , the data is also a matrix x ∈ Fn
2

, the query is

a single vector y ∈ Fn and f (x ;y) counts the number of zeros in

x · y, i.e., the number of rows of x which are orthogonal to y; we
will actually consider two different variants of OVC which have

a 1-bit output. The mod-3 orthogonal vector counting OVC3

n×n
is a variant of OVCn×n where f (x ;y) = 1 if the number of rows

of x which are orthogonal to y is a multiple of 3, and f (x ;y) = 0

1
In dynamic data structures we also allow certain updates to the data x . In this work,

we will only be concerned with static data structure problems.
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otherwise. The orthogonal gap-majority problem OGMajn×n is a

promise variant of OVCn×n , where we have f (x ;y) = 1 if at least

n
2
+
√
n of the rows of x are orthogonal to y, and f (x ;y) = 0 if no

more than
n
2
−
√
n of the rows of x are orthogonal to y, with the

promise that we are in one of the two cases.

We are interested in the complexity of these data-structure prob-

lems in Yao’s cell-probe model [54]. In this model the data is repre-

sented in a memory consisting of s cells, each cell storingw bits. We

do not charge for the preprocessing time to create the data structure

in memory for given x , but we charge for the time to answer a query

y. The cost of the query is the number of memory cells we have to

read (probe) in order to answer the query. This model is one of the

most general data structure models; in particular, any lower bound

on the number of probes to answer a query immediately translates

into a lower bound on the time to answer a query in models such

as the word-RAM.

The problems we study are closely related to previous work on

matrix-vector product. Henzinger et al. [24], and Larsen andWilliams

[31] study the matrix-vector product and the vector-matrix-vector

product over the Boolean semiring, in its relation to fine-grained

complexity and conditional lower bounds. In particular, Henzinger

et al. conjecture that there are no truly subcubic algorithms to

solve the online version of matrix-vector multiplication (OMV).

Assuming this conjecture, they are able to establish tight lower

bounds for over a dozen different dynamic problems, establish-

ing the central importance that OMV enjoys in this area. Indeed,

unconditional lower bounds for some versions of matrix-vector

multiplication have been recently established. Frandsen et al. [17]

study the matrix-vector multiplication over finite fields, and give

a lower bound Ω(min{
n log |F |

log s ,n
2}) on the number of cell-probes

for deterministic data structures, where |F| is the field size. Clifford,

Grønlund and Larsen [14] improved this to Ω(min{
n log |F |
log(s/n2)

,n2})

in the randomized setting even with error 1 − |F|n/4
for fields of

size |F| = nΩ(1) andw = Θ(log |F|).
Interestingly, while there exist several hardness results for dif-

ferent versions of matrix-vector multiplication problem, before this

work there were no strong hardness results known for the VMV
problem over the field F2, even though it is a natural variant of the

matrix-vector product, which has been well-understood even since

the seminal paper of Miltersen et al. [34].

And, indeed, it is not clear why the hardness of matrix-vector

product (MVP) should carry over to VMV unabated. For example,

while Larsen and Williams [31] give a surprising data structure for

VMV over the Boolean semiring which uses only O(n3/2/
√
w) cell

probes to answer a query, their upper-bounds forMVP in the same

setting require a larger number O(n7/4/
√
w) of cell probes.

The problem of counting orthogonal vectors has been widely

studied in the context of fine-grained complexity [9, 16, 50], al-

though in that setting the dimension of the input vectors is much

smaller than the number of vectors, and these two are comparable

in our setting.

1.1 Data-Structure Lower-Bounds
We study the VMV, OVC and OGMaj problems over the field

F2 = GF[2]. We establish the following new lower-bounds against

randomized data-structure schemes:

Theorem I. There exists a real constant ε > 0 such that:
(a) Any randomized data-structure scheme for VMVn×n that uses

s cells, each storingw ≤ n bits, must either make t ≥ εn
log

sw
n

probes, or have success probability ρ ≤ 1

2
+ 2

−εn .
(b) Any randomized data-structure scheme for OVC3

n×n that uses
s cells, each storingw ≤ n bits, must either make t ≥ εn

log
sw
n

probes, or have success probability ρ ≤ 2

3
+ 2

−εn . 2

(c) Any randomized data-structure scheme for OGMajn×n that
uses s cells, each storing w ≤ n bits, must either make t ≥
εn

log
sw
n

probes, or have success probability ρ ≤ 1 − ε .

