
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

On the Structure of Resolution
Refutations Generated by Modern
CDCL Solvers

JOHAN LINDBLAD

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

On the Structure of
Resolution Refutations
Generated by Modern CDCL
Solvers

JOHAN LINDBLAD

Degree Project in Computer Science and Engineering
Date: April 2, 2019
Supervisor: Jakob Nordström
Examiner: Elena Troubitsyna
School of Electrical Engineering and Computer Science
Swedish title: Formen på resolutions-refutationer genererade av
moderna CDCL-lösare

iii

Abstract

Modern solvers for the Boolean satisfiability problem (SAT) that are
based on conflict-driven clause learning (CDCL) are known to be able
to solve some instances significantly more efficiently than older kinds
of solvers such as ones using the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm.

In addition to solving instances that can be satisfied, SAT solvers
will implicitly generate proofs of unsatisfiability for formulae that are
unsatisfiable. Theoretical models of CDCL based solvers are known
to have access to more powerful forms of reasoning compared to their
DPLL counterparts and as a result, are able to generate proofs that
are significantly shorter for certain kinds of formulae. Additionally,
certain characteristics are expected when representing these proofs as
graphs, such as them not being strictly tree-like in shape.

It is however less well known if these theoretical justifications are
indeed the reason CDCL solvers are so successful in practice. This
project attempts to answer this question by modifying a modern CDCL
solver to output the proof and comparing these proofs to what theo-
retical results would predict.

Firstly, the results indicate that CDCL solvers generate significantly
shorter proofs for all kinds of formulae that were investigated as com-
pared to a DPLL solver. Furthermore, it appears that this is in large
part due to the proof not being tree-like.

Secondly, utilizing restarts was found to make for significantly shorter
proofs for most families of formulae but the effect was the opposite for
formulas representing the relativized pigeonhole principle. The expla-
nation for this is seemingly not clear.

Lastly, it appears that the Tseitin formulae used do not exhibit time-
space trade-offs but instead simply require a large amount of space.
This is indicated by the run time being significantly greater if clause
erasure if more aggressive but the refutation being similar in both
length and number of learned clauses.

To summarize, it has been found that modern CDCL solvers appear
to result in significantly different proofs that largely mirror what one
would expect. However, the results are unclear on the role of restarts
and how their effect on the proof best can be explained.

iv

Sammanfattning

Moderna lösare för Boolean satisfiability problem (SAT) baserade på konflikt-
driven klausulinlärning (CDCL) har visats prestera väl och lösa vissa
typer av formler mer effektivt än äldre varianter såsom Davis-Putnam-
Logemann-Loveland-algoritmen (DPLL).

Förutom att lösa instanser som är lösbara så producerar SAT-lösare
implicit bevis på olösbarhet för formler som är olösbara. Teoretiska
modeller över CDCL-baserade lösare har visat på att mer kraftful-
la former av resonemang är tillgängliga jämfört med DPLL-baserade
motsvarigheter; som ett resultat kan CDCL-baserade lösare enligt des-
sa modeller producera kortare bevis. Vidare väntas dessa bevis ha vis-
sa karaktärsdrag när de representeras som grafer som exempelvis att
de inte är strikt trädformade.

Dock är det inte känt om dessa teoretiska förklaringar faktiskt kor-
rekt beskriver anledningarna att CDCL-baserade lösare är så fram-
gångsrika i praktiken. Detta projekt ämnar klargöra denna fråga ge-
nom att modifiera en CDCL-baserad lösare så att den producerar bevi-
sen explicit och sedan jämföra dessa bevis med vad teoretiska resultat
skulle förutspå.

För det första så visar resultaten att CDCL-baserade lösare gene-
rerar betydligt kortare bevis för alla sorters formler som undersöktes.
Studier av små-skaliga probleminstanser visar att en del av förklaring-
en till detta är att beviset inte är strikt trädformat.

För det andra visar resultaten att omstarter gör bevisen betydligt
kortare för nästan alla formler men att det motsatta är sant för så kalla-
de relativized pigeonhole principle-formler. Förklaringen till detta är inte
helt tydlig.

För det tredje sågs tendenser till tid-utrymmes-avvägningar för form-
ler som var inspirerade av så kallade Tseitin-formler där dessa avväg-
ningar är bevisade. Det antyder att även dessa inspirerade formler ger
dessa avvägningar i praktiska implementationer av CDCL-lösare.

För att summera så visar resultaten att moderna CDCL-baserade
lösare till stor del uppnår vad teoretiska modeller förutspår i termer
av formen på deras bevis. Dock är resultaten mindre tydliga vad gäller
omstarter och hur deras påverkan på bevisen bäst förklaras.

Contents

1 Introduction 1
1.1 Research question . 4
1.2 Ethical implications and societal aspects 5

2 Theory 7
2.1 Boolean Satisfiability Problem (SAT) 7

2.1.1 Conjunctive Normal Form (CNF) 7
2.2 Proof systems . 8

2.2.1 Truth tables proof system 9
2.2.2 Cutting-Planes Proof System 10
2.2.3 Resolution Proof System 12

2.3 Methods for SAT solving 17
2.3.1 Exhaustive search with backtracking 17
2.3.2 Davis-Putnam-Logemann-Loveland algorithm (DPLL) 17
2.3.3 Conflict-Driven Clause Learning (CDCL) solvers 19
2.3.4 Common extensions 26

2.4 CDCL solvers and resolution refutations 29
2.4.1 Resolution in a plain CDCL solver 30
2.4.2 Resolution in CDCL solver extensions 31

3 Methods 35
3.1 Preparations . 35

3.1.1 Modification of solver 36
3.1.2 Implementation of resolution graph tool 36
3.1.3 Selection of solver configurations 37
3.1.4 Selection of problem instances 39

3.2 Qualitative analysis . 40
3.3 Quantitative analysis . 41

v

vi CONTENTS

4 Results 44
4.1 Qualitative analysis . 45

4.1.1 The effects of the different unit elimination inter-
pretations . 46

4.1.2 The effects of clause learning on refutation length
and tree-likeness 50

4.1.3 The effects of minimization on refutation length
and tree-likeness 51

4.2 Quantitative analysis . 54
4.2.1 The effects of clause learning on refutation length 55
4.2.2 The effects of restarts on refutation length 61
4.2.3 The effects of clause learning on time-space trade-

offs in Tseitin and pebbling formulae 66

5 Conclusions 71
5.1 Future work . 72

Bibliography 73

A Unnecessary Appended Material 78
A.1 Comparison of cutting-planes proofs and resolution refu-

tations . 78
A.1.1 Cutting-planes proof 79
A.1.2 Resolution refutation 80

A.2 Different interpretations of unit elimination 82
A.3 Additional graphs . 86
A.4 Instructions from solver 106

Chapter 1

Introduction

The Boolean satisfiability problem, SAT, is the seemingly simple prob-
lem of determining whether a given propositional formula, consisting
of Boolean variables and logical operators (such as (x OR y) AND

(x OR z)), can be satisfied by an assignment to its variables (satisfied
meaning that it evaluates to true). It is a fundamental problem whose
roots can be traced back to ancient Greece[24].

Algorithms to solve the SAT problem have been developed since
the 1960s. The most notable early example is the DPLL solver[19],
which introduces techniques that are still used in modern-day solvers.
Common among DPLL and many modern-day solvers is the process
of assigning a value to one variable at a time and undoing assignments
when there is a conflict (meaning that the formula is found to evaluate
to false given the current assignments). This process continues until
either a solution is found or all possibilities have been explored (in the
latter case, the formula is said to be unsatisfiable).

More recently, techniques have been proposed to improve this pro-
cess. One such technique of particular interest is conflict-driven clause
learning, or CDCL, which was introduced by Silva and Sakallah [39]
in 1996. These solvers have been shown to be very good in real-life
benchmarks, for example in the SAT Competition of 2018 where all of
the top 3 solvers in all of the four tracks were based on CDCL[26, 27].

Compared to a DPLL solver, a CDCL solver will analyze the rea-
sons behind each conflict. Information from the analysis is used to ex-
pand the formula by adding new clauses to explicitly state constraints
that are implied by the formula. Furthermore, analyzing each conflict
allows the solver to undo more than the last assignment, which means

1

2 CHAPTER 1. INTRODUCTION

that a greater number of unsatisfying assignments are discarded.
If a formula is unsatisfiable, the fact that it is unsatisfiable must be

implied by the formula. However, it is not necessarily readily appar-
ent that the formula is indeed unsatisfiable (except for trivial examples
such as ((x) ∧ (x))). What the CDCL solver is doing then is to expand
the formula with new clauses, step by step, until it is readily apparent
that it is unsatisfiable. Eventually, it will either have found a satisfy-
ing assignment or it will have learned the empty clause; in the latter
case the formula has been found to be unsatisfiable (recall that the the
empty clause can not be satisfied).

Because solvers ensure that all possible assignments are exhausted
before determining a formula to be unsatisfiable, they are implicitly
building a proof of the unsatisfiability (referred to as a refutation). The
solver combines clauses from the formula into new equally valid clauses
until the empty clause has been derived; a full proof can be extracted
by tracing all of the steps involved in these derivations.

Both DPLL and CDCL solvers can be seen as doing this using what
is called the resolution operation. This is an operation that was intro-
duced by Blake [12] and which combines (or resolves) two clauses into
a new clause (the resolvent) which contains all literals from both clauses
except the pair of literals (one from each clause) which represent the
same variable but where one is negated (unless exactly one such pair
of literals exists the resolution operation is not allowed). It is known
that if (and only if) a formula is unsatisfiable, it is possible to use the
resolution operation to derive the empty clause from the formula[38].
Such a derivation is referred to as a resolution refutation, because reso-
lution is used to refute the existence of a satisfying assignment for the
formula.

This refutation can be seen as a directed graph. Each resolution op-
eration connects two vertices representing to the two ingoing clauses
to a vertex representing the resolvent. When the result from one res-
olution operation is used as an input in another operation, both op-
erations are seen as operating on the same vertex; thus such a vertex
will have two ingoing edges from the vertices of the clauses it was
resolved from and an outgoing edge to the vertex of the clause that
resulted from it. Clauses that exist in the original formula are however
copied each time they are used so that each such vertex only has one
outgoing edge.

Both DPLL and CDCL solvers are either implicitly or explicitly us-

CHAPTER 1. INTRODUCTION 3

ing the resolution operation to derive the empty clause. Thus, their
operations can be modeled as a graph as described above. However,
because DPLL solvers do not learn clauses, any resolvent that is de-
rived is only used as an ingoing clause once. This means that each
vertex in the graph will be the parent of at most one vertex and thus,
the graph is shaped like a tree.

CDCL solvers meanwhile are able to refer back to clauses that have
already been derived which means that deriving the same clause mul-
tiple times can sometimes be avoided. Instead, the vertex represent-
ing learned clauses can be connected to multiple vertices whenever
the learned clause is used to resolve a new clause. Because repeated
derivations are avoided, the refutation may contain fewer steps (mak-
ing it shorter) or equivalently, the graph can contain fewer vertices.
However, because learned clauses can be the parents of multiple ver-
tices, the graph may no longer be tree-like.

It is known that in theory the additional reasoning power that is
enabled by this reuse of learned clauses makes it so that for certain
kinds of formulae the refutation may be exponentially shorter[1, 9].
However, these results make assumptions of extensions that are not
usually implemented in CDCL solvers in practice.

One additional classification of interest is related to the sequence of
variables that are removed. As noted above, the resolution operation
will remove one variable that appears in both of the ingoing clauses
but that will not exist in the resulting clause. The refutation makes use
of several resolution steps where the resulting clause from one applica-
tion of resolution is used as an input for the next step. This means that
when following a path from an arbitrary vertex to the empty clause,
there is a sequence of variables that are removed at each step. If ev-
ery such sequence contains no duplicates, the refutation is said to be
regular. Such refutations are on the one hand sometimes exponentially
longer than ones without this requirement[1] but on the other hand
sometimes exponentially shorter than ones which are tree-like[9].

Furthermore, modern CDCL solvers make use of a technique called
restarts[25], which entails periodically restarting the solver by undo-
ing all assignments but keeping the learned clauses. This technique
has similarly been shown to in theory allow for shorter refutations pro-
vided that the CDCL solver also utilizes the right heuristics[35]. Ad-
ditionally, the solver may remove some of the learned clauses when
restarting in order to save memory[7].

4 CHAPTER 1. INTRODUCTION

Thus, it is known that some theoretical models of CDCL solvers are
capable of exponentially shorter refutations than DPLL solvers. Fur-
thermore, as has been mentioned, it is known that in real-life bench-
marks CDCL solvers seem to outperform DPLL solvers.

What is not known however is if the promising performance CDCL
solvers have shown is because they utilize this additional reasoning
power to actually refute the formula in the way that theoretical models
would suggest or if they are performant for other reasons. Other pos-
sibilities are for example that learning clauses allows CDCL solvers to
use better heuristics for things such as which variables to assign next.

A topic worth investigating then is whether CDCL solvers are suc-
cessful in practice because they use more powerful forms of reasoning,
allowing them to find to find shorter refutations, or if they are success-
ful for other reasons. The goal of this project is to provide insight into
this question by modifying a modern CDCL solver to explicitly gen-
erate resolution refutations and then to analyze their corresponding
graphs.

1.1 Research question

As has been mentioned, there are both theoretical models that show
that CDCL solvers have access to more powerful forms of reasoning
than earlier solvers and practical results that show that they outper-
form these earlier solvers. However, it is not known if the theoretical
justification is the reason for the practical success. This is the main
focus of this research project.

Thus, the main research question is: "Do modern CDCL solvers ap-
pear to utilize the extra power theory has shown is afforded by clause
learning and restarts or are other explanations for their success more
reasonable?". To this end, we are interested in how clause learning af-
fects the length of the refutation and certain aspects of its shape such
as how much it resembles a tree, to what extent it is regular and how
many literals are contained in the largest clause.

Three more specific subquestions have been identified:

1. A certain family of formulae known as relativized pigeonhole prin-
ciple[3] is known to allow for short refutations even when the
refutation is required to be tree-like. However, it is still con-
ceivable that the more powerful forms of reasoning of a CDCL

CHAPTER 1. INTRODUCTION 5

solvers could allow it to achieve a shorter proof; this could for ex-
ample be achieved by avoiding deriving the same clause twice.
Does a modern CDCL solver still manage to arrive at an even
shorter refutation and if so, how much does this refutation re-
semble a tree?

2. Families of formulae known as ordering principle[41] and pebbling
formulae[30] are known to require relatively long refutations if
the refutation is required to be tree-like[11, 13] compared to if no
such restrictions are placed. DPLL-based solvers are restricted to
tree-like resolution but a CDCL solver could potentially achieve
shorter refutations that are not tree-like. Do CDCL solvers man-
age to find shorter refutations and if so, how much do these refu-
tations resemble trees?

Additionally, restarts have been shown to significantly affect the
time required for these formulae[22]. Does the choice of restart
policy significantly affect the refutation in length, tree-likeness or
regularity?

3. Certain kinds of very large Tseitin formulae[42] are known to ex-
hibit time-space trade-offs where theoretical models of solvers
can finish in shorter time if more space is available[8]. Indi-
cations were found by Elffers et al. [22] that scaled-down ver-
sions of these formulae showed time-space trade-offs in practice,
where a smaller clause database made the solver significantly
slower. Is this because of time-space trade-offs or does the solver
simply require more time to arrive at the same refutation?

1.2 Ethical implications and societal aspects

SAT solving is a general technique and as such does not have direct
ethical implications. However, it has found uses in areas such as plan-
ning[37] and software verification[31]. Thus, improvements in SAT
solving could bring improvements for whomever makes use of plan-
ning algorithms or the results thereof.

Furthermore, the SAT problem is of interest in complexity theory
because it is relevant to one of the most fundamental open questions in
computer science, the question of whether P = NP. The SAT problem

6 CHAPTER 1. INTRODUCTION

is known to be in NP and is the complement of the problem of deter-
mining whether a formula is unsatisfiable, which is in coNP[17]. If it
were shown that there are formulae that can not be efficiently shown
to be unsatisfiable, NP 6= coNP and as a result, P 6= NP. This would
mean that there are problems which can not be efficiently solved even
though the solutions themselves can be efficiently verified.

Chapter 2

Theory

This chapter aims to provide an overview of relevant theoretical back-
ground and previous work. The research question involves concepts
from different areas. Because some of these may seem unrelated, an
attempt is made below to summarize how these areas are related.

The research question is related to the Boolean Satisfiability Prob-
lem (SAT), described in 2.1. For instances of the problem that are un-
satisfiable, different proof systems exist that formalize ways of proving
this fact; a few are described in 2.2. The SAT problem can be solved by
various methods, briefly summarized in 2.3. Some of these methods
can also generate the kinds of proofs discussed in 2.2; this process is
described in more detail in 2.4.

2.1 Boolean Satisfiability Problem (SAT)

The boolean satisfiability problem (SAT) consists of determining whether
a given propositional logic formula has a satisfying assignment[16].

