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Abstract. Pebble games were extensively studied in the 1970s and 1980s in a number of
different contexts. The last decade has seen a revival of interest in pebble games coming
from the field of proof complexity. Pebbling has proven to be a useful tool for study-
ing resolution-based proof systems when comparing the strength of different subsystems,
showing bounds on proof space, and establishing size-space trade-offs. This is a survey of
research in proof complexity drawing on results and tools from pebbling, with a focus on
proof space lower bounds and trade-offs between proof size and proof space.

1. Introduction

Ever since the fundamental NP-completeness result of Stephen Cook [Coo71], the problem
of deciding whether a given propositional logic formula in conjunctive normal form (CNF)
is satisfiable or not has been on center stage in Theoretical Computer Science. In more
recent years, satisfiability has gone from a problem of mainly theoretical interest to a
practical approach for solving applied problems. Although all known Boolean satisfiability
solvers (SAT solvers) have exponential running time in the worst case, enormous progress
in performance has led to satisfiability algorithms becoming a standard tool for solving a
large number of real-world problems such as hardware and software verification, experiment
design, circuit diagnosis, and scheduling.

Perhaps a somewhat surprising aspect of this development is that the most successful
SAT solvers to date are still variants of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [DLL62, DP60] augmented with clause learning [BS97, MS99], which can be
seen to search for proofs in the resolution proof system. For instance, the great majority
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of the best algorithms in recent rounds of the international SAT competition [SAT] fit this
description.

DPLL procedures perform a recursive backtrack search in the space of partial truth
value assignments. The idea behind clause learning is that at each failure (backtrack) point
in the search tree, the system derives a reason for the inconsistency in the form of a new
clause and then adds this clause to the original CNF formula (“learning” the clause). This
can save much work later on in the proof search, when some other partial truth value
assignment fails for similar reasons.

The main bottleneck for this approach, other than the obvious one that the running
time is known to be exponential in the worst case, is the amount of space used by the
algorithms. Since there is only a fixed amount of memory, all clauses cannot be stored.
The difficulty lies in obtaining a highly selective and efficient clause caching scheme that
nevertheless keeps the clauses needed. Thus, understanding time and memory requirements
for clause learning algorithms, and how these requirements are related to each other, is a
question of great practical importance.

Some good papers discussing clause learning (and SAT solving in general) with exam-
ples of applications are [BKS04, KS07, Mar08]. A more exhaustive general reference is the
recently published Handbook of Satisfiability [BHvMW09]. The first chapter of this hand-
book provides an excellent historical overview of the satisfiability problem, with pages 19–25
focusing in particular on DPLL and resolution.

The study of proof complexity originated with the seminal paper of Cook and Reck-
how [CR79]. In its most general form, a proof system for a language L is a binary
predicate P (x, π), which is computable (deterministically) in time polynomial in the sizes
|x| and |π| of the input and has the property that for all x ∈ L there is a string π (a proof )
for which P (x, π) evaluates to true, whereas for any x 6∈ L it holds for all strings π that
P (x, π) evaluates to false. A proof system is said to be polynomially bounded if for every
x ∈ L there exists a proof πx for x that has size at most polynomial in |x|. A propositional
proof system is a proof system for the language of tautologies in propositional logic.

From a theoretical point of view, one important motivation for proof complexity is the
intimate connection with the fundamental question of P versus NP. Since NP is exactly the
set of languages with polynomially bounded proof systems, and since tautology can be
seen to be the dual problem of satisfiability, we have the famous theorem of [CR79] that
NP = co-NP if and only if there exists a polynomially bounded propositional proof system.
Thus, if it could be shown that there are no polynomially bounded proof systems for propo-
sitional tautologies, P 6= NP would follow as a corollary since P is closed under complement.
One way of approaching this distant goal is to study stronger and stronger proof systems
and try to prove superpolynomial lower bounds on proof size. However, although great
progress has been made in the last couple of decades for a variety of propositional proof
systems, it seems that we still do not fully understand the reasoning power of even quite
simple ones.

Another important motivation for proof complexity is that, as was mentioned above,
designing efficient algorithms for proving tautologies (or, equivalently, testing satisfiability)
is a very important problem not only in the theory of computation but also in applied
research and industry. All automated theorem provers, regardless of whether they produce
a written proof or not, explicitly or implicitly define a system in which proofs are searched
for and rules which determine what proofs in this system look like. Proof complexity
analyzes what it takes to simply write down and verify the proofs that such an automated
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theorem prover might find, ignoring the computational effort needed to actually find them.
Thus, a lower bound for a proof system tells us that any algorithm, even an optimal (non-
deterministic) one making all the right choices, must necessarily use at least the amount of
a certain resource specified by this bound. In the other direction, theoretical upper bounds
on some proof complexity measure give us hope of finding good proof search algorithms
with respect to this measure, provided that we can design algorithms that search for proofs
in the system in an efficient manner. For DPLL procedures with clause learning, also known
as conflict-driven clause learning (CDCL) solvers, the time and memory resources used are
measured by the length and space of proofs in the resolution proof system.

The field of proof complexity also has rich connections to cryptography, artificial in-
telligence and mathematical logic. Some good sources providing more details are [Bea04,
BP98, CK02, Seg07, Urq95].

1.1. Resolution-Based Proof Systems. Any formula in propositional logic can be con-
verted to a CNF formula that is only linearly larger and is unsatisfiable if and only if the
original formula is a tautology. Therefore, any sound and complete system that certifies the
unsatisfiability of CNF formulas can be considered as a general propositional proof system.

Arguably the single most studied proof system in propositional proof complexity, reso-
lution, is such a system that produces proofs of the unsatisfiability of CNF formulas. The
resolution proof system appeared in [Bla37] and began to be investigated in connection with
automated theorem proving in the 1960s [DLL62, DP60, Rob65]. Because of its simplicity—
there is only one derivation rule—and because all lines in a proof are disjunctive clauses,
this proof system readily lends itself to proof search algorithms.

Being so simple and fundamental, resolution was also a natural target to attack when
developing methods for proving lower bounds in proof complexity. In this context, it is
most straightforward to prove bounds on the length of refutations, i.e., the number of
clauses, rather than on the size of refutations, i.e., the total number of symbols. The length
and size measures are easily seen to be polynomially related. The first superpolynomial
lower bound on resolution was presented by Tseitin in the paper [Tse68], which is the
published version of a talk given in 1966, for a restricted form of the proof system called
regular resolution. It took almost an additional 20 years before Haken [Hak85] was able to
establish superpolynomial bounds without any restrictions, showing that CNF encodings
of the pigeonhole principle are intractable for general resolution. This weakly exponential
bound of Haken has later been followed by many other strong results, among others truly
exponential1 lower bounds on resolution refutation length for different formula families in,
for instance, [BKPS02, BW01, CS88, Urq87].

A second complexity measure for resolution, first made explicit by Galil [Gal77], is the
width, measured as the maximal size of a clause in the refutation. Clearly, the maximal
width needed to refute any unsatisfiable CNF formula is at most the number of variables
in it, which is upper-bounded by the formula size. Hence, while refutation length can
be exponential in the worst case, the width ranges between constant and linear measured
in the formula size. Inspired by previous work [BP96, CEI96, IPS99], Ben-Sasson and
Wigderson [BW01] identified width as a crucial resource of resolution proofs by showing
that the minimal width of any resolution refutation of a k-CNF formula F (i.e., a formula

1In this paper, an exponential lower bound is any bound exp
(

Ω
(

nδ
))

for some δ > 0, where n is the size

of the formula in question. By a truly expontential lower bound we mean a bound exp(Ω(n)).
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where all clauses have size at most some constant k) is bounded from above by the minimal
refutation length by

minimal width ≤ O
(√

(size of formula) · log(minimal length)
)
. (1.1)

Since it is also easy to see that resolution refutations of polynomial-size formulas in small
width must necessarily be short—quite simply for the reason that (2 ·#variables)w is an up-
per bound on the total number of distinct clauses of width at most w—the result in [BW01]
can be interpreted as saying roughly that there exists a short refutation of the k-CNF
formula F if and only if there exists a (reasonably) narrow refutation of F . This interpre-
tation also gives rise to a natural proof search heuristic: to find a short refutation, search
for refutations in small width. It was shown in [BIW04] that there are formula families
for which this heuristic exponentially outperforms any DPLL procedure (without clause
learning) regardless of branching function.

The idea to study space in the context of proof complexity appears to have been raised
for the first time2 by Armin Haken during a workshop in Toronto in 1998, and the formal
study of space in resolution was initiated by Esteban and Torán in [ET01] and was later
extended to a more general setting by Alekhnovich et al. in [ABRW02]. Intuitively, we
can view a resolution refutation of a CNF formula F as a sequence of derivation steps on
a blackboard, where in each step we may write a clause from F on the blackboard, erase
a clause from the blackboard, or derive some new clause implied by the clauses currently
written on the blackboard, and where the refutation ends when we reach the contradictory
empty clause. The space of a refutation is then the maximal number of clauses one needs
to keep on the blackboard simultaneously at any time during the refutation, and the space
of refuting F is defined as the minimal space of any resolution refutation of F . A number
of upper and lower bounds for refutation space in resolution and other proof systems were
subsequently presented in, for example, [ABRW02, BG03, EGM04, ET03], and to distin-
guish the space measure of [ET01] from other measures introduced in these later papers we
will sometimes refer to it as clause space below for extra clarity.