The above lower bounds are optimal when the cell size isw = n,
as each data-structure problem above has a deterministic scheme

using s = n
logn cells of w = n bits, where the number of probes

required to solve a given query is onlyO( n
logn ) [4, 49]. Such a large

word size may naturally occur in settings such as external memory

models, although it is not really seen in the usual scenario where we

want to implement the data structure on a random-access machine.

Intuitively, one would guess that the true complexity of the VMV
problem is actually

n2

w log s . However, it is a major open problem in

the field of data structures to prove a lower-bound for any static

data structure problem where the number of probes is shown to be

ω(log |Q|). We do not solve that open problem in this paper. Indeed,

it is well known that any purely communication complexity based

approach, such as ours and most past techniques, is doomed to give

bounds at best Θ(log |Q|). What we do develop is a novel general

technique for establishing strong lower bounds, that are also the

best possible using communication complexity method alone, for

natural 1-bit output problems based onmatrix-vector multiplication.

Previous techniques do not seem to yield such bounds for this

important class of problems.

In their seminal paper, Miltersen et al. [34] study the span problem,

where we need to store a vector spaceV and decide, given a queryy,
whethery ∈ V . This is equivalent to determining whether x ·y = 0 if

the matrix x is chosen so thatV = kerx ; i.e. we want to know if the

number of rows of x orthogonal to y is n, or not. For this problem,

[34] show lower bound on the number of probes, similar to our own,

but in the randomized setting with just one-sided constant error —

the data-structure scheme is allowed to err only when x · y = 0.

When first thinking about the VMV problem, one soon realizes

that there is a one-sided error randomized reduction from the span

problem to the VMV problem, and that this might be enough to

give us a one-sided error lower-bound to the VMV problem.
3
But,

it turns out, the error of the reduction is on the wrong side, and

2
Note that the success probability of

1

2
is achievable by random guessing, so this

probability bound is not optimal.

3
The reduction is simple and works in the communication setting: in order to know if

x · y = 0, Alice and Bob use a protocol for VMV to compute q · x · y for a shared

random vector q; if x ·y = 0, then also q ·x ·y = 0, but if x ·y , 0, then q ·x ·y = 1

with probability exactly
1

2
over the choice of q . Alas, the reduction may err precisely

in the case when x · y = 1, so the lower-bound of [34] does not apply.
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this does not allow us to derive any lower-bound for VMV from

the [34] lower-bound for the span problem. To our knowledge, our

randomized lower-bound for VMV is also the first deterministic
lower-bound for VMV.

Note that this one-sided error lower-bound of Miltersen et al. for

the span problem immediately implies the same lower-bound for

the OVC problem (although not for the OGMaj problem); however,

it can be shown that there is a two-sided error randomized data-

structure scheme for the span problem where the number of probes

is O( nw ), and this implies that our randomized lower-bounds for

OVC cannot possibly work for the span problem.

� Rather remarkably, this difference between the span problem

and counting orthogonal vectors may be explained by the fact that

the randomized parity decision-tree complexity of the (negated)

Boolean OR function is O(1), but is Ω(n) for the mod-3 function.

To understand why this is relevant, we need to make a detour into

asymmetric communication complexity, and explain how Theorem

I is proven.

1.2 Our Tool: An Asymmetric Simulation
Theorem

To prove our data-structure lower bounds of Theorem I, we develop

a technique of independent interest for proving lower bounds on

asymmetric communication complexity. The asymmetric setting is

distinguished from the usual setting of two-party communication

complexity by the following:

• One player’s input is much larger than the other player’s.

• The two players have different communication budgets, so

we may talk about [a,b]-protocols where Alice communi-

cates ≤ a bits and Bob communicates ≤ b bits. Typically the

player with the large input has a higher budget.

• Only one of the players needs to learn the output, typically

the player with the smaller input. This makes a difference,

for example, when the task is to compute a function with an

output which is larger than the communication budget.

