
16

On the Relative Strength of Pebbling and Resolution

JAKOB NORDSTRÖM, KTH Royal Institute of Technology

The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling
has proven to be a useful tool for studying resolution-based proof systems when comparing the strength of
different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical
approach has been to encode the pebble game played on a graph as a CNF formula and then argue that
proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph.
Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full
strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to
simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph
families which either have essentially the same properties for black and black-white pebbling (not at all true
in general) or which admit simulations of black-white pebblings in resolution.

This article contributes to both these approaches. First, we design a restricted form of black-white peb-
bling that can be simulated in resolution and show that there are graph families for which such restricted
pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpect-
edly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on peb-
bling formulas in Ben-Sasson and Nordström [2008] are tight. Second, we present a versatile parametrized
graph family with essentially the same properties for black and black-white pebbling, which gives sharp
simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our con-
tributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof
systems in Ben-Sasson and Nordström [2011].

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures
and Classes—Relations among complexity measures; F.2.3 [Analysis of Algorithms and Problem Com-
plexity]: Tradeoffs among Complexity Measures; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic; G.2.2 [Discrete Mathematics]: Graph Theory; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving—Resolution

General Terms: Theory

Additional Key Words and Phrases: Proof complexity, resolution, pebble games, pebbling formula, space,
trade-off

ACM Reference Format:
Nordström, J. 2012. On the relative strength of pebbling and resolution. ACM Trans. Comput. Logic 13, 2,
Article 16 (April 2012), 43 pages.
DOI = 10.1145/2159531.2159538 http://doi.acm.org/10.1145/2159531.2159538

A preliminary version of this article appeared in Proceedings of the 25th IEEE Conference on Computational
Complexity (CCC’10).
J. Nordström did part of this work while at the Massachusetts Institute of Technology.
J. Nordström was supported by the Royal Swedish Academy of Sciences, the Ericsson Research Foundation,
the Sweden-America Foundation, the Foundation Olle Engkvist Byggmästare, and the Foundation Blance-
flor Boncompagni-Ludovisi, née Bildt while at MIT. He is currently supported by Swedish Research Council
grant 621-2010-4797.
Author’s address: J. Nordström, School of Computer Science and Communication, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden; email: jakobn@kth.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1529-3785/2012/04-ART16 $10.00

DOI 10.1145/2159531.2159538 http://doi.acm.org/10.1145/2159531.2159538

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:2 J. Nordström

1. INTRODUCTION

Pebbling is a tool for studying time-space relationships by means of a game played
on directed acyclic graphs. This game models computations where the execution is
independent of the input and can be performed by straight-line programs. Each such
program is encoded as a graph, and a pebble on a vertex in the graph indicates that
the corresponding value is currently kept in memory. The goal is to pebble the output
vertex of the graph with minimal number of pebbles (amount of memory) and steps
(amount of time).

Pebble games were originally devised for studying programming languages and
compiler construction, but have later found a broad range of applications in com-
putational complexity theory. The pebble game model seems to have appeared for
the first time (implicitly) in Paterson and Hewitt [1970], where it was used to study
flowcharts and recursive schemata, and it was later employed to model register alloca-
tion [Sethi 1975], and analyze the relative power of time and space as Turing-machine
resources [Cook 1974; Hopcroft et al. 1977]. Moreover, pebbling has been used to de-
rive time-space trade-offs for algorithmic concepts such as linear recursion [Chandra
1973; Swamy and Savage 1983], fast Fourier transform [Swamy and Savage 1977;
Tompa 1978], matrix multiplication [Tompa 1978], and integer multiplication [Savage
and Swamy 1979]. An excellent survey of pebbling up to ca 1980 is Pippenger [1980],
and some more recent developments are covered in the author’s upcoming survey
[Nordström 2011].

The pebbling price of a directed acyclic graph G in the black pebble game captures
the memory space, or number of registers, required to perform the deterministic com-
putation described by G. We will mainly be interested in the the more general black-
white pebble game modelling nondeterministic computation, which was introduced by
Cook and Sethi [1976] and has been studied in many papers [Gilbert and Tarjan 1978;
Kalyanasundaram and Schnitger 1991; Klawe 1985; Lengauer and Tarjan 1980, 1982;
Meyer auf der Heide 1981; Wilber 1988].

Definition 1.1 (Pebble Game). Let G be a directed acyclic graph (DAG) with a
unique sink vertex z. The black-white pebble game on G is the following one-player
game. At any time t, we have a configuration Pt = (Bt, Wt) of black pebbles Bt and
white pebbles Wt on the vertices of G, at most one pebble per vertex. The rules of the
game are as follows.

(1) If all immediate predecessors of an empty vertex v have pebbles on them, a black
pebble may be placed on v. In particular, a black pebble can always be placed on a
source vertex.

(2) A black pebble may be removed from any vertex at any time.
(3) A white pebble may be placed on any empty vertex at any time.
(4) If all immediate predecessors of a white-pebbled vertex v have pebbles on them,

the white pebble on v may be removed. In particular, a white pebble can always be
removed from a source vertex.

A (complete) black-white pebbling of G, also called a pebbling strategy for G, is a se-
quence of pebble configurations P = {P0, . . . ,Pτ } such that P0 = (∅,∅), Pτ = ({z},∅), and
for all t ∈ [τ], Pt follows from Pt−1 by one of the rules above. The time of a pebbling
P = {P0, . . . ,Pτ } is simply time(P) = τ and the space is space(P) = max0≤t≤τ {|Bt ∪ Wt|}.
The black-white pebbling price (also known as the pebbling measure or pebbling num-
ber) of G, denoted BW-Peb(G), is the minimum space of any complete pebbling of G.
(Note, in particular, that in such a pebbling any white pebbles corresponding to non-
deterministic guesses will have had to be eliminated.)

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:3

A black pebbling is a pebbling using black pebbles only, that is, having Wt = ∅ for
all t. The (black) pebbling price of G, denoted Peb(G), is the minimum space of any
complete black pebbling of G.

In the last decade, there has been renewed interest in pebbling in the context of
proof complexity.1 A (nonexhaustive) list of proof complexity papers using pebbling
in one way or another is Alekhnovich et al. [2007]; Beame et al. [2010]; Ben-Sasson
[2009]; Ben-Sasson and Nordström [2008, 2011]; Ben-Sasson and Wigderson [2001];
Ben-Sasson et al. [2004]; Bonet et al. [2000]; Esteban and Torán [2001, 2003]; Esteban
et al. [2004]; Hertel and Urquhart [2007]; Nordström [2009]; Nordström and Håstad
[2008b]; Sabharwal et al. [2004]. The way pebbling results have been used in proof
complexity has mainly been by studying so-called pebbling contradictions (also known
as pebbling formulas or pebbling tautologies). These are CNF formulas encoding the
pebble game played on a DAG G by postulating the sources to be true and the sink
to be false, and specifying that truth propagates through the graph according to the
pebbling rules. The idea to use such formulas seems to have appeared for the first time
in Kozen [1977], and they were also studied in Raz and McKenzie [1999] and Bonet
et al. [2000] before being explicitly defined in Ben-Sasson and Wigderson [2001].

Definition 1.2 (Pebbling Contradiction). Suppose that G is a DAG with sources S
and a unique sink z. Identify every vertex v ∈ V(G) with a propositional logic vari-
able v. The pebbling contradiction over G, denoted PebG , is the conjunction of the
following clauses:

— for all s ∈ S, a unit clause s (source axioms),
— For all nonsources v with immediate predecessors pred(v), the clause

∨
u∈pred(v) u∨ v

(pebbling axioms),
— for the sink z, the unit clause z (target or sink axiom).

For any nonconstant Boolean function fd : {0, 1}d �→ {0, 1}, the substitution pebbling
contradiction with respect to fd is the CNF formula PebG[fd] obtained by substituting
fd(x1, . . . , xd) for every variable x in PebG , where x1, . . . , xd are new variables not occur-
ring in the formula, and expanding the result to an equivalent formula in conjunctive
normal form.

If the graph G has n vertices and maximal indegree �, PebG[fd] is easily verified to
be an unsatisfiable formula over dn variables with less than 2d(�+1) · n clauses of size at
most d(� + 1). An example illustrating Definition 1.2 is given in Figure 1.

Given any black-only pebbling P of G, it is straightforward to simulate this pebbling
in resolution to refute the corresponding pebbling contradiction PebG[fd] in length
O

(
time(P)

)
and total space and space O

(
space(P)

)
. This was perhaps first noted in

Ben-Sasson et al. [2004] for the simple PebG formulas, but the simulation extends
readily to any formula PebG[fd], with the constants hidden in the asymptotic notation
depending on fd and the maximal indegree of G. In the other direction, it was recently
shown [Ben-Sasson and Nordström 2011] (strengthening results in Ben-Sasson and
Nordström [2008]) that if fd has the right properties—for instance, if it is the exclu-
sive or function or the threshold function evaluating to true if k out of d variables are
true for 1 < k < d—then any resolution refutation π of PebG[fd] can be translated
into a black-white pebbling of G with time and space upper-bounded by the length and

1We remark that the pebble game studied in this article should not be confused with the (very different)
existential pebble games that have also been used in proof complexity, for instance, in the articles Atserias
[2004]; Atserias and Dalmau [2008]; Atserias et al. [2004]; Ben-Sasson and Galesi [2003]; Galesi and Thapen
[2005].

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:4 J. Nordström

Fig. 1. Example of pebbling contradiction with substitution for the pyramid graph �2.

space of π , respectively (adjusted for small multiplicative constants depending on the
maximal indegree of G).

There is an obvious gap in these reductions between pebbling and resolution. To
interpret a resolution refutation of a pebbling contradiction in terms of a pebbling of
the underlying graph, the full power of black-white pebbling is needed to make the
reduction work. If we want to translate pebblings of graphs into refutations of the
corresponding pebbling contradictions, however, we only know how to do this for the
weaker black pebble game.

To see why resolution has a hard time simulating black-white pebblings, let us start
by discussing a black-only pebbling P. We can easily mimic such a pebbling in a reso-
lution refutation of PebG[fd] by deriving that fd(v1, . . . , vd) is true whenever the corre-
sponding vertex v in G is black-pebbled. We end up deriving that fd(z1, . . . , zd) is true
for the sink z, at which point we can download the sink axioms and derive a contra-
diction. The intuition behind this translation is that a black pebble on v means that
we know v, which in resolution translates into truth of v. In the pebble game, having
a white pebble on v instead means that we need to assume v. By duality, we let this
correspond to falsity of v in resolution. Focusing on the pyramid �2 and pebbling con-
tradiction Peb�2

[∨2] in Figure 1, our intuitive understanding then becomes that white
pebbles on x and y and a black pebble on z should correspond to the set of clauses

{xi ∨ y j ∨ z1 ∨ z2 | i, j = 1, 2}, (1)

which indeed encode that assuming x1 ∨ x2 and y1 ∨ y2, we can deduce z1 ∨ z2. See
Figure 2(a) for an illustration of this.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:5

Fig. 2. Black and white pebbles and (intuitively) corresponding sets of clauses.

If we now place white pebbles on u and v, this allows us to remove the white pebble
from x. Rephrasing this in terms of resolution, we can say that x follows if we assume
u and v, which is encoded as the set of clauses

{ui ∨ v j ∨ x1 ∨ x2 | i, j = 1, 2} (2)

(see Figure 2(b)), and indeed, from the clauses in (1) and (2) we can derive in resolution
that z is black-pebbled and u, v and y are white pebbled, that is, the set of clauses

{ui ∨ v j ∨ yk ∨ z1 ∨ z2 | i, j, k = 1, 2} (3)

(see Figure 2(c)). This toy example indicates one of the problems one runs into when
one tries to simulate black-white pebbling in resolution: as the number of white peb-
bles grows, there is an exponential blow-up in the number of clauses. The clause set
in (3) is twice the size of those in (1) and (2), although it corresponds to only one more
white pebble. This suggests that as a pebbling starts to make heavy use of white peb-
bles, a resolution refutation will not be able to mimic such a pebbling in a length- and
space-preserving manner.

This leads to the thought that perhaps black pebbling provides not only upper but
also lower bounds on resolution refutations of pebbling contradictions. This would
be consistent with what has been known so far. For all pebbling contradictions with
proven space lower bounds, the underlying graphs have asymptotically the same black
and black-white pebbling price, and hence all known lower bounds can be expressed
in terms of black pebbling. There have been no examples of pebbling contradictions
where resolution can do strictly better than black pebbling and tightly match smaller
bounds on space in terms of black-white pebbling.

1.1. Our Results

Our first set of results is that resolution can in fact be strictly better than black-only
pebbling, both for time-space trade-offs and with respect to space in absolute terms.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:6 J. Nordström

We prove this by designing a limited version of black-white pebbling, where we explic-
itly restrict the amount of nondeterminism, that is, white pebbles, a pebbling strategy
can use. Such restricted pebbling use “few white pebbles per black pebble” (in a sense
that will be made formal below), and can therefore be simulated in a time- and space-
preserving manner by resolution, avoiding the exponential blow-up just discussed. We
then show that for all known separation results in the pebbling literature where black-
white pebbling does asymptotically better than black-only pebbling, there are graphs
exhibiting these separations for which optimal black-white pebblings can be carried
out in our limited version of the game. This means that resolution refutations of peb-
bling contradictions over such DAGs can do strictly asymptotically better than what
is suggested by black-only pebbling, matching the lower bounds in terms of (general)
black-white pebbling.

More precisely, we obtain such results for three families of graphs.2 The first family
are the bit reversal graphs studied by Lengauer and Tarjan [1982], for which black-
white pebbling has quadratically better trade-offs than black pebbling. (We refer to
Section 3 for all formal notation and definitions used in the following.)

LEMMA 1.3 ([LENGAUER AND TARJAN 1982]). There are DAGs {Gn}∞n=1 of size �(n)
with black pebbling price Peb(Gn) = 3 such that any optimal black pebbling Pn of Gn
exhibits a trade-off time(Pn) = �

(
n2/space(Pn) + n

)
but optimal black-white pebblings

Pn of Gn achieve a trade-off time(Pn) = �
(
(n/space(Pn))2 + n

)
.

THEOREM 1.4. Fix any nonconstant Boolean function f and let PebGn
[f] be pebbling

contradictions over the graphs in Lemma 1.3. Then for any monotonically nondecreas-
ing function s(n) = O(

√
n) there are resolution refutations πn of PebGn

[f] in total space
O(s(n)) and length O

(
(n/s(n))2

)
, beating the lower bound �

(
n2/s(n)

)
for black-only peb-

blings of Gn.

Focusing next on absolute bounds on space rather than time-space trade-offs, the
best known separation between black and black-white pebbling for polynomial-size
graphs is the one shown by Wilber [1988].

LEMMA 1.5 ([WILBER 1988]). There are DAGs {G(s)}∞s=1 of size polynomial in s with
black-white pebbling price BW-Peb(G(s)) = O(s) and black pebbling price Peb(G(s)) =
�(s log s/ log log s).

For pebbling formulas over these graphs we do not know how to beat the black
pebbling space bound—we return to this somewhat intriguing problem in Section 7—
but using instead graphs by Kalyanasundaram and Schnitger [1991] exhibiting the
same pebbling properties, we can obtain the desired result.

THEOREM 1.6. Fix any nonconstant Boolean function f and let PebG(s)[f] be peb-
bling contradictions over the graphs G(s) in Kalyanasundaram and Schnitger [1991]
with pebbling properties as in Lemma 1.5. Then there are resolution refutations πn of
PebG(s)[f] in total space O(s), beating the lower bound �(s log s/ log log s) for black-only
pebbling.

If we remove all restriction on graph size, there is a quadratic separation of black
and black-white pebbling established by Kalyanasundaram and Schnitger [1991].

2All graphs discussed in this article are explicitly constructible and have bounded vertex indegree. Also,
unless otherwise stated they have a single, unique sink. We do not repeat this in the formal statements here
in order not to clutter the text unnecessarily.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:7

LEMMA 1.7 ([KALYANASUNDARAM AND SCHNITGER 1991]). There are DAGs
{G(s)}∞s=1 of size exp(�(s log s)) such that BW-Peb(G(s)) ≤ 3s + 1 but Peb(G(s)) ≥ s2.

For pebbling formulas over these graphs, resolution again matches the black-white
pebbling bounds.

THEOREM 1.8. Fix any nonconstant Boolean function f and let PebG(s)[f] be peb-
bling contradictions over the graphs G(s) in Lemma 1.7. Then there are resolution refu-
tations πn of PebG(s)[f] in total space O(s), beating the lower bound �

(
s2

)
for black-only

pebbling.

In particular, Theorems 1.6 and 1.8 show that the lower bound on proof space
for pebbling contradictions in terms of black-white pebbling price in Ben-Sasson and
Nordström [2008] is tight (up to constant factors).