Just as is the case for width, the minimum clause space of refuting a formula can
be upper-bounded by the formula size. Somewhat unexpectedly, it was discovered in a
sequence of works that lower bounds on resolution refutation space for different formula
families turned out to match exactly previously known lower bounds on refutation width.
In an elegant paper [AD08], Atserias and Dalmau showed that this was not a coincidence,
but that the inequality

minimal width ≤ minimal clause space + small constant (1.2)

holds for refutations of any k-CNF formula F , where the constant term depends only on k.
Since clause space is an upper bound on width by (1.2), and since width upper-bounds length
by the counting argument discussed above, it follows that upper bounds on clause space
imply upper bounds on length. Esteban and Torán [ET01] showed the converse that length
upper bounds imply clause space upper bounds for the restricted case of tree-like resolution
(where every clause can only be used once in the derivation and has to be rederived again
from scratch if it is needed again at some later stage in the proof). Thus, clause space

2In fact, going through the literature one can find that somewhat similar concerns have been addressed
in [Koz77] and [KBL99, Section 4.3.13]. However, the space measure defined there is too strict, since it
turns out that for all proof systems examined in the current paper, a CNF formula F with m clauses will
always have space complexity in the interval [m, 2m] (provided the technical condition that F is minimally
unsatisfiable as defined below), and this does not make for a very interesting measure.
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is an interesting complexity measure with nontrivial relations to proof length and width.
We note that apart from being of theoretical interest, clause space has also been proposed
in [ABLM08] as a relevant measure of the hardness in practice of CNF formulas for SAT
solvers, and such possible connections have been further investigated in [JMNŽ12].

The resolution proof system was generalized by Kraj́ıček [Kra01], who introduced the
the family of k-DNF resolution proof systems as an intermediate step between resolution
and depth-2 Frege systems. Roughly speaking, for positive integers k the kth member of
this family, which we denote R(k), is allowed to reason in terms of formulas in disjunctive
normal form (DNF formulas) with the added restriction that any conjunction in any formula
is over at most k literals. For k = 1, the lines in the proof are hence disjunctions of literals,
and the system R(1) = R is standard resolution. At the other extreme, R(∞) is equivalent
to depth-2 Frege.

The original motivation to study the family of k-DNF resolution proof systems, as
stated in [Kra01], was to better understand the complexity of counting in weak models
of bounded arithmetic, and it was later observed that these systems are also related to
SAT solvers that reason using multi-valued logic (see [JN02] for a discussion of this point).
A number of subsequent works have shown superpolynomial lower bounds on the length
of R(k)-refutations, most notably for (various formulations of) the pigeonhole principle
and for random CNF formulas [AB04, ABE02, Ale11, JN02, Raz03, SBI04, Seg05]. Of
particular interest in the current context are the results of Segerlind et al. [SBI04] and
of Segerlind [Seg05] showing that the family of R(k)-systems form a strict hierarchy with
respect to proof length. More precisely, they prove that for every k there exists a family
of formulas {Fn}∞n=1 of arbitrarily large size n such that Fn has an R(k + 1)-refutation of
polynomial length but any R(k)-refutation of Fn requires exponential length.

With regard to space, Esteban et al. [EGM04] established essentially optimal linear
lower bounds in R(k) on formula space, extending the clause space measure for resolution
in the natural way by counting the number of k-DNF formulas. They also proved that the
family of tree-like R(k) systems form a strict hierarchy with respect to formula space in the
sense that there are arbitrarily large formulas Fn of size n that can be refuted in tree-like
R(k + 1) in constant space but require space Ω(n/ log2 n) to be refuted in tree-like R(k). It
should be pointed out, however, that as observed in [Kra01, EGM04] the family of tree-like
R(k) systems for all k > 0 are strictly weaker than standard resolution. As was mentioned
above, the family of general, unrestricted R(k) systems are strictly stronger than resolution,
so the results in [EGM04] left open the question of whether there is a strict formula space
hierarchy for (non-tree-like) R(k) or not.

1.2. Three Questions Regarding Space. Although resolution is simple and by now very
well-studied, the research surveyed above left open a few fundamental questions about this
proof system. In what follows, our main focus will be on the three questions considered
below.3

(1) What is the relation between clause space and width? The inequality (1.2) says that
clause space ' width, but it leaves open whether this relationship is tight or not. Do
the clause space and width measures always coincide, or is there a formula family that
separates the two measures asymptotically?

3In the interest of full disclosure, it should perhaps be noted that these questions also happened to be
the focus of the author’s PhD thesis [Nor08].
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(2) What is the relation between clause space and length? Is there some nontrivial correla-
tion between the two in the sense that formulas refutable in short length must also be
refutable in small space, or can “easy” formulas with respect to length be “arbitrarily
complex” with respect to space? (We will make these notions more precise shortly.)

(3) Can the length and space of refutations be optimized simultaneously, or are there trade-
offs in the sense that any refutation that optimizes one of the two measures must suffer
a blow-up in the other?

To put the questions about length versus space in perspective, consider what has been known
for length versus width. It follows from the inequality (1.1) that if the width of refuting a
k-CNF formula family {Fn}∞n=1 of size n grows asymptotically faster than

√
n log n, then

the length of refuting Fn must be superpolynomial. This is known to be almost tight,
since Bonet and Galesi [BG01] showed that there is a family of k-CNF formulas of size n
with minimal refutation width growing like 3

√
n, but which is nevertheless refutable in

length linear in n. Hence, formulas refutable in polynomial length can have somewhat wide
minimum-width refutations, but not arbitrarily wide ones.

Turning to the relation between clause space and length, we note that the inequal-
ity (1.2) tells us that any correlation between length and clause space cannot be tighter
than the correlation between length and width. In particular, we get from the previous
paragraph that k-CNF formulas refutable in polynomial length may have at least “some-
what spacious” minimum-space refutations. At the other end of the spectrum, given any
resolution refutation of F in length L it is a straightforward consequence of [ET01, HPV77]
that the space needed to refute F is at most on the order of L/ log L. This gives a trivial
upper bound on any possible separation of the two measures. Thus, what the question
above is asking is whether it can be that length and space are “completely unrelated”
in the sense that there exist k-CNF formulas with refutation length L that need maxi-
mum possible space Ω

(
L/ logL

)
, or whether there is a nontrivial upper bound on clause

space in terms of length analogous to the inequality in (1.1), perhaps even stating that

minimal clause space ≤ O
(√

(size of formula) · log(minimal length)
)
or similar. Intrigu-

ingly, as we discussed above it was shown in [ET01] that for the restricted case of so-called
tree-like resolution there is in fact a tight correspondence between length and clause space,
exactly as for length versus width.

1.3. Pebble Games to the Rescue. Although the above questions have been around for
a while, as witnessed by discussions in, for instance, the papers [ABRW02, Ben09, BG03,
EGM04, ET03, Seg07, Tor04], there appears to have been no consensus on what the right
answers should be. However, what most of these papers did agree on was that a plausible
formula family for answering these questions were so-called pebbling contradictions defined
in terms of pebble games over directed acyclic graphs. Pebbling contradictions had already
appeared in various disguises in some of the papers mentioned in Section 1.1, and it had been
noted that non-constant lower bounds on the clause space of refuting pebbling contradictions
would separate space and width and possibly also clarify the relation between space and
length if the bounds were good enough. On the other hand, a constant upper bound on the
refutation space would improve the trade-off results for different proof complexity measures
for resolution in [Ben09].

And indeed, pebbling turned out to be just the right tool to understand the interplay
of length and space in resolution. The main purpose of this survey is to give an overview of
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the works establishing connections between pebbling and proof complexity with respect to
time-space trade-offs. We will need to give some preliminaries in order to state the formal
results, but before we do so let us conclude this introduction by giving a brief description
of the relevant results.

The first progress was reported in 2006 (journal version in [Nor09a]), where pebbling
formulas of a very particular form, namely pebbling contradictions defined over complete
binary trees, were studied. This was sufficient to establish a logarithmic separation of clause
space and width, thus answering question 1 above. This separation was improved from log-
arithmic to polynomial in 2008 (journal version in [NH13]), where a broader class of graphs
were analyzed, but where unfortunately a rather involved argument was required for this
analysis to go through. In [BN08], a somewhat different approach was taken by modify-
ing the pebbling formulas slightly. This made the analysis both much simpler and much
stronger, and led to a resolution of question 2 by establishing an optimal separation between
clause space and length, i.e., showing that there are formulas with refutation length L that
require clause space Ω

(
L/ logL

)
. In a further improvement, the paper [BN11] used similar

ideas to translate pebbling time-space trade-offs to trade-offs between length and space in
resolution, thus answering question 3. In the same paper these results were also extended to
the k-DNF resolution proof systems, which also yielded as a corollary that the R(k)-systems
indeed form a strict hierarchy with respect to space.

1.4. Outline of This Survey. The rest of this survey is organized as follows. Section 2
presents the necessary formal preliminaries, and Section 3 gives a high-level overview of
pebbling in proof complexity. In Section 4, we describe in more detail how time-space
separations and trade-offs have been proven with the help of pebble games, and in Section 5
we examine how this approach can be cast as a simple and generic technique of proving
lower bounds via variable substitutions. Section 6 discusses a number of open problems.
Finally, some concluding remarks are given in Section 7.

2. Preliminaries

2.1. Variables, Literals, Terms, Clauses, Formulas and Truth Value Assignments.

For x a Boolean variable, a literal over x is either the variable x itself, called a positive literal
over x, or its negation, denoted ¬x or x and called a negative literal over x. Sometimes
it will also be convenient to write x1 for unnegated variables and x0 for negated ones. We
define ¬¬x to be x. A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals, and a term
T = a1 ∧ · · · ∧ ak is a conjunction of literals. Below we will think of clauses and terms as
sets, so that the ordering of the literals is inconsequential and that, in particular, no literals
are repeated. We will also (without loss of generality) assume that all clauses and terms
are nontrivial in the sense that they do not contain both a literal and its complement. A
clause (term) containing at most k literals is called a k-clause (k-term). A CNF formula
F = C1 ∧ · · · ∧Cm is a conjunction of clauses, and a DNF formula is a disjunction of terms.
We will think of CNF and DNF formulas as sets of clauses and terms, respectively. A
k-CNF formula is a CNF formula consisting of k-clauses, and a k-DNF formula consists of
k-terms.