Asymmetric communication complexity was introduced explicitly

by Miltersen [33],
4
and later studied more systematically in the

work of Miltersen et al. [34]. In both these works, it was also shown

that a lower-bound for a communication problem in this setting

implies a similar lower-bound for the corresponding data-structure

problem. All our lower-bounds are based on this relationship. While

asymmetric communication complexity was primarily motivated by

its application to proving lower bounds for data-structures [26, 35–

37] and streaming algorithms [5, 51], it is indeed a communication

model of independent interest (see for example [38]). Despite the

significant interest, there were very few general techniques devel-

oped for proving lower bounds in this model. Two such techniques

appeared in the original work of Miltersen et al. The first is the Rich-

ness Method for primarily proving deterministic and randomized,

one-sided-error lower-bounds. The second is the round-elimination

technique for two-sided error protocols, that gives strong bounds

only when the number of rounds involved is quite limited. Other

techniques developed are more ingenious and problem specific,

like the tour de force of Patrascu [35] for proving strong bounds

4
However the notion appears implicitly in earlier work [1, 53].

on lopsided Disjointness. In this work, we develop a novel and

reasonably widely applicable technique that yields strong lower

bounds for randomized complexity even with unrestricted number

of rounds of communication. Moreover, we exhibit a function for

which our technique provides strong deterministic lower bounds

that the Richness Method provably cannot yield.

Our technique is based on a recent trend seen in symmetric
communication complexity, of proving lifting theorems, sometimes

known as simulation theorems. Such theorems show, for some care-

fully chosen two-player function д(x ;y), called the gadget, that
the communication complexity of a composed function f ◦ д =
f (д(x1;y1), . . . ,д(xp ;yp )), under some setting, is proportional to

a corresponding measure of complexity on f multiplied by the

communication complexity of д.
For example, in the paper [21], building on the work of [39],

the authors have shown that — taking the gadget д to be the in-

dexing function — the deterministic communication complexity

of f ◦ д equals, up to constant factors, to the deterministic query-

complexity of f times logn, and used this to show a separation

between the deterministic communication complexity and the par-

tition number, which was a longstanding open problem at the time.

This result was improved in a recent work of the authors [12],

and independently by [52]. Lifting theorems, by now, have numer-

ous other applications, such as monotone-circuit lower-bounds

[20, 27, 29, 39, 41, 45], small-depth circuit lower-bounds [10, 43],

proof-complexity lower-bounds [6, 25], and separations of complex-

ity classes in communication complexity [15, 19, 21, 22]. Many of

these developments have happened recently and indeed, in FOCS

2017, a workshop [32] was devoted entirely to such results and

their applications.

In this work, we prove two simulation theorems— a deterministic

simulation theorem and a randomized simulation theorem. Our

gadget is the matrix-vector product (MVPp×n ), so Alice gets a p ×n
matrix x , and Bob gets a single n-bit vector y, and we ask them

to compute F (x ;y) = f ◦ MVPp×n (x ,y) = f (x · y), where f is a

function of p bits.
5

It is easy to see that this can be done with O(d · n) bits of com-

munication from Alice, and O(d) bits from Bob, where d is the

smallest depth of a parity decision-tree (PDT) for f . If the PDT is

randomized, we get a randomized protocol, if the PDT is determin-

istic, we get a deterministic protocol. To simulate a parity query

q · (x · y), Alice sends q · x ∈ {0, 1}n to Bob, and Bob then replies

with (q · x) · y ∈ {0, 1}.

Our simulation theorems show that this relatively naive protocol

is, indeed, optimal up to constant factors.

Theorem II (Main Tool). Let n, p ≤ m = n
1000

and C < m
100

be
natural numbers and let f : {0, 1}p → Z be an arbitrary (possibly

5
Lifting theorems are generally proven for a symmetrically composed function f ◦ дp
which is defined as f ◦дp (x1, . . . , xp ;y1, . . . , yp ) = f (д(x1, y1), . . . , д(xp, yp )).
The matrix-vector product can bee seen as an asymmetric composition, i.e. f ◦ дp×1

,

defined as f ◦ дp×1(x1, . . . , xp ;y) = f (д(x1, y), . . . , д(xp, y)), where д is the

inner-product function. This is more subtle because in the asymmetric composition

case, all the x ’s participate with the same y . Although previous lifting theorems have

been proven with asymmetric budgets [e.g. 27], ours is the first lifting theorem to work

with an asymmetric composition.
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partial) function. Consider communication protocols where Alice gets
an input x ∈ {0, 1}p×n and Bob gets an input y ∈ {0, 1}n .

(a) If there exists a deterministic two-player [C · n,C]-protocol for
computing f ◦MVPp×n (x ,y), then there exists a deterministic
parity decision-tree which on input z outputs f (z), and makes
≤ 40 ·C parity queries to z.

(b) If there exists a randomized two-player [C · n,C]-protocol for
computing f ◦MVPp×n (x ,y) with success probability ρ, then
there exists a randomized parity decision-tree which on input
z outputs f (z) with success probability ≥ ρ − 2

−m , and makes
≤ 200 ·C parity queries to z.