Turning to our second set of results, we first note that in spite of the theorems
above, for general pebbling formulas we still do not know of any way of simulating
black-white pebbling in resolution. Instead, we are limited to deriving upper bounds
from black-only pebblings while lower bounds have to be obtained in terms of black-
white pebblings. At first sight, this might not look too bad since the space gap between
the two can be at most quadratic, as shown by Meyer auf der Heide [1981]. However,
the translation given in Meyer auf der Heide [1981] of a black-white pebbling in space
s to a black pebbling in space O

(
s2

)
incurs an exponential blow-up in pebbling time,

destroying all hope of obtaining nontrivial time-space trade-off results for resolution
in this way. Hence, to get meaningful trade-offs for pebbling formulas we need graph
families with strong dual trade-offs for black and black-white pebbling simultaneously.
In this article, we present such a family of graphs, building on and strengthening
previous work by Carlson and Savage [1980, 1982].

THEOREM 1.9. There is an explicitly constructible two-parameter graph family
�(c, r), for c, r ∈ N+, having unique sink, vertex indegree 2, and size �

(
cr3 + c3r2

)
, and

satisfying the following properties.

(1) The graph �(c, r) has �(c, r) has black-white pebbling price BW-Peb(�(c, r)) = r +
O(1) and black pebbling price Peb(�(c, r)) = 2r + O(1).

(2) There is a black-only pebbling of �(c, r) in time linear in the graph size and in space
O(c + r).

(3) Suppose that P is a black-white pebbling of �(c, r) with space(P) ≤ r + s for 0 < s ≤
c/8. Then time(P) ≥ (c−2s

4s+4

)r · r! .

The graph family in Theorem 1.9 turns out to be surprisingly versatile. For instance,
we can use it to prove among other things the rather striking statement that for any
arbitrarily slowly growing nonconstant function, there are explicit graphs of such (ar-
bitrarily small) pebbling space complexity that nevertheless exhibit superpolynomial
time-space trade-offs for black and black-white pebbling simultaneously.

THEOREM 1.10. Let g(n) be any arbitrarily slowly growing 3 monotone function
ω(1) = g(n) = O

(
n1/7

)
, and let ε > 0 be an arbitrarily small positive constant. Then

3Note that we also assume g(n) = O
(
n1/7)

, that is, that g(n) does not grow too fast. This is just a simplifying
technical assumption. If we allow the minimal space to grow as fast as nε for some ε > 0, then it is easy to
use our graph family with other parameter settings to obtain even stronger results. Hence, the interesting
aspect here is that g(n) is allowed to grow arbitrarily slowly.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:8 J. Nordström

there is a family of explicitly constructible single-sink DAGs {Gn}∞n=1 of size �(n) such
that the following holds.

(1) Gn The graph Gn has black-white pebbling price BW-Peb(G) = g(n) + O(1) and black
pebbling price Peb(G) = 2 · g(n) + O(1).

(2) There is a complete black pebbling P of Gn with time(P) = O(n) and space(P) =
O

(
3
√

n/g2(n)
)

(3) Any complete black-white pebbling of Gn in space at most
(
n/g2(n)

)1/3−ε requires
pebbling time superpolynomial in n.

More examples of interesting trade-offs that can be obtained from the graphs in
Theorem 1.9 are given in Section 6.

1.2. Organization of This Article

In Section 2 we outline the main ideas behind our results, and Section 3 provides all
the necessary preliminaries for the formal proofs of these results given in the rest of
the article. Section 4 proves our claims about the limited type of black-white pebblings
that can be simulated by resolution, and in Section 5 we show that there are such lim-
ited pebblings for some interesting graph families. In Section 6, we discuss the graphs
exhibiting our new pebbling trade-off results, and show how different parameter set-
tings yield strong dual time-space trade-offs with upper bounds for black pebbling and
matching lower bounds for black-white pebbling. We conclude in Section 7 by dis-
cussing some remaining open problems.

2. OUTLINE OF CONSTRUCTIONS AND PROOFS

We will need to set up a fair amount of technical machinery before we can give the full,
formal proofs of our results. In order not to obscure unnecessarily what are in essence
reasonably straightforward arguments, in this section we try to give an overview of
the main ideas, postponing the technicalities for later.

2.1. Limited Black-White Pebblings That Can Be Simulated by Resolution

Let us start by discussing the tools used to establish Theorems 1.4, 1.6, and 1.8. The
idea is to design a version of the black-white pebble game that is tailor-made for reso-
lution. This game is essentially just a formalization of the naive resolution simulation
sketched in Section 1, but before stating the formal definitions, let us try to provide
some intuition why the rules of this new game look the way they do.

First, if we want a game that can be mimicked by resolution, then placements of
isolated white vertices do not make much sense. What a resolution derivation can do
is to download axiom clauses, and intuitively this corresponds to placing a black pebble
on a vertex together with white pebbles on its immediate predecessors, if it has any.
Therefore, we adopt such aggregate moves as the only admissible way of placing new
pebbles. For instance, looking at the graph �2 and pebbling contradiction Peb�2

[∨2] in
Figure 1 again, placing a black pebble on z and white pebbles on x and y corresponds
to downloading the axiom clauses in (1).

Second, note that if we have a black pebble on z with white pebbles on x and y
corresponding to the clauses in (1) and a black pebble on x with white pebbles on u
and v corresponding to the clauses in (2), we can derive the clauses in (3) corresponding
to z black-pebbled and u, v and y white-pebbled but no pebble on x. This suggests that
a natural rule for white pebble removal is that a white pebble can be removed from
a vertex if a black pebble is placed on that same vertex (and not on its immediate
predecessors).

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:9

Third, if we then just erase all clauses in (3), this corresponds to all pebbles disap-
pearing. On the face of it, this is very much unlike the rule for white pebble removal
in the standard pebble game, where it is absolutely crucial that a white pebble can be
removed only when its predecessors are pebbled. However, the important point here is
that not only do the white pebbles disappear—the black pebble that has been placed
on z with the help of these white pebbles disappears as well. What this means is that
we cannot treat black and white pebbles in isolation, but we have to keep track of for
each black pebble which white pebbles it depends on, and make sure that the black
pebble also is erased if any of the white pebbles supporting it is erased. The way we
do this is to label each black pebble v with its supporting white pebbles W, and define
the pebble game in terms of moves of such labeled pebble subconfigurations v〈W〉.

Definition 2.1 (Pebble Subconfiguration). For v a vertex and W a set of vertices, we
say that v〈W〉 is a pebble subconfiguration with a black pebble on v supported by white
pebbles on W. The black pebble on v is said to be dependent on the white pebbles in its
support W. We refer to v〈∅〉 as an independent black pebble.

Our next definition now formalizes the informal description of our new pebble game.
We remark that this definition is quite similar to the pebble game defined in Nordström
[2009], and that we have borrowed freely from notation and terminology there.

Definition 2.2 (Labeled Pebbling). For G any DAG with unique sink z, a (complete)
labeled pebbling of G is a sequence L = {L0, . . . ,Lτ } of labeled pebble configurations
such that L0 = ∅, Lτ = {z〈∅〉}, and for all t ∈ [τ] it holds that Lt can be obtained from
Lt−1 by one of the following rules.

Introduction. Lt = Lt−1 ∪ {v〈pred(v)〉}, where v is any vertex in G and pred(v) de-
notes the set of immediate predecessors of v.

Erasure. Lt = Lt−1 \ {v〈V〉} for v〈V〉 ∈ Lt−1.
Merger. Lt = Lt−1 ∪ {

v〈(V ∪ W) \ {w}〉} for v〈V〉, w〈W〉 ∈ Lt−1 with w ∈ V. We denote
this subconfiguration merge(v〈V〉, w〈W〉), and refer to it as a merger on w.

Let Bl(Lt) =
⋃ {v | v〈W〉 ∈ Lt} denote the set of all black-pebbled vertices in Lt and

Wh(Lt) =
⋃ {W | v〈W〉 ∈ Lt} the set of all white-pebbled vertices. Then the space of an

labeled pebbling L = {L0, . . . ,Lτ } is maxL∈L{|Bl(L) ∪ Wh(L)|} and the time the time of
L is time(L) = τ .

Figures 2(a) and 2(b) are both examples of subconfigurations resulting from intro-
duction moves, and if we merge the two we get the subconfiguration in Figure 2(c).

The game in Definition 2.2 might look quite different from the standard black-white
pebble game, but it is not hard to show that labeled pebblings are essentially just a
restricted form of black-white pebblings. (The proof of this is deferred to Section 4.)

LEMMA 2.3. If G is a single-sink DAG and L is a complete labeled pebbling of G,
then there is a complete black-white pebbling PL of G with time(PL) ≤ 4

3 time(L) and
space(PL) ≤ space(L).

However, the definition of space of labeled pebblings does not seem quite right from
the point of view of resolution. Not only does the space measure fail to capture the
exponential blow-up in the number of white pebbles discussed above. We also have the
problem that if one white pebble is used to support many different black pebbles, then
in a resolution refutation simulating such a pebbling we have to pay multiple times for
this single white pebble, once for every black pebble supported by it. To get something
that can be simulated by resolution, we therefore need to restrict the labeled pebble
game even further.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:10 J. Nordström

Fig. 3. Base case for Carlson-Savage graph with 3 spines and sinks.

Definition 2.4 (Bounded Labeled Pebblings). An (m, S)-bounded labeled pebbling is
a labeled pebbling L = {L0, . . . ,Lτ } such that every Lt contains at most m pebble sub-
configurations v〈W〉 and every v〈W〉 has white support size |W| ≤ S.

Observe that boundedness automatically implies low space complexity, since an
(m, S)-bounded pebbling L clearly satisfies space(L) ≤ m(S + 1). And using the con-
cept of bounded labeled pebblings, we can show that if there is such a pebbling of a
graph G, then this pebbling can be used as a template for a resolution refutation of
any pebbling contradiction PebG[f]. (We again refer to Section 4 for the proof.)

LEMMA 2.5. Suppose that L is any complete (m, S)-bounded pebbling of a graph G
and that f is any nonconstant Boolean function of arity d. Then there is a resolu-
tion refutation πL of the formula PebG[f] in simultaneous length L(πL) = time(L) ·
exp

(
O(dS)

)
and total space TotSp(πL) = m · exp

(
O(dS)

)
. In particular, fixing f it

holds that resolution can simulate (m, O(1))-bounded pebblings in a time- and space-
preserving manner.

The whole problem thus boils down to the question whether there are graphs with
(a) asymptotically different properties for black and black-white pebbling for which
(b) optimal black-white pebblings can be carried out in the bounded labeled pebbling
framework. The answer to this question turns out to be yes, and the space upper
bounds for the pebbling contradictions in Theorems 1.4, 1.6, and 1.8 are all proven
by exhibiting bounded labeled pebblings for the corresponding graphs. The details
concerning how these graphs are constructed, as well as how they are pebbled, are
somewhat intricate, however, and are therefore presented separately in Section 5.

2.2. A Graph Family with Tight Trade-Offs for Black and Black-White Pebbling

Let us next outline the proof of our graph pebbling trade-off results in Theorem 1.9. We
remark that in what follows, we will discuss a slightly different setting where graphs
may have multiple sinks, not just one, and where we require only that a pebbling visits
every sink once, touching it with a black or white pebble, instead of leaving a black
pebble on the sink until the end of the pebbling. It is straightforward to translate
results for such pebblings back to the setting in Theorem 1.9. (See Section 3 for the
technical details.)

Our graph family is built on a construction by Carlson and Savage [1980, 1982].
Carlson and Savage only prove their trade-off for black pebbling, however, and the
extension of their results to black-white pebbling requires changing the construction
and doing a nontrivial amount of extra work (as is usually the case when one wants to
lift a black pebbling result to black-white pebbling). The formal definition of the family
of graphs, which we will refer to as Carlson-Savage graphs, is probably easier to parse
if the reader first studies the illustrations in Figures 3 and 4.

Definition 2.6 (Carlson-Savage Graphs). The two-parameter graph family �(c, r),
for c, r ∈ N+, is defined by induction over r. The base case �(c, 1) is a DAG consist-
ing of two sources s1, s2 and c sinks γ1, . . . , γc with directed edges (si, γ j), for i = 1, 2 and

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:11

Fig. 4. Inductive definition of Carlson-Savage graph �(3, r + 1) with 3 spines and sinks.

j = 1, . . . , c, that is, edges from both sources to all sinks. The graph �(c, r + 1) has c
sinks and is built from the following components:

— c disjoint copies �
(1)
2r , . . . ,�

(c)
2r of a pyramid graph4 of height 2r with sinks z1, . . . , zc.

— one copy of �(c, r), for which we denote the sinks by γ1, . . . , γc.

4The formal definition will be given later in Definition 3.4, but as an example the graph in Figure 1(a) is a
pyramid of height 2.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:12 J. Nordström

— c disjoint and identical spines, where each spine is composed of cr sections, and
every section contains 2c vertices. We let the vertices in the ith section of a spine be
denoted v[i]1, . . . , v[i]2c.

The edges in �(c, r + 1) are as follows.

— All “internal edges” in �
(1)
2r , . . . ,�

(c)
2r and �(c, r) are present also in �(c, r + 1).

— For each spine, there are edges
(
v[i] j, v[i] j+1

)
for all j = 1, . . . , 2c − 1 within each

section i and edges
(
v[i]2c, v[i + 1]1

)
from the end of a section to the beginning of next

for i = 1, . . . , cr − 1, that is, for all sections but the final one, where v[cr]2c is a sink.
— For each section i in each spine, there are edges

(
z j, v[i] j

)
from the jth pyramid sink

to the jth vertex in the section for j = 1, . . . , c, as well as edges
(
γ j, v[i]c+ j

)
from the

jth sink in �(c, r) to the (c + j)th vertex in the section for j = 1, . . . , c.

Let us focus on the trade-off lower bound in part 3 of Theorem 1.9, which is the
hard part to prove, and let us start by trying to provide some intuition why this bound
should hold. For simplicity, consider first black-only pebblings. Assume inductively
that part 3 of Theorem 1.9 has been proven for �(c, r − 1) and consider �(c, r). Any
pebbling strategy for this DAG will have to pebble through all sections in all spines.
Consider the first section anywhere, let us say on spine j, that has been completely
pebbled, that is, there have been pebbles placed on and removed from all vertices in
the section. Let us say that this happens at time τ1. But this means that �(c, r − 1) and
all pyramids �

(1)
2(r−1), . . . ,�

(c)
2(r−1) must have been completely pebbled during this part of

the pebbling as well. Fix any pyramid and consider some point in time σ1 < τ1 when
there are at least r + 1 pebbles on its vertices, which must happen because of known
pebbling lower bounds for pyramids [Cook 1974; Klawe 1985]. At this point, the rest
of the graph must contain very few pebbles (think of s here as being very small). In
particular, there are very few pebbles on the subgraph �(c, r − 1) at time σ1, so for all
practical purposes we can think of �(c, r − 1) as being essentially empty of pebbles.

Consider now the next section in the spine j that is completed, say, at time τ2 > τ1.
Again, we can argue that some pyramid is completely pebbled in the time interval
[τ1, τ2], and thus has r + 1 pebbles on it at some time σ2 > τ1 > σ1. This means that
�(c, r − 1) is essentially empty of pebbles at time σ2 as well. But note that if all vertices
in the section have been pebbled during this time interval, then all their predecessors
must have been pebbled as well. That is, all sinks in the subgraph �(c, r − 1) must
have been pebbled during the time interval [σ1, σ2]. Since we also know that �(c, r − 1)
is (almost) empty at times σ1 and σ2, this allows us to apply the induction hypothesis.
The fact that P has to pebble through a lot of sections in different spines means that
we will be able to repeat the above argument many times and apply the induction
hypothesis on �(c, r − 1) each time. Adding up all the lower bounds obtained in this
way, the induction step goes through.

This is the spirit of the proof of the black-only pebbling trade-off in Carlson and
Savage [1982]. When we instead want to deal with black-white pebblings, things get
much more complicated. Black pebblings must by necessity pebble through a graph
in a bottom-up fashion, and it is therefore straightforward to measure “how far” a
black pebbling has progressed. A black-white pebbling, however, can place and remove
pebbles anywhere in the DAG at any time. Therefore, it is more difficult to control the
progress of a black-white pebbling, and one has to use different ideas and work harder
in the proof.

We establish part 3 of Theorem 1.9 by proving a slightly stronger lemma, deal-
ing with conditional pebblings that start with some pebbles already present on the
graph, and can also leave some pebbles on the graph at the end of the pebbling. A

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:13

crucial ingredient in the proof is that we assume below (without loss of generality)
that all pebblings are frugal, meaning that no obviously redundant pebble placements
are made, but that all pebbles placed on the graph are used to place other black pebbles
on successors or to remove white pebbles from successors. (Again, we refer to Section 3
for a more thorough discussion of these pebbling technicalities.)

LEMMA 2.7. Suppose that P = {Pσ , . . . ,Pτ } is a conditional black-white pebbling on
�(c, r) such that

(1) max
{
space(Pσ), space(Pτ)

}
< s for s in the range for 0 < s ≤ c/8 − 1.

(2) P pebbles all sinks in �(c, r) during the interval [σ, τ]. during the time interval
[σ, τ].

(3) space(P) < r + s + 2.

Then it holds that time(P) = τ − σ ≥ (c−2s
4s+4

)r · r! .

To establish this result we will need the following four technical lemmas, the proofs
of which are postponed to Section 6. Lemmas 2.8 and 2.9 are easy, but Lemmas 2.10
and 2.11 are somewhat less immediate and provide the key to the proof.