2.1.1 Conjunctive Normal Form (CNF)

While the SAT problem allows any well-formed, propositional for-
mula, a formula is commonly converted into conjunctive normal form
(CNF) before being used. Because this form is more restricted than
propositional logic in general, it is easier to formulate solver algo-
rithms for formulae on this form. Any valid propositional formula
can however be converted into a formula on CNF that is equisatisfi-
able, meaning that the converted formula is satisfiable if and only if the

7

8 CHAPTER 2. THEORY

original formula is satisfiable; one method for doing this is described
in Tseitin [42].

A CNF formula consists of the following parts:

Variable In this context, a boolean variable, i.e. a variable which takes
on the values true or false (sometimes identified as 1 and 0). Writ-
ten as x, y or z or in some cases x1 or x2. When clear from the
context, they can also be referred to simply by their index; some
examples in later chapters will use numbers like 0, 1, 2 and 3 to
refer to x0, x1, x2 and x3.

Literal Either a variable, such as x, or its negation, x. The value of a
negation is the opposite of the value of the variable it refers to,
so x evaluates to 1 if x = 0 and to 0 if x = 1. Alternatively, x is
sometimes written as ¬x or ∼x when limited to plain text.

Clause A disjunction of literals, for example C = x∨ y ∨ z. A clause is
satisfied if at least one of the literals evaluate to 1; in the example
just given C is satisfied if at least of the following are true: x = 1,
y = 0 or z = 1.

Formula A conjunction of clauses, for example F = (x∨y)∧ (y∨ z). A
formula is satisfied if all clauses are satisfied; in the example just
given both the clause (x ∨ y) and the clause (y ∨ z) are required
to be satisfied.

Because any formula in propositional logic can be converted into
an equisatisfiable formula on this form, we can refer only to formulae
in this form with no loss of generality.

2.2 Proof systems

A proof system in propositional logic is usually defined as per Reck-
how [36]. It consists of a proof-verifying function, P , which accepts
valid proofs that a formula is tautological and rejects invalid proofs.

In this thesis we are instead interested in proving that a formula
is unsatisfiable. The negation of a tautology is unsatisfiable because
if F evaluates to true for all possible assignments then F by definition
evaluates to false for all possible assignments. Thus, a proof system can
equally be formulated to be used to show unsatisfiability. That is the

CHAPTER 2. THEORY 9

formulation that will be used in this thesis. Hence, proof systems in
this context are used to prove unsatisfiability; such a proof is usually
referred to as a refutation.

So, for any unsatisfiable formula, y and a valid refutation x, we
require P (x, y) = y.

Furthermore, we require:

• For any unsatisfiable formula y there is a valid refutation x; this
is known as completeness.

• If there is a valid refutation x of a formula, that formula is unsat-
isfiable; this is known as soundness.

• The proof-verifying function P runs in polynomial time in the
length of its input; it is efficient.

Furthermore, it should be noted that the definition does not require
an efficient algorithm for generating a proof, only that if given a proof
it can efficiently be verified. If an algorithm for generating such a proof
was known to exist, the proof system would be automatizable. As is
discussed in Bonet, Pitassi, and Raz [14], this is usually defined as the
algorithm being polynomial in time in the size of the shortest possible
proof (given that a proof exists).

This section briefly mentions a naive attempt at a proof system and
the cutting planes proof system. It then introduces the resolution proof
system, which has a clear rationale in the light of these two aforemen-
tioned proof systems.

2.2.1 Truth tables proof system

One might imagine a naive proof system consisting of an exhaustive
search of the input space, i.e. attempting all possible assignments to
generate a truth table[36]. This table can then allege that the formula is
falsified for all possible assignments, something that can be efficiently
verified by simply verifying the truth table (recall that efficiency is
measured in terms of proof size).

However, a refutation in this system will have a size exponential
in the number of variables. There are other proof systems in which it
is possible generate shorter refutations for certain families of formulae
but it is still an open question whether there are proof systems that are

10 CHAPTER 2. THEORY

polynomially bounded (i.e. permit refutations polynomial in size for
all formulae).

The existence of such a proof system would answer an open ques-
tion in computational complexity, whether NP equals coNP. The SAT
problem is in NP, which is the set of decision problems whose positive
examples can be verified in polynomial time given the appropriate cer-
tificate[16]. In the case of SAT, a positive example (i.e. a formula that
is satisfiable) can be verified using a satisfying assignment as a certifi-
cate.

If however a polynomially bounded proof system were to exist,
a polynomially sized refutation exists for all unsatisfiable formulae.
Furthermore, the proof verifying function runs in time polynomial in
the size of the refutation. Thus, there is for all unsatisfiable formulae a
refutation which can be verified in polynomial time in the size of the
formulae. As a result, negative instances for SAT (i.e. formulae that are
not satisfiable) can be verified in polynomial time using the refutation
as a certificate. This would place the SAT problem in coNP, which is the
set of all decision problems whose negative examples can be verified
in polynomial time. Thus, because all problems in NP can be reduced
to SAT and all problems in coNP to UNSAT (determining whether a
formula is unsatisfiable), the existence of such a proof system would
mean that NP = coNP.

If on the other hand it could be shown that no such proof system
exists, then NP 6= coNP. This would have implications on another open
question, whether P equals NP, where P is the set of all problems that
can be solved in polynomial time. Because P is a subset of both NP and
coNP, a result of NP 6= coNP would be P 6= NP. This would mean that
there problems whose solutions can be verified in polynomial time but
whose solutions cannot be generated in polynomial time.

2.2.2 Cutting-Planes Proof System

Cutting-planes is a proof system introduced by Cook, Coullard, and
Turán [18] which uses the cutting-planes method used in mathematical
optimization.

This system considers linear equalities on the form (a1x1 + a2x2 +

· · ·+anxn) ≥ a0, where ai ∈ Z and where 0 ≤ xi ≤ 1 for all i. Formulae
can be translated into this form. This is done by translating each clause
into a linear equality by replacing literals on the form x into x, literals

CHAPTER 2. THEORY 11

on the form x into 1 − x, the disjunction operator (∨) by the addition
operator (+) and demanding that this sum is greater than or equal to
1.

For example, the clause (x∨y∨z) translates into x+y+(1−z) ≥ 1.
If all constants are moved to the right hand side, it can be written in
the standard form defined above as (x+ y − z) ≥ 0.

The set of inequalities representing a formula lacks integer solu-
tions if and only if the formula is unsatisfiable.

The cutting-planes proof system consists of manipulating the in-
equalities corresponding to the clauses in the formula and deriving a
contradiction. There are three valid ways in which the inequalities can
be manipulated:

Addition Two inequalities can be added together, which results in a
new inequality with all coefficients added (where variables miss-
ing from one inequality are treated as implicitly having the coef-
ficient 0). For example:

(a1x1 + a2x2 + · · ·+ anxn) ≥ a0 (b1x1 + b2x2 + · · ·+ bnxn) ≥ b0
(a1 + b1)x1 + (a2 + b2)x2 + · · ·+ (an + bn)xn ≥ a0 + b0

Scalar multiplication An inequality can be multiplied by a positive
integer b, which multiplies all coefficients by that number. For
example:

(a1x1 + a2x2 + · · ·+ anxn) ≥ a0
(a1 · b)x1 + (a2 · b)x2 + · · ·+ (an · b)xn ≥ a0 · b

Integer division An inequality can be divided by a positive integer b,
provided that all coefficients a1, a2, · · · an (but not necessarily a0)
are divisible by b. This divides all coefficients by that number
and rounds up a0 to the nearest integer. For example:

(a1 · b)x1 + (a2 · b)x2 + · · ·+ (an · b)xn ≥ a0
(a1x1 + a2x2 + · · ·+ anxn) ≥ da0 / be

The reason that rounding up is performed is that we only permit
integer coefficients. However, no valid solution is removed by
this operation. The reason is that the left side of the equation

12 CHAPTER 2. THEORY

only contains integer coefficients and boolean variables and so it
can only take on integer values.

As opposed to the naive proof system described above, it is possi-
ble to generate refutations which are not exponential in size. A small
example follows below but a larger example can be found in A.1.

Consider the formula (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2) ∧
(x1 ∨ x3) ∧ (x2 ∨ x3) (generated with the program cnfgen[32] and the
parameters bphp 3 2).

In the cutting planes proof system, this would be represented as
the following set of inequalities:

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

−x1 − x2 ≥ −1
−x1 − x3 ≥ −1
−x2 − x3 ≥ −1

In order to construct a refutation, one can first use the addition
operation on the first three inequalities. This gives the inequality 2x1+

2x2 + 2x3 ≥ 3, which can be divided by 2 to get the inequality (after
rounding) x1 + x2 + x3 ≥ 2. If this is multiplied by 2 it gives the clause
2x1 + 2x2 + 2x3 ≥ 4.

Using the addition operation on the last three inequalities gives
the inequality −2x1 − 2x2 − 2x3 ≥ −3. Adding this to the inequality
2x1 + 2x2 + 2x3 ≥ 4 gives 0 ≥ 1, which is a contradiction.

2.2.3 Resolution Proof System

Given the two proof systems now described there are characteristics
of both that are advantageous and disadvantageous. Firstly, the naive
system can easily be used to automatically generate a refutation for
any formula, but this refutation is of exponential size in the size of the
formula.

Secondly, the cutting planes system cannot be as easily automated
as there are multiple choices to be made regarding which operations
to perform on which clauses; given that one operation consists of mul-
tiplying by an arbitrary integer, the number of possible operations is
infinite.

CHAPTER 2. THEORY 13

In contrast, the resolution proof system offers only one operation, that
combines two clauses into a new clause[12]. This suggests that it is
"morally easier" to generate a proof than in the cutting planes system.
It is however not trivial to automatically generate such a proof and it
is known that finding the shortest resolution refutation is NP-hard[29].

The one operation in the resolution proof system is called resolu-
tion and is used to combine two clauses into a new, resulting clause
called a resolvent. The operation generates a new clause with all liter-
als from both of the clauses being resolved, except the pair (one from
each clause) of literals that represent the same variable but with oppo-
site signs.

Informally, the rationale behind this operation is that if a variable
appears in two clauses but with opposite signs, assigning a value to
it will satisfy one of the two clauses but require the other clause to be
satisfied by one of its other literals.

As an example, consider the two clauses (x ∨ y) and (y ∨ z). If one
chooses y = 1, one satisfies the latter clause but then requires x = 1

to satisfy the former. Conversely, if one assigns y = 0 one also needs
to assign z = 0. No matter the value of y then, one is forced to assign
either x = 1 or z = 0, which can be expressed as the resolvent (x ∨ z).
Thus, y and y were omitted from the resolvent because they represent
the same variable but have opposite signs.

This is formalized as the resolution operator and is written as fol-
lows:

(C1 ∨ x) (C2 ∨ x)

(C1 ∨ C2)
(2.1)

For the example given above, it is written as:

(x ∨ y) (y ∨ z)

(x ∨ z)
(2.2)

It is important to note that only one literal can be removed by the
resolution, or invalid inferences could be drawn. For example, remov-
ing both x and y from the two clauses (x ∨ y) and (x ∨ y) leaves the
empty clause, suggesting that there is no assignment that satisfies both
clauses simultaneously; however either of the two assignments where
x 6= y holds satisfy them.

As is discussed by Robinson [38], a formula is unsatisfiable if and
only if a series of resolution steps can deduce the empty clause (con-

14 CHAPTER 2. THEORY

taining no literals) from the original clauses. These steps then consti-
tute the actual refutation, which is called a resolution refutation.

This refutation can be seen as a directed, acyclic graph where each
vertex is a clause with incoming edges from the clauses it was resolved
from; clauses from the original formula are then necessarily sources
and the empty clause the sole sink. We then refer to the number of
vertices as the length of the refutation, which is a property whose rela-
tion to the input size is of special interest.

This kind of refutation is known as a resolution refutation and an
example is given in figure 2.1. The example is for the formula (x ∨
y) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y); note that each of the four possible vari-
able assignments make one clause falsified. Clauses from the original
formula have been colored gray while clauses derived from these are
white.

A larger example can be found in A.1 in the appendix.

x ∨ y x ∨ y

y

x ∨ yx ∨ y

y

Figure 2.1: An example of a resolution refutation.

Various restricted subsystems have been introduced; many of these
are summarized in Beame, Kautz, and Sabharwal [9]. The three of
interest to this thesis are:

General resolution No restrictions other than all steps being valid res-
olution steps.

Despite this however, resolution is known to be weaker than the
cutting-planes proof system[18].

Tree-like resolution The refutation forms a tree. Equivalently, each
non-empty derived clause is used exactly once.

There are certain kinds of formulae which tree-like refutations
are exponentially long in the size of the formula, while general

CHAPTER 2. THEORY 15

resolution refutations are of polynomial size; this means that tree-
like resolution can be said to be weaker than general resolution.

When a refutation is not perfectly tree-like, this is because a non-
empty derived clause has been used more than once. Whenever
this occurs, this can be said to be a tree violation. The vertex
of the clause that was used more than once can be said to be a
tree-violating vertex and every instance of reuse corresponds to
a tree-violating edge.

An example of a tree violation is displayed in figure 2.2.

Regular resolution If a variable x is removed by resolution, subse-
quent resolution steps will not reintroduce the variable [42].

More formally, for every sequence of clauses C1, · · · , Cn such that
Ci+1 is derived from Ci and a variable, v, exists in both Cj and Ck,
then it must also exist in Cx for all x, j < x < k.

This restriction allows for some reuse of intermediate steps, which
allows regular resolution to be exponentially stronger than tree-
like resolution[15], meaning that there are certain kinds of for-
mulae where the proof is exponentially larger for tree-like reso-
lution. General resolution is however also exponentially stronger
than regular resolution [1]).

If there is a sequence of clauses C1, · · · , Cn such that Ci+1 is de-
rived from Ci and a variable, v, exists in both Cj and Ck but not
in Cl for some j, k and l such that j < l < k, the refutation is not
regular. At some point Cx, where l < x ≤ k the variable is reintro-
duced; this can be said to be a regularity violation and the clause
that reintroduces the variable is said to be a regularity-violating
vertex.

An example of a regularity violation is displayed in figure 2.3.

16 CHAPTER 2. THEORY

z ∨ y

x

x ∨ yyx ∨ y

x

z ∨ y

Figure 2.2: A resolution refutation which is not tree-like; the derived
clause y is used multiple times and is said to be a tree-violating vertex.

The edge from y that is added last is said to be a tree-violating edge.

· · ·

x ∨ y ∨ z

y ∨ a

x ∨ yx ∨ y ∨ z ∨ a

x ∨ z ∨ a

Figure 2.3: Part of a resolution refutation which is irregular; the
variable y is removed at the first step and reintroduced in the second.

x ∨ y ∨ z is said to be a regularity-violating vertex because it
reintroduces a variable.

CHAPTER 2. THEORY 17

2.3 Methods for SAT solving

In the literature, a number of methods for solving the SAT problem
have been proposed. This sections aims to introduce ones of particular
interest to this thesis.

2.3.1 Exhaustive search with backtracking

One naive method of solving the SAT problem is to use exhaustive
search with backtracking. Pseudo code can be found in algorithm 1. It
consists of assigning variables until the formula is falsified and then at-
tempting opposite assignments until it is no longer falsified. In the end
either all options have been exhausted or a solution has been found.

Algorithm 1 Exhaustive search with backtracking
Input:

F - the formula to be solved
xs - the assignments that have been made as an ordered sequence
of Boolean values, i.e. [1, 0] if x1 = 1 and x2 = 0.

1: function EXHAUSTIVEWITHBACKTRACK(F, xs = [x1, · · · , xn])
2: for xn+1 ∈ {0, 1} do
3: xs′ ← [x1, · · · , xn+1]

4: if F is satisfied under xs′ then return {SAT, xs′}
5: else if F is indeterminate under xs′ then
6: if EXHAUSTIVEWITHBACKTRACK(F, xs′) = {SAT, xs′′}

then return {SAT, xs′′}
return UNSAT

2.3.2 Davis-Putnam-Logemann-Loveland algorithm (DPLL)

The Davis-Putnam–Logemann–Loveland algorithm (DPLL) was intro-
duced in 1962 as a method of theorem proving[19]. It is roughly based
on the naive backtracking method described above but adds a number
of improvements that can improve running time.

The first technique is known as unit propagation. In this case, a unit
is a clause containing only one literal. If a formula contains a unit, that
exact assignment has to be made in order to satisfy the formula. For

18 CHAPTER 2. THEORY

example, any satisfying assignment to the formula (x) ∧ (x ∨ y) must
have x = 0 because otherwise the first clause is falsified.

This is used as a technique during the run of the algorithms to
avoid considering assignments that would never have been valid. As
an example, consider the formula:

(x ∨ y) ∧ (y ∨ z) (2.3)

Initially, the solver has not assigned values to any of the variables,
so they are neither assigned 1 nor 0. If the solver chooses to assign
x = 0, it has what is called a partial assignment, because only some of
the variables have been assigned values.