A few remarks are in order. First, Theorem II is also the first in-

stance of any simulation theorem extracting a randomized PDT

from a randomized communication protocol. Second, for determin-

istic protocols in the symmetric two party and multiparty settings

for XOR functions, Hatami et al. [23] and Yao [55] do prove theo-

rems lifting parity decision-tree complexity. But both results incur

polynomial loss in the process of lifting. To the best of our knowl-

edge, Theorem II is the first lifting theorem that characterizes parity

decision-tree complexity so tightly — up to constant factors. On

the other hand, the gadget size in [23, 55] are constant whereas our

gadgets are polynomially large w.r.t to the arity of the outer func-

tion f . Obtaining such tight simulation theorems, w.r.t. decision

tree complexity measures in general as in Theorem II, with con-

stant gadget size is a fundamental open problem in communication

complexity.

� We will then prove the data-structure lower-bounds (b) and

(c) of Theorem I by showing lower-bounds against randomized

parity decision-trees. We will show that the randomized parity

decision-tree complexity of the mod-3 function is high, and it easily

follows from the work of [8, 44, 47] that the randomized parity

decision-tree complexity of gap-majority is high as well. However,

the randomized PDT complexity of (negated) OR is O(1), which is

what prevents our lower-bound from applying to the span problem

mentioned above.

The lower-bound for the VMV problem — Theorem I (a) — does

not directly follow from the above simulation theorems. Instead, it

is proven by a simulation-type argument: one shows that a short

protocol for the VMV problem would give us a parity decision-tree

for solving a certain task, and then show that this task cannot be

solved efficiently.

The proof of our simulation theorems is inspired by several pre-

vious works, most notably the recent work of Göös, Pitasi and

Watson [22]. However the peculiarities of the asymmetric setting

call for substantial development of more ideas. In particular, we

make use of a novel notion, which we call linear min-entropy, and

of a variant thereof, which we call smooth linear min-entropy. We

believe these two notions are interesting in their own right, and

should find other uses. Implementing the simulation theorems us-

ing these notions requires delicate technical work. These are the

main technical contributions of this submission.

1.3 Beating the Richness Method
TheMiltersen et al. [34] paper presented two techniques for proving

lower-bounds in the asymmetric settings — the richness technique,

and the round-elimination technique [see also 42]. Pătraşcu and

Thorup [37] later proved a direct-sum theorem for the Richness

technique.

The round-elimination technique method only works in sit-

uations where the number of rounds is small — typically sub-

logarithmic. To the authors’ knowledge, the Richness technique

and its extension in [37] is essentially the only general method

known for proving deterministic unbounded-round lower-bounds

in the asymmetric setting. Even those lower-bounds which are

proven in the two-sided error randomized asymmetric setting —

lower-bounds such as [35], which cannot be shown by the richness

technique because it is limited to proving one-sided error lower-

bounds — the same lower-bound (up to constant factors) can be

shown in the deterministic setting using the richness technique.

Given this state of affairs, it would be tempting to think, for

example, that a deterministic (or one-sided error) lower-bound

for the VMV problem might exist which completely circumvents

our approach based on simulation theorems. However, this might

actually not be the case: we show that, at least in some situations,

our simulation theorem proves a deterministic lower-bound which

cannot be proven by the richness technique of Bro Miltersen et al.:

Theorem III. There exists a promise problem F : {0, 1}p×n ×

{0, 1}n → {0, 1} such that:

• Theorem II (a) implies that any deterministic [a,b]-protocol
for F has a = Ω(n2) or b = Ω(n);

• However, F has a randomized zero-error [O(n),O(1)]-protocol.

Since any lower-bound proven by the richness technique also

gives a lower-bound against randomized protocols with one-sided

error (and thus zero-error; and this consideration applies to [37], as

well), it follows that the above lower-bound cannot be proven via

the richness method, or its extension in [37] — it is the first known

lower-bound in deterministic (unbounded-round) asymmetric com-

munication complexity for which this is the case.

2 OVERVIEW OF OUR TECHNIQUES
All our lower-bounds follow from the well-known connection be-

tween data structures and communication complexity, which first

explicitly appeared in [33]: if we have a data-structure scheme for

f (x ;y), then we obtain a protocol for the communication problem

where Alice gets the data x , Bob gets the query y, and they must

communicate to compute f (x ;y). Hence we will prove the lower-
bounds for data structures of Theorem I, by proving lower-bounds

for asymmetric communication problems.