The variable set of a clause C, denoted Vars(C), is the set of Boolean variables over
which there are literals in C, and we write Lit(C) to denote the set of literals in C. The
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variable and literal sets of a term are similarly defined and these definitions are extended
to CNF and DNF formulas by taking unions.4 If V is a set of Boolean variables and
Vars(C) ⊆ V , we say C is a clause over V and similarly define terms, CNF formulas, and
DNF formulas over V .

In what follows, we will usually write a, b, c to denote literals, A,B,C,D to denote
clauses, T to denote terms, F,G to denote CNF formulas, and C,D to denote sets of clauses,
k-DNF formulas or sometimes other Boolean functions. We will assume the existence of
an arbitrary but fixed set of variables V = {x, y, z, . . .}. For a variable x ∈ V we define
Varsd(x) = {x1, . . . , xd}, and we will tacitly assume that V is such that the new set of
variables Varsd(V ) = {x1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . .} is disjoint from V . We will say
that the variables x1, . . . , xd, and any literals over these variables, all belong to the variable x.

We write α, β to denote truth value assignments, usually over Varsd(V ) but sometimes
over V . Partial truth value assignments, or restrictions, will often be denoted ρ. Truth
value assignments are functions to {0, 1}, where we identify 0 with false and 1 with true.
We have the usual semantics that a clause is true under α, or satisfied by α, if at least one
literal in it is true, and a term is true if all literals evaluate to true. We write ⊥ to denote the
empty clause without literals that is false under all truth value assignments. (The empty
clause is also denoted, for instance, λ, Λ, or {} in the literature.) A CNF formula is satisfied
if all clauses in it are satisfied, and for a DNF formula we require that some term should be
satisfied. In general, we will not distinguish between a formula and the Boolean function
computed by it.

If C is a set of Boolean functions we say that a restriction (or assignment) satisfies C
if and only if it satisfies every function in C. For D,C two sets of Boolean functions over a
set of variables V , we say that D implies C, denoted D � C, if and only if every assignment
α : V → {0, 1} that satisfies D also satisfies C. In particular, D � ⊥ if and only if D
is unsatisfiable or contradictory , i.e., if no assignment satisfies D. If a CNF formula F is
unsatisfiable but for any clause C ∈ F it holds that the clause set F \ {C} is satisfiable, we
say that F is minimally unsatisfiable.

2.2. Proof Systems. In this paper, we will focus on proof systems for refuting unsatisfiable
CNF formulas. (As was discussed in Section 1.1 this is essentially without loss of generality.)
In this context it should be noted that, perhaps somewhat confusingly, a refutation of a
formula F is often also referred to as a “proof of F” in the literature. We will try to be
consistent and talk only about “refutations of F ,” but will otherwise use the two terms
“proof” and “refutation” interchangeably.

We say that a proof system is sequential if a proof π in the system is a sequence of
lines π = {L1, . . . , Lτ} of some prescribed syntactic form depending on the proof system
in question, where each line is derived from previous lines by one of a finite set of allowed
inference rules. We say that a sequential proof system is implicational if in addition it
holds for each inferred line that it is semantically implied by previous lines in the proof.
We remark that a proof system such as, for instance, extended Frege does not satisfy this
property, since introducing a new extension variable as a shorthand for a formula declares

4Although the notation Lit(·) is slightly redundant for clauses and terms given that we consider them to
be sets of literals, we find that it increases clarity to have a uniform notation for literals appearing in clauses
or terms or formulas. Note that x ∈ F means that that the unit clause x appears in the CNF formula F ,
whereas x ∈ Lit(F ) denotes that the positive literal x appears in some clause in F and x ∈ Vars(F ) denotes
that the variable x appears in F (positively or negatively).
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an equivalence that is not the consequence of this formula. All proof systems studied in
this paper are implicational, however.

Following the exposition in [ET01], we view a proof as similar to a non-deterministic
Turing machine computation, with a special read-only input tape from which the clauses
of the formula F being refuted (the axioms) can be downloaded and a working memory
where all derivation steps are made. Then the length of a proof is essentially the time
of the computation and space measures memory consumption. The following definition
is a straightforward generalization to arbitrary sequential proof systems of the definition
in [ABRW02] for the resolution proof system. We note that proofs defined in this way have
been referred to as configuration-style proofs or space-oriented proofs in the literature.

Definition 2.1 (Refutation). For a sequential proof system P with lines of the form Li,
a P-configuration D, or, simply, a configuration, is a set of such lines. A sequence of
configurations {D0, . . . ,Dτ} is said to be a P-derivation from a CNF formula F if D = ∅
and for all t ∈ [τ ], the set Dt is obtained from Dt−1 by one of the following derivation steps:

Axiom Download: Dt = Dt−1 ∪ {LC}, where LC is the encoding of a clause C ∈ F in
the syntactic form prescribed by the proof system (an axiom clause) or an axiom of the
proof system.

Inference: Dt = Dt−1 ∪ {L} for some L inferred by one of the inference rules for P from
a set of assumptions L1, . . . , Ld ∈ Dt−1.

Erasure: Dt = Dt−1 \ {L} for some L ∈ Dt−1.

A P-refutation π : F ⊢⊥ of a CNF formula F is a derivation π = {D0, . . . ,Dτ} such that
D0 = ∅ and ⊥ ∈ Dτ , where ⊥ is the representation of contradiction (e.g. for resolution and
R(k)-systems the empty clause without literals).

If every line L in a derivation is used at most once before being erased (though it can
possibly be rederived later), we say that the derivation is tree-like. This corresponds to
changing the inference rule so that L1, . . . , Ld must all be erased after they have been used
to derive L.

To every refutation π we can associate a DAG Gπ, with the lines in π labelling the
vertices and with edges from the assumptions to the consequence for each application of an
inference rule. There might be several different derivations of a line L during the course
of the refutation π, but if so we can label each occurrence of L with a time-stamp when it
was derived and keep track of which copy of L is used where. Using this representation, a
refutation π can be seen to be tree-like if Gπ is a tree.

Definition 2.2 (Refutation size, length and space). Given a size measure S (L) for lines L
in P-derivations (which we usually think of as the number of symbols in L, but other
definitions can also be appropriate depending on the context), the size of a P-derivation π
is the sum of the sizes of all lines in a derivation, where lines that appear multiple times are
counted with repetitions (once for every vertex in Gπ). The length of a P-derivation π is the
number of axiom downloads and inference steps in it, i.e., the number of vertices in Gπ.

5

For a space measure SpP (D) defined for P-configurations, the space of a derivation π is
defined as the maximal space of a configuration in π.

5The reader who so prefers can instead define the length of a derivation π = {D0, . . . ,Dτ} as the number of
steps τ in it, since the difference is at most a factor of 2. We have chosen the definition above for consistency
with previous papers defining length as the number of lines in a listing of the derivation.
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If π is a refutation of a formula F in size S and space s, then we say that F can be
refuted in size S and space s simultaneously. Similarly, F can be refuted in length L and
space s simultaneously if there is a P-refutation P with L(π) = L and Sp(π) = s.

We define the P-refutation size of a formula F , denoted SP(F ⊢⊥), to be the minimum
size of any P-refutation of it. The P-refutation length LP (F ⊢⊥) and P-refutation space
SpP(F ⊢⊥) of F are analogously defined by taking the minimum with respect to length or
space, respectively, over all P-refutations of F .

When the proof system in question is clear from context, we will drop the subindex in
the proof complexity measures.

Let us now show how some proof systems that will be of interest to us can be defined
in the framework of Definition 2.1. We remark that although we will not discuss this in any
detail, all proof systems below are sound and implicationally complete, i.e., they can refute

a CNF formula F if and only if F is unsatisfiable. Below, the notation
G1 · · · Gm

H
means that if G1, . . . , Gm have been derived previously in the proof (and are currently in
memory), then we can infer H.

Definition 2.3 (k-DNF-resolution). The k-DNF-resolution proof systems are a family
of sequential proof systems R(k) parameterized by k ∈ N+. Lines in a k-DNF-resolution
refutation are k-DNF formulas and we have the following inference rules (where G,H denote
k-DNF formulas, T, T ′ denote k-terms, and a1, . . . , ak denote literals):

k-cut :
(a1 ∧ · · · ∧ ak′) ∨ G a1 ∨ · · · ∨ ak′ ∨ H

G ∨ H
, where k′ ≤ k.

∧-introduction : G ∨ T G ∨ T ′

G ∨ (T ∧ T ′)
, as long as |T ∪ T ′| ≤ k.

∧-elimination :
G ∨ T
G ∨ T ′ for any T ′ ⊆ T.

Weakening :
G

G ∨ H
for any k-DNF formula H.

For standard resolution, i.e., R(1), the k-cut rule simplifies to the resolution rule

B ∨ x C ∨ x
B ∨ C

(2.1)

for clauses B and C. We refer to (2.1) as resolution on the variable x and to B ∨ C as the
resolvent of B∨x and C∨x on x. Clearly, in resolution the ∧-introduction and ∧-elimination
rules do not apply. In fact, it can also be shown that the weakening rule never needs to
be used in resolution refutations, but it is convenient to allow it in order to simplify some
technical arguments in proofs.

For R(k)-systems, the length measure is as defined in Definition 2.2, and for space we
get the two measures formula space and total space depending on whether we consider the
number of k-DNF formulas in a configuration or all literals in it, counted with repetitions.
For standard resolution there are two more space-related measures that will be relevant,
namely width and variable space. For clarity, let us give an explicit definition of all space-
related measures for resolution that will be of interest.