With this partial assignment, we can remove all instances of x from
our formula (because those literals can now not be satisfied). This re-
sults in:

(y) ∧ (y ∨ z) (2.4)

We now have a unit clause containing y. Because we must satisfy
this clause to satisfy the formula we immediately assign y = 0 and
remove all instances of the literal y from our formula:

(y) ∧ (z) (2.5)

This in turns forces us to assign z = 0. Because of these propaga-
tions, many assignments were never attempted because, as discovered
by the propagations, the formula is not satisfied under them.

Furthermore the DPLL algorithm considers the number of times
each variable appears with each respective sign and if a variable ap-
pears with only one sign throughout the whole formula, it can be im-
mediately assigned as to satisfy them (i.e. if the variable x only appears
as x, x = 0 is assigned).

Lastly, it does not simply assign variables in an unspecified order
but instead permits the next variable to assign to be chosen by some
algorithm, that can then hopefully make a more informed decision.

This gives a pseudo code that is similar to the backtracking method
but which differs in significant ways; it can be seen in algorithm 2. Two
functions are used above:

• UNITPROPAGATE(F, x), which will investigate all clauses in F

and assign variables to x from any unit clauses that appear (i.e.

CHAPTER 2. THEORY 19

Algorithm 2 DPLL algorithm
Input:

F - the formula to be solved
xs - a set of tuples representing assignments, with (m, vm) indicat-
ing that the variable given by m is assigned the value vm, i.e. (2, 1)
indicates x2 = 1.

1: function DPLL(F, xs = {(n, vn), · · · })
2: {F, xs′} ← UNITPROPAGATE(F, xs)
3: if F is satisfied under xs′ then return {SAT, xs′}
4: else if F is falsified under xs′ then return UNSAT

5: i← SELECTUNASSIGNEDLITERAL(F, xs′)
6: for vi ∈ {0, 1} do
7: xs′′ ← xs′ ∪ (i, vi)

8: if F is satisfied under xs′′ then return {SAT, xs′′}
9: else if F is indeterminate under xs′′ then

10: if DPLL(F, xs′′) = {SAT, xs′′′} then return {SAT, xs′′′}
return UNSAT

clauses where only one unassigned variable remains and the other
literals are falsified).

• SELECTUNASSIGNEDLITERAL(F, x), which will investigate F and
select the next variable to assign.

2.3.3 Conflict-Driven Clause Learning (CDCL) solvers

Building on the basic structure of the DPLL algorithm, a new method
of SAT solving was introduced in 1996[39]; this is known as Conflict-
Driven Clause Learning (CDCL). As implied by its name, it is concerned
with the conflicts encountered during the search, where a conflict is the
point at which a clause is found to be unsatisfiable under the current
assignment.

When these conflicts are encountered a CDCL solver will attempt
to determine the cause of the conflict in order to avoid it in the fu-
ture, instead of simply undoing the last assignment as a DPLL solver
would. This cause is then formulated as a new clause that is added to
the formula.

20 CHAPTER 2. THEORY

Concepts and Terminology

In order to explain the workings of a CDCL solver, a few concepts first
have to be introduced.

Trail During the run of a CDCL solver, it will just like the DPLL
solver make an assignment to an unassigned variable. Once the vari-
able is assigned, unit propagation will be used to find assignments that
the solver is now forced to make.

This means that the assignments of the solver are made either as
explicit choices (referred to as decisions) or as the results of unit propa-
gations. The current assignments along with annotations on why they
were assigned is referred to as the trail.

As an example, the example formula in section 2.3.2 would result
in the following trail:

1. x (decision)

2. y (unit propagation via (x ∨ y))

3. z (unit propagation via (y ∨ z))

Reason When a unit propagation occurs, this is because some clause
has been found to only contain one literal that is satisfiable under the
current partial assignment. This clause can then be said to be the reason
the propagation occurred.

Decision levels Because the trail will contain a repeating sequence
of decisions each possibly followed by unit propagations, we define
the term decision levels. This is an incrementing number starting from
0 which is incremented before each decision (so the first decision is at
level 1).

Furthermore, this can be referred to as a property of a variable at
a particular point during the solver execution. Once again using the
example from 2.3.2, we assign x at the first level so the decision level
of x is 1. Furthermore, both y and z are propagated from decision 1

and so the decision levels of y and z are both 1 (if one more decision
were to be made, it would be at level 2).

CHAPTER 2. THEORY 21

Implication graph As noted by Silva and Sakallah [39], the sequence
of decisions and their implications (the trail) can be represented by an
implication graph and can show how a conflict is analyzed by determin-
ing the reason for the conflict.

The implication graph is a directed graph where all vertices refer to
an assignment (i.e. an item on the trail). Every decision is a source (i.e.
a vertex with no ingoing edges) and has outgoing edges to all assign-
ments that follow from unit propagation via a clause it is contained
in.

For example, assume the following trail:

1. x = 1 by a decision (on level 1). This is represented by a vertex
labeled "x = 1 @ 1", where "@ 1" refers to the fact that it was
assigned on decision level 1.

2. y = 1 is propagated via the clause (x ∨ y). This is represented by
a vertex labeled "y = 1 @ 1", which has an incoming edge from
x = 1 @ 1.

3. z = 1 by a decision (on level 2). This is represented by a vertex
labeled "z = 1 @ 2".

4. a = 1 is propagated via (z ∨ y ∨ a). This is represented by a
vertex labeled "a = 1 @ 2" which has incoming edges from both
"x = 1 @ 1" and "y = 1 @ 1".

Furthermore, assume that this leads to a conflict in the clause (z∨a).
This is represented by a vertex called the conflict vertex, which has
incoming edges from all assignments which make it unsatisfiable, i.e.
"z = 1 @ 2" and "a = 1 @ 2".

This makes for an implication graph as displayed in figure 2.4.
Traversing this graph is useful as it contains all relevant informa-

tion on why the solver arrived at a conflict and analyzing this graph
can give options for avoiding the same conflict in the future. From the
example above, we can see that not only is the formula unsatisfied if
z = 0 and a = 0 (which follows from the conflict clause) but also if
x = 1 and z = 1 or if y = 1 and z = 1.

Dominator The implication graph may contain dominators. A vertex
v is said to dominate a vertex w if all paths from w to the sink must pass
via v. In figure 2.4, the vertex "a = 1 @ 2" dominates "y = 1 @ 1" but
not "z = 1 @ 2".

22 CHAPTER 2. THEORY

x = 1 @ 1

z = 1 @ 2y = 1 @ 1

a = 1 @ 2

Conflict in (z ∨ a)

Figure 2.4: An example implication graph.

Description of algorithm

With the relevant concepts introduced, the basic algorithm of a CDCL
solver can be described. The basic procedure is similar to that of a
DPLL solver where variables are assigned followed by unit propaga-
tions from that assignment. What is novel in the CDCL method is what
occurs when there is a conflict.

A rough description of the algorithm can be found in algorithm 3.
Compared to algorithm 2, three new functions are used:

• LEARNFROMCONFLICT(F, trail), which will analyze the conflict
and determine both a new clause to learned (as described be-
low) and an appropriate place to backtrack to (i.e. assignments
to undo).

• BACKTRACKTO(F, trail, backtrackTo), which will remove any as-
signments that were made on or after the given decision level.

• PICKVARIABLEANDVALUE(F, trail), which selects a variable and
a value (either 1 or 0) to assign using some heuristic.

Learning a clause When the conflict is encountered, the CDCL solver
will learn a new clause from the information gathered via the implica-
tion graph; this clause will then ensure that the solver will not arrive
at the same conflict again.

CHAPTER 2. THEORY 23

Algorithm 3 CDCL algorithm
Input:

F - the formula to be solved, containing a set of clauses and their
indices. Variables are assumed to start at 0 and there are no gaps,
i.e. if xn exists in the formula then xi exists for all i such that i < n.
trail - a set of tuples representing assignments, represented as
(m, vm, lm, rm). This indicates that the variable xm is assigned the
value vm at decision level lm. rm refers to the index of the clause
xm was propagated from, or −1 if xm was assigned by decision.
For example, (2, 1, 3, 4) indicates x2 = 1 on decision level 3 by unit
propagation from the clause with index 4. Can be the empty set if
no initial assumptions are given.
numVariables - the number of variables in the formula

1: function CDCL(F, trail, numV ariables)
2: decisionLevel← 0

3: (state, trail)← UNITPROPAGATE(F, trail)
4: if state = UNSAT then return UNSAT

5: while |trail| < numV ariables do
6: decisionLevel← decisionLevel + 1

7: (i, vi)← PICKVARIABLEANDVALUE(F, trail)
8: trail← trail ∪ (i, vi, decisionLevel,−1)
9: (state, trail)← UNITPROPAGATE(F, trail)

10: if state = UNSAT then
11: (learnedClause, backtrackTo) ← LEARNFROMCON-

FLICT(F, trail)
12: if backtrackTo < 0 then return UNSAT

13: else
14: decisionLevel← backtrackTo

15: F ← F ∪ learnedClause

16: trail← BACKTRACKTO(F, trail)
return (SAT, trail)

There are different options for how to choose this learned clause. A
naive version might be to simply learn a negation of all the currently
assigned variables, as this prohibits at least one of the current assign-
ments (that together falsify the formula).

As an example, assume that the three variables x, y and z have all

24 CHAPTER 2. THEORY

been assigned as x = 1, y = 0 and z = 1, and that this leads to a conflict.
One possible clause to learn would simply be (x∨y∨z), corresponding
to a disjunction of negations of the assignments.

This is however not necessarily enough to avoid the conflict; some
of the variables might not be involved in the conflict and so setting
them to their opposite value would not prevent the conflict from oc-
curring.

What CDCL solvers do instead is to traverse the implication graph
to ensure that only assignments that imply the conflict are part of the
learned clause.

The first method of handling this traversal is described in Silva and
Sakallah [39] and consists of initially considering the learned clause as
containing only the literal of the last decision (i.e. if the last decision
was x = 0, the learned clause is initially considered to be (x). This can
be justified by the two facts:

• The last decision made is relevant to the conflict, or else the con-
flict would have occurred earlier

• All other assignments made at the last level are implied by the
last decision (via unit propagation)

Furthermore, the implication graph is traversed backwards from
the conflict vertex until all vertices have been visited and all source
nodes (i.e. decisions) are then added to the clause. Because they are
visited during the implication graph traversal it is known that they
contribute to the conflict.

Use of unique implication points As described in Silva and Sakallah
[39], one can continue the traversal of the implication graph until only
decisions remain in the clause (after which, no further traversal is pos-
sible). However, it is also possible to stop at an earlier point, which
is often preferred. The main motivation for doing so is that this can
lead to a smaller clause, which is then said to be a stronger implicate
because it is a subset of the wider clause and as such more restrictive.

Stopping at an earlier point makes use of unique implication points,
UIPs. These correspond to dominators of the implication graphs. If v
dominates the decision vertex at the same decision level, it is said to
be a UIP and can substitute the decision in the learned clause. For

CHAPTER 2. THEORY 25

exampple, in figure 2.4, "y = 1 @ 1" dominates the decision vertex
"x = 1 @ 1" and so it is a UIP.

There have been different propositions for how to utilize unique
implication points but the 1UIP scheme[39] was found by Zhang et al.
[44] to be robust and the most effective. It entails stopping the clause
learning process as soon as a UIP has been found at the current de-
cision level. This will then be the first UIP found and also the one
closest to the conflict (as the search in the implication graph starts at
the conflict). This first UIP is then the only reason for the conflict at the
current decision level, as all other assignments that are involved in the
conflict at the current decision level are implied by the first UIP and
assignments on other decision levels.

It is somewhat arbitrary that the first unique implication point is
used and indeed, many different UIPs may exist. There are however
proposed reasons for preferring the first UIP. One such reason is the
guaranteed longest backtrack[34], meaning that the greatest number
of assignments can be undone, pruning more of the search tree. Fur-
thermore, the first UIP is guaranteed to contain literals from the fewest
decision levels, which has been proposed as a measure of quality of
clauses[6].

In terms of resolution, the process for finding the first UIP clause
consists of starting with the conflict clause, resolving with the reason
clause for each variable (in reverse trail order) and continuing until
only one variable from the last decision level remains.

Backtracking Once the clause is learned the next step is to perform
backtracking. A DPLL solver would undo the last decision at each
step; this is referred to as chronological backtracking. It can be noted
however that it is not necessary for the traversal of the implication
graph to encounter assignments made at all decision levels. If a cer-
tain decision level is never encountered, it follows that undoing the
decision made at that level is of no consequence for the conflict that
was encountered.

A CDCL solver will then instead choose to backtrack not to the last
decision level, but to the last decision level that was involved in the con-
flict (except for the current decision level, which the solver is already
at). This is referred to as non-chronological backtracking. If no other de-
cision level is involved in the conflict, the backtrack is performed to
level 0, meaning that all assignments are undone.

26 CHAPTER 2. THEORY

2.3.4 Common extensions

In addition to the CDCL method as described above, there are a num-
ber of extensions that are used by solvers that are successful in prac-
tice, such as Minisat[21] or Glucose[4].

Clause minimization

When learning a clause by 1UIP it is possible to further minimize the
clause in order to both decrease the amount of memory required and
to speed up the solving time; this has been implemented in the solver
Minisat[21] and is described in Sörensson and Biere [40].

There are two variants of this specific minimization method, with
one called local minimization and the other called recursive minimization.
They both have in common that they aim to remove redundant literals
from the learned clause.

Assume for example the following scenario:

1. The solver decides x = 1, which implies y = 1 via unit propaga-
tion from (x ∨ y).

2. The solver decides a = 1, which implies b = 1 via unit propaga-
tion from (a ∨ b)

3. x = 1, y = 1 and a = 1 together imply z = 1 via unit propagation
from (x ∨ y ∨ a ∨ z)

4. A conflict ensues in (b ∨ z)

In this case the 1-UIP clause found by the algorithm described in
2.3.3 would be the clause (a ∨ x ∨ y). However, because x directly
implies y, minimization allows this clause to be minimized to (a ∨ x),
via resolution of the 1-UIP clause with (x ∨ y).

The local version would proceed as described above until there
there are no literals remaining that are directly implied by the oth-
ers. If the process is performed in two steps whereby literals are first
marked for removal before removing all marked literals at once, the
literals can be handled in an arbitrary order.

The recursive version builds on the local but also allows interme-
diate literals to be introduced if they are guaranteed to be removed
eventually. This occurs when a newly introduced intermediate literal

CHAPTER 2. THEORY 27

is dominated in the implication graph by literals already in the 1UIP
clause, meaning that the newly introduced literal is implied by literals
already in the 1UIP clause.

As an isolated example of the above, consider the following:

1. There is a 1UIP clause containing (a ∨ b ∨ c ∨ d)

2. c is propagated via (a ∨ x ∨ c)

3. x is propagated via (a ∨ x)

In this case it is not possible to directly resolve to remove literals.
However, we may perform the following two steps:

1. Resolving (a ∨ b ∨ c ∨ d) with (a ∨ x ∨ c) to get (a ∨ b ∨ x ∨ d)

2. Resolving (a ∨ b ∨ x ∨ d) with (a ∨ x) to get (a ∨ b ∨ d)

Note how the first step introduces a new literal, x, which is later
removed by the second step. Recursive minimization allows this tem-
porary new literal in order to allow us to end up with a smaller final
clause; these temporarily introduced literals are guaranteed to even-
tually be removed because they are dominated by literals in the 1UIP
clause.

This process is repeated until the clause cannot be made any smaller.
Unlike the local version, the order variables are handled is of con-
sequence; unless they are handled in reverse assignment order, the
derivation may have irregularities.

To summarize:

• Local minimization consists of resolution steps which removes
literals but introduce no new variables, i.e. strictly reduce the
width of the clause at each step, until no more such resolutions
are possible.

• Recursive minimization consists of taking the 1UIP clause and
performing resolution steps that remove literals but that may in-
troduce new literals if these new literals correspond to variables
are in turn implied by variables that are in the 1UIP clause. It
continues in reverse trail order until it has considered all vari-
ables.

28 CHAPTER 2. THEORY

Restarts

A heuristic introduced by Gomes, Selman, and Kautz [25] and in-
cluded in Minisat is the use of restarts to increase the speed of the
solver. These restarts will discard all decisions that have been made
but not the clauses that have been learned.

Historically, the theoretical justification was thought to be that in
combinatorial search, certain parts of the search tree are often expo-
nentially more expensive than others. This could for example cor-
respond to some certain assignment of variables requiring an excep-
tional amount of cases to be explored. Restarting can then be per-
formed in the hope that the program will choose more fruitful assign-
ments afterwards.

However, this is not the right explanation in the case of CDCL
solvers; instead restarts actually increase the reasoning power of the
solver.