In turn, our communication complexity lower-bounds are all

shown by first proving a lower-bound against parity decision-trees,

and then lifting these lower-bounds to communication complexity,

by use of Theorem II, which is the main technical contribution of

this paper. We will thus begin by sketching the proof of Theorem

II in Section 2.1; we then sketch the proofs of the data-structure

lower-bounds in Section 2.2. We made an effort to include the full

proof of at least one theorem within the 10-page limit. We opted

for Theorem III, whose full proof appears in Section 2.3.
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2.1 Proving Theorem II
To explain how we prove our simulation theorems, it is worthwhile

to give a general overview of how previous simulation theorems

have been proven — the discussion broadly applies to all of [3, 12,

18, 19, 21, 39, 48, 52] and [22].

We are given a protocol for a composed function f ◦ д — д takes a

pair (x ,y) of inputs and produces a p-bit string, which is then fed to

f . We wish to construct a decision-tree for computing f (z) when
given query access to z. The general strategy is to find a leaf in the

protocol tree where z is represented, meaning that the rectangle

A×B associated with said leaf is such that z ∈ д(A×B); this way, we
may output the label which the protocol assigns to that rectangle,

and it should equal f (z). In the randomized case we will actually

want a specific distribution on such rectangles, but let’s set that

aside for now.

So we go down the protocol tree, keeping in mind a rectangle

A × B. As long as we haven’t queried z, we need to make sure that

every z is represented in д(A×B); once we have made some queries
to z, then every z′ which is consistent with those queries must be

represented in д(A × B).
If the gadget д is well-chosen, it becomes feasible to enforce this

invariant. For example, if д = (IPn )p is the p-fold inner-product

of n-bit strings,6 there are two known properties which, if true

of A and B both, ensure that every z is represented in д(A × B) —
one such property is called thickness and is used in [3, 12, 21, 39],

and another is called density, and is used in [18, 19, 22, 48]. It is

worthwhile to briefly review these notions.

For δ ∈ [0, 1], a set A ⊆ {0, 1}p×n is called δ -thick, if for every
a = (a1, . . . ,ap ) ∈ A and every i ∈ [p], there exist ≥ 2

δn
-many

different a′i such that (a1, . . . ,ai−1,a
′
i ,ai+1, . . . ,ap ) ∈ A;A is called

δ -dense, if for every I ⊆ [p] of size |I | = k ≥ 1, the distribution (x)I ,
obtained by picking a uniformly-random x ∈ A and projecting onto

the coordinates in I , has min-entropy ≥ δ kn.
The thickness of A is then the largest δ for which it is δ -thick,

and the density of A is the largest δ for which it is δ -dense. We may

also say that A is δ -thick or δ -dense with respect to a set S ⊆ [p] of
coordinates, if we replace [p] with S in the above definitions.

In order to find the desired leaf in the protocol tree, and thus

prove the simulation theorem, the decision tree goes down the

protocol tree while being careful to preserve one such property

(density or thickness) as an invariant. As the rectangle becomes

smaller, and we are at risk of loosing our invariant, we must have

a means of restoring it by querying some coordinates of z. We

then focus only on those inputs (x ,y) such that д(x ,y) is consistent
with the outcome of these queries, and it is important that our

property (e.g. thickness or density) still holds with respect to those

coordinates which we did not query yet.

All of the simulation theorems just mentioned follow this general

pattern, and so do the simulation theorems proven in this paper.

But, even after having a good understanding of this general frame-

work, it is not apriori clear how to proceed when the inner gadget

is the matrix-vector product, nor how to connect such results to

6
Note that, д here is a function which outputs a p-bit string. We maintain this conven-

tion through out the paper.

the vector-matrix-vector problem which is not itself a composed

function.

Let д be the matrix-vector product over F2, so that д(x ,y) = x ·y
where x is a p × n matrix and y is an n-bit vector. The first thing
to observe, when using д as a gadget, is that if Alice has a matrix

x ∈ {0, 1}p×n and Bob a vector y ∈ {0, 1}n , then they are able to

make a “parity query” to д(x ,y) = x · y ∈ {0, 1}p by having Alice

send only n bits and Bob send only 1 bit: to compute q · x · y, Alice
sends over q · x ∈ {0, 1}n , and then Bob computes and returns

(q · x) ·y ∈ {0, 1}. So it follows that the communication complexity

of f (x ·y) is upper-bounded by the randomized parity decision-tree

complexity of f .
This seems to make the properties of density and thickness

unsuitable for carrying out the above strategy. Indeed, it is easy

to construct, for example, a dense set A such that д(A × {0, 1}n )

is missing some vectors — indeed, if A is the set of matrices such

that the bitwise XOR of all the rows is the zero vector, then every

д(A × {0, 1}n ) is missing all vectors with odd Hamming weight.