Definition 2.4 (Width and space in resolution). The width W(C) of a clause C is the
number of literals in it, and the width of a CNF formula or clause configuration is the
size of a widest clause in it. The clause space (as the formula space measure is known in
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resolution) Sp(C) of a clause configuration C is |C|, i.e., the number of clauses in C, the
variable space6 VarSp(C) is |Vars(C)|, i.e., the number of distinct variables mentioned in C,
and the total space TotSp(C) is

∑
C∈C|C|, i.e., the total number of literals in C counted

with repetitions.
The width or space of a resolution proof π is the maximum that the corresponding

measures attains over any configuration C ∈ π, and taking the minimum over all refutations
of a formula F , we define W(F ⊢⊥) = minπ:F ⊢⊥{W(π)}, Sp(F ⊢⊥) = minπ:F ⊢⊥{Sp(π)},
VarSp(F ⊢⊥) = minπ:F ⊢⊥{VarSp(π)}, and TotSp (F ⊢⊥) = minπ:F ⊢⊥{TotSp(π)} as the
width, clause space, variable space and total space, respectively, of refuting F in resolution.

Restricting the refutations to tree-like resolution, we can define the measures LT (F ⊢⊥),
SpT (F ⊢⊥), VarSpT (F ⊢⊥), and TotSpT (F ⊢⊥) (note that width in general and tree-like
resolution are the same, so defining tree-like width separately does not make much sense).
However, in this paper we will almost exclusively focus on general, unrestricted versions of
resolution and other proof systems.

Remark 2.5. When studying and comparing the complexity measures for resolution in
Definition 2.4, as was noted in [ABRW02] it is preferable to prove the results for k-CNF
formulas, i.e., formulas where all clauses have size upper-bounded by some constant. This
is especially so since the width and space measures can “misbehave” rather artificially for
formula families of unbounded width (see [Nor09b, Section 5] for a discussion of this). Since
every CNF formula can be rewritten as an equivalent formula of bounded width—in fact,
as a 3-CNF formula, by using extension variables as described on page 53—it therefore
seems natural to insist that the formulas under study should have width bounded by some
constant.7

Let us also give examples of some other propositional proof systems that have been
studied in the literature, and that will be of some interest later in this survey. The first ex-
ample is the cutting planes proof system, or CP for short, which was introduced in [CCT87]
based on ideas in [Chv73, Gom63]. Here, clauses are translated to linear inequalities—for
instance, x ∨ y ∨ z gets translated to x + y + (1 − z) ≥ 1, i.e., x + y − z ≥ 0—and these
linear inequalities are then manipulated to derive a contradiction.

Definition 2.6 (Cutting planes (CP)). Lines in a cutting planes proof are linear inequalities
with integer coefficients. The derivation rules are as follows:

Variable axioms:
x ≥ 0

⁀and −x ≥ −1
for all variables x.

Addition:

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

6We remark that there is some terminological confusion in the literature here. The term “variable space”
has also been used in previous papers (including by the current author) to refer to what is here called “total
space.” The terminology adopted in this paper is due to Alex Hertel and Alasdair Urquhart (see [Her08]),
and we feel that although their naming convention is as of yet less well-established, it feels much more
natural than other alternatives.

7We note that there have also been proposals to deal with unbounded-width CNF formulas by defining
and studying other notions of width-restricted resolution, for instance, in [Kul99, Kul04]. While this very
conveniently eliminates the need to convert wide CNF formulas to 3-CNFs, it leads to other problems, and
on balance we find the established width measure in Definition 2.4 to be more natural and interesting.
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Multiplication:

∑
aixi ≥ A∑
caixi ≥ cA

for a positive integer c.

Division:

∑
caixi ≥ A∑

aixi ≥ ⌈A/c⌉
for a positive integer c.

A CP refutation ends when the inequality 0 ≥ 1 has been derived.

As shown in [CCT87], cutting planes is exponentially stronger than resolution with
respect to length, since a CP refutation can mimic any resolution refutation line by line
and furthermore CP can easily handle the pigeonhole principle which is intractable for
resolution. Exponential lower bounds on proof length for cutting planes were first proven
in [BPR95] for the restricted subsystem CP∗ where all coefficients in the linear inequalities
can be at most polynomial in the formula size, and were later extended to general CP
in [Pud97]. To the best of our knowledge, it is open whether CP is in fact strictly stronger
than CP∗ or not. We are not aware of any papers studying CP space other than the early
work by William Cook [Coo90], but this work uses the space concept in [Koz77] that is
not the right measure in this context, as was argued very briefly in Section 1. (It can be
noted, though, that the study of space in cutting planes was mentioned as an interesting
open problem in [ABRW02].)

The R(k)-systems are logic-based proof systems in the sense that they manipulate logic
formulas, and cutting planes is an example of a geometry-based proof systems where clauses
are treated as geometric objects. Another class of proof systems is algebraic systems. One
such proof system is polynomial calculus (PC), which was introduced in [CEI96] under the
name of “Gröbner proof system.” In a PC refutation, clauses are interpreted as multilinear
polynomials. For instance, the requirement that the clause x ∨ y ∨ z should be satisfied
gets translated to the equation (1 − x)(1 − y)z = 0 or xyz − xz − yz + z = 0, and we
derive contradiction by showing that there is no common root for the polynomial equations
corresponding to all the clauses.8

Definition 2.7 (Polynomial calculus (PC)). Lines in a polynomial calculus proof are mul-
tivariate polynomial equations p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F. It
is customary to omit “= 0” and only write p. The derivation rules are as follows, where
α, β ∈ F, p, q ∈ F[x, y, z, . . .], and x is any variable:

Variable axioms:
x2 − x

for all variables x (forcing 0/1-solutions).

Linear combination:
p q

αp+ βq

Multiplication:
p
xp

A PC refutation ends when 1 has been derived (i.e., 1 = 0). The size of a PC refutation is
defined as the total number of monomials in the refutation (counted with repetitions), the
length of a refutation is the number of polynomial equations, and the (monomial) space is
the maximal number of monomials in any configuration (counted with repetitions). Another
important measure is the degree of a refutation, which is the maximal (total) degree of any

8In fact, from a mathematical point of view it seems more natural to think of 0 as true and 1 as false in
polynomial calculus, so that the unit clause x gets translated to x = 0. For simplicity and consistency in
this survey, however, we stick to thinking about x = 1 as meaning that x is true and x = 0 as meaning that
x is false.
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monomial (where we note that because of the variable axioms, all polynomials can be
assumed to be multilinear without loss of generality).

The minimal refutation degree for a k-CNF formula F is closely related to the minimal
refutation size. Impagliazzo et al. [IPS99] showed that every PC proof of size S can be
transformed into another PC proof of degree O

(√
n log S

)
. A number of strong lower bounds

on proof size have been obtained by proving degree lower bounds in, for instance, [AR03,
BI10, BGIP01, IPS99, Raz98].

The representation of a clause
∨n

i=1 xi as a PC polynomial is
∏n

i=1(1−xi), which means
that the number of monomials is exponential in the clause width. This problem arises only
for positive literals, however—a large clause with only negative literals is translated to
a single monomial. This is a weakness of monomial space in polynomial calculus when
compared to clause space in resolution. To get a cleaner and more symmetric treatment of
proof space, in [ABRW02] the proof system polynomial calculus (with) resolution, or PCR
for short, was introduced as a common extension of polynomial calculus and resolution.
The idea is to add an extra set of parallell formal variables x′, y′, z′, . . . so that positive and
negative literals can both be represented in a space-efficient fashion.

Definition 2.8 (Polynomial calculus resolution (PCR)). Lines in a PCR proof are polyno-
mials over the ring F[x, x′, y, y′, z, z′, . . .], where as before F is some field. We have all the
axioms and rules of PC plus the following axioms:

Complementarity:
x+ x′ − 1

for all pairs of variables (x, x′).

Size, length, and degree are defined as for polynomial calculus, and the (monomial) space of
a PCR refutation is again the maximal number of monomials in any configuration counted
with repetitions.9

The point of the complementarity rule is to force x and x′ to have opposite values
in {0, 1}, so that they encode complementary literals. One gets the same degree bounds for
PCR as in PC (just substitute 1 − x for x′), but one can potentially avoid an exponential
blow-up in size measured in the number of monomials (and thus also for space). Our
running example clause x∨ y∨ z is rendered as x′y′z in PCR. In PCR, monomial space is a
natural generalization of clause space since every clause translates into a monomial as just
explained.

It was observed in [ABRW02] that the tight relation between degree and size in PC
carries over to PCR. In a recent paper [GL10], Galesi and Lauria showed that this trade-off
is essentially optimal, and also studied a generalization of PCR that unifies polynomial
calculus and k-DNF resolution.

In general, the admissible inferences in a proof system according to Definition 2.1 are
defined by a set of syntactic inference rules. In what follows, we will also be interested in a
strengthened version of this concept, which was made explicit in [ABRW02].

Definition 2.9 (Syntactic and semantic derivations). We refer to derivations according to
Definition 2.1, where each new line L has to be inferred by one of the inference rules for P,

9We remark that in [ABRW02] monomial space was defined to be the number of distinct monomials in
a configuration (i.e., not counted with repetitions), but we find this restriction to be somewhat artificial.
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as syntactic derivations. If instead any line L that is semantically implied by the current
configuration can be derived in one atomic step, we talk about a semantic10 derivation.

Clearly, semantic derivations are at least as strong as syntactic ones, and they are
easily seen to be superpolynomially stronger with respect to length for any proof system
where superpolynomial lower bounds are known. This is so since a semantic proof system
can download all axioms in the formula one by one, and then deduce contradiction in one
step since the formula is unsatisfiable. Therefore, semantic versions of proof systems are
mainly interesting when we want to reason about space or the relationship between space
and length.

This concludes our presentation of proof systems, and we next turn to the connection
between proof complexity and pebble games.

2.3. Pebble Games and Pebbling Contradictions. Pebbling is a tool for studying
time-space relationships by means of a game played on directed acyclic graphs. This game
models computations where the execution is independent of the input and can be performed
by straight-line programs. Each such program is encoded as a graph, and a pebble on a
vertex in the graph indicates that the corresponding value is currently kept in memory. The
goal is to pebble the output vertex of the graph with minimal number of pebbles (amount
of memory) and steps (amount of time).