One justification for this is given by Huang [28]. The solver gets
a more informed belief about the what its best next steps are as it is
learning new clauses and assigning heuristic scores. While it gains a
clearer view as it progresses, it cannot fully execute according to its
current belief because it is still bound by its previous decisions. When
the solver restarts it is allowed to execute fully according to its up-
dated beliefs and so after a restart the search process is not restricted
by previous beliefs that are no longer held. This means that variables
can be assigned differently and in a different order.

Furthermore, it has been shown by Pipatsrisawat and Darwiche
[35] that a CDCL solver that utilizes restarts is at most polynomially
less efficient than general resolution, suggesting that restarts can in-
crease the reasoning power provided that the restarts are frequent enough.

As described by Marques-Silva, Lynce, and Malik [34], there is a
variety of options for when to restart, such as randomly or by some
activity heuristic. In either case, the fact that clauses are learned is
enough to guarantee completeness.

Learned Clause Removal

One issue with clause learning as noted by the Minisat authors Eén
and Sörensson [20] is that the database of learned clauses eventually
uses excessive space. While the learned clause avoids unfruitful branches
in the search tree, they also necessarily use memory and time as they

CHAPTER 2. THEORY 29

are handled at each iteration. For this reason, CDCL solvers periodi-
cally remove learned clauses from the database. In the case of Minisat,
this is by default done using an activity heuristic, meaning that clauses
that are used often are more likely to be kept.

Other heuristics for selecting clauses to remove have been pro-
posed. An example is the literals blocks distance (LBD) heuristic pro-
posed by Audemard and Simon [6], which considers the number of
different decision levels involved in the clause; a lower LBD is found
by the authors to make a clause more likely to be used often. As op-
posed to the activity based heuristics, the LBD can be calculated only
once.

Unit Elimination

One further strategy that is found in the code of Minisat but difficult to
find described in the literature will be referred to as unit elimination. It
occurs during the analysis stage where a conflict is analyzed in order to
build a learned clause. When a literal is encountered that corresponds
to a variable already assigned at decision level 0, Minisat will choose to
ignore this literal and prevent it from appearing in the learned clause.

This is valid because assignments at level 0 are not propagations as
the results of decisions but instead directly from the original formula
and learned clauses. For this reason, the variables they involve can
only be assigned that specific value, or the entire formula is necessarily
unsatisfied.

Because they are assigned at level 0, the value assigned to the vari-
able will never change. This means that including its negation in any
learned clause provides no extra information to the solver and so it
is redundant and unproductive use of memory to include it in any
learned clause.

2.4 CDCL solvers and resolution refutations

Although CDCL solvers as they are described in 2.3.3 do not generate
resolution refutations directly, the clauses learned by the solver are
sufficient to generate such a refutation [43].

This section will bridge the gap between CDCL solver theory and
resolution refutation theory and show how the execution of a CDCL
solver can be framed as resolution. Furthermore, it will show how

30 CHAPTER 2. THEORY

common optimizations can be seen as being performed using resolu-
tion.

2.4.1 Resolution in a plain CDCL solver

As described earlier, a CDCL solver will assign variables values through
some heuristic and use unit propagation to track the implications of
these assignments. Once a conflict arises, it uses the implication graph
to learn a clause that will avoid the same conflict from arising in the
future.

This search through the implication graph can be mapped onto the
concept of resolution. Initially, a conflict clause has been found (i.e.
a clause in which all of the literals are falsified). This is called the
”working clause”. Next, the implication graph is used to replace lit-
erals in this clause with their reasons (the assignments that together
necessarily led to this assignment). This process uses resolution over
the current working clause and the reason clause of one of its literals.
Once all resolution steps have been performed, the working clause is
the new learned clause.

Consider the following example:

1. Assume a conflict arises in (x ∨ y ∨ z)

2. Furthermore, assume that x was propagated via (a∨b∨x) because
of the decisions a and b.

3. We can choose to resolve with the reason clause of x, (a ∨ b ∨ x),
corresponding to how the implication graph is used as described
in 2.3.3. This removes the variable x as it appears twice with
opposite signs.

(x ∨ y ∨ z) (a ∨ b ∨ x)

(y ∨ z ∨ a ∨ b)
(2.6)

4. The resolvent of this operation can then be further refined by
again resolving with the reason of one of the literals, until some
heuristic indicates that the clause to learn is found.

As described earlier, this process is repeated and the learned clauses
are added to the database. Eventually the formula is determined to be
unsatisfiable, which occurs when a conflict resolution results in the

CHAPTER 2. THEORY 31

empty clause. This can only occur on decision level 0 (i.e. with no de-
cisions made) because otherwise decisions can be reversed to generate
new options.

The result of this is that once this final conflict occurs, a sequence
of resolution applications has been found that begin with the conflict
clause and result in the empty clause. If the derivations of all the
learned clauses that are used in this sequence are also provided, a res-
olution refutation has been obtained.

Algorithm for building this refutation The algorithm starts with the
conflict clause and considers this the ”working clause”. Then, the lit-
eral in the clause which is assigned last (i.e. occurs last on the trail)
is determined. The working clause is then resolved with the reason
clause for this assignment. This is repeated until the working clause is
empty.

Thus, at each step the working clause is resolved with a reason
clause to arrive at a new working clause. The resulting working clause
is then resolved with the next reason clause. This can be represented as
a graph as has been described earlier, by letting a vertex represent each
clause and adding edges from the two ingoing clauses to the resolvent.

Furthermore, the first time a learned clause is used the full deriva-
tion of the learned clause is added to the graph (subsequent uses refer
back to the same vertex). This means that all source vertices in the
graph will represent clauses from the initial formula.

2.4.2 Resolution in CDCL solver extensions

In 2.3.4 a number of extensions to CDCL solvers were described. This
section shows how they do not affect the soundness (validity) of the
resolution refutation.

Restarts

This technique entails restarting the solver at certain intervals. Because
it undoes decisions that have been made, it could cause the solver to
arrive at a different refutation. It does however not affect the conflict
analysis and so the solver will still arrive at a valid resolution refuta-
tion.

32 CHAPTER 2. THEORY

Learned Clause Removal

This extensions makes the solver remove some of the learned clauses
at certain intervals, usually based on an activity-based heuristic (for
example removing learned clauses that are rarely used). This is in-
tended to improve performance, as there is a certain amount of book
keeping required for all clauses in the database.

Because this extension only removes clauses from the database but
does not introduce new clauses or modify existing ones, it does not
affect the resolution refutation; the final refutation can still contain the
clause that was removed.

Clause Minimization

The description in 2.3.4, is entirely in terms of resolution.
It should be noted that if a learned clause is used for minimiza-

tion multiple times, this violates tree-likeness. Thus, a refutation that
would otherwise be tree-like will no longer be.

Unit Elimination

Unit Elimination is as described in 2.3.4 the process of removing lit-
erals corresponding to variables that are assigned at level 0, i.e. the
result of learned unit clauses.

The exact process of framing this as resolution is open to different
interpretations. Three different ones have been considered in this the-
sis (and are demonstrated graphically in A.2 in the appendix):

Ignoring (mode 0) The simplest option is ignoring the elimination of
literals when generating the refutation and pretend that these lit-
erals end up in the learned clause. As described above, the empty
clause is arrived at by resolving with reason clauses in reverse
trail order. If unit eliminations are ignored, the learned clause
will then contain extra literals, corresponding to variables that
are already assigned at level 0. However, once the trail traver-
sal continues these literals will be removed by resolving with the
correspoding learned unit clause. Thus, interpreting in this way
does not prevent the resolution of the empty clause.

With this interpretation, the learned clauses will be different from
the ones actually learned by the solver (as they contain the elimi-

CHAPTER 2. THEORY 33

nated literals as well). However, it does not disrupt tree-likeness
or regularity.

Resolving with units (mode 1) A second option is using this unit clause
at level 0 as any other learned clause and resolving with this in
order to eliminate the unit. This means that every time a learned
clause is derived and a unit eliminated, an extra resolution step
will be performed with this unit clause.

The downside to this is that the same derivation can be per-
formed multiple times, if different learned clause derivations all
use the same initial clause and then eliminate the same units.
This makes the refutation larger in the number of vertices (but of
course smaller in the number of literals in some vertices).

Furthermore, because this learned unit clause is reused every
time it is used to eliminate a unit, it introduces violations of tree-
likeness; a refutation that would otherwise be tree-like could be
made non-tree-like with this mode. Because units can potentially
be eliminated multiple times, it can also introduce violations of
regularity. To see this, consider the following sequence:

1. Using the initial clause (x ∨ y ∨ z)

2. Resolving with the learned unit clause (x) to eliminate x and
arrive at (y ∨ z)

3. Resolving with the initial clause (x ∨ a) to arrive at (y ∨ z ∨
x ∨ a)

4. Resolving with the same learned unit clause (x) to eliminate
x and arrive at (y ∨ z ∨ a)

With this sequence of events, the variable x has been introduced,
resolved away and reintroduced; this is a regularity violation. If
unit elimination would be ignored this violation would not have
occurred.

Furthermore, it has introduced tree violations because the unit
clause x has been used twice.

Learning intermediate steps (mode 2) The last option that was con-
sidered is similar to option 1 but sometimes avoids making the
same derivation multiple times

34 CHAPTER 2. THEORY

In this interpretation mode, the result of eliminating a literal from
a clause is considered to be a new learned clause that can then be
reused in multiple places. If x = 0 and y = 0 are both assigned
at decision level 0 and a certain clause (C ∨ x ∨ y) is used in
multiple places, the clause C is first derived once. Then, it can be
used directly instead of using the full clause and resolving with
the two units multiple times.

In order to ensure as much reuse as possible, units were elimi-
nated in trail order when there were multiple eliminations in a
row.

Like the unit resolving mode above, this mode can also introduce
regularity and tree-likeness violations.

The reason the choice of interpretation mode is important is that
it affects the refutation shape, both in its tree-likeness and its regu-
larity. It does complicate both experimental setup and analysis but
because the solver does not use resolution directly when eliminating
units there is not one correct option.

Chapter 3

Methods

This chapter describes the methods that were used in this project, both
the qualitative and quantitative analysis and their common prepara-
tions.

3.1 Preparations

In order to be able to analyze resolution refutations, two steps were
required:

1. A CDCL solver was needed. The choice was made to use the
solver used in Elffers et al. [22], which is based on the Glucose
solver that is in turn based on Minisat, and had been further
modified to have extra options and instrumentation capabilities.
This particular solver was chosen because it had instrumentation
capabilities, all the required parameters and source code that was
found to be readable.

This solver was then modified to output the information required
for building resolution refutations.

2. An application was required to build the resolution refutation
and generate relevant metrics from it.

While it would be possible to integrate these into the same applica-
tion, the choice was made to have the solver output as text a detailed
log of its actions that were relevant to the resolution refutation; this log
could then be used by a separate application to build the actual proof.

35

36 CHAPTER 3. METHODS

This choice was made in order to allow the parts to be tested sepa-
rately. In the end this ended up being crucial to allow complicated
issues to be analyzed and solved.

3.1.1 Modification of solver

As mentioned above, the solver was modified to output a detailed log
of all actions that were necessary to recreate the resolution refutation
the solver was implicitly building. The source code is available, in-
cluding these modifications, at https://github.com/johanlindblad/
minisat-instrumented.

These actions were discovered by first reading the original report
by Eén and Sörensson [20] to get an overview of its original structure.
This was followed by reading the latest version of the code and at-
tempting to reconcile this with the structure described in the report.
Lastly, the solver was run with small example formulae while observ-
ing it in a debugger (or via log statements) until the structure was un-
derstood.

This process ended up with a set of different classes of instructions
that were required to be printed to the log file in order to be able to
reconstruct the resolution refutation. These were chosen to not only
include what is strictly required, but also include certain verification
information so that it could be verified that the solver and the analysis
program shared a common view of the process.

The set of instruction is available in the appendix in A.4.

3.1.2 Implementation of resolution graph tool

Once the solver had been modified to output a log of relevant ac-
tions, a program was made to consume these logs. This program
implemented the data structures required to not only keep the state
needed by the solver, but also any extra information required that
the solver can choose to only track implicitly. Source code for the
program is available at https://github.com/johanlindblad/
resolution-graph-tool.

As an example, the solver can (as discussed in 2.3.4) eliminate units
at decision level 0 by simply noting that a variable is assigned at de-
cision level 0 without being concerned with why that assignment was
made. However, in order to make this a valid resolution step in the

https://github.com/johanlindblad/minisat-instrumented
https://github.com/johanlindblad/minisat-instrumented
https://github.com/johanlindblad/resolution-graph-tool
https://github.com/johanlindblad/resolution-graph-tool

CHAPTER 3. METHODS 37

resolution refutation, the resolution steps that led to the learned unit
clause have to be attached at each point this unit is eliminated.

Furthermore, the solver can simply discard clauses that are removed
during the removal of learned clauses. Because these clauses may have
been used in the derivation of learned clauses that remain, the resolu-
tion graph tool must instead let these remain in memory.

For acceptable performance on large instances, the tool was imple-
mented using C++. It mirrors the steps taken by the solver with the
additional data storage that is required and once the solver log is com-
plete, it performs a final analysis step which results in:

• The final resolution refutation as a graph, with labels for all clauses
used, different colors depending on source of clauses (initial, learned
or intermediate) and indications of the variables that were re-
moved at each resolution step. This graph was output in the
DOT format for use with the Graphviz package[23] and used in
the qualitative analysis described in 3.2.

• A list of metrics generated from the resolution refutation. These
are used in the quantitative analysis described in 3.3; the metrics
used are also described there.

3.1.3 Selection of solver configurations

The research question is related to clause learning and restarts and
different options are available in Minisat to tune these. The solver was
run with different configurations for these in order to attempt to ascer-
tain the effect they have.

In addition to clause learning and restarts, the solver was run with
and without minimization since minimization can affect the tree-likeness
and regularity.

Clause erasure policy The main option that affects clause learning is
the clause erasure policy, which determines how many clauses
can be kept in the database, in Minisat’s case as a function of
the number of conflicts that have occurred. All options available
were used, which were

1. off, which turns off clause erasure, meaning that learned
clauses are never removed

38 CHAPTER 3. METHODS

2. min, which makes database size scale by ≈ N0.25 (N being
is the number of conflicts encountered)

3. glu, which makes the database scale by≈ N0.5 (N being the
number of conflicts encountered)

4. lin, which makes the database scale by ≈ N (N being the
number of conflicts encountered)

5. dpll, which uses a DPLL-like mode described in Elffers et
al. [22] that effectively turns clause learning off

It should be noted that the DPLL mode is implemented by per-
forming conflict analysis as usual but effectively hiding the clauses
from the solver afterwards. Thus, the solver will learn clauses
but the learned clauses will never be reused afterwards.

Restarts This refers to when to restart

1. off, which turns off restarts

2. luE1 and luE3, which uses two different frequencies of
luby sequences related to the number of conflicts, as de-
scribed by Luby, Sinclair, and Zuckerman [33] (the sequence
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . multiplied by some con-
stant). This universal strategy is known to be optimal (up to
constant factors) for any randomized algorithm whose dis-
tribution of the running time is not known.
When the number of conflicts encountered since the last
restart is equal to the next number in the sequence, it will
restart; this makes it a static restarting scheme, where the
restart interval does not depend on any property of the clauses
that are learned.

3. lbd, which uses adaptive restarts that depend on the liter-
als blocks distance measure as described in Audemard and Si-
mon [5]. This is a dynamic restart policy, which considers the
clauses that are being learned. This specific policy restarts
when the lbd measure does not decrease at a fast enough rate
with the intention being to restart when the solver appears
to be stalling.

Minimization mode This refers to the minimization mode chosen

0. Minimization is turned off

CHAPTER 3. METHODS 39

2. Recursive minimization is turned on

Furthermore, all experiments were run with the three different modes
of interpreting the elimination of units, as described in 2.3.4 and fur-
ther in 2.4.2.

3.1.4 Selection of problem instances

The analysis required the selection of suitable problem instances. These
were chosen from the many different families used in Elffers et al. [22].
In order to make running the experiments feasible, a subset of families
was selected for their different characteristics.

Furthermore, various sizes of these formulae (determined by their
"scaling parameter") were selected in order to allow variety but keep
the run-time feasible given the resources available. The exact meaning
of the scaling parameter depends on the kind of formula but for in
general a greater scaling parameter gives a larger formula.

The instances that remain are as follows:

Ordering Principle (OP) The Ordering Principle states that any nonempty
set of integers contains a smallest member[2].

Negations of this principle, formulated as propositional formu-
lae, were shown by Stålmarck [41] to require polynomial-sized
proofs for general resolution but by Bonet and Galesi [13] to re-
quire exponential size for tree-like resolution. Thus they would
be expected to benefit from clause learning and restarts.

Relativized Pigeonhole Formula (RPHP) The pigeonhole principle states
the (false) claim that there is a way to pick k pigeons and place
them in k − 1 holes without two pigeons sharing a hole.

The relativized version of this formula was introduced in Atserias,
Lauria, and Nordström [3] and adds the additional restriction
that the pigeons fly via n resting places.