On the other hand, thickness is a property which is difficult to

preserve, and it would seem that if we were able to preserve this

property as an invariant in our construction, we would obtain a

simulation theorem for normal decision trees, not parity decision

trees. However, we cannot obtain such a simulation from the above

protocol for making a “parity query” to x · y. So we had to devise a

different property for our invariant. We call it linear min-entropy.

Definition. The linear min-entropy of a set A of p × n matrices

is the maximum η ∈ [0, 1] such that, for every k ′ × p matrix Q ′
,

the distribution Q ′ · x — obtained by picking a uniformly random

x in A, and then outputting the product Q ′ · x ∈ {0, 1}k
′×n

— has

min-entropy ≥ η k ′n.

So, in some sense, we require a certain min-entropy from the

linear combinations of the rows of a randommatrix fromA. We will

also need to look at a variant of this notion, called smooth linear
min-entropy, which is the maximum linear min-entropy among

all subsets A′ ⊆ A which preserve all but an exponentially-small

fraction of A.
As one may see, it is a property stronger than density, as one

demands a lower-bound on the min-entropy of any linear combi-

nation of coordinates, and not just of the coordinates themselves.

It will then happen that if A has linear min-entropy at least

4

5
, say, and |B | ≥ 2

9

10
n
, then every z ∈ {0, 1}p is represented in

д(A × B). We will show something even stronger, a result which

we call pruning lemma: for any such A and B, we may remove an

exponentially-small fraction of A and B, to obtain a subrectangle

A′ × B′ ⊆ A × B, such that every z appears in every row and

column of the д(A′ × B′) communication matrix
7
in roughly equal

proportion. Meaning every row and every column of the д(A′ × B′)

communication matrix will be (roughly) equally split among the

different z ∈ {0, 1}p .

The pruning lemma is then used to show a result called entropy-
restoring partition. It can be considered the heart of the proof of

the simulation theorems in this paper. This result shows how one

7
I.e., the matrix with rows indexed by A′

, columns indexed by B′
, and with the (x, y)

entry equal to x · y .
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may take a set A ⊆ {0, 1}p×n , such that the smooth linear min-

entropy of A is not too high (≤ 9

10
), but where the linear min-

entropy of A is still somewhat high (≥ 4

5
), and partition A into

subsets A†,A1,A2, . . ., with A†
very small, such that in each Ai

we have fixed some linear combination of rows (of the matrices

in Ai ), and where each Ai has large linear min-entropy (≥ 9

10
) on

the remaining (linearly-independent) linear combinations of the

rows. Furthermore, if we have a large set B ⊆ {0, 1}n of vectors

(|B | ≥ 2

9

10
n
), we may do this in a way that for each x ∈ Ai , the

values of x · y, for y ∈ B are equidistributed among the various

possible z ∈ {0, 1}p — this means that when the linear decision-tree

queries the k coordinates of z corresponding to the rows which

were fixed, B will be cutoff by no more than 2
−k

. This is the main

technical device which allows us tomaintain a rectangleA×B where

A has large linear min-entropy, and B is large, as we go down the

protocol tree in our simulation theorem. On its own, the entropy-

restoring partition suffices for proving our deterministic simulation

theorem — Theorem II (a); in fact, the existence of a single part A1

of the entropy-restoring partition is enough for the deterministic

simulation theorem, whereas the randomized simulation theorem

needs the full entropy-restoring partition.

To prove the randomized simulation theorem, Theorem II (b), we

will use a crucial insight from [22]. Suppose π̄ is a randomized

protocol for f ◦ д which is the convex combination of several

deterministic protocols π . Then a good approach to proving a ran-

domized simulation theorem is the following: in order to obtain a

decision-tree for f , it suffices to be able to approximate, for each

deterministic protocol π , the distribution π−1(z) obtained by run-

ning π on a random input (x ,y) such that д(x ,y) = z. We want

to do this by making few queries to z, and for this purpose [22]

proves a result called the inverse-marginals lemma. Our version of

this lemma states that if A has large linear min-entropy and B is

large, then for any z ∈ {0, 1}p , if we choose a uniformly random

(x ,y) ∈ A× B among those such that x ·y = z, then the x-marginal

will be close to a uniform distribution on A and the y-marginal will

be close to a uniform distribution on B.
To illustrate how this is used, suppose that we are simulating π