Pebble games were originally devised for studying programming languages and compiler
construction, but have later found a broad range of applications in computational complex-
ity theory. The pebble game model seems to have appeared for the first time (implicitly)
in [PH70], where it was used to study flowcharts and recursive schemata, and it was later
employed to model register allocation [Set75], and analyze the relative power of time and
space as Turing-machine resources [Coo74, HPV77]. Moreover, pebbling has been used to
derive time-space trade-offs for algorithmic concepts such as linear recursion [Cha73, SS83],
fast Fourier transform [SS77, Tom78], matrix multiplication [Tom78], and integer multipli-
cation [SS79]. An excellent survey of pebbling up to ca 1980 is [Pip80], and another in-depth
treatment of some pebbling-related questions can be found in chapter 10 of [Sav98]. Some
more recent developments are covered in the author’s upcoming survey [Nor13].

The pebbling price of a directed acyclic graph G in the black pebble game captures the
memory space, or number of registers, required to perform the deterministic computation
described by G. We will mainly be interested in the the more general black-white pebble
game modelling nondeterministic computation, which was introduced in [CS76] and has
been studied in [GT78, Kla85, LT82, Mey81, KS91, Wil88] and other papers. Let us refer
to vertices of a directed graph having indegree 0 as sources and vertices having outdegree 0
as sinks.

Definition 2.10 (Pebble game). Let G be a directed acyclic graph (DAG) with a unique
sink vertex z. The black-white pebble game on G is the following one-player game. At any
time t, we have a configuration Pt = (Bt,Wt) of black pebbles Bt and white pebbles Wt on
the vertices of G, at most one pebble per vertex. The rules of the game are as follows:

10It should be noted here that the term semantic resolution is also used in the literature to refer to
something very different, namely a restricted subsystem of (syntactic) resolution. In this paper, however,
semantic proofs will always be proofs in the sense of Definition 2.9.
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(1) If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble
may be placed on v. In particular, a black pebble can always be placed on a source
vertex.

(2) A black pebble may be removed from any vertex at any time.
(3) A white pebble may be placed on any empty vertex at any time.
(4) If all immediate predecessors of a white-pebbled vertex v have pebbles on them, the

white pebble on v may be removed. In particular, a white pebble can always be removed
from a source vertex.

A (complete) black-white pebbling of G, also called a pebbling strategy for G, is a sequence
of pebble configurations P = {P0, . . . ,Pτ} such that P0 = (∅, ∅), Pτ = ({z}, ∅), and for
all t ∈ [τ ], Pt follows from Pt−1 by one of the rules above. The time of a pebbling P =
{P0, . . . ,Pτ} is simply time(P) = τ and the space is space(P) = max0≤t≤τ{|Bt ∪ Wt|}.
The black-white pebbling price (also known as the pebbling measure or pebbling number)
of G, denoted BW-Peb(G), is the minimum space of any complete pebbling of G.

A black pebbling is a pebbling using black pebbles only, i.e., having Wt = ∅ for all t.
The (black) pebbling price of G, denoted Peb(G), is the minimum space of any complete
black pebbling of G.

In the last decade, there has been renewed interest in pebbling in the context of proof
complexity. A (non-exhaustive) list of proof complexity papers using pebbling in one way or
another is [AJPU07, BEGJ00, BIPS10, Ben09, BIW04, BN08, BN11, BW01, EGM04, ET03,
HN12, HU07, Nor09a, NH13, Nor12, SBK04]. The way pebbling results have been used in
proof complexity has mainly been by studying so-called pebbling contradictions (also known
as pebbling formulas or pebbling tautologies). These are CNF formulas encoding the pebble
game played on a DAG G by postulating the sources to be true and the sink to be false,
and specifying that truth propagates through the graph according to the pebbling rules.
The idea to use such formulas seems to have appeared for the first time in Kozen [Koz77],
and they were also studied in [RM99, BEGJ00] before being defined in full generality by
Ben-Sasson and Wigderson in [BW01].

Definition 2.11 (Pebbling contradiction). Suppose that G is a DAG with sources S and
a unique sink z. Identify every vertex v ∈ V (G) with a propositional logic variable v. The
pebbling contradiction over G, denoted PebG, is the conjunction of the following clauses:

(1) for all s ∈ S, a unit clause s (source axioms),
(1) For all non-sources v with immediate predecessors pred(v), the clause

∨
u∈pred(v) u ∨ v

(pebbling axioms),
(1) for the sink z, the unit clause z (target or sink axiom).

If G has n vertices and maximal indegree ℓ, the formula PebG is a minimally unsatisfiable
(1+ℓ)-CNF formula with n + 1 clauses over n variables. We will almost exclusively be
interested in DAGs with bounded indegree ℓ = O(1), usually ℓ = 2. We note that DAGs
with fan-in 2 and a single sink have sometimes been referred to as circuits in the proof
complexity literature, although we will not use that term here. For an example of a peb-
bling contradiction, see the CNF formula in Figure 1(b) defined in terms of the graph in
Figure 1(a).

2.4. Substitution Formulas. In many of the cases we will be interested in below, the
formulas in Definition 2.11 are not quite sufficient for our purposes since they are a bit too
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z
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u v w

(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)

∧ (v ∨ w ∨ y)

∧ (x ∨ y ∨ z)

∧ z

(b) Pebbling contradiction PebΠ2
.

Figure 1: Pebbling contradiction for the pyramid graph Π2.

easy to refute. We therefore want to make them (moderately) harder, and it turns out that
a good way of achieving this is to substitute some suitable Boolean function f(x1, . . . , xd)
for each variable x and expand to get a new CNF formula.

It will be useful to formalize this concept of substitution for any CNF formula F and
any Boolean function f. To this end, let fd denote any (non-constant) Boolean function
fd : {0, 1}d → {0, 1} of arity d. We use the shorthand ~x = (x1, . . . , xd), so that fd(~x) is just
an equivalent way of writing fd(x1, . . . , xd). Every function fd(x1, . . . , xd) is equivalent to
a CNF formula over x1, . . . , xd with at most 2d clauses. Fix some canonical set of clauses
Cl [fd(~x)] representing fd(~x) and let Cl [¬fd(~x)] denote the clauses in some chosen canonical
representation of the negation of fd applied on ~x.

This canonical representation can be given by a formal definition (in terms of min-
and maxterms), but we do not want to get too formal here and instead try to convey the
intuition by providing a few examples. For instance, we have

Cl [∨2(~x)] = {x1 ∨ x2} and Cl [¬∨2(~x)] = {x1, x2} (2.2)

for logical or of two variables and

Cl [⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} and Cl [¬⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} (2.3)

for exclusive or of two variables. If we let thrkd denote the threshold function saying that k
out of d variables are true, then for thr 24 we have

Cl [thr 24(~x)] =





x1 ∨ x2 ∨ x3,

x1 ∨ x2 ∨ x4,

x1 ∨ x3 ∨ x4,

x2 ∨ x3 ∨ x4





and Cl [¬thr 24(~x)] =





x1 ∨ x2,

x1 ∨ x3,

x1 ∨ x4,

x2 ∨ x3,

x2 ∨ x4,

x3 ∨ x4





. (2.4)

We want to define formally what it means to substitute fd for the variables Vars(F ) in a
CNF formula F . For notational convenience, we assume that F only has variables x, y, z,
et cetera, without subscripts, so that x1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables
not occurring in F .
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Definition 2.12 (Substitution formula). For a positive literal x and a non-constant Boolean
function fd, we define the fd-substitution of x to be x[fd] = Cl [fd(~x)], i.e., the canonical rep-
resentation of fd(x1, . . . , xd) as a CNF formula. For a negative literal ¬y, the fd-substitution
is ¬y[fd] = Cl [¬fd(~y)]. The fd-substitution of a clause C = a1∨· · ·∨ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak [fd]

(
C1 ∨ . . . ∨Ck

)
(2.5)

and the fd-substitution of a CNF formula F is F [fd] =
∧

C∈F C[fd].

For example, for the clause C = x ∨ y and the exclusive or function f2 = x1 ⊕ x2 we
have

C[f2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .
(2.6)

Note that F [fd] is a CNF formula over d · |Vars(F )| variables containing strictly less than

|F | ·2d·W(F ) clauses. (Recall that we defined a CNF formula as a set of clauses, which means
that |F | is the number of clauses in F .) It is easy to verify that F [fd] is unsatisfiable if and
only if F is unsatisfiable.

Two examples of substituted version of the pebbling formula in Figure 1(b) are the
substitution with logical or in Figure 2(a) and with exclusive or in Figure 2(b). As we shall
see, these formulas have played an important role in the line of research trying to understand
proof space in resolution. For our present purposes, there is an important difference between
logical or and exclusive or which is captured by the next definition.

Definition 2.13 (Non-authoritarian function [BN11]). We say that a Boolean function
f(x1, . . . , xd) is k-non-authoritarian11 if no restriction to {x1, . . . , xd} of size k can fix the
value of f . In other words, for every restriction ρ to {x1, . . . , xd} with |ρ| ≤ k there exist
two assignments α0, α1 ⊃ ρ such that f(α0) = 0 and f(α1) = 1. If this does not hold, f is
k-authoritarian. A 1-(non-)authoritarian function is called just (non-)authoritarian.

Observe that a function on d variables can be k-non-authoritarian only if k < d. Two
natural examples of d-non-authoritarian functions are exclusive or ⊕ of d+1 variables and
majority of 2d+ 1 variables, i.e., thrd+1

2d+1. Non-exclusive or of any arity is easily seen to be
an authoritarian function, however, since setting any variable xi to true forces the whole
disjunction to true.