They have polynomially-sized proofs even with tree-like resolu-
tion (for fixed values of n); thus it is of interest whether clause
learning manages to arrive at non-tree-like proofs.

These formulae were used with both 4 and 5 as the values for n,
while k was adjusted as a scaling parameter.

40 CHAPTER 3. METHODS

Pebbling formulae Pebbling formulae are based on "pebbling games"
played on graphs (further explained in the supplementary mate-
rial to Järvisalo et al. [30]).

These require proofs of exponential size for tree-like resolution
but polynomial for general resolution[11] and so they are inter-
esting to study with and without clause learning and restarts.
Furthermore, they are known to have large space requirements
(i.e. they require a large database of clauses)[10].

Two variants were used in this experiment: pyr and pyrofpyr
(meaning pyramid and pyramid-of-pyramid respectively).

Tseitin formulae These formulae encode systems of XOR equations
based on graphs[42]. Some versions of these graphs have time-
space trade-offs[8], meaning that the refutation can be shorter
if more space is available. They do however quickly grow in
size and so formulae were used that are inspired by these but
that allow generating a wider variety of sizes. The formulae that
were used are then not proven to have time-space trade-offs but
if it was found that they do, this would encourage further study
with the formulae that are proven to have them.

If there are time-space trade-offs, one would expect clause era-
sure heuristics to affect the size of the proof since these control
the size of the clause database (i.e. the space that is allowed).

3.2 Qualitative analysis

A small-scale qualitative analysis was performed by using the tools
mentioned above. Resolution refutations were graphed with the tools
in Graphviz[23] and attempts were made to identify qualitative dif-
ferences between the results depending on the configuration being
used. When needed, the graph was also compared with the under-
lying trace output from the solver since the graph does not give as
clear of a chronological view.

In order to arrive at graphs that could be meaningfully interpreted,
only very small instances were used. For both the ordering principle
and relativized pigeonhole principle it was possible to generate for-
mulae that were small enough for this purpose. For the Tseitin and

CHAPTER 3. METHODS 41

pebbling families however this was not possible in the same way (be-
cause of the generator tools that were used).

For the two families that remained, small instances were generated
to arrive at resolution refutations that were small enough. Because
these instances are very small, the choice of restart policy does not af-
fect the generated proof and all the clause erasure modes except the
DPLL mode made for identical outputs. For this reason, the compar-
isons that could be made could be between:

• The DPLL mode (which turns clause learning off) or any of the
other clause erasure policies (which allow for clause learning)

• Minimization on or off

• The 3 different interpretation modes for unit elimination

3.3 Quantitative analysis

A larger scale quantitative analysis was run. This was done by using
a modified version of the experimental setup used in Elffers et al. [22]
on a cluster that was available at TCS. This made it possible to launch
a larger number of instances and collect the results of all in a single
place.

These resulted in metrics that were generated both by the instru-
mentation functionality in the modified Minisat solver and by the res-
olution refutation tool.

The metrics that were generated and used are:

Number of used and unused clauses During conflict analysis, the solver
will perform resolution steps to arrive at a learned clause. The
resolution graph tool represents these as a graph. Some of the
vertices in this graph represent learned clauses and some repre-
sent clauses that are from the initial formula; the latter can be
refered to as ”initial clauses”. All other vertices represent what
can be refered to as ”intermediate clauses”, that are resolvents
from two other clauses but not treated as learned clauses by the
solver.

Furthermore, some of the resolution steps arrive at learned clauses
that are not used in the final resolution refutation. The resolution

42 CHAPTER 3. METHODS

graph tool will however still generate vertices and edges to rep-
resent these steps. This means that the resolution graph tool gen-
erates a graph that contains the resolution refutation as a subset.
Thus, all vertices are either in the resolution refutation (in which
case they can be refered to as being ”used”) or they are not (in
which case they can be refered to as being ”unused”).

This means that vertices can be classified according to both their
kind (learned clause, initial clause or intermediate clause) and
their usage (used or unused). These two classifications were
combined and the number of vertices in each class was counted
(so that there is, for example, a metric for the number of unused
vertices representing learned clauses).

These can also be combined to count the total number of vertices
in the unused portion of the graph.

It should be noted that these metrics also apply in DPLL mode,
even though this mode represents clause learning being disabled.
This is because the solver will, as described previously, still per-
form conflict analysis that results in a learned clause but then
prevent this clause from being accessed afterwards. Thus, the
metrics will indicate learned clauses even for the DPLL mode.
This should be taken into consideration when analyzing runs
made using this mode.

Number of tree-likeness-violating vertices This referred to the num-
ber of clauses (vertices in the refutation graph) that were used
more than once, thus breaking tree-likeness of the proof.

Number of tree-likeness-violating edges This referred to the number
of times clauses (vertices in the refutation graph) were used more
than once. Along with the metric above, this was deemed to
be an intuitively understandable metric of "tree-likeness" of the
proof, especially when put in proportion to the size of the graph.

Tree copy cost The number of vertices that would need to be copied
to turn the resolution refutation into a tree. This copying would
have to be performed when a learned clause is used more than
once, and would result in copying of the learned clause and all
its parent derivation steps. Compared to the simple tree metrics
mention above, this captures the scale of each tree violations in

CHAPTER 3. METHODS 43

that the power of reusing learned clauses is greater if the learned
clause was more complex to derive.

Regularity-violating edges The number of times a clause (a vertex in
the refutation graph) introduced a regularity violation. Such a
violation is introduced when a clause is resolved from two other
clauses so that a variable is introduced that has been introduced
and later removed in the steps leading up to the two clauses be-
ing resolved.

Regularity-violating variables The number of distinct variables that
have been involved in regularity violations.

Max width The max width (i.e. the number of literals) of any clause
in the resolution refutation.

Chapter 4

Results

This chapter first summarizes the major findings and then presents
them in more detail.

In short, the qualitative analysis served well to confirm that the
methodology is sound and that the tools produce the correct results.
Furthermore, it appears to show concrete small-scale examples of ef-
fects that can also be seen in the larger-scale quantitative experiments.

Firstly, the effects of the different unit elimination interpretations
are clear to see when running the solver without clause learning (i.e.
in the DPLL mode). As would be expected, the resolution refutation
is perfectly tree-like when unit elimination is ignored; if this were not
the case it would suggest that the generated resolution refutation is
incorrect.

When unit elimination is used however, extra resolution steps are
performed when building the learned clause, using learned unit clauses
in order to remove literals that contradict them. In this case, the gener-
ated resolution refutation can be seen to no longer be perfectly tree-like
because these learned unit clauses are reused every time such an extra
resolution step is performed.

Furthermore, these extra resolution steps do as expected result in
a refutation that is longer (i.e. a graph with more vertices) while at
the same time making for a lesser maximum clause width (because
learned unit clauses are used to remove literals as soon as they appear).

Secondly, running the solver with clause learning enabled shows
improvements over running with clause learning disabled. The res-
olution refutations generated are significantly smaller and no longer
perfectly tree-like even when not performing unit elimination. It can

44

CHAPTER 4. RESULTS 45

be seen that this appears to be at least in part due to the DPLL mode
needing to derive the same clause multiple times.

Lastly, the effects of recursive minimization appear to be to allow
the solver to finish in fewer steps. Furthermore, the clauses that are
learned appear to be smaller. On the other hand, the resolution refu-
tation is longer, at least in part due to the extra resolution steps that
minimization requires. Furthermore, the extra resolution steps make
the refutation less tree-like because they potentially involve reuse of
learned clauses.

The quantitative analysis uses a wide array of metrics in order to
attempt to capture insights from a greater amount of larger formu-
lae. Firstly, its most major finding is that clause learning significantly
reduces refutation length for all families of formulae that were used,
even for relativized pigeonhole principle formulae that are known to
be easy without clause learning. Increasing the size of the database of
learned clauses makes the refutations even smaller.

Secondly, restarts have an effect on refutation size although the ef-
fect is different depending on the family; for some families of formulae
the refutation is longer when restarts are enabled while for others the
opposite is true. There appears to be no clear explanation for what this
effect results from.

Lastly, it appears that observed effects of clause erasure policies
on run time on Tseitin formula are best explained by more aggressive
policies requiring a greater amount of time to reach space needed to
refute the formula. Because clause database size is a function of the
number of conflicts encountered, a more aggressive policy requires
more conflicts to reach the same size. This indicates that there are no
time-space trade-offs with the Tseitin formulae and solver. However,
some indication of time-space trade-offs was found for the pebbling
formulae used.

4.1 Qualitative analysis

The findings from the qualitative analysis are described in more detail
in this section.

46 CHAPTER 4. RESULTS

4.1.1 The effects of the different unit elimination in-
terpretations

When running the solver in DPLL mode (i.e. without clause learning),
the effects of the different interpretation modes could be seen in isola-
tion. It is known from the theoretic background that for a DPLL solver,
the refutation is perfectly tree-like. Figure 4.1 shows an example for
such a refutation (using a relativized pigeonhole principle formula).

As discussed earlier however, unit elimination can make the refu-
tation no longer tree-like depending on how it is interpreted. Of the
three different ways of interpreting unit elimination used in this re-
port, the first ignores unit elimination altogether; this results in the
perfectly tree-like graph referenced above.

The other two modes both involve resolving with learned unit clauses,
which reuses the learned clause every time; this is the definition of a
tree violation and makes the refutation no longer perfectly tree-like.
Figure 4.2 shows the results of this on the same formula as was used
above, using interpretation mode "1" (mode "2" leads to an almost
identical graph). It can be seen how the units 0 and 15 (corresponding
to x0 and x15) are reused multiple time in the refutation, with every
reuse introducing a tree violation.

Furthermore, as has been shown earlier, each such unit elimina-
tion violates regularity. As an example, the variable 17 is removed in
the derivation of the unit clause (0). Later on when the unit clause
(17) is being derived, (0) is used in one of the steps. This is by def-
inition a regularity violation because 17 is introduced and removed
when deriving (0) and later on introduced again only to be removed
later. Thus, the sequence of variables removed on the path from where
17 is removed when deriving (0) to the empty clause will contain the
variable 17 twice.

It can also be seen how this affects the width of some clauses in the
refutation. For example, the literal 15 is introduced in two branches at
the bottom left hand side of the first graph; when resolving (10 ∨ 14 ∨
15∨17) and (13∨14∨17) to make (10∨13∨15∨17) and when resolving
(9∨13∨15∨17) and (13∨14∨17) to make (9∨14∨15∨17). This literal
then continues to exist in several resolution steps until it is removed as
a result of a resolution with (0 ∨ 15).

In the second graph, it can instead be seen how 15 is removed as
soon as it appears. On either side of the vertex containing 15, the same

CHAPTER 4. RESULTS 47

two steps are represented. To the left, it can be seen how (10∨14∨15∨
17) is first resolved with (15) before resolving the result with (13∨ 14∨
17) to get (10 ∨ 13 ∨ 17), which is less wide than (10 ∨ 13 ∨ 15 ∨ 17) as
it does not contain 15. The same is done on the other side to arrive at
(9 ∨ 14 ∨ 17) instead of (9 ∨ 14 ∨ 15 ∨ 17).

Thus, the interpretation with unit elimination avoids accumulating
these literals that are already known to be unsatisfiable due to contra-
dicting learned unit clauses, which reduces the width of several of the
clauses.

However, this decrease in width comes at the cost of length be-
cause extra steps are introduced to remove the eliminated unit every
time it is introduced. For this reason, the perfectly tree-like refutation
contains 157 vertices while the one with unit elimination contains 167.

48 CHAPTER 4. RESULTS

Figure
4.1:T

he
resolution

refutation
generated

for
a

relativized
pigeonhole

principle
form

ula
(n

=
3,
k
=

3)in
D

PLL
m

ode
w

hen
ignoring

unitelim
ination.N

ote:A
n

edge
A
→

B
m

eans
that

A
is

derived
from

B
and

the
labels

on
the

edges
indicate

the
variable

thatw
as

rem
oved

as
a

resultofthe
resolution.

CHAPTER 4. RESULTS 49

Figure 4.2: The resolution refutation generated for a relativized
pigeonhole principle formula (n = 3, k = 3) in DPLL mode when unit

eliminations are interpreted as resolutions with the learned unit
clauses. Note: Turquoise vertices indicate learned unit clauses.

50 CHAPTER 4. RESULTS

4.1.2 The effects of clause learning on refutation length
and tree-likeness

The effects of clause learning can be seen using the same formula. The
results when clause learning is turned off were displayed in 4.1. When
instead running with clause learning turned on, the results are as dis-
played in 4.3 (the different clause erasure modes make no difference
on such a small formula).

With the small formula that was used, only one learned clause is
used more than once; that clause can be found in the middle of the
picture, ∼15 ∼16 ∼17 (corresponding to (x15 ∨ x16 ∨ x17)). This clause
is only ever derived once (the same clause is not found anywhere else
in the refutation). In contrast, the non-clause learning refutation con-
tains same clause derived in three places (albeit with slightly different
derivations). This means that clause learning enabled the refutation to
be smaller by twice the the number of vertices required to derive this
clause.

These savings mean that the DPLL refutation contains 157 vertices
while the clause learning refutation contains just 115.

Figure 4.3: The resolution refutation generated for a relativized
pigeonhole principle formula (n = 3, k = 3) when clause learning is

enabled and unit elimination ignored. Note: Turquoise vertices indicate
learned clauses.

CHAPTER 4. RESULTS 51

4.1.3 The effects of minimization on refutation length
and tree-likeness

Lastly, the effects of minimization become somewhat apparent even
at this small scale. Figure 4.4 shows the refutation generated by run-
ning on an ordering principle formula with clause learning but with-
out clause minimization and unit elimination. It can be seen that the
refutation is largely tree-like, with only very few instances of reuse of
learned clauses (which causes edges that cross what would otherwise
be subtrees).

Figure 4.5 shows the results for the same formula but with clause
minimization. The main difference can be seen on the right hand side,
where the clause (0 ∨ 19) is reused multiple times (causing a tree vi-
olation). Investigating the trace of the solver shows that almost all of
these uses are during minimization. There are also instances of mini-
mization using initial clauses but these do not affect the tree-likeness
because initial clauses are simply copied everywhere they are used.

Investigating the graph more closely together with analyzing the
trace output from the solver shows that minimization does not only
make the learned clauses less wide, but also allow the solver to finish
earlier.

Without minimization, the solver generates 21 clauses before hav-
ing a full refutation falsifying the formula. With minimization, the
learned clauses are the exact same at first, but later on the solver starts
learning clauses that are less wide. Finally, it finishes after just 17

learned clauses. This could suggest that because smaller clauses that
are subsets of larger clauses eliminate a greater number of possibilities
(are stronger), the space of possibilities is explored more quickly.

On the other hand, the refutation that is generated is larger, which
appears to be because minimization introduces extra resolution steps.
In this particular example, there are 238 vertices in the refutation with
minimization and 226 without.

It should also be noted that minimization can be seen to introduce
regularity violations. In the refutation with recursive minimization,
the clause (0 ∨ 9) is derived and the last literal that is removed is 19.
Later on, (0 ∨ 9) is used to minimize (0 ∨ 9 ∨ 19) into (0 ∨ 19), so the
variable 19 is introduced, removed and then introduced once more.

52 CHAPTER 4. RESULTS

Figure
4.4:T

he
resolution

refutation
generated

for
an

ordering
principle

form
ula

(partial,
n
=

5),w
ithoutclause

m
inim

ization
and

unitelim
ination.

CHAPTER 4. RESULTS 53

Figure 4.5: The resolution refutation generated for an ordering
principle formula (partial, n = 5), with clause learning and recursive

clause minimization but without unit elimination.

54 CHAPTER 4. RESULTS

4.2 Quantitative analysis

The experiments collected 18960 samples. Due to the constraints set
on both time and memory usage, a majority of samples were of incom-
plete runs, that failed due to either the solver or the refutation building
tool not completing in the allotted time. These incomplete runs could
not be used in the analysis as data was only available once the refuta-
tion building tool finished and this in turn required the solver to have
finished.

Overall, the completion rate differed between different families of
formulae. This is to be expected because the experiment was run with
formulae of different sizes and no specific effort was made to adjust
the sizes of the formulae to match run time or memory usage between
families. However, this fact very much limits the strength of the con-
clusions that can be drawn for some of the families.

One more issue is that many of the larger formulae failed to fin-
ish. Because the completion time largely depends on the size of the
input there is some cut-off after which the time allotted is no longer
sufficient. This however means that for some families, only a handful
of smaller inputs led to completed runs. A summary of families and
sample status can be found in table 4.1.

Family Kind Count

op
Complete 957
Solver incomplete 3000
Resolution graph tool incomplete 123

peb
Complete 2367
Solver incomplete 3624
Resolution graph tool incomplete 1209

rphp
Complete 1833
Solver incomplete 1207
Resolution graph tool incomplete 560

tseitin
Complete 1329
Solver incomplete 2588
Resolution graph tool incomplete 163

Table 4.1: Status of collected samples for different formula families

Additionally, there is a difference between the different configu-
rations. It is for example known from for example Elffers et al. [22]

CHAPTER 4. RESULTS 55

that the min clause erasure mode has a much lower completion rate
than the others. This means that comparisons between min and other
modes are greatly limited in the amount of inputs that can be com-
pared (and the same is true for the other configuration parameters).