LEMMA 2.8. Suppose v is a vertex with a path Q to some sink such that all vertices
in Q have outdegree 1. Then any frugal black-white pebbling pebbles v exactly once,
and the path Q contains pebbles during one contiguous time interval.

LEMMA 2.9. Let H be a subgraph of G such that the only edges between V(H) and
V(G) \ V(H) emanate from the unique sink zh of H. Suppose that P is a complete peb-
bling of G such that H is completely empty of pebbles at some time τ ′ but at least one
vertex of H has been pebbled during the time interval [0, τ ′]. Then P must have pebbled
H completely during the interval [0, τ ′].

LEMMA 2.10. At all times during a pebbling of �(c, r) as in Lemma 2.7, strictly less
than 4(s + 1) pyramids �

(j)
2r contain pebbles simultaneously.

LEMMA 2.11. At all times during a pebbling of �(c, r) as in Lemma 2.7, strictly less
than 4(s + 1) spine sections contain pebbles simultaneously.

Now we can prove the black-white pebbling time-space trade-offs for the Carlson-
Savage graphs.

PROOF OF LEMMA 2.7. Let P = {Pσ , . . . ,Pτ } be a pebbling as in the statement of the
lemma. We show that time(P) ≥ T(c, r, s) =

(c−2s
4s+4

)r · r! by induction over r.
For r = 1, the assumptions in the lemma imply that more than c − 2s sinks are

empty at times σ and τ . These sinks must be pebbled, which trivially requires more
than c − 2s >

(c−2s
4s+4

)
= T(c, 1, s) time steps.

Assume that the lemma holds for �(c, r − 1) and consider any pebbling of �(c, r).
Less than 2s spines contain pebbles at time σ or time τ . All the other strictly more than
c − 2s spines are empty at times σ and τ but must be completely pebbled during [σ, τ]
since their sinks are pebbled during this time interval. (This can be more formally
argued by using Lemma 3.12.)

Consider the first time σ ′ when any spine gets a pebble for the first time. Let
us denote this spine by Q′. By Lemma 2.8 we know that Q′ contains pebbles dur-
ing a contiguous time interval until it is completely pebbled and emptied at, say,
time τ ′. During this whole interval [σ ′, τ ′] less than 4s + 4 sections contain pebbles
at any one given time by Lemma 2.11, so in particular less then 4s + 4 spines contain

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:14 J. Nordström

pebbles. Moreover, Lemma 2.8 says that every spine containing pebbles will remain
pebbled until completed. What this means is that if we order the spines with re-
spect to the time when they first receive a pebble in groups of size 4s + 4, no spine in
the second group can be pebbled until at least one spine in the first group has been
completed.

We observe that this divides the spines that are empty at the beginning and end of
P into strictly more than c−2s

4s+ 4 groups. Furthermore, we claim that completely pebbling
just one empty spine requires at least r · T(c, r − 1, s) time steps. Given this claim we
are done, since it follows that the total pebbling time must then be lower-bounded by
c−2s
4s+ 4r · T(c, r − 1, s) = T(c, r, s). This is so since at least one spine from each group is
pebbled in a time interval totally disjoint from the time intervals for all spines in the
next group.

It remains to establish the claim. To this end, fix any spine Q∗ empty at times σ ∗
and τ ∗ but completely pebbled in [σ ∗, τ ∗]. Consider the first time τ1 ∈ [σ ∗, τ ∗] when any
section in Q∗, let us denote it by R1, has been completely pebbled (i.e., all vertices has
been touched by pebbles but are now empty again). During the time interval [σ ∗, τ1]
all pyramid sinks z1, . . . , zc must be pebbled (since they are immediate predecessors).
Since less than 2 ·(4s + 4) < c pyramids contain pebbles at times σ ∗ or τ1 (Lemma 2.10),
at least one pyramid is pebbled completely (Lemma 2.9), which requires r + 1 pebbles.
Moreover, there is at least one pebble on the section R1 during this whole interval.
Hence, there must exist a point in time σ1 ∈ [σ ∗, τ1] when there are strictly less than
(r + 2) + s − (r + 1) − 1 = s pebbles on the subgraph �(c, r − 1). Also, at this time σ1
less than 4s + 4 sections contain pebbles (Lemma 2.11), and in particular this means
that there are pebbles on less than 4s + 3 other sections of our spine Q∗. This puts an
upper bound on the number of sections of Q∗ that can have been touched by pebbles
this far, since every section is completely pebbled during a contiguous time interval
before being emptied again, and we chose to focus on the first section R1 in Q∗ that
was finished.

Look now at the first section R2 in Q∗ other than the less than 4s+4 sections contain-
ing pebbles at time σ1 that is completely pebbled, and let the time when R2 is finished
be denoted τ2 (clearly, τ2 > τ1). During [σ1, τ2] all sinks of �(c, r − 1) must have been
pebbled, and at time τ2 − 1 less than 4s + 3 other section in Q∗ contain pebbles.

Finally, consider the first new section R3 in our spine Q∗ to be completely pebbled
among those not yet touched at time τ2 − 1. Suppose that R3 is finished at time τ3.
Then during [τ2, τ3] some pyramid is completely pebbled, and thus there is some time
σ3 ∈ (τ2, τ3) when there are at least r + 1 pebbles on this pyramid and at least one
pebble on the spine Q∗, leaving less than s pebbles for �(c, r − 1). But this means
that we can apply the induction hypothesis on the interval [σ1, σ3] and deduce that
σ3 − σ1 ≥ T(c, r − 1, s). Note also that at time σ3 less than 8s + 8 < c sections in Q∗
have been finished.

Continuing in this way, for every group of 8s + 8 < c finished sections in the spine
Q∗ we get one pebbling of �(c, r − 1) in space less than r + s + 1 and with less than
s pebbles in the start and end configurations, which allows us to apply the induction
hypothesis a total number of at least cr

8s+8 > r times. (Just to argue that we get the
constants right, note that 8s+ 8 < c implies that after the final pebbling of the sinks of
�(c, r − 1) has been done, there is still some empty section left in Q∗. When this final
section is taken care of, we will again get at least r + 1 pebbles on some pyramid while
at least one pebble resides on Q∗, so we get the space on �(c, r − 1) down below s as is
needed for the induction hypothesis.)

This proves our claim that pebbling one spine takes time at least r · T(c, r − 1, s).
Lemma 2.7 now follows.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:15

3. PRELIMINARIES

In this section, we collect all the basic definitions and facts we need about resolution
and pebbling.

3.1. The Resolution Proof System

A literal is either a propositional logic variable or its negation, denoted x and x, re-
spectively. A clause C = a1 ∨ · · · ∨ ak is a set of literals. A clause containing at most
k literals is called a k-clause. A CNF formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A
k-CNF formula is a CNF formula consisting of k-clauses. We say that a CNF formula
F implies a clause C, denoted F � C, if any truth value assignment satisfying F must
also satisfy C.

When we want to study length and space simultaneously, the following definition of
the resolution proof system from Alekhnovich et al. [2002] is very convenient.

Definition 3.1 (Resolution). A sequence of clause configurations (sets of clauses) π =
{C0, . . . ,Cτ } is a resolution refutation of a CNF formula F if C0 = ∅, Cτ contains the
contradictory empty clause 0 without any literals, and for all t ∈ [τ], Ct is obtained
from Ct−1 by one of the following rules.

Axiom Download. Ct = Ct−1 ∪ {C} for some C ∈ F (an axiom clause).
Erasure. Ct = Ct−1 \ {C} for some C ∈ Ct−1.
Inference. Ct = Ct−1 ∪ {D} for some D inferred from C1, C2 ∈ Ct−1 by the resolution

rule, that is, D = C1 ∪ C2 \ {x, x} for some variable x such that x ∈ C1 and x ∈ C2.

We write π : F � 0 to denote that π is a refutation of F.

Definition 3.2 (Length and Space). The length L(π) of a resolution derivation π is
the total number of axiom downloads and inferences made in π , that is, the total num-
ber of clauses counted with repetitions.

The clause space Sp(C) of a clause configuration C is |C|, that is, the number of
clauses in C, and the total space TotSp(C) is

∑
C∈C|C|, that is, the total number of

literals in C counted with repetitions. The clause space (total space) of a derivation π
is the maximal clause space (total space) of any clause configuration C ∈ π .

Taking the minimum over all refutations of a formula F, we define L(F � 0) =
minπ :F � 0{L(π)}, Sp(F � 0) = minπ :F � 0{Sp(π)}, and TotSp(F � 0) = minπ :F � 0{TotSp(π)}
as the length, clause space, and total space of refuting F in resolution, respectively.

It is sometimes technically convenient to add a weakening rule to Definition 3.1,
allowing a resolution derivation to derive a weaker clause C′ � C from C. We can
allow or disallow this rule as we see fit, since any such weakening steps can always
be eliminated without increasing the length or space of a refutation. In particular,
the following upper bounds on resolution length and space are cleaner to state if we
assume that weakening can be used.

PROPOSITION 3.3. Suppose C is a set of clauses and C is a clause, both over a set
of variables of size n. Then C � C if and only if there exists a resolution derivation of
C from C. Furthermore, if C can be derived from C then it can be derived in length at
most 2n+1 − 1 and total space at most n(n + 2) simultaneously.

The proof of this proposition is standard and can be found in, for instance, Ben-
Sasson and Nordström [2011].

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:16 J. Nordström

3.2. Graph Terminology and Notation

We write G to denote a graph with vertices V(G) and edges E(G). All graphs in this
article are directed unless otherwise stated, and (u, v) denotes a directed edge from u
to v.

We let succ(v) denote the immediate successors and pred(v) denote the immedi-
ate predecessors of a vertex v in G. We say that vertices of G with indegree 0 are
sources and that vertices with outdegree 0 are sinks. (In the literature, sources are
also referred to as inputs and sinks as targets or outputs). In the notation just intro-
duced, a source vertex s in G is a vertex with pred(s) = ∅, and for a sink z we have
succ(z) = ∅. We will write S(G) to denote the source vertices of G and Z (G) to denote
the sink vertices. For brevity, we will sometimes refer to a DAG with a unique sink as a
single-sink DAG.

Some more notational conventions are that the parameter � denotes the maximal
indegree of a DAG, and that when not stated otherwise, n will denote the size, that
is, the number of vertices, of a DAG (or, if more convenient, the size to within a small
constant factor). We write Q : v � w to denote a path Q starting at the vertex v and
ending at the vertex w.

The pyramid graphs already mentioned several times in this article are formally
defined as follows.

Definition 3.4 (Pyramid Graph). The pyramid graph �h of height h is a layered
DAG with h + 1 levels, where there is one vertex on the highest level (the sink z),
two vertices on the next level et cetera down to h + 1 vertices at the lowest level 0.
The ith vertex at level L has incoming edges from the ith and (i + 1)st vertices at level
L − 1.

3.3. Pebbling Technicalities

The flavor of the pebble game presented in Definition 1.1 is the version that we are
interested in for our applications in proof complexity, but for the purposes of stating
and proving our results we need a slightly more general definition.

Definition 3.5 (General Pebbling Definition). Suppose that G is a DAG with sources
S and sinks Z (one or many). A black-white pebbling from (B0, W0) to (Bτ , Wτ) in G
is a sequence of pebble configurations P = {P0, . . . ,Pτ } such that P0 = (B0, W0), Pτ =
(Bτ , Wτ), and for all t ∈ [τ], Pt follows from Pt−1 by one of the rules in Definition 1.1.
The space of a pebble configuration P = (B, W) is space(P) = |B ∪ W| and the space of
the pebbling P is space(P) = maxt∈[τ]{space(Pt)}.

We say that a pebbling P = {P0, . . . ,Pτ } is conditional if P0 �= (∅,∅) and unconditional
otherwise.

A complete black-white pebbling visiting Z is a pebbling such that P0 = Pτ = (∅,∅)
and such that for every z ∈ Z , there exists a time tz ∈ [τ] when z ∈ Btz ∪ Wtz . The
minimum space of such a visiting pebbling is denoted BW-Peb∅(G), and for the black
pebble game we have the measure Peb∅(G).

A persistent pebbling of G is a pebbling P such that Pτ = (Z ,∅). The minimum
space of any complete persistent black-white or black-only pebbling of G is denoted
BW-Peb(G) and Peb(G), respectively.

We think of the moves in a pebbling as occurring at integral time intervals t =
1, 2, . . . and talk about the pebbling move “at time t” (which is the move resulting in
configuration Pt) or the moves “during the time interval [t1, t2].”

A visiting pebbling touches all sinks but leaves the graph empty at time τ , whereas
a persistent pebbling leaves black pebbles on all sinks at the end of the pebbling. If

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:17

G has m sinks, then it clearly holds that BW-Peb(G) ≤ BW-Peb∅(G) + m and Peb(G) ≤
Peb∅(G) + m. Also, if G has a unique sink, it is easy to see that Peb(G) = Peb∅(G).

The only pebblings we are really interested in are complete pebblings of G. How-
ever, when we prove lower bounds on pebbling price it will sometimes be convenient
to be able to reason in terms of partial pebbling move sequences, that is, conditional
pebblings. One can think of conditional pebblings as pebblings that receive the start
configuration (B1, W1) “as a gift,” and are also allowed to leave (B2, W2) without “clean-
ing up” when they finish. It is clear that we can assume that (B1, W1) = (B1,∅) and
(B2, W2) = (∅, W2) since we can freely place white pebbles on G and freely remove black
pebbles. The way the gift can help us is that we get black pebbles at the beginning for
free, and are allowed to leave white pebbles without having to do the hard work of
removing them.

The reason we need visiting pebblings and not just persistent ones is that the graphs
of interest will be constructed in terms of smaller subgraph components with useful
pebbling properties, and that for such subgraphs we have the following easy observa-
tion (the proof of which is omitted).

OBSERVATION 3.6. Suppose that G is a DAG and that P is any complete pebbling of
G. Let U ⊆ V(G) be any subset of vertices of G and let H = H(G,U) denote the induced
subgraph with vertices V(H) = U and edges E(H) =

{
(u, v) ∈ E(G)

∣∣u, v ∈ U
}
. Then the

pebbling P restricted to the vertices in U is a complete visiting pebbling strategy for H.

Some proofs are facilitated by observing that visiting pebblings have a certain “dual-
ity” property. The next proposition is an immediate consequence of the anti-symmetric
nature of the pebbling rules in Definition 1.1 (just observe that the rules for placing
and removing a black pebble are the duals of the rules for removing and placing a
white pebble, respectively).

PROPOSITION 3.7 ([COOK AND SETHI 1976]). If P is a black-white pebbling from
(B1, W1) to (B2, W2), then we can get a dual pebbling P from (W2, B2) to (W1, B1) in
exactly the same time and space by reversing the sequence of moves and switching the
colors of the pebbles. In particular, if P is a complete visiting pebbling of G, then so
is P.

For the applications in proof complexity, we often want results stated for DAGs with
one unique sink, but most pebbling results are more natural to state and prove for
DAGs with multiple sinks. This small technicality is easily taken care of as follows.

Definition 3.8 (Single-Sink Version). Let G be a DAG with sinks Z (G) = {z1, . . . , zm}
for m > 1. The single-sink version Ĝ of G consists of all vertices and edges in G plus
the extra vertices z∗

1, . . . , z∗
m−1 and the edges (z1, z∗

1), (z2, z∗
1), (z∗

1, z∗
2), (z3, z∗

2), (z∗
2, z∗

3),
(z4, z∗

3), et cetera up to (z∗
m−2, z∗

m−1), (zm, z∗
m−1).

That is, Ĝ consists of G with a binary tree of minimal size added on top of the sinks.
See Figure 5 for a small example. The following observation is immediate.

OBSERVATION 3.9. Let G be a DAG with sinks Z (G) = {z1, . . . , zm} for m > 1.
Then for any flavor of pebbling (visiting or persistent) it holds that BW-Peb

(
Ĝ

) ≤
BW-Peb(G) + 1 and Peb

(
Ĝ

) ≤ Peb(G) + 1. Moreover, if for any ordering of the sinks
of G there is pebbling strategy P (visiting or persistent) that can be adapted to peb-
ble the sinks in this order, then there is a pebbling strategy P̂ of the same type
(black or black-white, visiting or persistent) for Ĝ with time

(
P̂

) ≤ time(P) + 2m and
space(P̂) ≤ space(P) + 1.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:18 J. Nordström

Fig. 5. Schematic illustration of single-sink version Ĝ of graph G.

The next proposition is convenient when composing pebblings of smaller subgraphs
into a pebbling of a larger graph.

PROPOSITION 3.10. Suppose that G is a DAG with unique sink z. Then for any
complete black or black-white pebbling P of G there is a complete pebbling P ′ with the
same colors such that time(P ′) = time(P), space(P ′) = space(P), and there is a time t
during P ′ when z has a pebble but the pebbling space is strictly less than space(P).

PROOF. For black pebblings this statement is obvious. Once we place a black pebble
on the sink z, we can remove all other pebbles from the DAG.