Concluding our presentation of preliminaries, we remark that the idea of combining
Definition 2.11 with Definition 2.12 was not a dramatic new insight originating with [BN11],
but rather the natural generalization of ideas in many previous articles. For instance, the
papers [BIW04, Ben09, BIPS10, BW01, BP07, ET03, Nor09a, NH13] all study formulas
PebG[∨2], and [EGM04] considers formulas PebG[∧l∨k]. And in fact, already back in 2006
Atserias [Ats06] proposed that XOR-pebbling contradictions PebG[⊕2] could potentially be
used to separate length and space in resolution, as was later shown to be the case in [BN08].

11Such functions have previously also been referred to as (k+1)-robust functions in [ABRW04].
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(u1 ∨ u2) ∧ (v2 ∨w1 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v2 ∨w2 ∨ y1 ∨ y2)

∧ (w1 ∨w2) ∧ (x1 ∨ y1 ∨ z1 ∨ z2)

∧ (u1 ∨ v1 ∨ x1 ∨ x2) ∧ (x1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ v2 ∨ x1 ∨ x2) ∧ (x2 ∨ y1 ∨ z1 ∨ z2)

∧ (u2 ∨ v1 ∨ x1 ∨ x2) ∧ (x2 ∨ y2 ∨ z1 ∨ z2)

∧ (u2 ∨ v2 ∨ x1 ∨ x2) ∧ z1

∧ (v1 ∨ w1 ∨ y1 ∨ y2) ∧ z2

∧ (v1 ∨ w2 ∨ y1 ∨ y2)

(a) Substitution pebbling contradiction PebΠ2
[∨2] with respect to binary logical or.

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

∧ (v1 ∨ v2 ∨w1 ∨ w2 ∨ y1 ∨ y2) ∧ (z1 ∨ z2)

(b) Substitution pebbling contradiction PebΠ2
[⊕2] with respect to binary exclusive or.

Figure 2: Examples of substitution pebbling formulas for the pyramid graph Π2.

3. Overview of Pebbling Contradictions in Proof Complexity

Let us now give a general overview of how pebbling contradictions have been used in proof
complexity. While we have striven to give a reasonably full picture below, we should add the
caveat that our main focus is on resolution-based proof systems, i.e., standard resolution
and R(k) for k > 1. Also, to avoid confusion it should be pointed out that the pebble
games examined here should not be mixed up with the very different existential pebble
games which have also proven to be a useful tool in proof complexity in, for instance,
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[Ats04, AKV04, BG03, GT05] and in this context perhaps most notably in the paper [AD08]
establishing the upper bound Sp(F ⊢⊥) ≥ W(F ⊢⊥)− O(1) on width in terms of clause
space for k-CNF formulas F .

We have divided the overview into four parts covering (a) questions about time-space
trade-offs and separations, (b) comparisons of proof systems and subsystems of proof sys-
tems, (c) formulas used as benchmarks for SAT solvers, and (d) the computational com-
plexity of various proof measures. In what follows, our goal is to survey the results in fairly
non-technical terms. A more detailed discussion of the techniques used to prove results on
time and space will follow in Sections 4 and 5.

3.1. Time Versus Space. Pebble games have been used extensively as a tool to prove time
and space lower bounds and trade-offs for computation. Loosely put, a lower bound for the
pebbling price of a graph says that although the computation that the graph describes can
be performed quickly, it requires large space. Our hope is that when we encode pebble
games in terms of CNF formulas, these formulas should inherit the same properties as the
underlying graphs. That is, if we start with a DAG G such that any pebbling of G in short
time must have large pebbling space, then we would like to argue that the corresponding
pebbling contradiction should have the property that any short resolution refutation of this
formula must also require large proof space.

In one direction the correspondence between pebbling and resolution is straightforward.
As was observed in [BIW04], if there is a black pebbling strategy for G in time τ and space s,
then PebG can be refuted by resolution in length O(τ) and space O(s). Very briefly, the idea
is that whenever the pebbling strategy places a black pebble on v, we derive in resolution the
corresponding unit clause v. This is possible since in the pebbling strategy all predecessors
u of v must be pebbled at this point, and so by induction in the resolution derivation we
have derived the unit clause u for all predecessors. But if so, it is easy to verify that the
pebbling axiom for v will allow us to derive v. When the pebbling ends, we have derived the
unit clause z corresponding to the unique sink of the DAG, at which point we can download
the sink axiom z and derive a contradiction.

The other direction is much less obvious. Our intuition is that the resolution proof
system should have to conform to the combinatorics of the pebble game in the sense that
from any resolution refutation of a pebbling contradiction PebG we should be able to extract
a pebbling of the DAG G. To formalize this intuition, we would like to prove something
along the following lines:

(1) First, find a natural interpretation of sets of clauses currently “on the blackboard” in a
refutation of the formula PebG in terms of pebbles on the vertices of the DAG G.

(2) Then, prove that this interpretation of clauses in terms of pebbles captures the pebble
game in the following sense: for any resolution refutation of PebG, looking at consecutive
sets of clauses on the blackboard and considering the corresponding sets of pebbles in
the graph, we get a black-white pebbling of G in accordance with the rules of the pebble
game.

(3) Finally, show that the interpretation captures space in the sense that if the content of
the blackboard induces N pebbles on the graph, then there must be at least N clauses
on the blackboard.

Combining the above with known space lower bounds and time-space trade-offs for pebble
games, we would then be able to lift such bounds and trade-offs to resolution. For clarity, let
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us spell out what the formal argument would look like. Consider a resolution refutation π
of the CNF formula PebG defined over a graph G exhibiting a strong time-space trade-off,
and suppose this refutation has short length. Using the approach outlined above, we extract
a pebbling of G from π. Since this is a pebbling in short time, because of the time-space
properties of G it follows that at some time t during this pebbling there must be many
pebbles on the vertices of G. But this means that at time t, there are many clauses in the
corresponding configuration Ct on the blackboard. Since this holds for any refutation, we
obtain a length-space trade-off for resolution.

The first important step towards realizing the above program was taken by Ben-Sasson
in 2002 (journal version in [Ben09]), who was the first to prove trade-offs between proof
complexity measures in resolution. The key insight in [Ben09] is to interpret resolution
refutations of PebG in terms of black-white pebblings of G. The idea is to let positive
literals on the blackboard correspond to black pebbles and negative literals to white pebbles.
One can then show that using this correspondence (and modulo some technicalities), any
resolution refutation of PebG results in a black-white pebbling of G in pebbling time upper-
bounded by the refutation length and pebbling space upper-bounded by the refutation
variable space (Definition 2.4).

This translation of refutations to black-white pebblings was used by Ben-Sasson to
establish strong trade-offs between clause space and width in resolution. He showed that
there are k-CNF formulas Fn of size Θ(n) which can be refuted both in constant clause
space Sp(Fn ⊢⊥) and in constant width W(Fn ⊢⊥), but for which any refutation πn that
tries to optimize both measures simultaneously can never do better than Sp(πn) ·W(πn) =
Ω(n/ log n). This result was obtained by studying formulas PebGn

over the graphs Gn

in [GT78] with black-white pebbling price BW-Peb(Gn) = Ω(n/ log n). Since the upper
bounds Sp(π) ·W(π) ≥ TotSp(π) ≥ VarSp(π) are easily seen to hold for any resolution
refutation π, and since by what was just said we must have VarSp(πn) = Ω(n/ log n),
one gets the space-width trade-off stated above. In a separate argument, one shows that
Sp

(
PebGn

⊢ ⊥
)
= O(1) and W

(
PebGn

⊢ ⊥
)
= O(1). Using the same ideas plus upper

bound on space in terms of size in [ET01], [Ben09] also proved that for tree-like resolution
it holds that LT

(
PebGn

⊢⊥
)
= O(n) but for any particular tree-like refutation πn there is

a length-width trade-off W(πn) · logL(πn) = Ω(n/ log n).
Unfortunately, the results in [Ben09] also show that the program outlined above for

proving time-space trade-offs will not work for general resolution. This is so since for any
DAG G the formula PebG is refutable in linear length and constant clause space simultane-
ously. What we have to do instead is to look at substitution formulas PebG[f] for suitable
Boolean functions f, but this leads to a number of technical complications. However, build-
ing on previous works [Nor09a, NH13], a way was finally found to realize this program
in [BN11]. We will give a more detailed exposition of the proof techniques in Sections 4
and 5, but let us conclude this discussion of time-space trade-offs by describing the flavour
of the results obtained in these latter papers.

Let {Gn}∞n=1 be a family of single-sink DAGs of size Θ(n) and with bounded fan-in.
Suppose that there are functions slo(n) ≪ shi(n) = O(n/ log log n) such that Gn has black
pebbling price Peb(Gn) = slo(n) and there are black-only pebbling strategies for Gn in time
O(n) and space shi(n), but any black-white pebbling strategy in space o(shi(n)) must have
superpolynomial or even exponential length. Also, let K be a fixed positive integer. Then
there are explicitly constructible CNF formulas {Fn}∞n=1 of size O(n) and width O(1) (with
constants depending on K) such that the following holds:
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• The formulas Fn are refutable in syntactic resolution in (small) total space O(slo(n)).
• There are also syntactic resolution refutations πn of Fn in simultaneous length O(n) and
(much larger) total space O(shi(n)).

• However, any resolution refutation, even semantic, in formula space o(shi(n)) must have
superpolynomial or sometimes even exponential length.

• Even for the much stronger semantic k-DNF resolution proof systems, k ≤ K, it holds
that any R(k)-refutation of Fn in formula space o

(
k+1
√

shi(n)
)
must have superpolynomial

length (or exponential length, correspondingly).

This “theorem template” can be instantiated for a wide range of space functions slo(n)
and shi(n), from constant space all the way up to nearly linear space, using graph families
with suitable trade-off properties, for instance, those in [LT82, Nor12]. Also, absolute lower
bounds on black-white pebbling space, such as in [GT78], yield corresponding lower bounds
on clause space.

Moreover, these trade-offs are robust in that they are not sensitive to small variations
in either length or space. The way we would like to think about this, with some handwaving
intuition, is that the trade-offs will not show up only for a SAT solver being unlucky and
picking just the wrong threshold when trying to hold down the memory consumption.
Instead, any resolution refutation having length or space in the same general vicinity will
be subject to the same qualitative trade-off behaviour.