on a rectangle A × B, and it was Alice’s turn to communicate, and

she would send bit b when x ∈ Ab — for the partition A = A0 ∪A1;

then if one were to pick a uniformly-random input in д−1(z)∩A×B,

then Alice would send b = 0 with probability roughly
|A0 |

|A |
and send

b = 1 with probability roughly
|A1 |

|A |
. This heuristic allows us to

construct a randomized parity decision-tree which will produce, on

input z ∈ {0, 1}p , a transcript of the protocol which is exponentially

close, in statistical distance, to the transcript which wewould obtain

if we had run the protocol on a uniformly-random input fromд−1(z)
— which is enough to prove Theorem II (b).

2.2 The Data-Structure Lower-Bounds
The data-structure lower-bounds (b) and (c) of Theorem I follow

from lower-bounds against randomized parity decision-trees, by

using Theorem II (b) and the connection between data structures

and asymmetric communication complexity.

It is intuitive that counting mod-3 should be hard for parity

decision-trees. This is shown by making use of the polynomial

discrepancy lemma of [10]. The polynomial discrepancy lemma says

that the Mod3 function (roughly) equally splits the zero set of any

linear form over F2.
8
This will imply that any randomized parity

decision-tree for Mod3 will succeed with probability ≤ 1

3
+ 2

−Ω(n)
.

If counting mod-3 is hard, then so is counting in general, which

gives us the lower-bound for OVC — Theorem I (b).

By way of binary search we can use a single majority logn
times to count exactly. This would easily give us I (c), but with a

logn · log logn factor loss. However it follows from [8, 44, 47] that

the randomized parity decision-tree complexity of

√
n-gap-majority

is Ω(n), and this implies Theorem I (c).

The data-structure lower-bound of Theorem I (a) does not seem

to follow directly from a lower-bound on randomized PDTs for

some function. The VMV problem is quite different to a composed

problem — in a composed problem both players know the outer

function f and the lower-bound depends on f having large PDT

complexity; we may think of the VMV problem as if only Bob knew

the outer function — q is a parity which is given as Bob’s input.

But we can still prove the lower-bound by an interesting analogy:

instead of proving a lower-bound for randomized PDTs trying to

compute a certain function, we instead prove a lower-bound for

randomized PDTs trying to succeed at the following task:

Lemma (Impossible task). Suppose we have a randomized parity
decision-tree running in time t which, on every input z ∈ {0, 1}p ,
outputs a pair (q,b) ∈ {0, 1}p × {0, 1} such that both:

• q is (always) linearly-independent of the setQ of parity queries
made, and

• with probability ρ over the choice of q, we have q · z = b.
Then either t ≥ p or ρ = 1/2.

Then, analogously to the simulation theorem — Theorem II (b) —

we prove that any randomized communication protocol for VMV,
succeeding with probability ρ, would give us a randomized parity

decision-tree for the above task, succeeding with probability ≥

ρ − 2
−Ω(n)

. This establishes a lower-bound on the asymmetric

randomized communication complexity of VMV, which then gives

us Theorem I (a).

2.3 A Lower-Bound Beating the Richness
Method

The Richness-Method of Bro Miltersen et al [34], is a method for

proving lower-bounds for the communication complexity of asym-

metric problems. It relies on the following definition:

Definition 2.1 (Richness). A two-player problem F : X × Y →

{0, 1} is said to be (u,v)-rich with respect to z ∈ {0, 1}, if there

exists X ⊆ X with |X | ≥ u, such that for every x ∈ X there exists

Yx ⊆ Y with |Y | ≥ v , such that F (x ,y) = z for every y ∈ Yx .

The Richness Method then consists of two steps: (a) Show that F
is (u,v)-rich with respect to some z ∈ {0, 1}. (b) Show that F does

not have any z-monochromatic rectangles of size u ′ × v ′
, where

both u ′ ≥ u/2
a+b+2

and v ′ ≥ v/2
b+2

. i.e., any such large rectangle

must intersect F−1(1 − z).