Lastly, it is often of interest to compare with the DPLL mode when
evaluating the different clause erasure options (because it effectively
turns off clause learning). However, as would be expected from the
theory, DPLL takes much longer to run and so there is a much smaller
span of formulae it finishes on. This makes clause erasure compar-
isons more limited as one must either choose to not compare to the
DPLL mode or to limit the comparison to only the very few smallest
of formulae. A summary of completion rates for DPLL and the other
policies can be found in 4.2.

Formula family Success rate DPLL Success rate clause learning
op 15% 26%
peb 3% 40%

rphp 29% 56%
tseitin 6% 39%

Table 4.2: Completion rate with and without the DPLL mode
(completion meaning that both the solver and the resolution graph

tool finished)

The completion rates differ between the families and largely mir-
ror what would be expected given the theoretic background. For rphp,
which is known to be easy for tree-like resolution, DPLL manages to
complete a relatively large number of instances although almost twice
as many are completed with clause learning. Pebbling formulae mean-
while, which are known to be hard for tree-like resolution, have almost
no completed instances for DPLL but almost half with clause learning.

On the whole, there are many instances where DPLL fails to finish
but clause learning does. This needs to be kept in mind when drawing
conclusions from the analysis in the following sections.

4.2.1 The effects of clause learning on refutation length

A very clear result that can be seen is that clause learning appears to
significantly reduce the length of refutations for all families of formu-
lae. This is true even for relativized pigeonhole principle formulae,

56 CHAPTER 4. RESULTS

which are known to be easy for tree-like resolution (i.e. the DPLL
mode).

Refutation length for the different clause erasure parameters is dis-
played below; figure 4.6 shows the results for rphp_4 while the results
for other families can be found in the appendix in figure A.5, A.6 and
A.7.

In order to isolate the effects of clause erasure from the effects of
all the other parameters, the data was grouped by instance family,
minimization mode, unit elimination interpretation and restart policy
so that difference between otherwise identical runs could be investi-
gated. Due to the missing data as noted above, the amount of data
was severely restricted and a full data set was only available for run-
ning with restarts off, with recursive minimization and with unit elim-
ination mode "1". Furthermore, data was unavailable for the one of the
two Tseitin subfamilies, tseitin_reggrid_5.

The results show that the refutation length is sometimes as little as
1
5

as long with clause learning compared to the DPLL mode.
Furthermore, comparing the different clause erasure policies sug-

gests that a greater database size makes for shorter refutations, with
the refutation length for the min policy (allowing the smallest database)
appears greater than the other policies. This is possibly because a
larger database allows keeping track of more derived knowledge. The
fact that there is less of a difference between glu and lin could suggest
that a larger database is useful up to a certain threshold; with larger
instances the differences might become more apparent.

Comparing the number of learned clauses in the refutations lends
credence this view. Figure 4.7 shows the number of learned clauses in
the refutations for the different clause erasure policies. Other than the
DPLL and min modes, the number of learned clauses in the refutation
are nearly identical, suggesting that a larger database size only made
for a short refutation to a certain threshold.

There are learned clauses in the refutation even for the DPLL mode,
even though this mode represents running without clause learning.
This is due to how the DPLL mode is implemented in the solver; the
conflict analysis process is the same and results in a clause being learned
but this learned clause is inaccessible to the solver during any future
analyses. Thus, the refutation will contain these learned clauses and
indicate them as such but they will never be reused. The only excep-
tion to this is unit elimination, which will sometimes reuse learned

CHAPTER 4. RESULTS 57

unit clauses as described in 4.1.1.
This means that it is expected that the refutations for the DPLL

mode will contain learned clauses and the results suggest that refu-
tations for the DPLL mode contain significantly more learned clauses
than the other modes. However, this can be attributed to the fact that
the refutations are significantly longer for the DPLL mode.

This view is strengthened by analyzing the number of times learned
clauses are reused (displayed in figure 4.8 for rphp_4). It shows that
clauses are very rarely reused for the DPLL mode while there is signif-
icant reuse when clause learning is enabled. This shows that while the
DPLL mode will sometimes reuse learned clauses for unit elimination,
this is still significantly less common than for the modes with clause
learning enabled, especially when considering that the refutation is
significantly longer for the DPLL mode.

Altogether, these results show that refutation length is significantly
reduced when clause learning is enabled. Furthermore, they show that
one reasonable explanation is the fact that clauses can be reused in-
stead of derived multiple times, as was shown to happen in the quali-
tative analysis.

58 CHAPTER 4. RESULTS

5 10 15 20 25 30

0

0.5

1

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

dpll glu lin min off

Figure 4.6: The effects of clause learning on refutation length, rphp_4
formulae (recursive minimization, unit elimination mode "1", no

restarts)

CHAPTER 4. RESULTS 59

5 10 15 20 25 30

0

2

4

6

8

·105

Instance scaling parameterN
um

be
r

of
le

ar
ne

d
cl

au
se

s
in

re
fu

ta
ti

on

dpll glu lin min off

Figure 4.7: The effects of clause learning on number of learned
clauses in refutation, rphp_4 formulae (recursive minimization, unit

elimination mode "1", no restarts)

60 CHAPTER 4. RESULTS

5 10 15 20 25 30

0

0.5

1

1.5
·106

Instance scaling parameter

N
um

be
r

of
re

us
es

of
le

ar
ne

d
cl

au
se

s

dpll glu lin min off

Figure 4.8: The effects of clause learning on number of times learned
clauses are reused in refutation, rphp_4 formulae (recursive

minimization, unit elimination mode "1", no restarts)

CHAPTER 4. RESULTS 61

4.2.2 The effects of restarts on refutation length

The effects of restarts were analyzed as it is a known theoretic result
that clause learning with restarts is more powerful than clause learn-
ing alone. In order to isolate the effects of restarts, configuration pa-
rameters were selected such that the same configurations existed for
all different sizes of formulae. This limited the size of the formulae
somewhat and some of the larger formulae are unused.

The effects for rphp_4 formulae are shown in figure 4.9 while results
for tseitin_diaggrid_3 are shown in 4.10. These two help demonstrate
the two different kinds tendencies that were found. The results for the
other families can be found in A.14, A.15, A.16, A.17 and A.18.

For rphp_4 as well as rphp_5 the results indicate that restarts are
detrimental to refutation length, with the shortest refutations being
found when restarts are turned off. For all the other families (such as
tseitin_diaggrid_3) we instead find that restarts make for longer refu-
tations and sometimes dramatically so. This could suggest that for
some families, restarts do in fact increase the reasoning power and it
seems that being allowed to discard earlier assumptions helps.

Attempts were made to make the difference clearer by looking at
parameters other than refutation length, for example tree violations
and regularity violations. However, all of these appear to be very well
correlated with refutation length.

There were two places where differences could be found; these
were number of conflicts encountered and the ratio of the total graph
that was used in the refutation.

Firstly, the number of conflicts are displayed for rphp_4 formulae
in figure 4.11 while results for tseitin_diaggrid_3 are shown in 4.12.
The results for the other families can be found in A.19, A.20, A.21 and
A.28.

These show that for relativized pigeonhole principle formulae, restarts
appear to not significantly affect the number of conflicts encountered
before the solver finishes. For all other families however, restarts ap-
pear to make this number significantly smaller.

As a result of the differences in refutation length and number of
conflicts there is a difference in how much of the generated graph is
used. For relativized pigeonhole principle formulae, almost the en-
tire graph is used, meaning that almost all clauses that were learned
were also used in the refutation. The difference is small between the

62 CHAPTER 4. RESULTS

different restart modes.
On the other hand, the other families show a clearer difference.

There is a more dramatic effect of restarts on refutation length than on
the number of conflicts encountered. This means that when restarts
are not used, a significantly greater portion of the learned clauses are
required to refute the formula.

This means that without restarts, the refutation may end up as
much as 4 times longer despite the number of conflicts encountered
being merely 2 times as large. Furthermore, almost all of the clauses
that have been derived are also needed in the refutation.

One possible explanation for this is that the suggested explanations
on the usefulness of restarts are correct; without restarts, one is locked
in to earlier assumptions and as a result, one needs to do lots of work
to arrive at a result because the initial path is not very fruitful.

If on the other hand one is allowed to restart, one can make a more
informed choice on the path to take and so it is possible to arrive at
a much shorter refutation quicker. However, this means that part of
previous work is not used in the final refutation because it turned out
to not be useful once more informed choices could be made.

5 10 15 20 25 30

0

0.5

1

1.5

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure 4.9: The effects of restarts on refutation length, rphp_4
formulae (recursive minimization, unit elimination mode "1", lin

clause erasure)

CHAPTER 4. RESULTS 63

5 10 15 20 25 30

0

0.5

1

1.5

2

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure 4.10: The effects of restarts on refutation length,
tseitin_diaggrid_3 formulae (recursive minimization, unit elimination

mode "1", lin clause erasure)

64 CHAPTER 4. RESULTS

5 10 15 20 25 30

0

1

2

3

4

·105

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure 4.11: The effects of restarts on number of conflicts
encountered, rphp_4 formulae (recursive minimization, unit

elimination mode "1", lin clause erasure)

5 10 15 20 25 30

0

1

2

3

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure 4.12: The effects of restarts on number of conflicts
encountered, tseitin_diaggrid_3 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure)

CHAPTER 4. RESULTS 65

5 10 15 20 25 30

0.96

0.97

0.98

0.99

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure 4.13: The effects of restarts on ratio of generated graph being
used as proof, rphp_4 formulae (recursive minimization, unit
elimination mode "1", lin clause erasure). The ratio refers to

Number of vertices in refutation
Number of vertices in full graph

5 10 15 20 25 30

0.6

0.8

1

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure 4.14: The effects of restarts on ratio of generated graph being
used as proof, tseitin_diaggrid_3 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure). The ratio refers to
Number of vertices in refutation
Number of vertices in full graph

66 CHAPTER 4. RESULTS

4.2.3 The effects of clause learning on time-space trade-
offs in Tseitin and pebbling formulae

As described earlier, there are time-space trade-offs for certain kinds
Tseitin formulae, where theoretical models of solvers can finish in less
time if they can keep a larger database of clauses. Because these for-
mulae are difficult to scale down to the sizes required, other formulae
were instead used which are inspired by these but that do not have
the same proven trade-offs. Results indicating such a trade-off would
however encourage future research with the original formulae.

These inspired formulae are known to be able to be solved in less
time if clause erasure is less aggressive, i.e. if the clause database size
is greater. There are two possible explanations for this:

• The larger database allows the solver to use more learned clauses
in the refutation, making it shorter (for example, by avoiding de-
riving the same clause twice). This would be a time-space trade-
off.

• The larger database allows the solver to find the exact same refu-
tation quicker. This would not be a time-space trade-off, as clause
space is the same. Instead, it would simply show that the for-
mula requires large amounts of space.

In our solver, the database size is not constant but instead increases
over time in relation to the number of conflicts encountered. For this
reason, we are interested in finding out whether a larger database size
compared to the number of conflicts allows a shorter refutation to be
found or if the solver simply requires more time to reach the database
size required for arriving at a similar refutation.

For this reason, the metrics chosen were refutation length and num-
ber of conflicts, which were compared between the different clause
erasure policies. The reasoning is that this would contrast the size of
the refutation with the number of learned clauses that were generated.
Furthermore, the number of learned clauses in the proof was used to
show the difference in tree-likeness.

In order to help make the results clearer, pebbling formulae were
investigated in the same manner. These do not have time-space trade-
offs but are known to have large space requirements. Thus, a similar
results for Tseitin formulae and pebbling formulae would be reason to
favor the latter of the two explanations.

CHAPTER 4. RESULTS 67

Figure 4.15 and 4.16 show the results for number of conflicts for
tseitin_diaggrid_3 and peb_pyr_neq3 formula while the appendix con-
tains the results for tseitin_reggrid_5 and peb_pyrofpyr_neq3 formulae
in figure A.29 and A.30. The results for refutation length are displayed
in 4.17, 4.18, A.31 and A.32. The results for number of learned clauses
in refutation are displayed in 4.19, 4.20, A.33 and A.34.

0 5 10 15 20 25 30 35

0

1

2

3

4

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure 4.15: The effects of different clause erasure policies on number
of conflicts, tseitin_diaggrid_3 formulae (lbd restarts, no

minimization)

Unfortunately, no results are available for the min clause erasure
policy, as it did not finish in time for any other than the smallest of for-
mulae. However, all three unit elimination interpretation modes were
available for the other policies, meaning that the effects of the inter-
pretation modes can be seen. As the errors bars are next to invisible,
it appears that the interpretation modes do not significantly affect this
result.

The results show that the smaller database size for the glu mode
appears to result in a significantly greater number of conflicts, i.e. a
greater running time. This likely explains why the min policy did not
finish, as it allows for the smallest database size; if the same pattern
holds it would require even more conflicts before finishing.

For both families of formulae, there is a significant effect of clause

68 CHAPTER 4. RESULTS

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure 4.16: The effects of different clause erasure policies on number
of conflicts, peb_pyr_neq3 formulae (lbd restarts, no minimization)

erasure policy on run time, where glu restarts in some cases required
almost 4 times as many conflicts. However, for Tseitin formulae this
effect can not be seen on the refutation. Instead, both the refutation
length and the number of learned clauses in the refutation are almost
identical.

For pebbling formulae the opposite appears to be true; in addi-
tion of number of conflicts being significantly different, the refutation
length and number of learned clauses also differed significantly.

These results indicate that for Tseitin formulae, the best explanation
for the increase in run time with aggressive clause erasure appears to
be the latter of the two mentioned; with a more aggressive clause era-
sure policy the solver requires more time to reach the database size
that is required for refuting the formula. Meanwhile, the pebbling for-
mulae used appear to show some time-space trade-off.

CHAPTER 4. RESULTS 69

0 5 10 15 20 25 30 35

0

2

4

·106

Instance scaling parameter

R
ef

ut
at

io
n

le
ng

th

glu lin off

Figure 4.17: The effects of different clause erasure policies on
refutation length for tseitin_diaggrid_3 formulae (lbd restarts, no

minimization

0 10 20 30 40 50 60 70 80

0

1

2

3
·106

Instance scaling parameter

R
ef

ut
at

io
n

le
ng

th

glu lin off

Figure 4.18: The effects of different clause erasure policies on
refutation length for peb_pyr_neq3 formulae (lbd restarts, no

minimization

70 CHAPTER 4. RESULTS

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure 4.19: The effects of different clause erasure policies on number
of learned clauses in refutation, tseitin_diaggrid_3 formulae (lbd

restarts, no minimization)

0 10 20 30 40 50 60 70 80

0

1

2

3

4

·105

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure 4.20: The effects of different clause erasure policies on number
of learned clauses in refutation, peb_pyr_neq3 formulae (lbd restarts,

no minimization)

Chapter 5

Conclusions

This work has aimed to study resolution refutations of real-life CDCL
solvers in order to ascertain to what degree they utilize the reasoning
power that theoretical results afford them. Furthermore, different con-
figurations were used for clause learning, clause erasure and restarts
in order to study whether they affected the refutations. If these make
the solver utilize more powerful reasoning, one would expect to find
significant differences in both the length and the shape.

In short, the results suggest that clear differences in the refutations
can be found. Most notably, clause learning was found to allow for
significantly shorter refutations on all families that were studied and
a more lenient clause erasure policy was found to improve it further.
Small-scale examples indicate that this is partly explained by reusing
learned clauses instead of deriving the same clause multiple times.

Restarts were also found to affect the length of the proof although
the results differed between different families of formulae; families
that were easy for tree-like resolution seemed to require longer proofs
when restarts were performed. It is not clear what the shorter length
for the other families is best explained by. One possible explanation is
that the solver can make better quality assumptions when no longer
bound by previous ones; this would explain why the refutations is
shorter but less of work performed actually being used in the refuta-
tion.

Lastly, the time-space trade-offs are known to exist for theoretical
models of solvers for certain kinds of Tseitin formulae. Indications of
these have been found in practice on formulae that are inspired for
these, where a smaller clause database makes the solver require more

71

72 CHAPTER 5. CONCLUSIONS

time to refute the formula. The results indicate that these are not due
to time-space trade-offs; instead the solver appears to simply require
more time to reach the database size required to refute the formula.

5.1 Future work

The experiments that were run were plagued by incomplete runs in
which the solver or the analysis tools could not finish in time. This
meant that the data that was collected was incomplete and in some
cases significantly so. Furthermore, the formulae that could be ana-
lyzed were relatively small.

Thus, one area of future work would be to investigate the question
further with more complete data from larger instances. Some of the
results appear only above a certain size of formulae and it is possible
that other effects would appear with larger formulae than the ones that
were used in this work.