3.2. Separations of Proof Systems. A number of restricted subsystems of resolution,
often referred to as resolution refinements, have been studied in the proof complexity lit-
erature. These refinements were introduced to model SAT solvers that try to make the
proof search more efficient by narrowing the search space, and they are defined in terms
of restrictions on the DAG representations Gπ of resolution refutations π. An interesting
question is how the strength of these refinements are related to one another and to that
of general, unrestricted resolution, and pebbling has been used as a tool in several papers
investigating this. We briefly discuss some of these restricted subsystems below, noting that
they are all known to be sound and complete. We remark that more recently, a number of
different (but related) models for resolution with clause learning have also been proposed
and studied theoretically in [BKS04, BHJ08, BJ10, HBPV08, PD11, Van05] but going into
details here is unfortunately outside the scope of this survey.

A regular resolution refutation of a CNF formula F is a refutation π such that on any
path in Gπ from an axiom clause in F to the empty clause ⊥, no variable is resolved over
more than once. We call a regular resolution refutation ordered if in addition there exists
an ordering of the variables such that every sequence of variables labelling a path from
an axiom to the empty clause respects this ordering. Ordered resolution is also known as
Davis-Putnam resolution. A linear resolution refutation is a refutation π with the additional
restriction that the underlying DAG Gπ must be linear. That is, the proof should consist
of a sequence of clauses {C1, C2, . . . , Cm = ⊥} such that for every i ∈ [m] it holds for the
clause Ci that it is either an axiom clause of F or is derived from Ci−1 and Cj for some j < i
(where Cj can be an axiom clause). Finally, as was already mentioned in Definition 2.1, a
tree-like refutation is one in which the underlying DAG is a tree. Tree-like resolution is also
called Davis-Logemann-Loveland or DLL resolution in the literature. The reason for this is
that tree-like resolution refutations can be shown to correspond to refutations produced by
the proof search algorithm in [DLL62], known as DLL or DPLL, that fixes one variable x
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in the formula F to true or false respectively, and then recursively tries to refute the two
formulas corresponding to the two values of x (after simplifications, i.e., removing satisfied
clauses and shrinking clauses with falsified literals).

It is known that tree-like resolution proofs can always be made regular without loss of
generality [Urq95], and clearly ordered refutations are regular by definition. Alekhnovich et
al. [AJPU07] established an exponential separation with respect to length between general
and regular resolution, improving a previous weaker separation by Goerdt [Goe93], and
Bonet et al. [BEGJ00] showed that tree-like resolution can be exponentially weaker than
ordered resolution and some other resolution refinements. Johannsen [Joh01] exhibited
formulas for which tree-like resolution is exponentially stronger than ordered resolution,
from which it follows that regular resolution can also be exponentially stronger than ordered
resolution and that tree-like and ordered resolution are incomparable. More separations for
other resolution refinements not mentioned above were presented in [BP07], but a detailed
discussion of these results are outside the scope of this survey.

The construction in [AJPU07] uses an implicit encoding of the pebbling contradictions
in Definition 2.11 in the sense that they study formulas encoding that each vertex in the
DAG contains a pebble, identified by a unique number. For every pebble, there is a variable
encoding the colour of this pebble—red or blue—where source vertices are known to have
red pebbles and the sink vertex should have a blue one. Finally, there are clauses enforcing
that if all predecessors of a vertex has red pebbles, then the pebble on that vertex must
be red. These formulas can be refuted bottom-up in linear length just as our standard
pebbling contradictions, but such refutations are highly irregular. The paper [BEGJ00],
which also presents lower bounds for tree-like CP proofs for formulas easy for resolution,
uses another variant of pebbling contradictions defined over pyramid graphs, but we omit
the details. Later, [BIW04] proved a stronger exponential separation of general and tree-like
resolution, improving on the separation implied by [BEGJ00], and this latter paper uses
substitution pebbling contradictions PebG[∨2] and the Ω(n/ log n) lower bound on black
pebbling in [PTC77].

Intriguingly, linear resolution is not known to be weaker then general resolution. The
conventional wisdom seems to be that linear resolution should indeed be weaker, but the
difficulty is if so it can only be weaker on a technicality. Namely, it was shown in [BP07]
that if a polynomial number of appropriately chosen tautological clauses are added to any
CNF formula, then linear resolution can simulate general resolution by using these extra
clauses. Any separation would therefore have to argue very “syntactically.”

Esteban et al. [EGM04] showed that tree-like k-DNF resolution proof systems form
a strict hierarchy with respect to proof length and proof space. The space separation
they obtain is for formulas requiring formula space O(1) in R(k + 1) but formula space
Ω(n/ log2 n) in R(k). Both of these separation results use a special flavour PebG[∧l∨k]
of substitution pebbling formulas, again defined over the graphs in [PTC77] with black
pebbling price Ω(n/ log n). As was mentioned above, the space separation was strengthened
to general, unrestricted R(k)-systems in [BN11], but with worse parameters. This latter
result is obtained using formulas PebG[⊕k+1] defined in terms of exclusive or of k + 1
variables to get the separation between R(k + 1) and R(k), as well as the stronger black-
white pebbling price lower bound of Ω(n/ log n) in [GT78].

Concluding our discussion of separation of resolution refinements, we also want to men-
tion that Esteban and Torán [ET03] used substitution pebbling contradictions PebG[∨2]
over complete binary trees to prove that general resolution is strictly stronger than tree-like
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resolution with respect to clause space. Expressed in terms of formula size the separation
one obtains is in the constant multiplicative factor in front of the logarithmic space bound.12

This was recently improved to a logarithmic separation in [JMNŽ12], obtained for XOR-
pebbling contradictions over line graphs, i.e., graphs with vertex sets {v1, . . . , vn} and edges
(vi, vi+1) for i = 1, . . . , n− 1.

3.3. Benchmark Formulas. Pebbling contradictions have also been used as benchmark
formulas for evaluating and comparing different proof search heuristics. Ben-Sasson et
al. [BIW04] used the exponential lower bound discussed above for tree-like resolution refuta-
tions of formulas PebG[∨2] to show that a proof search heuristic that exhaustively searches
for resolution refutations in minimum width can sometimes be exponentially faster than
DLL-algorithms searching for tree-like resolutions, while it can never be too much slower.
Sabharwal et al. [SBK04] also used pebbling formulas to evaluate heuristics for clause learn-
ing algorithms. In a more theoretical work, Beame et al. [BIPS10] again used pebbling
formulas PebG[∨2] to compare and separate extensions of the resolution proof system using
“formula caching,” which is a generalization of clause learning.

In view of the strong length-space trade-offs for resolution which were hinted at in
Section 3.1 and will be examined in more detail below, a natural question is whether these
theoretical results also translate into trade-offs between time and space in practice for state-
of-the-art SAT solvers using clause learning. Although the model in Definitions 2.1 and 2.2
for measuring time and space of resolution proofs is quite simple, it still does not seem too
unreasonable that it should be able to capture the problem in clause learning concerning
which of the learned clauses should be kept in the clause database (which would roughly
correspond to configurations in our refutations). It would be interesting to take graphs G
as in [LT82, Nor12] and study formulas PebG[f] over these graphs for suitable substitution
functions f. If we for instance take f to be exclusive or ⊕d for arity d ≥ 2, then we have
provable length-space trade-offs in terms of pebbling trade-offs for the corresponding DAGs
(and although we cannot prove it, we strongly suspect that the same should hold true also
for formulas defined in terms of the usual logical or of any arity), and the question is whether
one could observe similar trade-off phenomena also in practice.

Open Problem 1. Do pebbling contradictions PebG[f] for suitable f (such as ∨ or ⊕)
exhibit time-space trade-offs for current state-of-the-art DPLL-based SAT solvers similar to
the pebbling trade-offs of the underlying DAGs G?

Let us try to present a very informal argument why the answer to this question could
be positive. On the one hand, all the length-space trade-offs that have been shown for
pebbling formulas hold for space in the sublinear regime (which is inherent, since any
pebbling formula can be refuted in simultaneous linear time and linear space), and given
that linear space is needed just to keep the formula in memory such space bounds might
not seem to relevant for real-life applications. On the other hand, suppose that we know for
some CNF formula F that Sp(F ⊢⊥) is large. What this tells us is that any algorithm, even

12Such a constant-factor-only separation might not sound too impressive, but recall that the space com-
plexity it at most linear in the number of variables and clauses, so it makes sense to care about constant
factors here. Also, it should be noted that this paper had quite some impact in that the technique used
to establish the separation can be interpreted as a (limited) way of of simulating black-white pebbling in
resolution, and this provided one of the key insights for [Nor09a] and the ensuing papers considered in
Section 3.1.
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a non-deterministic one making optimal choices concerning which clauses to save or throw
away at any given point in time, will have to keep a fairly large number of “active” clauses in
memory in order to carry out the refutation. Since this is so, a real-life deterministic proof
search algorithm, which has no sure-fire way of knowing which clauses are the right ones to
concentrate on at any given moment, might have to keep working on a lot of extra clauses
in order to be sure that the fairly large critical set of clauses needed to find a refutation will
be among the “active” clauses.

Intriguingly enough, in one sense one can argue that pebbling contradictions have al-
ready been shown to be an example of this. We know that these formulas are very easy
with respect to length and width, having constant-width refutations that are essentially
as short as the formulas themselves. But one way of interpreting the experimental results
in [SBK04], is that one of the state-of-the-art SAT solvers at that time had serious problems
with even moderately large pebbling contradictions. Namely, the “grid pebbling formulas”
in [SBK04] are precisely our OR-pebbling contradictions PebG[∨2] over pyramids. Although
we are certainly not arguing that this is the whole story—it was also shown in [SBK04] that
the branching order is a critical factor, and that given some extra structural information the
algorithm can achieve an exponential speed-up—we wonder whether the high lower bound
on clause space can nevertheless be part of the explanation. It should be pointed out that
pebbling contradictions are the only formulas we know of that are really easy with respect
to length and width but hard for clause space. And if there is empirical data showing
that for these very formulas clause learning algorithms can have great difficulties finding
refutations, it might be worth investigating whether this is just a coincidence or a sign of
some deeper connection.