Suppose for a black-white pebbling P that the pebbling space reaches the maximum
s precisely when a pebble is placed on z at time t. Then the move at time t + 1 must
be a pebble removal. If a pebble is removed from a vertex other than z, we are done.
Otherwise, fix some vertex w ∈ pred(z) having z as its only successor (such a vertex
must exist since the graph is acyclic and has finite size). Suppose that w contains a
white pebble during some interval [σ, τ] ⊇ [t, t+ 1] (and if not, run the dual pebbling in
Proposition 3.7 instead). To obtain P ′, we change P as follows. The pebble placement
on w at time σ is omitted. At time t, a white pebble is placed on z. In between times t
and t+ 1, w is white pebbled, and then the white pebble on z is removed at time t+ 1.

It is immediate from the definition of the black pebble game that black pebblings
always proceed in a bottom-up fashion in the following sense.

OBSERVATION 3.11. Suppose that Q : u � v is a path in G and that P =
{Pσ ,Pσ+1, . . . ,Pτ } is a black-only pebbling such that the whole path Q is completely free
of pebbles at time σ but a pebble is placed on the endpoint v at time τ . Then the starting
point u must have been pebbled during the time interval (σ, τ).

A simple but important lemma, lying at the heart of essentially all black-white
pebbling lower bounds, is the following generalization of Observation 3.11 to black-
white pebbling: In order to pebble the endpoint v of a some path, one needs to pebble
all vertices on this path at some point prior to or after pebbling v.

LEMMA 3.12 ([GILBERT AND TARJAN 1978]). Suppose that Q : u � v is a path in
G and that P = {Pσ ,Pσ+1, . . . ,Pτ } is a black-white pebbling such that the whole path Q
is completely free of pebbles at times σ and τ but the endpoint v is pebbled at some point
during (σ, τ). Then the starting point u is pebbled during (σ, τ) as well.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:19

PROOF. By induction over the length of the path Q. The base case u = v is trivial.
For the induction step, let w be the immediate successor of u on Q. By the induction
hypothesis, w is pebbled and unpebbled again some time during (σ, τ). Then u must be
covered by a pebble either when the pebble on w is placed there (if this pebble is black)
or when it is removed (if it is white). The lemma follows.

When proving lower bounds on pebblings, it often helps to assume that the pebblings
under consideration do not perform any obviously redundant moves. The following
definition, which formalizes this notion, is a generalization of Gilbert et al. [1980]
from black-only to black-white pebbling.

Definition 3.13 (Frugal Pebbling). Let P be a complete pebbling of a DAG G. To
every pebble placement on a vertex v at time σ we associate the pebbling interval
[σ, τ), where τ = τ (σ, v) is the first time after σ when the pebble is removed from v
again (or τ = ∞, say, if this never happens).

If a sink zi ∈ Z (G) is pebbled for the first time at time σ , then the pebble on zi is
essential during the pebbling interval [σ, τ). A pebble on a nonsink vertex v is essential
during [σ, τ) if either an essential black pebble is placed on an immediate successor of
v during (σ, τ) or an essential white pebble is removed from an immediate successor of
v during (σ, τ). Any other pebble placements on any vertices are nonessential.

The pebbling strategy P is frugal if all pebbles in P are essential at all times.

Without loss of generality, we can assume that all pebblings are frugal.

LEMMA 3.14. For any complete pebbling P (black or black-white, visiting or persis-
tent) there is a frugal pebbling P ′ of the same type such that time(P ′) ≤ time(P) and
space(P ′) ≤ space(P).

PROOF SKETCH. Just delete any nonessential pebbles and verify that what remains
is a legal pebbling.

One minor technical snag is that we will need to assume not only that complete
pebblings are frugal, but that this also holds for conditional pebblings (Definition 3.5).
Strictly speaking, such pebblings are not covered by Definition 3.13. This is no real
problem, however, since we can always assume that the conditional pebblings we are
dealing with are subpebblings of larger, unconditional pebblings. In fact, an alterna-
tive way of defining frugal pebblings (unconditional or conditional) is to say that a
pebble placement on a nonsink vertex v is essential if the pebble stays until either a
black pebble is placed on an immediate successor of v or a white pebble is removed
from an immediate successor of v. If a pebbling contains nonessential moves, then
it is easy to see that such moves can be eliminated to get a shorter pebbling that is
still legal. This new pebbling might contain other nonessential moves, but after ap-
plying the procedure a finite number of times we obtain a pebbling with only essential
moves. Adding the requirement that each sink should only be pebbled once, we recover
Definition 3.13.

We conclude this section by recalling the following results for pebblings of pyramid
graphs.

THEOREM 3.15 ([COOK 1974; KLAWE 1985]). The black pebbling price of the pyra-
mid �h of height h is Peb(�h) = h+ 2, and there is a linear-time pebbling achieving this
bound.

The black-white pebbling price of �h is BW-Peb(�h) = h/2 + O(1). For pyramids of
odd height the exact bound BW-Peb(�2h+1) = h + 3 holds, and for even height we have
BW-Peb∅(�2h) = h + 2.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:20 J. Nordström

We remark that the exact bounds for black-white pebbling above are not stated or
proven in Klawe [1985], but can be read in the exposition of Klawe’s proof in Nordström
and Håstad [2008b], which is the full-length version of Nordström and Håstad [2008a].

4. LABELED BLACK-WHITE PEBBLINGS AND RESOLUTION SIMULATIONS

Let us now prove the claims made in Section 2.1 about the labeled black-white pebble
game in Definition 2.2, namely, that this game is just a limited version of standard
black-white pebbling (Lemma 2.3) and that resolution refutations of pebbling contra-
dictions can simulate labeled pebblings if all labeled pebble subconfigurations have
bounded size (Lemma 2.5).

4.1. Proof of Lemma 2.3

Recall that we want to prove that if L is a complete labeled pebbling of a single-sink
DAG G, then we can transform L into a complete standard black-white pebbling PL
of G with time(PL) ≤ 4

3 time(L) and space(PL) ≤ space(L). The proof of this fact is not
hard, and much of the needed material can be extracted from similar arguments in
Nordström [2009]. Since what is actually proven in Nordström [2009] is something dif-
ferent and slightly weaker, however, we will provide a full, explicit proof of Lemma 2.3.

The first modification of the pebble game when going from Definition 1.1 to Def-
inition 2.2 is that in the context of resolution, a more natural rule for white pebble
removal appears to be that a white pebble can be removed from a vertex when a black
pebble is placed on that same vertex. It seems intuitively fairly obvious that this rule
change should not really affect the pebble game, and indeed it does not.

LEMMA 4.1. Let us say that a superpositioned black-white pebbling of G is a peb-
bling as in Definition 1.1, except that a vertex may have both a black and a white pebble
on itself, and that rule (4) is changed to:

(4’) A white pebble on v can be removed only if there is a black pebble on v.

Then for any complete superpositioned pebbling S of G there is a standard complete
black-white pebbling P with time(P) ≤ time(S) and space(P) ≤ space(S).

PROOF. Suppose that we are given a superpositioned pebbling S = {S0, . . . ,Sτ }
of G. We construct a standard black-white pebbling P = {P0, . . . ,Pτ } such that for
Pt = (Bt, Wt) and St = (B′

t, W ′
t) it holds that Bt ⊇ B′

t, Bt ∪ Wt = B′
t ∪ W ′

t and (as required
by Definition 1.1) Bt ∩ Wt = ∅. In particular, this means that space(P) = space(S), and
that if S is a complete pebbling, then so is P.

The construction is by forward induction over S. We set P0 = S0 = (∅,∅) and then
make the inductive step by a case analysis over the pebbling moves.

(1) If S places a black pebble on v at time t+ 1, the vertices in pred(v) must be pebbled
in St and thus by induction also in Pt. If v ∈ Wt, we remove the white pebble from v
in P. Then we place a black pebble on v.

(2) If S removes a black pebble from v at time t + 1, by induction v is black-pebbled in
Pt. We remove the black pebble from v in P, unless v ∈ W ′

t in which case we leave
the black pebble on v.

(3) If S places a white pebble on v at time t + 1, we place a white pebble there in P if
v �∈ Bt and otherwise do nothing.

(4) When a white pebble is removed from v in S it holds that v ∈ B′
t. Thus, by induction

v ∈ Bt, so the white pebble has already been removed from v in P, or was never
placed there.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:21

It clearly holds that time(P) ≤ time(S), since P makes at most as many pebbling
moves as S.

The second step in the proof of Lemma 2.3 is to show that if we take a complete
labeled pebbling L = {L0, . . . ,Lτ } of a DAG G and look at the vertices

(
Bl(Lt), Wh(Lt)

)
covered by black and white pebbles for all t ∈ [τ], we can extract a legal complete
(superpositioned) black-white pebbling of G in essentially the same time and space.
We prove this formally in the next two lemmas.

The first lemma says that without loss of generality we can assume that all labeled
pebblings are nonredundant in the sense that if a subconfiguration v〈V〉 is derived at
time t, then this subconfiguration is not just thrown away but is used at some time
t′ > t further on in the pebbling before being erased.

LEMMA 4.2. Let L = {L0, . . . ,Lτ } be any complete labeled pebbling of a DAG G. Then
we can construct a complete labeled pebbling L′ = {L′

0, . . . ,L
′
τ ′ } of G with time(L′) ≤

time(L) and space(L′) ≤ space(L) that has the following property: If v〈V〉 is erased at
time t in L′, that is, v〈V〉 ∈ L′

t\L′
t+1, then this subconfiguration has been used in a merger

or reversal move immediately before being erased, and the subconfiguration resulting
from this move is present in L′

t+1.

PROOF. This is easy if formally somewhat tedious, so let us first try to visualize the
proof. For any labeled pebbling L, we can construct a DAG GL encoding the pebbling
as follows. For every subconfiguration v〈V〉 appearing at time t1 and staying in the
graph until time t2 when it is erased, we create a vertex (v〈V〉, [t1, t2]). For each merger
u〈U〉 = merge(v〈V〉, w〈W〉), we draw edges from v〈V〉 and w〈W〉 to u〈U〉. The sources
in GL are vertices (v〈pred(v)〉, [t1, t2]), and by assumption there is a sink (z〈∅〉, [t1, τ]).
Note that without loss of generality we can assume that we never derive a subconfigu-
ration that is already present in the graph, so all vertices in GL have indegree 0 or 2
corresponding to introductions and mergers, respectively.

Consider the subgraph of GL consisting of all vertices from which the sink vertex
(z〈∅〉, [t1, τ]) is reachable. We construct L′ to be the subpebbling corresponding exactly
to the moves in this subgraph, except that we reorder moves if needed so that erasures
are always performed as soon as possible. Since the moves in L′ are a subset of the
moves in L, clearly time(L′) ≤ time(L).

Formally, this amounts to the following. We construct the modified pebbling L′ by
backward induction over L = {L0, . . . ,Lτ }. Let L′

τ = Lτ = {z〈∅〉}. Our induction hy-
pothesis is that L′

t∗ ⊆ Lt∗ for t∗ > t. The backward induction step from t + 1 to t is a
case analysis over the moves Lt � Lt+1 in L. For simplicity, we allow using fractional
time steps in the interval [t, t + 1] in the inductive constructions below to refer to the
intermediate pebbling configurations.

(1) Introduction Lt+1 = Lt ∪ v〈pred(v)〉: Set L′
t = L′

t+1 \ v〈pred(v)〉. Note that we might
have L′

t = L′
t+1 if v〈pred(v)〉 �∈ L′

t+1. In any case, the induction hypothesis holds for
L′

t.
(2) Merger Lt+1 = Lt ∪ v〈(V ∪ W) \ w〉: If v〈(V ∪ W) \ w〉 �∈ L′

t+1, set L′
t = L′

t+1. The
induction hypothesis trivially remains true. Otherwise, if the merged subconfigu-
ration is present in L′

t+1 set L′
t =

(
L′

t+1 ∪ {v〈V〉, w〈W〉}) \ v〈(V ∪ W) \ w〉. We can
go from L′

t to L′
t+1 in at most three steps via intermediate L-configurations L′

t+1/3 =
L′

t ∪ v〈(V ∪ W) \ w〉 and L′
t+2/3 = L′

t+1 ∪ w〈W〉 by first merging v〈V〉 and w〈W〉, then
possibly erasing v〈V〉 and finally possibly erasing w〈W〉.

(3) Erasure Lt+1 = Lt \ v〈V〉: All erasure moves in L′ are taken care of in connection
with mergers, so set L′

t = L′
t+1.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:22 J. Nordström

We claim that all moves in L′ constructed in this way are legal. For if u〈U〉 ∈ L′
t,

then u〈U〉 ∈ Lt and we know that this subconfiguration must have been derived at
some point in time t∗ ≤ t in L. Thus the backward construction of L′ will yield a correct
derivation of u〈U〉. Also note that by construction, when a subconfiguration in L′ is
erased it has just been used in some merger move.

Finally, by construction L′
t ⊆ Lt, and for the intermediate fractional time step L-con-

figurations L′
t+a/b in the merger moves in L′ we have L′

t+a/b ⊆ Lt+1. It follows that
space(L′) ≤ space(L).

For labeled pebblings as in Lemma 4.2, if we ignore all relations between black and
white pebbles in the subconfigurations and consider

(
Bl(Lt), Wh(Lt)

)
for t ∈ [τ], this is

a legal superpositioned pebbling.

LEMMA 4.3. Suppose that L is a complete labeled pebbling of a DAG G. Then
there is a complete superpositioned pebbling S of G such that time(S) ≤ 4

3 time(L) and
space(S) ≤ space(L).

PROOF. By Lemma 4.2, without loss of generality we can assume that each v〈V〉 is
erased from L precisely after it has been used in a merger, and that v〈V〉 is erased be-
fore w〈W〉 when both subconfigurations are eliminated after a move v〈(V ∪ W) \ w〉 =
merge(v〈V〉, w〈W〉), so that the white pebble on w is removed before the black pebble
on w.

It is clear that we are done if we can construct a superpositioned pebbling S with
moves matching the moves in L exactly. Let S0 = (∅,∅) and construct St+1 inductively
by looking at the moves in Lt � Lt+1.

(1) Introduction Lt+1 = Lt ∪ v〈pred(v)〉: Place white pebbles on pred(v) and then a black
pebble on v in S.

(2) Merger Lt+1 = Lt ∪ v〈(V ∪ W) \ w〉 for v〈V〉, w〈W〉 ∈ Lt: No pebbling moves in S,
but note that if v〈V〉 is now removed, the change in pebbles on G in L is exactly the
same as after an application of rule (4.1’) on w.

(3) Erasure Lt+1 = Lt \ v〈V〉: This is the only nontrivial case. In general, an erasure
move in a labeled pebbling can remove an arbitrary number of white pebbles with-
out any black pebbles being even close to these white pebbles, and there is no way
we can match such a move in a superpositioned pebbling. But since we can assume
that L is a labeled pebbling as described in Lemma 4.2, we know that v〈V〉 has just
been used in a merger. Consequently, the only pebble that disappears when going
from

(
Bl(Lt), Wh(Lt)

)
to

(
Bl(Lt+1), Wh(Lt+1)

)
is either the black pebble on v, which

is always a legal pebble removal, or some white pebble on w ∈ V which has just
been eliminated in the merger move by a black pebble, and this is a legal pebble
removal according to rule (4’).

We see that S generated in this way is a legal superpositioned pebbling, if we
modify each introduction step into |pred(v)| + 1 pebble placement moves. Clearly,
space(S) ≤ space(L). To see that time(S) ≤ 4

3 time(L), consider any vertex v. The way
S is constructed from L, every time v is pebbled it is both black-pebbled and white-
pebbled, after which the pebbles are removed. This takes 4 moves in S. In L, a single
introduction move can place pebbles on many vertices. However, to remove the pebbles
from v requires 3 moves, namely 1 merger followed by 2 erasures. This gives the time
bound, and the lemma follows.

Now Lemma 2.3 follows from combining Lemmas 4.1 and 4.3.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:23

4.2. Proof of Lemma 2.5

The assumption in Lemma 2.5 is that we are given a complete (m, S)-bounded labeled
pebbling L = {L0, . . . ,Lτ } of a DAG G. We want to prove that for any nonconstant
Boolean function f of arity d, there is a resolution refutation πL of PebG[f] in length
L(πL) = time(L) · exp

(
O(dS)

)
and total space TotSp(πL) = m · exp

(
O(dS)

)
.

Let us first adopt the notation that for a vertex v, we let v[f] denote the set of
clauses obtained when substituting f(v1, . . . , vd) for v and expanding to conjunctive
normal form, and similarly for v[f]. We extend this notation to clauses inductively by
defining (C ∨ D)[f] = {C′ ∨ D′ | C′ ∈ C[f] , D′ ∈ D[f]}. Note that if a clause C contains
K literals, then C[f] has at most 2dK clauses containing at most dK literals each.

The proof is by induction over the pebbling L. We maintain the invariant that if
Lt is the set of subconfigurations at time t, then π will contain exactly the clauses
Ct =

{(∨
w∈W w ∨ v

)
[f]

∣∣ v〈W〉 ∈ Lt
}
. Since L is an (m, S)-bounded pebbling, this means

that Ct will contain at most m2d(1+S) clauses, each clause of size at most d(1 + S). To
simplify the notation in the proof, we will implicitly use fractional time steps in π ,
making sure that it never takes more than exp

(
O(dS)

)
time steps to get from Ct−1

to Ct.
Consider the pebbling move made in L at time t :

(1) If L introduces v〈pred(v)〉, we download all the axiom clauses in(∨
w∈pred(v) w ∨ v

)
[f]. By assumption we have |pred(v)| ≤ S, so the number of

axiom clauses are at most 2d(1+S).
(2) Suppose L merges v〈V〉, w〈W〉 ∈ Lt−1 with w ∈ V into v〈(V ∪ W) \ {w}〉. By the

inductive hypothesis, we have the clauses
(∨

u∈V u ∨ v
)
[f] and

(∨
x∈W x ∨ w

)
[f] in

memory. Together, these clauses clearly imply
(∨

u∈(V∪W)\{w} u ∨ v
)
[f].