Furthermore, the results for restarts are not fully clear and the ex-
planation for their significant effect on refutation length are difficult
to explain with the other metrics that were collected. A more focused
effort to identify a more well-motivated explanation would likely be
of value. This could be done either by attempting to find metrics that
manage to capture the differences or by studying the unused portions
of resolution graphs in order to study the work that is discarded.

Lastly, the issue of unit elimination is briefly described in this work
and it is clear that how this is interpreted significantly affects the shape
of the resulting refutation. Although it is used as a memory saving
technique, it also appears to mimic clause learning to a certain degree
(though it is necessarily limited to unit clauses). A more thorough
exploration of this topic could potentially investigate theoretical mod-
els of this behaviour or suggest alternative interpretations that more
closely represent the reasoning the solver is actually performing.

Bibliography

[1] Michael Alekhnovich et al. “An Exponential Separation between
Regular and General Resolution”. In: Theory of Computing 3.5
(2007), pp. 81–102. DOI: 10 . 4086 / toc . 2007 . v003a005.
URL: http://www.theoryofcomputing.org/articles/
v003a005.

[2] Tom M. Apostol. “The well-ordering principle”. In: Calculus, Vol.
1: One-Variable Calculus, with an Introduction to Linear Algebra.
1967, pp. 34–41.

[3] Albert Atserias, Massimo Lauria, and Jakob Nordström. “Nar-
row Proofs May Be Maximally Long”. eng. In: ACM Transactions
on Computational Logic (TOCL) 17.3 (2016), pp. 1–30. ISSN: 1557-
945X.

[4] Gilles Audemard and Laurent Simon. “Glucose and Syrup in
the SAT’17”. In: Proceedings of SAT Competition 2017: Solver and
Benchmark Descriptions. Ed. by Tomaáš Balyo, Marijn JH Heule,
and Matti Järvisalo. Vol. B-2017-1. University of Helsinki, De-
partment of Computer Science, 2017.

[5] Gilles Audemard and Laurent Simon. “GLUCOSE: a solver that
predicts learnt clauses quality”. In: SAT Competition (2009), pp. 7–
8.

[6] Gilles Audemard and Laurent Simon. “Predicting Learnt Clauses
Quality in Modern SAT Solvers”. In: Proceedings of the 21st Inter-
national Jont Conference on Artifical Intelligence. IJCAI’09. Pasadena,
California, USA: Morgan Kaufmann Publishers Inc., 2009, pp. 399–
404. URL: http : / / dl . acm . org / citation . cfm ? id =
1661445.1661509.

73

https://doi.org/10.4086/toc.2007.v003a005
http://www.theoryofcomputing.org/articles/v003a005
http://www.theoryofcomputing.org/articles/v003a005
http://dl.acm.org/citation.cfm?id=1661445.1661509
http://dl.acm.org/citation.cfm?id=1661445.1661509

74 BIBLIOGRAPHY

[7] Lus Baptista and JP Marques-Silva. “The interplay of random-
ization and learning on real-world instances of satisfiability”. In:
Proceedings of AAAI Workshop on Leveraging Probability and Uncer-
tainty in Computation.-July. 2000.

[8] Paul Beame, Chris Beck, and Russell Impagliazzo. “Time-Space
Trade-offs in Resolution: Superpolynomial Lower Bounds for
Superlinear Space”. In: SIAM Journal on Computing 45.4 (2016),
pp. 1612–1645.

[9] Paul Beame, Henry Kautz, and Ashish Sabharwal. “Towards un-
derstanding and harnessing the potential of clause learning”. In:
Journal of Artificial Intelligence Research 22 (2004), pp. 319–351.

[10] E. Ben-Sasson and J. Nordström. “Short Proofs May Be Spacious:
An Optimal Separation of Space and Length in Resolution”. In:
2008 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence. Oct. 2008, pp. 709–718. DOI: 10.1109/FOCS.2008.42.

[11] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. “Near
optimal separation of tree-like and general resolution”. In: Com-
binatorica 24.4 (2004), pp. 585–603.

[12] Archie Blake. “Canonical Expressions in Boolean Algebra”. PhD
thesis. University of Chicago, 1937.

[13] Maria Luisa Bonet and Nicola Galesi. “Optimality of size-width
tradeoffs for resolution”. In: Computational Complexity 10.4 (2001),
pp. 261–276.

[14] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. “On Interpola-
tion and Automatization for Frege Systems”. In: SIAM J. Comput.
29.6 (Apr. 2000), pp. 1939–1967. ISSN: 0097-5397. DOI: 10.1137/
S0097539798353230. URL: https://doi.org/10.1137/
S0097539798353230.

[15] Maria Luisa Bonet et al. “On the Relative Complexity of Resolu-
tion Refinements and Cutting Planes Proof Systems”. In: SIAM
Journal on Computing 30.5 (2000), pp. 1462–1484. DOI: 10.1137/
S0097539799352474. eprint: https://doi.org/10.1137/
S0097539799352474.

[16] Stephen A. Cook. “The Complexity of Theorem-proving Proce-
dures”. In: Proceedings of the Third Annual ACM Symposium on
Theory of Computing. STOC ’71. Shaker Heights, Ohio, USA: ACM,
1971, pp. 151–158. DOI: 10.1145/800157.805047.

https://doi.org/10.1109/FOCS.2008.42
https://doi.org/10.1137/S0097539798353230
https://doi.org/10.1137/S0097539798353230
https://doi.org/10.1137/S0097539798353230
https://doi.org/10.1137/S0097539798353230
https://doi.org/10.1137/S0097539799352474
https://doi.org/10.1137/S0097539799352474
https://doi.org/10.1137/S0097539799352474
https://doi.org/10.1137/S0097539799352474
https://doi.org/10.1145/800157.805047

BIBLIOGRAPHY 75

[17] Stephen A. Cook and Robert A. Reckhow. “The Relative Effi-
ciency of Propositional Proof Systems”. In: The Journal of Sym-
bolic Logic 44.1 (1979), pp. 36–50. ISSN: 0022-4812. URL: http:
//www.jstor.org/stable/2273702.

[18] W. Cook, C.R. Coullard, and Gy. Turán. “On the complexity of
cutting-plane proofs”. In: Discrete Applied Mathematics 18.1 (1987),
pp. 25–38. ISSN: 0166-218X. DOI: 10.1016/0166-218X(87)
90039-4. URL: http://www.sciencedirect.com/science/
article/pii/0166218X87900394.

[19] Martin Davis, George Logemann, and Donald Loveland. “A Ma-
chine Program for Theorem-proving”. In: Commun. ACM 5.7 (July
1962), pp. 394–397. ISSN: 0001-0782. DOI: 10.1145/368273.
368557.

[20] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”.
In: International conference on theory and applications of satisfiability
testing. Springer. 2003, pp. 502–518.

[21] Niklas Eén and Niklas Sörensson. Minisat 2.1 and minisat++ 1.0-
sat race 2008 editions. Tech. rep. Chalmers University of Technol-
ogy, Sweden, 2008.

[22] Jan Elffers et al. “Seeking Practical CDCL Insights from Theoret-
ical SAT Benchmarks”. In: Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18. Interna-
tional Joint Conferences on Artificial Intelligence Organization,
July 2018, pp. 1300–1308. DOI: 10.24963/ijcai.2018/181.

[23] John Ellson et al. “Graphviz and dynagraph – static and dynamic
graph drawing tools”. In: GRAPH DRAWING SOFTWARE. Springer-
Verlag, 2003, pp. 127–148.

[24] John Franco and John Martin. “A History of Satisfiability”. In:
Handbook of satisfiability. Ed. by Armin Biere, Marijn Heule, and
Hans van Maaren. Vol. 185. IOS press, 2009. Chap. 2, pp. 75–97.

[25] Carla P. Gomes, Bart Selman, and Henry Kautz. “Boosting Com-
binatorial Search Through Randomization”. In: Proceedings of the
Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence. AAAI ’98/IAAI ’98. Madi-
son, Wisconsin, USA: American Association for Artificial Intel-
ligence, 1998, pp. 431–437. ISBN: 0-262-51098-7. URL: http://
dl.acm.org/citation.cfm?id=295240.295710.

http://www.jstor.org/stable/2273702
http://www.jstor.org/stable/2273702
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
http://www.sciencedirect.com/science/article/pii/0166218X87900394
http://www.sciencedirect.com/science/article/pii/0166218X87900394
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.24963/ijcai.2018/181
http://dl.acm.org/citation.cfm?id=295240.295710
http://dl.acm.org/citation.cfm?id=295240.295710

76 BIBLIOGRAPHY

[26] Marijn J. H. Heule, Matti Juhani Järvisalo, and Martin Suda. “Pro-
ceedings of SAT Competition 2018; Solver and Benchmark De-
scriptions”. In: Department of Computer Science Series of Publica-
tions B. 2018.

[27] Marijn J. H. Heule, Matti Juhani Järvisalo, and Martin Suda. SAT
Competition 2018; Overview and Results. SAT’18, Oxford, July 12,
2018. URL: http://sat2018.forsyte.tuwien.ac.at/
downloads/satcomp18slides.pdf.

[28] Jinbo Huang. “The Effect of Restarts on the Efficiency of Clause
Learning”. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence. IJCAI’07. Hyderabad, India: Morgan
Kaufmann Publishers Inc., 2007, pp. 2318–2323. URL: http://
dl.acm.org/citation.cfm?id=1625275.1625649.

[29] Kazuo Iwama. “Complexity of finding short resolution proofs”.
In: International Symposium on Mathematical Foundations of Com-
puter Science. Springer. 1997, pp. 309–318.

[30] M. Järvisalo et al. “Relating proof complexity measures and prac-
tical hardness of SAT”. eng. In: vol. 7514. 2012, pp. 316–331. ISBN:
978-364233557-0.

[31] Daniel Kroening. “Software Verification”. In: Handbook of satisfia-
bility. Ed. by Armin Biere, Marijn Heule, and Hans van Maaren.
Vol. 185. IOS press, 2009. Chap. 16, pp. 505–532.

[32] M. Lauria et al. “CNFgen : A generator of crafted benchmarks”.
In: 20th International Conference on Theory and Applications of Satis-
fiability Testing, SAT 2017 : vol. 10491. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 10491. QC 20170919.
2017, pp. 464–473. ISBN: 9783319662626. DOI: 10.1007/978-
3-319-66263-3_30.

[33] Michael Luby, Alistair Sinclair, and David Zuckerman. “Opti-
mal speedup of Las Vegas algorithms”. In: Theory and Comput-
ing Systems, 1993., Proceedings of the 2nd Israel Symposium on the.
IEEE. 1993, pp. 128–133.

[34] Joao Marques-Silva, Ines Lynce, and Sharad Malik. “Conflict-
Driven Clause Learning SAT Solvers”. In: Handbook of satisfia-
bility. Ed. by Armin Biere, Marijn Heule, and Hans van Maaren.
Vol. 185. IOS press, 2009. Chap. 4, pp. 131–153.

http://sat2018.forsyte.tuwien.ac.at/downloads/satcomp18slides.pdf
http://sat2018.forsyte.tuwien.ac.at/downloads/satcomp18slides.pdf
http://dl.acm.org/citation.cfm?id=1625275.1625649
http://dl.acm.org/citation.cfm?id=1625275.1625649
https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.1007/978-3-319-66263-3_30

BIBLIOGRAPHY 77

[35] Knot Pipatsrisawat and Adnan Darwiche. “On the power of clause-
learning SAT solvers as resolution engines”. In: vol. 175. 2. Else-
vier, 2011, pp. 512–525.

[36] Robert A Reckhow. “On the lengths of proofs in the proposi-
tional calculus.” In: (1975).

[37] Jussi Rintanen. “Planning and SAT”. In: Handbook of satisfiabil-
ity. Ed. by Armin Biere, Marijn Heule, and Hans van Maaren.
Vol. 185. IOS press, 2009. Chap. 15, pp. 483–504.

[38] J. A. Robinson. “A Machine-Oriented Logic Based on the Res-
olution Principle”. In: J. ACM 12.1 (Jan. 1965), pp. 23–41. ISSN:
0004-5411. DOI: 10.1145/321250.321253.

[39] João P Marques Silva and Karem A Sakallah. “GRASP—a new
search algorithm for satisfiability”. In: Proceedings of the 1996 IEEE/ACM
international conference on Computer-aided design. IEEE Computer
Society. 1997, pp. 220–227.

[40] Niklas Sörensson and Armin Biere. “Minimizing learned clauses”.
In: International Conference on Theory and Applications of Satisfiabil-
ity Testing. Springer. 2009, pp. 237–243.

[41] Gunnar Stålmarck. “Short resolution proofs for a sequence of
tricky formulas”. In: Acta Informatica 33.3 (May 1, 1996), pp. 277–
280. ISSN: 1432-0525. DOI: 10.1007/s002360050044.

[42] Grigori Tseitin. “On the complexity of derivation in propositional
calculus”. In: Studies in constructive mathematics and mathematical
logic (1968), pp. 115–125.

[43] Lintao Zhang and Sharad Malik. “Validating SAT Solvers Using
an Independent Resolution-Based Checker:Practical Implemen-
tations and Other Applications”. eng. In: Design, Automation, and
Test in Europe: Proceedings of the conference on Design, Automa-
tion and Test in Europe - Volume 1; 03-07 Mar. 2003. Vol. 1. 2003.
ISBN: 0769518702. URL: http://search.proquest.com/
docview/31674065/.

[44] Lintao Zhang et al. “Efficient conflict driven learning in a boolean
satisfiability solver”. In: Proceedings of the 2001 IEEE/ACM in-
ternational conference on Computer-aided design. IEEE Press. 2001,
pp. 279–285.

https://doi.org/10.1145/321250.321253
https://doi.org/10.1007/s002360050044
http://search.proquest.com/docview/31674065/
http://search.proquest.com/docview/31674065/

Appendix A

Unnecessary Appended Material

A.1 Comparison of cutting-planes proofs and
resolution refutations

This section will compare proofs that the pigeonhole principle formula
is unsolvable, using both the cutting-planes proof system and the res-
olution proof system. Specifically, the formula under question is one
which claims that 3 pigeons cannot share 2 pigeon holes if we demand
that each pigeon has its own hole.

This can be expressed in CNF form. Let px,hy refer to pigeon x being
in the pigeonhole y. Then the requirement that each pigeon is in at
least one pigeonhole can be expressed by the three following clauses
(one for each pigeon):

(p1,h1 ∨ p1,h2)

(p2,h1 ∨ p2,h2)

(p3,h1 ∨ p3,h2)

Furthermore, we require that each hole only contains one pigeon.
This demands the following two groups of clauses (one for each hole):

(p1,h1 ∨ p2,h1)

(p1,h1 ∨ p3,h1)

(p2,h1 ∨ p3,h1)

78

APPENDIX A. UNNECESSARY APPENDED MATERIAL 79

(p1,h2 ∨ p2,h2)

(p1,h2 ∨ p3,h2)

(p2,h2 ∨ p3,h2)

These 9 clauses together encode the pigeonhole principle.

A.1.1 Cutting-planes proof

The same formula expressed in the cutting-planes format is as follows:

p1,h1 + p1,h2 ≥ 1

p2,h1 + p2,h2 ≥ 1

p3,h1 + p3,h2 ≥ 1

−p1,h1 − p2,h1 ≥ −1

−p1,h1 − p3,h1 ≥ −1

−p2,h1 − p3,h1 ≥ −1

−p1,h2 − p2,h2 ≥ −1

−p1,h2 − p3,h2 ≥ −1

−p2,h2 − p3,h2 ≥ −1

Using the addition operation on the first group yields the follow-
ing:

p1,h1 + p1,h2 + p2,h1 + p2,h2 + p3,h1 + p3,h2 ≥ 3 (A.1)

Performing the same operation on the second group yields the fol-
lowing:

−2p1,h1 − 2p2,h1 − 2p3,h1 ≥ −3

This can be integer divided to yield:

−p1,h1 − p2,h1 − p3,h1 ≥ −1.5

80 APPENDIX A. UNNECESSARY APPENDED MATERIAL

Because the right hand side contains a fraction, it needs to be rounded
up:

− p1,h1 − p2,h1 − p3,h1 ≥ −1 (A.2)

The same operations can symmetrically be performed for the sec-
ond hole to yield:

− p1,h2 − p2,h2 − p3,h2 ≥ −1 (A.3)

If we now sum A.1, A.2 and A.3 we arrive at the following contra-
diction:

0p1,h1 + 0p1,h2 + 0p2,h1 + 0p2,h2 + 0p3,h1 + 0p3,h2 ≥ 1

Because all coefficients on the left hand side are 0, we have arrived
at the contradiction 0 ≥ 1; thus the formula is proven to be unsatisfi-
able.

The power in this proof comes from the integer division operation
and how it allows for rounding; if rounding was not performed we
would instead have arrived at 0 ≥ 0, which is clearly not contradictory.
By comparison, the resolution proof system has no such operation and
performing the equivalent steps in the resolution proof system would
not arrive at a proof.