8
Indeed, the lemma holds for any low-degree polynomial over F2 , not just linear forms,

hence the name polynomial discrepancy lemma.
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It will then follow that F does not have any deterministic [a,b]-
protocols. But something stronger will then also follow: that F does

not have any randomized [a,b]-protocols, which are allowed to err

whenever F (x ,y) = z (for the same z for which the two properties

above were shown), but not when F (x ,y) , z. I.e., any lower-bound
proven using the richness method will give a one-sided-error lower-

bound. This follows from the cellebrated Richness Lemma:

Lemma 2.2 (Richness Lemma [34]). Let F be a (u,v)-rich problem
with respect to z. If F has a randomized one-sided error [a,b]-protocol,
erring only on inputs (x ,y) ∈ F−1(z), then there is a z-monochromatic
rectangle of F of dimensions at least u/2

a+b+2 ×v/2
b+2.

In particular, any lower-bound proven using the richness method

also shows a lower-bound for zero-error (“ZPP”) protocols. Then
our goal is to construct a problem with short zero-error protocols,

but for which we can prove a large deterministic lower-bound. We

start by showing the following:

Theorem 2.3. There exists a promise problem Z , having zero-error
randomized query complexityO(1), but deterministic parity decision-
tree complexity Ω(n).

We may now use Theorem II (a) to lift the deterministic PDT lower-

bound to the setting of asymmetric communication complexity:

Corollary 2.4. Any deterministic [a,b]-protocol for Z ◦MVPn×n
has a = Ω(n2) or b = Ω(n), but there is a randomized, zero-error
[a,b]-protocol for Z ◦MVPn×n with a = O(n), b = O(1).

Since the promise problem F = Z ◦ MVPn×n has zero-error

[O(n),O(1)]-protocol, it then follows that the richness method can-

not give a lower-bound against [a,b]-protocols computing F , that
achieves a = ω(n). We thus established Theorem III.

Proof of Theorem 2.3. Let Z−1(0) ⊆ {0, 1}2n
be the set of bi-

nary strings which have zi = 0 whenever i is odd, and zi = 1 for

at least
n
10
-many even coordinates i . Let Z−1(1) ⊆ {0, 1}2n

have

instead zi = 0 whenever i is even, and zi = 1 for at least
n
10
-many

odd coordinates i; let Z : {0, 1}2n → {0, 1} be the corresponding

promise problem. Also, let ∆ ⊆ {0, 1}n be a binary linear code with

distance ≥ n
10

and constant rate ρ =
log |∆ |
n > 0. E.g. a Justesen

code [28].

The upper-bound is trivial: the zero-error algorithm queries a

pair x2ix2i+1; if it equals 00, the algorithm answers “I don’t know”,

which happens with only constant probability, and otherwise the

algorithm knows the answer.

The lower-bound rests on the following:

Claim2.5. Any vector spaceV ⊆ F2n
2

disjoint fromZ−1(0) or disjoint
from Z−1(1) must have codimension ≥ ρ · n.

The proof of this claim is akin to the Hamming bound for codes.

Let us prove the codimension lower-bound assuming V is disjoint

from Z−1(0); the other case is proven in the same way.

Define the set∆0 ⊆ {0, 1}2n
by placing the bits of the∆-codewords

at the even positions, and setting the odd positions to zero. For

c ∈ {0, 1}2n
, let B(0)(c) = c + ∆0 be the set of words obtained from

c by bitwise-XORing a word from ∆0.

Suppose we had B(0)(v ′) ∩ B(0)(v ′′) , ∅ for distinct v ′,v ′′ ∈ V ,

say v ′ + δ ′ = v ′′ + δ ′′. Then it would follow that v
def

= v ′ − v ′′ =

δ ′′ − δ ′ is both inV , since v ′ −v ′′
is inV , and in ∆0, since δ

′′ − δ ′

is in ∆0. But ∆0 ⊆ Z−1(0), since the distance of the code ∆ is at

least
n
10
. Hence, by contradiction, we must conclude that B(0)(v ′)

and B(0)(v ′′) are disjoint for every distinct v ′,v ′′ ∈ V .

It then holds that |V | ≤ 2
2n/|∆0 | which is ≤ 2

2n−ρ n
since the

code ∆ has rate ρ. So V has co-dimension ≥ ρn. This proves the
claim.

Now take any deterministic parity decision-tree of depth t < ρ · n.
Consider what happens when every query q1, . . . ,qt is answered
0. Suppose without loss of generality that the parity-decision-tree

answers 1. Let V ⊆ {0, 1}2n
be the subspace defined by the linear

equations qi · x = 0. Then V has co-dimension < ρn, and so V ∩

Z−1(0) , ∅; but this means that the given tree does not correctly

compute Z . □
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