Let D be any clause in the set
(∨

u∈(V∪W)\{w} u ∨ v
)
[f]. By Proposition 3.3, we can

derive D from the clauses corresponding to v〈V〉 and w〈W〉 in length exp
(
O(dS)

)
and additional total space O

(
(dS)2

)
. Doing this in turn for all the 2d(1+S) clauses

D ∈ (∨
u∈(V∪W)\{w} u ∨ v

)
[f] establishes the induction step.

(3) If L erases a subconfiguration v〈V〉, we just erase all clauses in
(∨

w∈pred(v) w ∨ v
)
[f]

from memory.

At the end of the pebbling L, we have Cτ = {z[fd]} for z the sink of G. We conclude
the refutation by downloading all the sink axioms in z[fd] and deriving the empty
clause 0 in length exp(O(d)) and total space O

(
d2

)
. This proves the lemma.

5. SEPARATIONS OF BLACK PEBBLING AND BOUNDED LABELED PEBBLING

The second component in our proof that resolution refutations of pebbling contradic-
tions can be strictly more efficient than black pebblings of the corresponding graphs
is to show that there are graph families which separate black pebbling and bounded
black-white labeled pebbling. In this section, we briefly review the graph families ex-
hibiting the separations between black and black-white pebbling in Lemmas 1.3, 1.5,
and 1.7, and then prove that the black-white pebblings for these graphs can be car-
ried out in the bounded labeled pebbling framework. From this Theorems 1.4, 1.6,
and 1.8 immediately follow by appealing to Lemma 2.5. We first attend to Lemma 1.3
and Theorem 1.4 in Section 5.1, and then take care of Lemmas 1.5 and 1.7 and
Theorems 1.6 and 1.8 in Section 5.2.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:24 J. Nordström

Fig. 6. Bit reversal graph (8, rev) on 8 elements.

5.1. Bounded Pebblings for Time-Space Trade-Offs

The trade-offs in Lemma 1.3 are obtained for graphs built from permutations in the
following way.

Definition 5.1 (Permutation Graph [Lengauer and Tarjan 1982]). Let π denote
some permutation of {0, 1, . . . , n − 1}. The permutation graph (n, π) over n elements
with respect to π is defined as follows. (n, π) has 2n vertices divided into a lower
row with vertices u0, u1, . . . , un−1 and an upper row with vertices w0, w1, . . . , wn−1.
For all i = 0, 1, . . . , n − 2, there are directed edges (ui, ui+1) and (wi, wi+1), and for all
i = 0, 1, . . . , n − 1, there are edges

(
ui, wπ(i)

)
from the lower row to the upper row.

Thus, the only source in (n, π) is u0 and the only sink is wn−1. All vertices in the
lower row except the leftmost one have indegree 1 and all vertices in the upper row
except the leftmost one have indegree 2.

Any DAG of fan-in 2 must have pebbling price at least 3. It is not too hard to see
that the graphs (n, π) have pebblings in this minimal space: keeping one pebble on
vertex wi of the upper row, move two pebbles consecutively on the lower row until
uπ−1(i+1) is reached, and then pebble wi+1. Generalizing this pebbling strategy leads to
the following upper bound on the time-space trade-off for any permutation graph.5

LEMMA 5.2 ([LENGAUER AND TARJAN 1982]). Let (n, π) be the permutation
graph over n elements for any permutation π . Then the black pebbling price of (n, π)
is Peb((n, π)) = 3, and for any space s, 3 ≤ s ≤ n, there is a black pebbling strategy P
for (n, π) with space(P) ≤ s and time(P) ≤ 2n2

s−2 + 2n.

To prove lower bounds for permutation graphs, Lengauer and Tarjan focus on per-
mutations defined in terms of reversing the binary representation of the integers
{0, 1, . . . , n − 1} when n is an even power of 2.

Definition 5.3 (Bit Reversal Graph [Lengauer and Tarjan 1982]). The m-bit rever-
sal of i, 0 ≤ i ≤ 2m − 1, is the integer revm(i) obtained by writing the m-bit binary
representation of i in reverse order. The bit reversal graph (2m, revm) is the permuta-
tion graph over n = 2m with respect to revm.

We will denote the bit reversal graph by (n, rev) for simplicity, implicitly assuming
that n = 2m. An example of a bit reversal graph can be found in Figure 6.

5All results that will be reviewed are from Lengauer and Tarjan [1982], Section 2. Our statements of the
results differ slightly in the constants, though, since there are some (minor) technical differences in the
definitions in Lengauer and Tarjan [1982] as compared to the present article. Proofs of the lemmas and
theorems as stated here can be found in Nordström [2011].

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:25

For bit reversal graphs, the trade-off in Lemma 5.2 for black pebbling is asymptoti-
cally tight.

THEOREM 5.4 ([LENGAUER AND TARJAN 1982]). Suppose that P is any complete
black pebbling of the bit reversal graph (n, rev) over n = 2m elements such that
space(P) = s for s ≥ 3. Then time(P) ≥ n2

8s .

Note, in particular, that if we want to black-pebble (n, rev) in linear time, then
linear space is needed. The proof of Theorem 5.4 relies on the fact that a black pebbling
must always proceed through a graph in topological order. For a black-white pebbling
this is no longer true, since pebbles may be placed anywhere at any time. Adjusting the
argument used in the proof of Theorem 5.4 accordingly, one instead gets the following,
weaker lower bound.

THEOREM 5.5 ([LENGAUER AND TARJAN 1982]). Let P be any complete black-
white pebbling of (n, rev) with space(P) = s for s ≥ 3. Then time(P) ≥ n2

18s2 + 2n.

When first looking at the proof of Theorem 5.5, it might seem that the bound should
not really have to be weaker than in Theorem 5.4 but that this could plausibly be just
a consequence of the analysis being harder to carry out in the black-white pebbling
case. Somewhat surprisingly, however, Lengauer and Tarjan prove that Theorem 5.5
is in fact tight. That is, one can do (much) better using white pebbles in addition
to the black ones. In particular, there is a linear-time black-white pebbling strategy
for (n, rev) using only order of

√
n pebbles. Moreover, it is possible to transform the

pebbling strategy in Lengauer and Tarjan [1982] into a bounded labeled pebbling. We
conclude our discussion of permutation graphs by stating and proving this as a formal
theorem.

THEOREM 5.6. Let (n, rev) be the bit reversal graph over n = 2m elements. Then for
any space parameter s ≥ 3 there is a complete (2 + 2s/3, 2)-bounded labeled pebbling L
of (n, rev) with space(L) ≤ s and time(L) ≤ 288 n2

s2 + 22n.

Theorem 5.6 is an easy corollary of the next lemma. We establish the lemma first
and then explain how it implies the theorem. We also remark that our proof follows
[Lengauer and Tarjan 1982] fairly closely. Thus, our contribution consists in adapting
the argument to the bounded labeled pebbling framework.

LEMMA 5.7. For all s, 3 ≤ s ≤ 3
√

n, there is a complete (2 + 2s/3, 2)-bounded labeled
pebbling L of (n, rev) with space(L) ≤ s and time(L) ≤ 288 n2

s2 + 6n.

PROOF OF LEMMA 5.7. Write m = log n and let r be the nonnegative integer such
that 3 · 2r ≤ s < 3 · 2r+1. Divide the upper row of (n, rev) into 2r intervals

Ij =
{
w j·2m−r+k

∣∣ k = 0, 1, . . . , 2m−r − 1
}

(4)

of size 2m−r for j = 0, . . . , 2r − 1 and then subdivide each interval into 2m−2r chunks by
defining

Ci
j =

{
w j·2m−r+i·2r+k

∣∣ k = 0, 1, . . . , 2r − 1
}

(5)

for i = 0, . . . , 2m−2r − 1. (Note that 2m−2r ≥ 1 since s ≤ 3
√

n by assumption.) Figure 7
exemplifies these definitions on the 32-element bit reversal DAG with 22 intervals and
2 chunks per interval.

The pebbling strategy will proceed in 2m−2r phases corresponding to the 2m−2r

chunks in each interval, and in 2r stages within each phase corresponding to the dif-
ferent intervals. All the phases in the pebbling are completely analogous except for

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:26 J. Nordström

Fig. 7. Intervals I j for r = 2 in (32, rev) and 0th chunks in I0 and Irevr(1) = I2 with inverse images.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:27

some minor tweaks in the first and final phases, which we refer to as the 0th and
(2m−2r − 1)st phases, respectively. To help the reader parse the notation, we note that
in what follows superscripts i will correspond to phases/chunks and subscripts j to
stages/intervals. We reserve 2r independent black pebbles for the lower row, 2r depen-
dent black pebbles for the “current chunks” in the upper row, and 2r − 1 supporting
white pebbles for theses dependent black pebbles. These white pebbles will be placed
on the rightmost vertices in I0, I1, . . . , I2r−2. By the way we chose r, this leaves one
auxiliary pebble to help with advancing the other pebbles.

We start the 0th stage in the 0th phase by doing what is in essence a complete black-
only pebbling of the lower row, leaving 2r independent black pebbles on the vertices
urevm(k), k = 0, 1, . . . , 2r − 1, resulting in the configuration

U0
0 = {urevm(k)〈∅〉 | k = 0, 1, . . . , 2r − 1} . (6)

More formally, this is done as follows. Introduce the subconfigurations u0〈∅〉 and u1〈u0〉,
and then merge them to get u1〈∅〉. Next, introduce u2〈u1〉 and merge with u1〈∅〉 to
get u2〈∅〉. We continue in this way along the lower row, erasing all subconfigurations
ui〈ui−1〉 as we go, as well as all subconfigurations ui〈∅〉 not found in U0

0 .
Once we have the independent black pebbles in U0

0 , we use them to “sweep” a black
pebble past the 0th chunk of I0 in the upper row, leaving it on the rightmost ver-
tex w2r−1. In formal notation, we introduce w0〈u0〉, merge with u0〈∅〉 to get w0〈∅〉, and
then erase w0〈u0〉. Next, we introduce w1

〈
w0, urevm(1)

〉
and merge first with w0〈∅〉 and

then with urevm(1)〈∅〉, resulting in w1〈∅〉. The dependent black pebbles on w1 are then
erased. Next, we introduce w2

〈
w1, urevm(2)

〉
and merge w1〈∅〉 and urevm(2)〈∅〉 to get w2〈∅〉,

after which the dependent black pebbles on w2 are erased. Moving right in this fash-
ion, we finally derive w2r−1〈∅〉, noting that all the independent black pebbles urevm(i)〈∅〉
that we need for this are present in U0

0 . This concludes the 0th stage of our labeled
pebbling.

In the next stage, we move all independent black pebbles in U0
0 on the lower

row exactly one step to the right to the vertices uk for k = 1, revm(1) + 1, revm(2) +
1, . . . , revm(2r − 1) + 1. For k = 1, this is done by introducing u1〈u0〉, merging with u0〈∅〉
to get u1〈∅〉, and then erasing u1〈u0〉 and u0〈∅〉. The general case is of course completely
analogous.

Using the fact that 1 = revm(revr(1) · 2m−r), we see that we now have independent
black pebbles on

U0
1 =

{
urevm(revr(1)·2m−r+k)〈∅〉 ∣∣ k = 0, 1, . . . , 2r − 1

}
, (7)

which by (5) is the set of all predecessors in the lower row of the 0th chunk C0
revr(1) of

the interval Irevr(1). This crucial fact is illustrated in Figure 7.
Intuitively, what we want to do now is to place a white pebble on the rightmost

vertex of the interval Irevr(1)−1 and use this white pebble plus the lower-
row black pebbles on U0

1 to sweep a black pebble all the way to the right-
most vertex in the 0th chunk of Irevr(1). To accomplish this, first introduce
wrevr(1)·2m−r

〈
wrevr(1)·2m−r−1, urevm(revr(1)·2m−r)

〉
and merge this subconfiguration with the

independent black pebble urevm(revr(1)·2m−r)〈∅〉, which is present in U0
1 , to derive

wrevr(1)·2m−r
〈
wrevr(1)·2m−r−1

〉
. Then introduce wrevr(1)·2m−r+1

〈
wrevr(1)·2m−r, urevm(revr(1)·2m−r+1)

〉
and

merge to get the subconfiguration wrevr(1)·2m−r+1
〈
wrevr(1)·2m−r−1

〉
. Continuing in this way,

erasing dependent black pebbles in the upper row as soon as they are no longer needed,
we advance a black pebble along all the vertices of the the interval Irevr(1), finally

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:28 J. Nordström

arriving at the pebble subconfiguration wrevr(1)·2m−r+2r−1
〈
wrevr(1)·2m−r−1

〉
. This concludes

stage 1 of phase 0.
The rest of the stages of phase 0 are completely analogous. In the jth stage, we

can move the lower-row pebbles from U0
j−1 to U0

j where this notation is generalized to
mean

U0
j =

{
urevm(revr(j)·2m−r+k)〈∅〉 ∣∣ k = 0, 1, . . . , 2r − 1

}
(8)

for all j ≤ 2r − 1, and then place black pebbles on the rightmost vertex in every chunk
C0

revr(j) with the help of a white pebble on the rightmost vertex in Irevr(j)−1, that is,
derive derive pebble subconfigurations wrevr(j)·2m−r+2r−1

〈
wrevr(j)·2m−r−1

〉
. At the end of the

final stage of phase 0, we thus have black pebbles on the rightmost vertices of all 0th
chunks and white pebbles on the rightmost vertices of I0, I1, . . . , I2r−2. Later phases
will move the black pebbles to the right, chunk by chunk, while leaving the white peb-
bles in place. We observe that during phase 0, we made at most n introduction moves
and n merger moves on the lower row to get the pebbles into “starting position” U0

0 ,
and then exactly 2r introductions and mergers more on the lower row in each of the
other 2r − 1 stages.

Inductively, suppose at the beginning of phase i that there are dependent black
pebbles on the rightmost vertices in all (i − 1)st chunks, that is, subconfigurations
wrevr(j)·2m−r+i·2r−1

〈
wrevr(j)·2m−r−1

〉
for all j > 0 and wi·2r−1

〈∅〉
for j = 0. Let us extend the

lower-row pebble configuration notation above to full generality and define

Ui
j =

{
urevm(revr(j)·2m−r+i·2r+k)〈∅〉 ∣∣ k = 0, 1, . . . , 2r − 1

}
=

{
v〈∅〉∣∣v ∈ rev−1

m

(
Ci

revr(j)

)}
, (9)

where the second equality is easily verified from (5). In stage 0 of phase i, we rearrange
the lower-row black pebbles to obtain the configuration in Ui

0. Since there are already
2r independent black pebbles present somewhere on the lower row, this can be achieved
with at most n−2r introductions and mergers (essentially by moving the black pebbles
to the closest new position to the right—we refer to Lengauer and Tarjan [1982] for the
details). This allows us to advance the independent black pebble in I0 on the upper row
from the rightmost vertex in chunk i − 1 to the rightmost vertex in chunk i. Moving
the independent black pebbles in U i

0 one step to the right in each following stage to
U i

1,U i
2, et cetera, we can sweep dependent black pebbles across the ith chunks of the

other intervals I j in the order Irevr(1), Irevr(2), . . . , Irevr(2r−1) = I2r−1. All in all, we make at
most (n− 2r) + (2r − 1) · 2r introductions and merger moves on the vertices in the lower
row during phase i for i ≥ 1.

In the final (2m−2r − 1)st phase, we note that there are supporting white pebbles on
the rightmost vertex of the chunk in every interval except I2r−1 (where the rightmost
vertex is the sink). Therefore, in every stage except the final one, when we make an
introduction move on a rightmost vertex, we merge the introduced subconfiguration
with the subconfigurations on its two predecessors of this vertex to remove the white
pebble. In the very final stage, we obtain an independent black pebble on wn−1. Re-
moving all other pebbles from the DAG, which are all independent black pebbles, we
have obtained a complete labeled pebbling of (n, rev).

The space of this pebbling is 3 · 2r ≤ s by construction. All subconfigurations v〈W〉
have white support size |W| ≤ 2, and there are always at most 2 · 2r ≤ 2s/3 “static”
subconfigurations plus 2 auxiliary ones. As to the time bound, it is easy to verify
that we make an introduction for each upper row vertex exactly once, and 2 merg-
ers are needed to eliminate the white pebbles in the support of the introduced
subconfiguration. The number of introductions and mergers in the lower row is at

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:29

most 2n + (2r − 1) · 2r+1 during phase 0 and at most 2(n − 2r) + (2r − 1) · 2r+1 for each of
the other 2m−2r − 1 phases, and summing up we get a total of at most

2m−2r((2n − 2r+1) + (2r − 1) · 2r+1) + 2r+1 + 3n < 2m−2r(2n + 22r+1) + 3n

<
n

(s/6)2

(
2n + 2(s/3)2) + 3n

≤ 144
n2

s2 + 3n

(10)

introduction and merger moves in total, where we used that 2m−2r ≥ 1, 2r ≤ s/3 < 2r+1,
and s ≤ 3

√
n. Multiplying by 2 to take the removal moves into account gives the time

bound stated in the lemma.