A.1.2 Resolution refutation

The proof is displayed in figure A.1.

APPENDIX A. UNNECESSARY APPENDED MATERIAL 81

p 2
,h
2
∨
p 3

,h
1 p 2
,h
1
∨
p 3

,h
1

p 1
,h
1
∨
p 2

,h
1

p 3
,h
1
∨
p 3

,h
2

p 1
,h
2

p 2
,h
1
∨
p 3

,h
1

p 1
,h
2
∨
p 3

,h
2

p 1
,h
2
∨
p 2

,h
2

p 1
,h
2
∨
p 2

,h
2

p 3
,h
1
∨
p 3

,h
2 p 2
,h
1
∨
p 2

,h
2

p 1
,h
2

p 1
,h
1
∨
p 2

,h
1

p 1
,h
1

p 2
,h
1
∨
p 3

,h
2

p 2
,h
2
∨
p 3

,h
2

p 3
,h
1
∨
p 3

,h
2

p 1
,h
1
∨
p 3

,h
1

p 1
,h
1
∨
p 1

,h
2

p 2
,h
2
∨
p 3

,h
2

Fi
gu

re
A

.1
:R

es
ol

ut
io

n
re

fu
ta

ti
on

of
th

e
pi

ge
on

ho
le

fo
rm

ul
a

w
it

h
3

pi
ge

on
s

an
d

tw
o

ho
le

s

82 APPENDIX A. UNNECESSARY APPENDED MATERIAL

A.2 Different interpretations of unit elimina-
tion

In order to demonstrate the differences between the three interpreta-
tions, a moderately complex example must be set up. Consider the
following prerequisites:

1. (x ∨ y) and (x ∨ y) have been resolved to learn the unit clause y

2. (x ∨ z) and (x ∨ z) have been resolved to learn the unit clause z

Next, a conflict is encountered resulting in the following resolution
steps for a learned clause:

1. (a ∨ y) is used, giving the possibility of eliminating y

2. (c ∨ y ∨ z) is used, giving the possibility of eliminating y and z

3. From this, the clause a ∨ c is learned

Furthermore, the following similar steps lead to a second learned
clause (with b instead of a:

1. (b ∨ y) is used, giving the possibility of eliminating y

2. (b ∨ y ∨ z) is used, giving the possibility of eliminating y and z

3. From this, the clause b ∨ c is learned

With the first interpretation option, where no unit elimination is
performed, the results are as shown in figure A.2 (gray background
indicates initial clauses from the formula).

Note how no units are eliminated but instead the learned clauses
are, in addition to the y and z clauses, the ones that would be expected
except with the literals y and z still there. Furthermore, there four com-
ponents are perfectly tree-like and contain no regularity violations.

With the second interpretation mode we resolve with unit clauses
as soon as units can be eliminated. The results are as shown in figure
A.3. The learned clauses (at the bottom) are as would be expected.
However, note the clause z is reused two times and y four times, in-
troducing tree violations. Furthermore, note how y is removed by the

APPENDIX A. UNNECESSARY APPENDED MATERIAL 83

b ∨ c ∨ y ∨ za ∨ c ∨ y ∨ zy

x ∨ yx ∨ y x ∨ z x ∨ z

z

a ∨ y b ∨ yc ∨ y ∨ z

Figure A.2: The four learned clauses when no unit elimination is
performed

step leading from b ∨ y, only to be reintroduced in the next step and
subsequently removed again; this is a regularity violation.

Lastly, with the third interpretation mode we remove literals from
initial clauses and reuse the results in all places the same unit is elim-
inated from the same clause. The results are in figure A.4. Note how,
compared to figure A.3, we only use y three times instead of four. This
is because instead of using the clause c ∨ y ∨ z and then eliminating y

and z, we derive only c and use c directly.

84 APPENDIX A. UNNECESSARY APPENDED MATERIAL

a

a ∨ y

b ∨ c ∨ y ∨ z

b ∨ c

c ∨ y ∨ z

y

b ∨ c ∨ z

x ∨ z a ∨ c ∨ y ∨ z

x ∨ y

z

b

x ∨ y

a ∨ c ∨ z

x ∨ z

a ∨ c

b ∨ y

Figure A.3: The four learned clauses when learned units are directly
resolved with

APPENDIX A. UNNECESSARY APPENDED MATERIAL 85

a

a ∨ y

c b

b ∨ c

c ∨ y ∨ z

y

x ∨ z

x ∨ y zx ∨ y

x ∨ z

a ∨ c

b ∨ yc ∨ y

Figure A.4: The four learned clauses when units are eliminated from
initial clauses only once

86 APPENDIX A. UNNECESSARY APPENDED MATERIAL

A.3 Additional graphs

4 6 8 10 12 14

0

2

4

6

8

·106

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

dpll glu lin min off

Figure A.5: The effects of clause learning on refutation length,
op_partial formulae (recursive minimization, unit elimination mode

"1", no restarts)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 87

6 8 10 12 14 16 18

0

0.5

1

1.5

2

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

dpll glu lin min off

Figure A.6: The effects of clause learning on refutation length, rphp_5
formulae (recursive minimization, unit elimination mode "1", no

restarts)

88 APPENDIX A. UNNECESSARY APPENDED MATERIAL

3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

dpll glu lin min off

Figure A.7: The effects of clause learning on refutation length,
tseitin_diaggrid_3 formulae (recursive minimization, unit elimination

mode "1", no restarts)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 89

4 6 8 10 12 14

0

1

2

3

·105

Instance scaling parameterN
um

be
r

of
le

ar
ne

d
cl

au
se

s
in

re
fu

ta
ti

on

dpll glu lin min off

Figure A.8: The effects of clause learning on number of learned
clauses in refutation, op_partial formulae (recursive minimization,

unit elimination mode "1", no restarts)

90 APPENDIX A. UNNECESSARY APPENDED MATERIAL

6 8 10 12 14 16 18

0

2

4

6

8
·105

Instance scaling parameterN
um

be
r

of
le

ar
ne

d
cl

au
se

s
in

re
fu

ta
ti

on

dpll glu lin min off

Figure A.9: The effects of clause learning on number of learned
clauses in refutation, rphp_5 formulae (recursive minimization, unit

elimination mode "1", no restarts)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 91

3 4 5 6 7 8 9

0

2

4

6

8

·105

Instance scaling parameterN
um

be
r

of
le

ar
ne

d
cl

au
se

s
in

re
fu

ta
ti

on

dpll glu lin min off

Figure A.10: The effects of clause learning on number of learned
clauses in refutation, tseitin_diaggrid_3 formulae (recursive

minimization, unit elimination mode "1", no restarts)

92 APPENDIX A. UNNECESSARY APPENDED MATERIAL

4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

1.2
·106

Instance scaling parameter

N
um

be
r

of
re

us
es

of
le

ar
ne

d
cl

au
se

s

dpll glu lin min off

Figure A.11: The effects of clause learning on number of times
learned clauses are reused in refutation, op_partial formulae

(recursive minimization, unit elimination mode "1", no restarts)

6 8 10 12 14 16 18

0

0.5

1

1.5

2

·106

Instance scaling parameter

N
um

be
r

of
re

us
es

of
le

ar
ne

d
cl

au
se

s

dpll glu lin min off

Figure A.12: The effects of clause learning on number of times
learned clauses are reused in refutation, rphp_5 formulae (recursive

minimization, unit elimination mode "1", no restarts)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 93

3 4 5 6 7 8 9

0

1

2

3

4
·106

Instance scaling parameter

N
um

be
r

of
re

us
es

of
le

ar
ne

d
cl

au
se

s

dpll glu lin min off

Figure A.13: The effects of clause learning on number of times
learned clauses are reused in refutation, tseitin_diaggrid_3 formulae

(recursive minimization, unit elimination mode "1", no restarts)

4 6 8 10 12 14 16 18 20

0

2

4

6

8

·106

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure A.14: The effects of restarts on refutation length, op_partial
formulae (recursive minimization, unit elimination mode "1", lin

clause erasure)

94 APPENDIX A. UNNECESSARY APPENDED MATERIAL

0 10 20 30 40 50 60

0

1

2

3

4

·106

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure A.15: The effects of restarts on refutation length,
peb_pyr_neq3 formulae (recursive minimization, unit elimination

mode "1", lin clause erasure)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 95

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2
·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure A.16: The effects of restarts on refutation length,
peb_pyrofpyr_neq3 formulae (recursive minimization, unit

elimination mode "1", lin clause erasure)

96 APPENDIX A. UNNECESSARY APPENDED MATERIAL

6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure A.17: The effects of restarts on refutation length, rphp_5
formulae (recursive minimization, unit elimination mode "1", lin

clause erasure)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 97

0 10 20 30 40 50 60

0

0.5

1

1.5

2

·107

Instance scaling parameterR
ef

ut
at

io
n

le
ng

th
(n

um
be

r
of

cl
au

se
s)

lbd luE1 luE3 off

Figure A.18: The effects of restarts on refutation length,
tseitin_reggrid_5 formulae (recursive minimization, unit elimination

mode "1", lin clause erasure)

4 6 8 10 12 14 16 18 20

0

1

2

3

·105

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.19: The effects of restarts on number of conflicts
encountered, op_partial formulae (recursive minimization, unit

elimination mode "1", lin clause erasure)

98 APPENDIX A. UNNECESSARY APPENDED MATERIAL

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.20: The effects of restarts on number of conflicts
encountered, peb_pyr_neq3 formulae (recursive minimization, unit

elimination mode "1", lin clause erasure)

1 2 3 4 5 6

0

1

2

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.21: The effects of restarts on number of conflicts
encountered, peb_pyrofpyr_neq3 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 99

6 8 10 12 14 16 18 20

0

2

4

6

8

·105

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.22: The effects of restarts on number of conflicts
encountered, rphp_5 formulae (recursive minimization, unit

elimination mode "1", lin clause erasure)

0 10 20 30 40 50 60

0

1

2

3

4
·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.23: The effects of restarts on number of conflicts
encountered, tseitin_reggrid_5 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure)

100 APPENDIX A. UNNECESSARY APPENDED MATERIAL

4 6 8 10 12 14 16 18 20

0.6

0.7

0.8

0.9

1

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure A.24: The effects of restarts on ratio of generated graph being
used as proof, op_partial formulae (recursive minimization, unit

elimination mode "1", lin clause erasure). The ratio refers to
Number of vertices in refutation
Number of vertices in full graph

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure A.25: The effects of restarts on ratio of generated graph being
used as proof, peb_pyr_neq3 formulae (recursive minimization, unit

elimination mode "1", lin clause erasure). The ratio refers to
Number of vertices in refutation
Number of vertices in full graph

APPENDIX A. UNNECESSARY APPENDED MATERIAL 101

1 2 3 4 5 6

0.4

0.6

0.8

1

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure A.26: The effects of restarts on ratio of generated graph being
used as proof, peb_pyrofpyr_neq3 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure). The ratio refers to
Number of vertices in refutation
Number of vertices in full graph

6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

Instance scaling parameter

R
at

io
us

ed
of

ge
ne

ra
te

d
gr

ap
h

lbd luE1 luE3 off

Figure A.27: The effects of restarts on ratio of generated graph being
used as proof, rphp_5 formulae (recursive minimization, unit
elimination mode "1", lin clause erasure). The ratio refers to

Number of vertices in refutation
Number of vertices in full graph

102 APPENDIX A. UNNECESSARY APPENDED MATERIAL

0 10 20 30 40 50 60

0

1

2

3

4
·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts
en

co
un

te
re

d

lbd luE1 luE3 off

Figure A.28: The effects of restarts on number of conflicts
encountered, tseitin_reggrid_5 formulae (recursive minimization,

unit elimination mode "1", lin clause erasure)

5 10 15 20 25 30 35 40 45

0

1

2

3

4

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure A.29: The effects of different clause erasure policies on number
of conflicts, tseitin_reggrid_5 formulae (lbd restarts, no minimization)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 103

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure A.30: The effects of different clause erasure policies on number
of conflicts, peb_pyrofpyr_neq3 formulae (lbd restarts, no

minimization)

5 10 15 20 25 30 35 40 45
0

2

4

6

8

·106

Instance scaling parameter

R
ef

ut
at

io
n

le
ng

th

glu lin off

Figure A.31: The effects of different clause erasure policies on
refutation length for tseitin_reggrid_5 formulae (lbd restarts, no

minimization

104 APPENDIX A. UNNECESSARY APPENDED MATERIAL

1 2 3 4 5 6 7

0

1

2

·106

Instance scaling parameter

R
ef

ut
at

io
n

le
ng

th

glu lin off

Figure A.32: The effects of different clause erasure policies on
refutation length for peb_pyrofpyr_neq3 formulae (lbd restarts, no

minimization

5 10 15 20 25 30 35 40 45

0

0.5

1

1.5

·106

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure A.33: The effects of different clause erasure policies on number
of learned clauses in refutation, tseitin_reggrid_5 formulae (lbd

restarts, no minimization)

APPENDIX A. UNNECESSARY APPENDED MATERIAL 105

1 2 3 4 5 6 7

0

1

2

3

4

·105

Instance scaling parameter

N
um

be
r

of
co

nfl
ic

ts

glu lin off

Figure A.34: The effects of different clause erasure policies on number
of learned clauses in refutation, peb_pyrofpyr_neq3 formulae (lbd

restarts, no minimization)

106 APPENDIX A. UNNECESSARY APPENDED MATERIAL

A.4 Instructions from solver

Number of variables The number of distinct variables that the for-
mula has been found to contain.

Initial clauses A list of initial clauses that the solver has received,
along with the unique ID number given to the clause.

Decision The assigned variable and its value every time a decision is
made.

Propagation The propagated variable, its value and the ID of the clause
that caused the propagation each time a unit propagation occurs.

Propagation from learned unit As a special case, the propagated vari-
able whenever a unit propagation was caused by the solver learn-
ing a unit clause. This needs to be a separate instruction from the
regular propagation above as Minisat does not assign an ID to
learned unit clauses.

Conflict analysis steps When a conflict occurs, the clauses used in the
resolution steps that arrives at the learned clause.

Eliminated units When a learned clause is built, Minisat ignores lit-
erals that correspond to variables assigned at decision level 0;
this instruction lists these at the point they are eliminated (inter-
leaved with the conflict analysis steps).

Learned clause When a clause is learned, its assigned clause ID is
printed along with the contents of the clause. The latter is used
to verify that the solver and the analysis program have arrived
at the same clause.

Learned unit clause When a unit clause is learned, Minisat does not
assign this an ID but will instead directly assign the variable at
level 0. For this reason, the instruction above can not be used and
this separate instruction is required instead.

Minimization When clause minimization is used in the regular (non-
recursive) mode, the literals that are removed are printed. It is
then up to the analysis program to generate the appropriate res-
olution steps.

APPENDIX A. UNNECESSARY APPENDED MATERIAL 107

Recursive minimization This is the same as the one above but for the
recursive mode.

Backtrack When backtracking, the level that is backtracked to.

Restart When restarting.

Remove clause Minisat will remove learned clauses if this option is
chosen. This instruction is then used to list the IDs of the clauses
that are removed.

Moved clause Minisat will periodically move clauses to different IDs
in order to more efficiently use memory (if learned clauses have
been removed). This instructions lists the mappings between
new and old IDs so that the analysis program can update its
database accordingly.

Final conflict When a final conflict occurs and the formula is deter-
mined to be unsatisfiable, this instruction is used to signal the ID
of the clause that the conflict occurred in.

TRITA -EECS-EX-2019:96

www.kth.se

	Introduction
	Research question
	Ethical implications and societal aspects

	Theory
	Boolean Satisfiability Problem (SAT)
	Conjunctive Normal Form (CNF)

	Proof systems
	Truth tables proof system
	Cutting-Planes Proof System
	Resolution Proof System

	Methods for SAT solving
	Exhaustive search with backtracking
	Davis-Putnam-Logemann-Loveland algorithm (DPLL)
	Conflict-Driven Clause Learning (CDCL) solvers
	Common extensions

	CDCL solvers and resolution refutations
	Resolution in a plain CDCL solver
	Resolution in CDCL solver extensions

	Methods
	Preparations
	Modification of solver
	Implementation of resolution graph tool
	Selection of solver configurations
	Selection of problem instances

	Qualitative analysis
	Quantitative analysis

	Results
	Qualitative analysis
	The effects of the different unit elimination interpretations
	The effects of clause learning on refutation length and tree-likeness
	The effects of minimization on refutation length and tree-likeness

	Quantitative analysis
	The effects of clause learning on refutation length
	The effects of restarts on refutation length
	The effects of clause learning on time-space trade-offs in Tseitin and pebbling formulae

	Conclusions
	Future work

	Bibliography
	Unnecessary Appended Material
	Comparison of cutting-planes proofs and resolution refutations
	Cutting-planes proof
	Resolution refutation

	Different interpretations of unit elimination
	Additional graphs
	Instructions from solver