PROOF OF THEOREM 5.6. For s ≤ 3
√

n this was proven in Lemma 5.7. To get the
statement for s > 3

√
n, use the same pebbling strategy as in the proof of Lemma 5.7

but choose r so that
√

n/2 < 2r ≤ √
n. Then the number of chunks 2m−2r is at most 2,

and the time bound derived from (10) reduces to 22n.

To obtain the graphs Gn of size �(n) in Lemma 1.3, we set m = �log2 n� and let
Gn = (2m, revm). As noted at the beginning of this section, Theorem 1.4 now follows
by combining Lemma 2.5 with Lemma 5.7. if we combine Lemma 2.5 with Lemma 5.7.

5.2. Bounded Pebblings for Absolute Separations of Pebbling Space

To prove results for resolution matching the pebbling separations of Lemma 1.5 by
Wilber [1988] and Lemma 1.7 by Kalyanasundaram and Schnitger [1991], it is suffi-
cient to consider a more general graph family studied in the latter paper. To describe
how this graph family is constructed we first need an auxiliary definition.

Definition 5.8 (m-line and (n, m)-spiral Mesh). An m-line is a DAG with vertex set
v1, v2, . . . , vm and edge set {(vi, vi+1) | i = 1, 2, . . . , m − 1}.

An (n, m)-spiral mesh is a DAG on vertices {vi, j | i ∈ [n], j ∈ [m]} with edges (vi, j, vi, j+1)
for i ∈ [n] and j ∈ [m − 1], (vi, j, vi+1, j) for i ∈ [n − 1] and j ∈ [m], and (vi,m, vi+1,1) for
i ∈ [n − 1]. The ith column of the (n, m)-spiral mesh consists of the vertices vi, j for
j ∈ [m].

We now present the three-parameter graph family �(p, q, k) in Kalyanasundaram
and Schnitger [1991]. The construction is by induction over q.

Definition 5.9 (�(p, 0, k)-graph). The graph �(p, 0, k) is a (1, p)-mesh, that is, a p-
line. For the purposes of the inductive definitions that will follow, let us define the
first row f1, f2, . . . , fp and last row l1, l2, . . . , lp both to be identical to the vertices
v1, v2, . . . , vp of the p-line.

For q > 0, the graph �(p, q, k) consists of a number of identical building blocks
N(p, q, k), which all contain a copy each of �(p, q − 1, k). In the recursive definitions
below, we will be somewhat sloppy with the indices in order not to clutter the notation.
In particular, if we wanted to be formally correct, all subgraphs and vertices below
should be labeled by their “level of recursion” q within the construction, as well as by a
number indicating which of the identical copies on recursion level q the vertex resides
in, but we believe that adding these extra indices would lead to more confusion than
clarity.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:30 J. Nordström

Fig. 8. Building block N(p, q, k) in graph separating black and black-white pebbling (here k = p/2).

The N(p, q, k)-block graph construction, defined next, is illustrated in Figure 8. We
remark that this graph has been slightly modified as compared to Kalyanasundaram
and Schnitger [1991].6

6Again, proofs of the results as stated here can be found in Nordström [2011].

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:31

Definition 5.10 N(p, q, k)-block [Kalyanasundaram and Schnitger 1991]. Suppose
that �(p, q − 1, k) has been defined. The block graph N(p, q, k), where k ≤ p, consists
of the following components:

— a copy of �(p, q − 1, k) with first row f1, f2, . . . , fm and last row l1, l2, . . . , lm,
— a

(
(p + 1)2, p

)
-spiral mesh B on vertices bi, j, i ∈ [

(p + 1)2
]
, j ∈ [p],

— a
(
(p + 1)3, p

)
-spiral mesh A on vertices ai, j, i ∈ [

(p + 1)3
]
, j ∈ [p],

— k copies R1, . . . , Rk of a (p+1)-line, with the ith copy having vertices ri, j for j ∈ [p + 1].

For ease of notation, in what follows we will write nb = (p + 1)2 and na = (p + 1)3 for the
number of rows in B and A.

The subgraph components are connected by edges as follows (where we use the
notation

(
u; v

)
for the edge from u to v for clarity):

—
(
bnb , j ; f j

)
for j ∈ [p],

—
(
bnb , j ; ri,p+2− j

)
for i ∈ [k] and j ∈ [p],

—
(
lj; a1, j

)
for j ∈ [p],

—
(
l�ip/k�; ri,1

)
for i ∈ [k], and

—
(
ri,p+1 ; a1, j

)
for all i ∈ [k] and all j such that (i − 1)p/k < j ≤ ip/k.

The ith column of N(p, q, k) consists of the ith columns of B, �(p, q − 1, k), and A.

We glue the N(p, q, k)-blocks together to form the graph �(p, q, k) as follows.

Definition 5.11 (�(p, q, k)-graph [Kalyanasundaram and Schnitger 1991]). For q ≤
p and k ≤ p, the graph �(p, q, k) consists of �p/k� + 1 copies of the block graph
N(p, q, k), which we denote N(1)(p, q, k), N(2)(p, q, k), . . . , N(�p/k�+1)(p, q, k). The edges
between the blocks are

(
a(i)

na, j ; b (i+1)
1, j

)
for i = 1, . . . , �p/k� and j = 1, . . . , p, that is, the

last vertex in every column in the ith N-block is connected to the first vertex in the
same column in the (i + 1)st N-block.

We define the first row f1, f2, . . . , fm of �(p, q, k) to consist of the first row
b (1)

1,1, b (1)
1,2, . . . , b (1)

1,p, of the first N-block and the last row l1, l2, . . . , lm, to consist of the last

row a(�p/k�+1)
na,1 , a(�p/k�+1)

na,2 , . . . , a(�p/k�+1)
na,p of the last N-block. The ith column of �(p, q, k) is

defined to be the union of the ith columns of all the N-blocks.

Let us now first state the properties that we need from the �(p, q, k)-graphs, then
show how Lemmas 1.5 and 1.7 and Theorems 1.6 and 1.8 follow from these properties,
and finally give the proof that there are efficient bounded labeled pebblings of the
graphs.

PROPOSITION 5.12 ([KALYANASUNDARAM AND SCHNITGER 1991]). The graphs
�(p, q, k), have size O

(
poly(p)(p/k)q

)
, maximal vertex indegree 3, and a unique sink.

THEOREM 5.13 ([KALYANASUNDARAM AND SCHNITGER 1991]). Any complete
black pebbling of �(p, q, k) requires at least pq pebbles.

THEOREM 5.14. Every graph �(p, q, k) has a complete (p + kq + 2, 3)-bounded la-
beled pebbling.

If we set k = p log log p/ log p and q = log p/ log log p in Definition 5.11, it follows
from Proposition 5.12 and Theorem 5.13 that we obtain graphs of size polynomial in p
with black pebbling price �(p log p/ log log p), as claimed in Lemma 1.5. Since these
graphs have (O(p), O(1))-bounded labeled pebblings by Theorem 5.14, we can appeal

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:32 J. Nordström

to Lemma 2.5 to deduce that resolution refutations of pebbling contradictions over
these graphs can match the black-white pebbling space bounds, which proves Theo-
rem 1.6. If we instead choose k = 1 and q = p in Definition 5.11, we get graphs of size
exp(�(p log p)) that have black pebbling price �

(
p2

)
but admit (O(p), O(1))-bounded

labeled pebblings. This gives us Lemma 1.7 and Theorem 1.8.
Hence, all that remains is to establish Theorem 5.14, and we conclude this section

by doing so. Again, we point out that the pebbling strategy presented here follows
the one in Kalyanasundaram and Schnitger [1991] closely, and that our contribution
is thus not in designing a completely new pebbling strategy, but in taking an existing
strategy and turning it into a bounded labeled pebbling.

Before presenting the formal proof, let us sketch the main idea. Observe that if
there were no R-graphs in �(p, q, k) but only the vertices in the p columns, then it
would be straightforward to do a complete bottom-up black-only pebbling with just
p + 1 pebbles. However, this strategy is impossible to implement in the black pebble
game. Very briefly, the reason for this is that any black pebbling has to pebble the
graph in topological order, but since the predecessors of the vertices in the R-graphs
have their order reversed—with the source of R having its predecessor in �(p, q − 1, k),
whereas the successor vertices have predecessors in the preceding subgraph B—this
constantly throws the black pebbling off-balance. Using the power of white pebbles,
however, we can avoid this problem and place black pebbles on the sinks of all graphs
Ri, i ∈ [k], at all levels of recursion in the graph construction, and then do the black
bottom-up pebbling of the vertices in the column-part of the graph. The formal details
follow.

PROOF OF THEOREM 5.14. The labeled pebbling strategy is constructed by induc-
tion over q. The base case is trivial since �(p, 0, k) is just a p-line. For the the sake of
our induction hypothesis, let us do some extra work and note that we can in fact even
fill the whole p-line with independent black pebbles and still stay within our space
bounds. That is, if l1, . . . , lp are the vertices of �(p, 0, k), we can introduce l1〈∅〉 and
l2〈l1〉 and merge them to get l2〈∅〉, after which l2〈l1〉 is erased, then introduce l3〈l2〉 and
merge with l2〈∅〉 to obtain l3〈∅〉, after which l3〈l2〉 is erased, et cetera, until we have the
whole row {lj〈∅〉 | j ∈ [p]} of independent black pebbles.

Inductively, suppose that we have constructed for �(p, q − 1, k) a pebbling L start-
ing with independent black pebbles { f j〈∅〉 | j ∈ [p]} on the first row, ending with in-
dependent black pebbles {lj〈∅〉 | j ∈ [p]} on the last row, and never using more than
p + k(q − 1) + 2 subconfigurations v〈W〉 at any time, all with bounded white support
size |W| ≤ 3. It is sufficient to construct from L a labeled pebbling L′ for the block
graph N(p, q, k) moving independent black pebbles from the first row of B to the last
row of A using no more than p + kq + 2 subconfigurations with bounded support size.
Such a pebbling is then easily extended to pebbling for all of �(p, q, k) by pebbling the
blocks one by one in a bottom-up fashion. (This is so since we can easily shift indepen-
dent black pebbles from the last row of an N-block to the first row of the next N-block
using the same kind of labeled pebbling moves that will be discussed more in detail
below.)

Thus, suppose that we have independent black pebbles {b1, j〈∅〉 | j ∈ [p]} on all ver-
tices in the first row of B. We move these pebbles up one row as follows. First intro-
duce b2,1

〈
b1,1, b1,p

〉
and merge with b1,1〈∅〉 and b1,p〈∅〉 to get b2,1〈∅〉, erasing b1,1〈∅〉

and the dependent black pebbles on b2,1. Next, introduce b2,2
〈
b2,1, b1,2

〉
and merge

with b1,2〈∅〉 and the newly derived subconfiguration b2,1〈∅〉 to get b2,2〈∅〉, after which
the dependent black pebbles on b2,2 are erased, as well as b1,2〈∅〉. Continuing in this
way, erasing pebble subconfigurations as soon as they are no longer needed and using
only 2 auxiliary subconfigurations, we can shift the whole row, and we keep on shifting

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:33

the pebbles row by row, from left to right for each row, until the last row of B has all
vertices covered by independent black pebbles {bnb , j〈∅〉 | j ∈ [p]}.

Next, we want to place black pebbles on the sinks of all the Ri-subgraphs. Fix
some i and consider Ri. Introduce ri,2

〈
ri,1, bnb ,p

〉
and merge with bnb ,p〈∅〉 to obtain

ri,2
〈
ri,1

〉
, erasing ri,2

〈
ri,1, bnb ,p

〉
. Continue by introducing ri,3

〈
ri,2, bnb ,p−1

〉
and merging it

with bnb ,p−1〈∅〉 to obtain ri,3
〈
ri,2

〉
, and then merge this subconfiguration with ri,2

〈
ri,1

〉
to derive ri,3

〈
ri,1

〉
, where the subconfigurations ri,3

〈
ri,2, bnb ,p−1

〉
, ri,3

〈
ri,2

〉
, and ri,2

〈
ri,1

〉
are

erased as soon as they are no longer needed. Working our way up Ri in this fashion,
we finally derive ri,p+1

〈
ri,1

〉
. Note that we use here that we have all the independent

black pebbles bnb , j〈∅〉, j ∈ [p], available. We repeat these pebbling moves for all the
Ri-graphs to obtain {ri,p+1

〈
ri,1

〉 | i ∈ [p + 1]}. For this part of the pebbling we again use
2 auxiliary subconfigurations, and we end up with a total of k subconfigurations on all
the subgraphs Ri, i ∈ [k].

Now, shift the independent black pebbles {bnb , j〈∅〉 | j ∈ [p]} from the last row of B
to { f j〈∅〉 | j ∈ [p]} on the first row of �(p, q − 1, k) (by the same kind of moves that
have been described in detail above), and then appeal to the induction hypothesis to
obtain a pebbling moving these black pebbles further upward to {lj〈∅〉 | j ∈ [p]} on the
last row of �(p, q − 1, k). By the induction hypothesis, such a pebbling uses at most
p + k(q − 1) + 2 pebble subconfigurations. We note that adding the k pebble subconfig-
urations on the Ri-subgraphs, the total number of subconfigurations exactly meets the
upper bound we are aiming for in the inductive step.

To finish the pebbling of N(p, q, k), we first want to eliminate all the white pebbles
on ri,1, i ∈ [k], which is possible since there are (independent) black pebbles on the
predecessors of these vertices in the last row of �(p, q − 1, k). Thus, for all i ∈ [k] in
turn, introduce ri,1

〈
l�ip/k�

〉
and merge ri,p+1

〈
ri,1

〉
with the introduced subconfiguration as

well as with l�ip/k�〈∅〉 to derive ri,p+1〈∅〉, where we erase ri,1
〈
l�ip/k�

〉
and ri,p+1

〈
ri,1

〉
and any

intermediate subconfigurations as soon as they are no longer needed. Next, we shift
the black pebbles {lj〈∅〉 | j ∈ [p]} from the last row of �(p, q − 1, k) to {a1, j〈∅〉 | j ∈ [p]}
on the first row of A. This is done in the same way as previous “shifting” moves,
and we use that in addition to the pebbles on the last row of �(p, q − 1, k) we also have
independent black pebbles on the sinks of all Ri-subgraphs. In this part of the pebbling
we will need subconfigurations with white support size 3, since that is the indegree of
the vertices in the first row of A. When we are done shifting, we erase the pebbles
ri,p+1〈∅〉 from the sinks of the Ri-subgraphs. Finally, we move all the black pebbles in
A row by row upward, using 2 auxiliary subconfigurations, until the last row of A has
all vertices covered by independent black pebbles. This concludes the inductive step,
and the theorem follows.

6. CARLSON-SAVAGE GRAPHS AND STRONG DUAL TRADE-OFFS

In this section, we present a full proof of Theorem 1.9 and show how the Carlson-
Savage graphs can be used to obtain graphs with strong dual pebbling trade-offs where
the upper bounds are in terms of black pebbling and the lower bounds are in terms of
black-white pebbling.

We first list the statements that we want to prove in order to establish Theorem 1.9
in Lemmas 6.1, 6.2, and 6.3, deferring the proofs until later. Note that the lemmas are
stated for the graph family �(c, r) in Definition 2.6, but it is straightforward to trans-
late the lemmas to what is needed for Theorem 1.9 by using the single-sink version
of �(c, r) in Definition 3.8 and appealing to Observation 3.9. We then show how these
lemmas yield pebbling time-space trade-offs. Finally, we provide the missing formal
proofs of the lemmas.

Let us start by recalling the size and pebbling price bounds.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:34 J. Nordström

LEMMA 6.1. The graphs �(c, r) are of size |V(�(c, r))| = �
(
cr3 +c3r2

)
, and have black-

white pebbling price BW-Peb∅(
�(c, r)

)
= r + 2 and black pebbling price Peb∅(

�(c, r)
)

=
2r + 1.

Note that Lemma 6.1 says that the minimum pebbling space required grows linearly
with the recursion depth r but is independent of the number of spines c of the DAG.

Next, we need the fact that there is a linear-time completely black pebbling of �(c, r)
in space linear in c + r. This is in fact a strict improvement (though easily obtained) of
the corresponding result in Carlson and Savage [1982].

LEMMA 6.2. The graphs �(c, r) have persistent black pebbling strategies in simulta-
neous space O(c + r) and time linear in the size of the graphs.

Our main result for the Carlson-Savage graphs is the following trade-off for black-
white pebbling, which provides us with a variety of pebbling trade-off results if we
choose the parameters c and r appropriately.

LEMMA 6.3. Suppose that P is a complete visiting black-white pebbling of �(c, r)
with

space(P) < BW-Peb∅(
�(c, r)

)
+ s = (r + 2) + s

for 0 < s ≤ c/8 − 1. Then the time required to perform P is lower-bounded by

time(P) ≥
(

c − 2s
4s + 4

)r

· r! .

Observe that Lemma 6.3 is just a special case of Lemma 2.7, obtained by setting Pσ =
Pτ = (∅,∅), and we already gave a proof of Lemma 2.7 in Section 2.2, assuming some
auxiliary technical lemmas. Hence, for Lemma 2.7 all we need to do is to establish the
lemmas stated without proof in Section 2.2.

Before showing any lemmas, however, let us now see how we can prove Theo-
rem 1.10 by appealing to Lemmas 6.1, 6.2, and 6.3.

THEOREM 1.10 (RESTATED). Let g(n) be any arbitrarily slowly growing monotone
function ω(1) = g(n) = O

(
n1/7

)
, and let ε > 0 be an arbitrarily small positive constant.

Then there is a family of explicitly constructible single-sink DAGs {Gn}∞n=1 of size �(n)
with constant vertex indegree such that:

(1) the graph Gn has black-white pebbling price BW-Peb(G) = g(n) + O(1) and black
pebbling price Peb(G) = 2 · g(n) + O(1);

(2) there is a complete black pebbling P of Gn with time(P) = O(n) and space(P) =
O

(
3
√

n/g2(n)
)
;

(3) Any complete black-white pebbling P of Gn in space at most
(
n/g2(n)

)1/3−ε requires
pebbling time superpolynomial in n.

PROOF. Consider the graphs �(c, r) in Definition 2.6. We want to choose the param-
eters c and r in a suitable way so that get a family of graphs in size n = �

(
cr3 + c3r2

)
(using the bound on the size of �(c, r) from Lemma 6.1). If we choose r = r(n) = g(n) for
g(n) = O

(
n1/7

)
, this forces c = c(n) = �

(
3
√

n/g2(n)
)
. Consider the graph family {Hn}∞n=1

defined by Hn = �(c(n), r(n)) as above and let Gn = Ĥn be the single-sink version of Hn.
This is a family of single-sink DAGs of size �(n).

By Lemma 6.1 combined with Observation 3.9, it holds that Peb(Gn) = g(n) + O(1).
Also, the black pebbling of Hn in Lemma 6.2 yields a linear-time pebbling of Gn in
space O

(
3
√

n/g2(n)
)
. Now set the parameter s in Lemma 6.3 to s = c1−ε′

for ε′ = 3ε. Then

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:35

for large enough n we have s ≤ c/8 − 1 and Lemma 6.3 can be applied. We get that
if the pebbling space is less than

(
n/g2(n)

)1/3−ε , then the required time for the black-

white pebbling grows as
(
�

(
cε′))r =

(
�

(
n/g2(n)

))εg(n) which is superpolynomial in n for
any g(n) = ω(1). The theorem follows.

We also note that using different parameter settings, we can obtain graphs with
very robust trade-offs in the sense that the lower bound in the trade-off applies over a
very wide space range, namely all the way from log n up to ≈ 3

√
n.

THEOREM 6.4. There is a family of explicitly constructible single-sink DAGs {Gn}∞n=1
of size �(n) with constant vertex indegree such that:

(1) Peb(Gn) = O(log n);
(2) there is a complete black pebbling P of Gn with time(P) = O(n) and space(P) =

O
(

3
√

n/ log2 n
)

;

(3) there is a constant K > 0 such that any complete black-white pebbling P of Gn in

space at most K 3
√

n/ log2 n must take time n�(log log n).

PROOF. Consider the graphs �(c, r) in Definition 2.6 with parameters chosen so that
c = 2r. Then the size of �(c, r) is �

(
r223r

)
by Lemma 6.1. Let r(n) = max{r : r223r ≤ n}

and define the graph family {Gn}∞n=1 to be the single-sink version of �(2r, r) for r = r(n).
Translating from Gn back to �(c, r) we have parameters r = �(log n) and c =

�
(
(n/ log2 n)1/3

)
, so Lemma 6.1 yields that Peb(Gn) = O(log n). Hence, the linear-time

persistent black pebbling of Gn in Lemma 6.2 has space O
(
(n/ log2 n)1/3

)
.

Setting s = c/8 − 1 in Lemma 6.3 shows that there is a constant K such that if the
space of a black-white pebbling P drops below K · (n/ log2 n)1/3 ≤ (r + 2) + s, then we
must have

time(P) ≥ O(1)r · r! = n�(log log n) (11)

(where we used that r = �(log n) for the final equality). The theorem follows.

As a final application of Theorem 1.9, we show that it can be used to construct DAGs
with not only superpolynomial but even exponential trade-offs. A simple counting ar-
gument can be used to show that we can never expect to get exponential trade-offs
from DAGs with polylogarithmic pebbling price. However, if we move to graphs with
pebbling price �(nε) for some constant ε > 0, such graphs could potentially exhibit
exponential trade-offs. We obtain such a family of graphs by again adjusting the pa-
rameters in Definition 2.6 appropriately.

THEOREM 6.5. There is a family of explicitly constructible single-sink DAGs {Gn}∞n=1
of size �(n) with constant vertex indegree such that:

(1) Peb(Gn) = O
(

8
√

n
)
;

(2) there is a complete black pebbling P of Gn with time(P) = O(n) and space(P) =
O

(
4
√

n
)
;

(3) there is a constant K > 0 such that any complete black-white pebbling of Gn in
space at most K 4

√
n must take time

(
8
√

n
)
! .

PROOF. Use the single-sink version of �(c, r) as above with parameters c = 4
√

n and
r = 8

√
n.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:36 J. Nordström

We remark that there is nothing magic in our particular choice of parameters c and
r in Theorem 6.5. Other parameters could be plugged in instead and yield slightly
different results. Note also that again we have a certain robustness in the trade-off
results in that it holds for space from 8

√
n to 4

√
n, at which point it drops sharply to

allow a linear-time pebbling.
We now turn to the proofs of Lemmas 6.1, 6.2, and 6.3. In the proofs we will need

a few useful auxiliary lemmas, the first of which gives us information about how the
spines in the Carlson-Savage DAGs are being pebbled. We will use this information
repeatedly in what follows.

LEMMA 6.6 (REPHRASING OF LEMMA 2.8). Suppose that G is a DAG and that v is
a vertex in G with a path Q to some sink zi ∈ Z (G) such that all vertices in Q \ {zi} have
outdegree 1. Then any frugal black-white pebbling strategy pebbles v exactly once, and
the path Q contains pebbles during one contiguous time interval.

PROOF. By induction from the sink backwards. The induction base is immediate.
For the inductive step, suppose v has immediate successor w and that w is pebbled
exactly once.

If w is black-pebbled at time σ , then v has been pebbled before this and the first
pebble placed on v stays until time σ . No second placement of a pebble on v after time
σ can be essential since v has no other immediate successor than w. If w is white-
pebbled and the pebble is removed at time σ , then the first pebble placed on v stays
until time σ and no second placement of a pebble on v after time σ can be essential.

Thus each vertex on the path is pebbled exactly once, and the time intervals when
a vertex v and its successor w have pebbles on them overlap. The lemma follows.

The second auxiliary lemma speaks about subgraphs H of a DAG G whose only
connection to the rest of the graph G \ H are via the sink of H. Note that the pyramids
in �(c, r) satisfy this condition.

LEMMA 6.7 (REPHRASING OF LEMMA 2.9). Let G be a DAG and H a subgraph in
G such that H has a unique sink zh and the only edges between V(H) and V(G) \
V(H) emanate from zh. Suppose that P is any frugal complete pebbling of G having
the property that H is completely empty of pebbles at some given time τ ′ but at least
one vertex of H has been pebbled during the time interval [0, τ ′]. Then P pebbles H
completely during the interval [0, τ ′].

PROOF. Suppose that v ∈ V(H) is pebbled at time σ ′ < τ ′. Note that all paths
starting in v must hit zh sooner or later, since zh is the unique sink of H and there is
no other way out of H into the rest of G. Consider the longest path from v to zh. If this
path has length 1, clearly zh must be pebbled before time τ ′ since otherwise the pebble
placement on v is nonessential. The same statement follows for any v by induction
over the path length. But since H is empty at times 0 and τ ′ and zh is pebbled during
(0, τ ′), H is completely pebbled during this time interval.

Let us now establish that the size and pebbling price of the Carlson-Savage DAGs
are as claimed.

PROOF OF LEMMA 6.1. The base case graph �(c, 1) in Definition 2.6 has size c + 2.
A pyramid of height h has (h + 1)(h + 2)/2 vertices, so the c pyramids of height 2(r − 1)
in �(c, r) contribute cr(2r − 1) vertices. The c spines with cr sections of 2c vertices

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:37

each contribute a total of 2c3r vertices. And then there are the vertices in �(c, r − 1).
Summing up, the total number of vertices in �(c, r) is

(c + 2) +
r∑

i=2

(
ci(2i − 1) + 2c3i

)
= �

(
cr3 + c3r2) (12)

as is stated in the lemma.
Clearly, BW-Peb∅(�(c, 1)) = Peb∅(�(c, 1)) = 3, since pebbling a vertex with fan-in 2

requires 3 pebbles and �(c, 1) can be completely pebbled in this way by placing pebbles
on the two sources and then pebbling and unpebbling the sinks one by one.

Suppose inductively that BW-Peb∅(�(c, r)) = r + 2 and consider �(c, r + 1). It is
straightforward to see that BW-Peb∅(�(c, r + 1)) ≤ r+3. Every pyramid �

(j)
2r can be com-

pletely pebbled with r+ 2 pebbles (Theorem 3.15). We can pebble each spine bottom-up
in the following way, section by section. Suppose by induction that we have a black peb-
ble on the last vertex v[i − 1]2c in the (i− 1)st section. Keeping the pebble on v[i − 1]2c,
perform a complete visiting pebbling of �

(1)
2r . At some point during this pebbling we

must have a pebble on the pyramid sink z1 and at most r other pebbles on the pyramid
(by Proposition 3.10). At this time, place a black pebble on v[i]1 and remove the pebble
from v[i − 1]2c. Complete the pebbling of �

(1)
2r , leaving the pyramid empty. Performing

complete visiting pebblings of �
(2)
2r , . . . ,�

(c)
2r in an analogous fashion allows us to move

the black pebble along v[i]2, . . . , v[i]c, never exceeding total pebbling space r + 3. In
the same way, for every visiting pebbling P of �(c, r) there must exist times σi for all
i = 1, . . . , c, when space(Pσi) < space(P) and the sink γi contains a pebble. Performing
a minimum-space pebbling of �(c, r), possibly c times if necessary, this allows us to
advance the black pebble along v[i]c+1, . . . , v[i]2c, never exceeding total pebbling space
r + 3. This shows that �(c, r + 1) can be completely pebbled with r + 3 pebbles. A simple
syntactic adaptation of this arguments for black pebbling (appealing to Theorem 3.15
for the black pebbling price of pyramids) also yields Peb∅(�(c, r)) ≤ 2r + 3.

To prove that there are matching lower bounds for the pebbling constructed above,
it is sufficient to show that some pyramid �

(j)
2r must be completely pebbled while there

is at least one pebble on �(c, r + 1) outside of �
(j)
2r . To see why, note that if we can prove

this, then simply by using the the fact that BW-Peb∅(�2r) = r + 2 and BW-Peb∅(�2r) =
2r+ 2 and adding one for the pebble outside of �

(j)
2r we have the matching lower bounds

that we need. We present the argument for black-white pebbling, which is the harder
case. The black-only pebbling case is handled completely analogously.

Suppose in order to get a contradiction that there is a visiting pebbling strategy
P for �(c, r + 1) in space r + 2. By Observation 3.6, P performs a complete visiting
pebbling of every pyramid �

(j)
2r . Consider the first time τ1 when some pyramid has

been completely pebbled and let this pyramid be �
(j1)
2r . Then at some time σ1 < τ1

there are r + 2 pebbles on �
(j1)
2r and the rest of the graph �(c, r + 1) must be empty of

pebbles at this point.
We claim that this implies that no vertex in �(c, r + 1) outside of the pyramid

�
(j1)
2r has been pebbled before time σ1. Let us prove this crucial fact by a case

analysis.

(1) No vertex v in any other pyramid �
(j′)
2r can have been pebbled before time σ1. For if

so, Lemma 6.7 says that �
(j′)
2r has been completely pebbled before time σ1, contra-

dicting our choice of �
(j1)
2r as the first such pyramid.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:38 J. Nordström

(2) No vertex on a spine has been pebbled before time σ1. This is so since Lemma 6.6
tells us that if some vertex on a spine has been pebbled, then the whole spine
must have been pebbled in view of the fact that it is empty at time σ1. But then
Lemma 3.12 implies that all pyramid sinks must have been pebbled. This case has
already been excluded.

(3) Finally, no vertex v in �(c, r) can have been pebbled before time σ1. Otherwise the
frugality of P implies (by mimicking the arguments in the proofs of Lemmas 3.12
and 6.6) that some successor of v must have been pebbled as well, and some suc-
cessor of that successor et cetera, all the way up to where �(c, r) connects with the
spines. But we have ruled out the possibility that a spine vertex has been pebbled.

This establishes the claim, and we are now almost done. To clinch the argument,
we need a couple of final observations. Note first that by frugality, at some time in the
interval (σ1, τ1) some vertex in some spine must have been pebbled. This is so since
the pyramid sink z j1 has been pebbled before time τ1, all of �

(j1)
2r is empty at time τ1,

and all spines are empty at time σ1 < τ1. But then Lemma 6.6 tells us that there will
remain a pebble on this spine until all of the spine has been completely pebbled.

Consider now the second pyramid �
(j2)
2r completely pebbled by P, say, at time τ2.

At some point in time σ2 < τ2 we have r + 2 pebbles on �
(j2)
2r , and moreover σ2 > τ1

since �
(j2)
2r is empty at time τ1. But now it must hold that either there is a pebble on

a spine at this point, or, if all spines are completely empty, that some spine has been
completely pebbled. If some spine has been completely pebbled, however, this in turn
implies (appealing to Lemma 3.12 again) that there must be some pebble somewhere
in some other pyramid �

(j′)
2r at time σ2. Thus the pebbling space exceeds r + 2 and we

have obtained our contradiction. The lemma follows.

Studying the pebbling strategies in the proof of Lemma 6.1, it is not hard to see that
they are very inefficient. The subgraphs in �(c, r) will be pebbled over and over again,
and for every step in the recursion the time required multiplies. We next show that if
we are a bit more generous with the pebbling space, then we can get down to linear
time.

PROOF OF LEMMA 6.2. We want to prove that �(c, r) has a persistent black pebbling
strategy P that pebbles every vertex in �(c, r) exactly once and uses space O(c+r). Sup-
pose that there is such a pebbling strategy Pr for �(c, r). We describe how to construct
a pebbling Pr+1 for �(c, r + 1) inductively. Note that the base case for �(c, 1) is trivial.

The construction of Pr+1 is very straightforward. First use Pr to make a persistent
pebbling of �(c, r) in space O(c + r). At the end of Pr, we have c pebbles on the sinks
γ1, . . . , γc. Keeping these pebbles in place, pebble the pyramids �

(1)
2r , . . . ,�

(c)
2r persis-

tently one by one in space O(r) with a strategy pebbling each vertex exactly once (for
instance, by pebbling the pyramid bottom-up level by level). We leave pebbles on all
pyramid sinks z1, . . . , zc. This stage of the pebbling only requires space O(c + r) and at
the end we have 2c black pebbles on all pyramid sinks z1, . . . , zc and all sinks γ1, . . . , γc
of �(c, r). Keeping all these pebbles in place, we can pebble all c spines in parallel in
linear time with c + 1 extra pebbles.

It remains to fill in the gaps in the proof of Lemma 2.7 and its special case
Lemma 6.3. Recall that the proof of Lemma 2.7 presented in Section 2.2 hinged on the
claims that not too many pyramids can be pebbled simultaneously in a space-efficient
pebbling, and that this is true for the spines as well. Assuming these two claims,
we could show that as any spine was pebbled, the pebbling had to alternate back and
forth between time intervals when there are a lot of pebbles on some pyramid and time

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:39

intervals when all sinks in �(c, r) are pebbled. This allowed us to apply the induction
hypothesis multiple times and obtain the required lower bound.

Hence, all that remains to complete the proof of Lemma 2.7 is to establish the two
technical lemmas that upper-bound how many pyramids and spine sections can con-
tain pebbles simultaneously at any one given time in a pebbling subjected to space
constraints as in Lemma 2.7. The claims in the two lemmas are very similar in spirit,
as are the proofs, so we state the lemmas together and then present the proofs in
sequence.

LEMMA 6.8 (REPHRASING OF LEMMA 2.10). Suppose that P = {Pσ , . . . ,Pτ } is a
conditional black-white pebbling on �(c, r) and that s is a constant satisfying the condi-
tions in Lemma 2.7. Then at all times during the pebbling P strictly less than 4(s + 1)
pyramids �

(j)
2r contain pebbles simultaneously.

LEMMA 6.9 (REPHRASING OF LEMMA 2.11). Suppose that P = {Pσ , . . . ,Pτ } is a
conditional black-white pebbling on �(c, r) and that s is a constant satisfying the condi-
tions in Lemma 2.7. Then at all times during the pebbling P strictly less than 4(s + 1)
spine sections contain pebbles simultaneously.

Note that Lemma 6.9 provides a total bound on the number of pebbled sections in
all c spines. There might be spines containing several sections being pebbled simulta-
neously (in fact, this is exactly what one would expect a black-white pebbling to do in
order to optimize the time given the space constraints), but what Lemma 6.9 says that
if we fix an arbitrary time t ∈ [σ, τ], add up the number of sections containing pebbles
at time t in each spine, and sum over all spines, we never exceed 4(s + 1) sections in
total.

PROOF OF LEMMA 6.8. Suppose that on the contrary, there is some time t∗ ∈ (σ, τ)
when at least 4s+4 pyramids �(j) in �(c, r) contain pebbles. Of these pyramids, at least
2s+4 are empty both at time σ and at time τ since space(Pσ) < s and space(Pτ) < s. By
Lemma 6.7, these pyramids, which we denote �(1), . . . ,�(2s+4), are completely pebbled
during [σ, τ]. Moreover, we can conclude that for every �(j), j = 1, . . . , 2s + 4, there is
an interval [σ j, τ j] ⊆ [σ, τ] such that t∗ ∈ (σ j, τ j) and �(j) is empty at times σ j and τ j but
contains pebbles throughout the interval (σ j, τ j) during which it is completely pebbled.

For each �(j) there must exist some time t∗j ∈ (σ j, τ j) when there are at least r + 1 =
BW-Peb∅(

�(j)
)

pebbles. Fix such a time t∗j for every pyramid �(j) and assume that
all t∗j , j = 1, . . . , 2s + 4, are sorted in increasing order. We have two possible cases:

(1) At least half of all t∗j occur before (or at) time t∗, that is, they satisfy t∗j ≤ t∗. If so,
look at the largest t∗j ≤ t∗. At this time there are at least r+1 pebbles on �(j) and at
least 2s+4

2 − 1 = s+ 1 pebbles on other pyramids, which means that space
(
Pt∗j

) ≥ (r +
2)+s. In other words, P exceeds the space restrictions in Lemma 2.7. Contradiction.

(2) At least half of all t∗j occur after time t∗, that is, they satisfy t∗j > t∗. If we consider
the smallest t∗j larger than t∗ we can again conclude that space

(
Pt∗j

) ≥ (r+1)+(s+1),
which is again a contradiction.

Hence, if P is a pebbling that complies with the restrictions in Lemma 2.7, it can
never be the case that 4s + 4 pyramids �(j) in �(c, r) contain pebbles simultaneously.

PROOF OF LEMMA 6.9. Suppose that at some time t∗ ∈ (σ, τ) at least 4s + 4 sections
contain pebbles. At least 2s + 4 of these sections are empty at times σ and τ . Let us
denote these sections R1, . . . , R2s+4. Appealing to Lemma 6.6, we conclude that there

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:40 J. Nordström

are intervals [σ j, τ j] ⊆ [σ, τ] for j = 1, . . . , 2s + 4, such that t∗ ∈ (σ j, τ j) and Rj is empty
at times σ j and τ j but contains pebbles throughout the interval (σ j, τ j) during which it
is completely pebbled.

By Lemma 6.8, we know that less than 4s + 4 pyramids contain pebbles at time σ j
and similarly at time τ j. Since all c pyramids in �(c, r) must have their sinks pebbled
during (σ j, τ j) but it holds that 2 · (4s + 4) < c by the assumptions in Lemma 2.7, we
conclude from Lemma 6.7 that for every section Rj we can find some pyramid �(j) that
is completely pebbled during the interval (σ j, τ j). This, in turn, implies that there is
some time t∗j ∈ (σ j, τ j) when the pyramid �(j) contains at least BW-Peb∅(

�(j)
)

= r + 1
pebbles. (We note that many t∗j can be equal and even refer to the same pyramid, but
this is not a problem.)

As in the proof of Lemma 6.8, we now sort the t∗j , j = 1, . . . , 2s+4, in increasing order
and consider the two possible cases. If at least half of all t∗j satisfy t∗j ≤ t∗, we look at
the largest t∗j ≤ t∗. At this time there are at least r + 1 pebbles on �(j) and at least
2s+4

2 = s+2 pebbles on different sections, which means that space
(
Pt∗j

) ≥ r+s+3 exceeds
the space restrictions. If, on the other hand, at least half of all t∗j satisfy t∗j > t∗, then
for the smallest t∗j larger than t∗ we can again conclude that space

(
Pt∗j

) ≥ r+s+3, which
is a contradiction. The lemma follows.

As we discussed at the start of this section, Theorem 1.9 now follows by applying
Observation 3.9 on the single-sink version of �(c, r).

As a final note, we remark that not only do our proofs get much more involved
when going from the black-only pebbling trade-off in Carlson and Savage [1982] to our
black-white pebbling trade-off, but the added complications also lead to our bound for
black-white pebbling being slightly worse than the one in Carlson and Savage [1982]
for black pebbling. More specifically, Carlson and Savage are able to prove their results
for DAGs having only �(r) sections per spine, whereas we need �(cr) sections in �(c, r).
This blows up the number of vertices, which in turn weakens the trade-offs measured
in terms of graph size. It would be interesting to find out whether our proof could in
fact be made to work for graphs with only O(r) sections per spine. If so, this would im-
mediately improve the trade-offs for the graphs in Theorems 1.10, 6.4, and 6.5, as well
as the resolution trade-offs derived from these graphs in Ben-Sasson and Nordström
[2011].

7. CONCLUDING REMARKS

It is known that the black-white pebbling price is always a lower bound on the resolu-
tion space of refuting pebbling contradictions PebG[f] with respect to the “right” func-
tions f, as proven in Ben-Sasson and Nordström [2008]. Also, for all graphs studied
in this context so far there have been shown to exist refutations of the corresponding
pebbling contradictions in space upper-bounded by the black-white pebbling price—
trivially for graphs where the black and black-white pebbling prices coincide, and more
interestingly for the graphs in the current article where the black-white pebbling price
is asymptotically smaller than the black pebbling price. This naturally raises the ques-
tion whether it holds in general that the refutation space of pebbling contradictions is
asymptotically equal to the black-white pebbling price of the underlying graphs.

Open Question 1. Is in true for any DAG G with bounded vertex indegree and any
(fixed) Boolean function f that the pebbling contradiction PebG[f] can be refuted in
total space O(BW-Peb(G))?

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:41

More specifically, one could ask—as a natural first line of attack if one wants to
investigate whether the answer to the above question could be yes—if it holds that
bounded labeled pebblings are in fact as powerful as general black-white pebblings. In
a sense, this is asking whether only a very limited form of nondeterminism is sufficient
to realize the full potential of black-white pebbling.

Open Question 2. Does it hold that any complete black-white pebbling P of a single-
sink DAG G with bounded vertex indegree can be simulated by a (O(space(P)), O(1))-
bounded pebbling L?

Note that a positive answer to this second question would immediately imply a
positive answer to the first question as well by Lemma 2.5.

We have no strong intuition either way regarding Open Question 1, but as to Open
Question 2 it would perhaps be somewhat surprising if bounded labeled pebblings
turned out to be as strong as general black-white pebblings. Interestingly, although
the optimal black-white pebblings of the graphs in Lemma 1.7 can be simulated by
bounded pebblings, the same approach does not work for the original graphs separat-
ing black-white from black-only pebbling in Wilber [1988]. Indeed, these latter graphs
might be a candidate graph family for answering Open Question 2 in the negative.
negative, that is, showing that standard black-white pebblings can be asymptotically
stronger than bounded labeled pebblings.

Finally, we are intrigued by the question of whether the properties of the formulas
PebG[f] shown to hold by Ben-Sasson and Nordström [2008, 2011] for “the right kind”
of functions f in fact extend to the simpler formulas PebG[∨] defined in terms of non-
exclusive or.

Open Question 3. Is it true for any DAG G that any resolution refutation π of
PebG[∨] can be translated into a black-white pebbling of G with time and space upper-
bounded asymptotically by the length and space of π?

Earlier results [Nordström 2009; Nordström and Håstad 2008b] can be interpreted
as indicating that this should be the case, but the results there only apply to limited
classes of graphs and only capture space lower bounds, not time-space trade-offs. And
Ben-Sasson and Nordström [2008, 2011] do not shed any light on this question, as
the techniques used there inherently cannot work for formulas defined in terms of
nonexclusive or.

If the answer to Open Question 3 is yes, which we would cautiously expect it to be,
then this could be useful for settling the complexity of decision problems for resolution
proof space, that is, the problem given a CNF formula F and a space bound s to deter-
mine whether F has a resolution refutation in space at most s. Reducing from pebbling
space by way of formulas PebG[∨] would avoid the blow-up of the gap between upper
and lower bounds on pebbling space that cause problems when using, for instance,
exclusive or.

ACKNOWLEDGMENTS

I would like to thank David Carlson, Nicholas Pippenger, and John Savage for helpful correspondence re-
garding their papers on pebbling, and Eli Ben-Sasson and Johan Håstad for stimulating discussions about
pebbling and proof complexity. I am also most grateful to the CCC’10 and TOCL anonymous referees for a
wealth of useful suggestions and comments.

REFERENCES
ALEKHNOVICH, M., BEN-SASSON, E., RAZBOROV, A. A., AND WIGDERSON, A. 2002. Space complexity in

propositional calculus. SIAM J. Comput. 31, 4, 1184–1211.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

16:42 J. Nordström

ALEKHNOVICH, M., JOHANNSEN, J., PITASSI, T., AND URQUHART, A. 2007. An exponential separation
between regular and general resolution. Theory Comput. 3, 5, 81–102.

ATSERIAS, A. 2004. On sufficient conditions for unsatisfiability of random formulas. J. ACM 51, 2, 281–311.
ATSERIAS, A. AND DALMAU, V. 2008. A combinatorial characterization of resolution width. J. Comput. Syst.

Sci. 74, 3, 323–334.
ATSERIAS, A., KOLAITIS, P. G., AND VARDI, M. Y. 2004. Constraint propagation as a proof system. In

Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming
(CP’04). Lecture Notes in Computer Science Series, vol. 3258, Springer, 77–91.

BEAME, P., IMPAGLIAZZO, R., PITASSI, T., AND SEGERLIND, N. 2010. Formula caching in DPLL. ACM
Trans. Comput. Theory 1, 3:9.

BEN-SASSON, E. 2009. Size space tradeoffs for resolution. SIAM J. Comput. 38, 6, 2511–2525.
BEN-SASSON, E. AND GALESI, N. 2003. Space complexity of random formulae in resolution. Rand. Struct.

Algor. 23, 1, 92–109.
BEN-SASSON, E. AND NORDSTRÖM, J. 2008. Short proofs may be spacious: An optimal separation of space

and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’08). 709–718.

BEN-SASSON, E. AND NORDSTRÖM, J. 2011. Understanding space in proof complexity: Separations and
trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations in Computer Science
(ICS’11). 401–416. http://eccc.hpi-web.de/report/2010/125/.

BEN-SASSON, E. AND WIGDERSON, A. 2001. Short proofs are narrow—resolution made simple. J. ACM 48,
2, 149–169.

BEN-SASSON, E., IMPAGLIAZZO, R., AND WIGDERSON, A. 2004. Near optimal separation of treelike and
general resolution. Combinatorica 24, 4, 585–603.

BONET, M. L., ESTEBAN, J. L., GALESI, N., AND JOHANNSEN, J. 2000. On the relative complexity of
resolution refinements and cutting planes proof systems. SIAM J. Comput. 30, 5, 1462–1484.

CARLSON, D. A. AND SAVAGE, J. E. 1980. Graph pebbling with many free pebbles can be difficult. In
Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC’80). 326–332.

CARLSON, D. A. AND SAVAGE, J. E. 1982. Extreme time-space tradeoffs for graphs with small space
requirements. Inf. Process. Lett. 14, 5, 223–227.

CHANDRA, A. K. 1973. Efficient compilation of linear recursive programs. In Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (SWAT’73). 16–25.

COOK, S. A. 1974. An observation on time-storage trade off. J. Comput. Syst. Sci. 9, 308–316.
COOK, S. A. AND SETHI, R. 1976. Storage requirements for deterministic polynomial time recognizable

languages. J. Comput. Syst. Sci. 13, 1, 25–37.
ESTEBAN, J. L. AND TORÁN, J. 2001. Space bounds for resolution. Inf. Comput. 171, 1, 84–97.
ESTEBAN, J. L. AND TORÁN, J. 2003. A combinatorial characterization of treelike resolution space. Inf.

Process. Lett. 87, 6, 295–300.
ESTEBAN, J. L., GALESI, N., AND MESSNER, J. 2004. On the complexity of resolution with bounded con-

junctions. Theor. Comput. Sci. 321, 2–3, 347–370.
GALESI, N. AND THAPEN, N. 2005. Resolution and pebbling games. In Proceedings of the 8th International

Conference on Theory and Applications of Satisfiability Testing (SAT’05). Lecture Notes in Computer
Science Series, vol. 3569, Springer, 76–90.

GILBERT, J. R. AND TARJAN, R. E. 1978. Variations of a pebble game on graphs. Tech. rep. STANCS-78-661,
Stanford University. http://infolab.stanford.edu/TR/CS-TR-78-661.html.

GILBERT, J. R., LENGAUER, T., AND TARJAN, R. E. 1980. The pebbling problem is complete in polynomial
space. SIAM J. Comput. 9, 3, 513–524.

HERTEL, A. AND URQUHART, A. 2007. Game characterizations and the PSPACE-completeness of tree res-
olution space. In Proceedings of the 21st International Workshop on Computer Science Logic (CSL’07).
Lecture Notes in Computer Science Series, vol. 4646, Springer, 527–541.

HOPCROFT, J., PAUL, W., AND VALIANT, L. 1977. On time versus space. J. ACM 24, 2, 332–337.
KALYANASUNDARAM, B. AND SCHNITGER, G. 1991. On the power of white pebbles. Combinatorica 11, 2,

157–171.
KLAWE, M. M. 1985. A tight bound for black and white pebbles on the pyramid. J. ACM 32, 1, 218–228.
KOZEN, D. 1977. Lower bounds for natural proof systems. In Proceedings of the 18th Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS’77). 254–266.

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

On the Relative Strength of Pebbling and Resolution 16:43

LENGAUER, T. AND TARJAN, R. E. 1980. The space complexity of pebble games on trees. Inf. Process. Lett.
10, 4/5, 184–188.

LENGAUER, T. AND TARJAN, R. E. 1982. Asymptotically tight bounds on time-space trade-offs in a pebble
game. J. ACM 29, 4, 1087–1130.

MEYER AUF DER HEIDE, F. 1981. A comparison of two variations of a pebble game on graphs. Theor. Comput.
Sci. 13, 3, 315–322.

NORDSTRÖM, J. 2009. Narrow proofs may be spacious: Separating space and width in resolution. SIAM J.
Comput. 39, 1, 59–121.

NORDSTRÖM, J. 2011. New wine into old wineskins: A survey of some pebbling classics with supplemental
results. In Foundations and Trends in Theoretical Computer Science. To appear.
http://www.csc.kth.se/ jakobn/research/.

NORDSTRÖM, J. AND HÅSTAD, J. 2008a. Towards an optimal separation of space and length in resolution.
Tech. rep. TR08-026, Electronic Colloquium on Computational Complexity (ECCC).

NORDSTRÖM, J. AND HÅSTAD, J. 2008b. Towards an optimal separation of space and length in resolu-
tion (Extended abstract). In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC’08). 701–710.

PATERSON, M. S. AND HEWITT, C. E. 1970. Comparative schematology. In Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation. 119–127.

PIPPENGER, N. 1980. Pebbling. Tech. rep. RC8258, IBM Watson Research Center.
RAZ, R. AND MCKENZIE, P. 1999. Separation of the monotone NC hierarchy. Combinatorica 19, 3, 403–435.
SABHARWAL, A., BEAME, P., AND KAUTZ, H. 2004. Using problem structure for efficient clause learn-

ing. In Proceedings of the International Conference on Theory and Applications of Satisfiability Test-
ing (SAT’03), Selected Revised Papers. Lecture Notes in Computer Science Series, vol. 2919, Springer,
242–256.

SAVAGE, J. E. AND SWAMY, S. 1979. Space-time tradeoffs for oblivious interger multiplications. In Pro-
ceedings of the 6th International Colloquium on Automata, Languages and Programming (ICALP’79).
498–504.

SETHI, R. 1975. Complete register allocation problems. SIAM J. Comput. 4, 3, 226–248.
SWAMY, S. AND SAVAGE, J. E. 1977. Space-time trade-offs on the FFT-algorithm. Tech. rep, CS-31, Brown

University.
SWAMY, S. AND SAVAGE, J. E. 1983. Space-time tradeoffs for linear recursion. Math. Syst. Theory 16, 1,

9–27.
TOMPA, M. 1978. Time-space tradeoffs for computing functions, using connectivity properties of their cir-

cuits. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78). 196–204.
WILBER, R. E. 1988. White pebbles help. J. Comput. Syst. Sci. 36, 2, 108–124.

Received April 2010; revised February 2011; accepted April 2011

ACM Transactions on Computational Logic, Vol. 13, No. 2, Article 16, Publication date: April 2012.