3.4. Complexity of Decision Problems. A number of papers have also used pebble
games to study how hard it is to decide the complexity of a CNF formula F with respect
to some proof complexity measure M. This is formalized in terms of decision problems as
follows: “Given a CNF formula F and a parameter p, is there a refutation π of F with
M
(
π
)
≤ p?”

The one proof complexity measure that is reasonably well understood is proof length.
It has been shown (using techniques not related to pebbling) that the problem of finding a
shortest refutation of a CNF formula is NP-hard [Iwa97] and remains hard even if we just
want to approximate the minimum refutation length [ABMP01].

With regard to proof space, Alex Hertel and Alasdair Urquhart [HU07] showed that
tree-like resolution clause space is PSPACE-complete, using the exact combinatorial char-
acterization of tree-like resolution clause space given in [ET03] and a generalization of
the pebble game in Definition 2.10 introduced in [Lin78]. They also proved (see [Her08,
Chapter 6]) that variable space in general resolution is PSPACE-hard, although this result
requires CNF formulas of unbounded width. Interestingly, variable space is not known to
be in PSPACE, and the best upper bound obtained in [Her08] is that the problem is at
least contained in EXPSPACE.

Another very interesting space-related result is that of Philipp Hertel and Toni Pitassi
[HP07], who presented a PSPACE-completeness result for total space in resolution as well
as some sharp trade-offs for length with respect to total space, using the original pebbling
contradictions PebG in Definition 2.11. Their construction is highly nontrivial, and unfor-
tunately a bug was later found in the proofs leading to these results being withdrawn in
the journal version [HP10]. The trade-off results claimed in [HP07] were later subsumed
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by those in [Nor09b], using other techniques not related to pebbling, but it remains open
whether total space is PSPACE-complete or not (that this problem is in PSPACE is fairly
easy to show).

Open Problem 2. Given a CNF formula F (preferably of fixed width) and a parameter s,
is it PSPACE-complete to determine whether F can be refuted in the resolution proof system
in total space at most s?

There are a number of other interesting open questions regarding the hardness of
proof complexity measures for resolution. An obvious question is whether the PSPACE-
completeness result for tree-like resolution clause space in [HU07] can be extended to clause
space in general resolution. (Again, showing that clause space is in PSPACE is relatively
straightforward.)

Open Problem 3. Given a CNF formula F (preferably of fixed width) and a parameter s,
is it PSPACE-complete to determine whether F can be refuted in resolution in clause space
at most s?

A somewhat related question is whether it is possible to find a clean, purely combi-
natorial characterization of clause space. This has been done for resolution width [AD08]
and tree-like resolution clause space [ET03], and this latter result was a key component in
proving the PSPACE-completeness of tree-like space. It would be very interesting to find
similar characterizations of clause space in general resolution and R(k).

Open Problem 4 ([ET03, EGM04]). Is there a combinatorial characterization of refutation
clause space for general, unrestricted resolution? For k-DNF resolution?

The complexity of determining resolution width is also open.

Open Problem 5. Given a k-CNF formula F and a parameter w, is it EXPTIME-complete
to determine whether F can be refuted in resolution in width at most w?13

The width measure was conjectured to be EXPTIME-complete by Moshe Vardi. As
shown in [HU06], using the combinatorial characterization of width in [AD08], width is
in EXPTIME. The paper [HU06] also claimed an EXPTIME-completeness result, but this
was later retracted in [HU09]. The conclusion that can be drawn from all of this is per-
haps that space is indeed a very tricky concept in proof complexity, and that we do not
really understand space-related measures very well, even for such a simple proof system as
resolution.

4. Translating Time-Space Trade-offs from Pebbling to Resolution

So far, we have discussed in fairly non-technical terms how pebble games have been used
to prove different results in proof complexity. In this section and the next, we want to
elaborate on the length-space trade-off results for resolution-based proof systems mentioned
in Section 3.2 and try to give a taste of how they are proven. Recall that the general idea is to
establish reductions between pebbling strategies for DAGs on the one hand and refutations
of corresponding pebbling contradictions on the other. We start by describing the reductions

13As the camera-ready version of this article was being prepared, a proof of the EXPTIME-completeness
of determining width complexity was announced in [Ber12]. We refer to Theorem 7.7 below for more details
on this result.



26 J. NORDSTRÖM
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(a) {xi ∨ yj ∨ z1 ∨ z2 | i,j=1,2}.
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(b) {ui ∨ vj ∨ x1 ∨ x2 | i,j=1,2}.
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(c) {ui∨vj∨yk∨z1∨z2 | i,j,k=1,2}.

Figure 3: Black and white pebbles and (intuitively) corresponding sets of clauses.

from pebblings to refutations in Section 4.1, and then examine how refutations can be
translated to pebblings in Section 4.2.

4.1. Techniques for Upper Bounds on Resolution Trade-offs. Given any black-only
pebbling P of a DAG G with bounded fan-in ℓ, it is straightforward to simulate this peb-
bling in resolution to refute the corresponding pebbling contradiction PebG[fd] in length
O
(
time(P)

)
and space O

(
space(P)

)
. This was perhaps first noted in [BIW04] for the sim-

ple PebG formulas, but the simulation extends readily to any formula PebG[fd], with the
constants hidden in the asymptotic notation depending only on fd and ℓ. In view of the
translations presented in [Ben09] and subsequent works of resolution refutations to black-
white pebblings, it is natural to ask whether this reduction goes both ways, i.e., whether
resolution can simulate not only black pebblings but also black-white ones.

At first sight, it seems that resolution would have a hard time simulating black-white
pebbling. To see why, let us start by considering a black-only pebbling P. We can
easily mimic such a pebbling by a resolution refutation of PebG[fd] which derives that
fd(v1, . . . , vd) is true whenever the corresponding vertex v in G is black-pebbled. If the peb-
bling strategy places a pebble on v at time t, then we know that all predecessors of v have
pebbles at this point. By induction, this implies that for all w ∈ pred(v) we have clauses
w[fd] in the configuration Ct encoding that all fd(w1, . . . , wd) are true, and if we download
the pebbling axioms for v we can derive the clauses v[fd] encoding that fd(v1, . . . , vd) is
true by the implicational completeness of resolution. Furthermore, this derivation can be
carried out in length and extra clause space O(1), where the hidden constants depend only
on ℓ and fd as stated above. We end up deriving that fd(z1, . . . , zd) is true for the sink z,
at which point we can download the sink axioms and derive a contradiction.

The intuition behind this translation is that a black pebble on v means that we know v,
which in resolution translates into truth of v. In the pebble game, having a white pebble
on v instead means that we need to assume v. By duality, it seems reasonable to let this
correspond to falsity of v in resolution. Focusing on the pyramid Π2 in Figure 1(a), and
pebbling contradiction PebΠ2

[∨2] in Figure 2(a), our intuitive understanding then becomes
that white pebbles on x and y and a black pebble on z should correspond to the set of
clauses

{xi ∨ yj ∨ z1 ∨ z2 | i, j = 1, 2} (4.1)

which indeed encode that assuming x1∨x2 and y1∨y2, we can deduce z1∨z2. See Figure 3(a)
for an illustration of this.
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If we now place white pebbles on u and v, this allows us to remove the white pebble
from x. Rephrasing this in terms of resolution, we can say that x follows if we assume u
and v, which is encoded as the set of clauses

{ui ∨ vj ∨ x1 ∨ x2 | i, j = 1, 2} (4.2)

(see Figure 3(b)), and indeed, from the clauses in (4.1) and (4.2) we can derive in resolution
that z is black-pebbled and u, v and y are white pebbled, i.e., the set of clauses

{ui ∨ vj ∨ yk ∨ z1 ∨ z2 | i, j, k = 1, 2} (4.3)

(see Figure 3(c)). The above toy example indicates one of the problems one runs into when
one tries to simulate black-white pebbling in resolution: as the number of white pebbles
grows, there is an exponential blow-up in the number of clauses. The clause set in (4.3)
is twice the size of those in (4.1) and (4.2), although it corresponds to only one more
white pebble. This suggests that as a pebbling starts to make heavy use of white pebbles,
resolution will not be able to mimic such a pebbling in a length- and space-preserving
manner. This leads to the thought that perhaps black pebbling provides not only upper
but also lower bounds on resolution refutations of pebbling contradictions.

However, it was shown in [Nor12] that at least in certain instances, resolution can in
fact be strictly better than black-only pebbling, both for time-space trade-offs and with
respect to space in absolute terms. What is done in [Nor12] is to design a limited version of
black-white pebbling, tailor-made for resolution, where one explicitly restricts the amount
of nondeterminism, i.e., white pebbles, which a pebbling strategy can use. Such restricted
pebblings use “few white pebbles per black pebble” (in a sense that will be made formal
below), and can therefore be simulated in a time- and space-preserving fashion by resolution,
avoiding the exponential blow-up just discussed. This game is essentially just a formalization
of the naive simulation sketched above, but before stating the formal definitions, let us try
to provide some intuition why the rules of this new game look the way they do.

First, if we want a game that can be mimicked by resolution, then placements of isolated
white vertices do not make much sense. What a resolution derivation can do is to download
axiom clauses, and intuitively this corresponds to placing a black pebble on a vertex together
with white pebbles on its immediate predecessors, if the vertex has any. Therefore, we adopt
such aggregate moves as the only admissible way of placing new pebbles. For instance,
looking at Figure 3 again, placing a black pebble on z and white pebbles on x and y
corresponds to downloading the axiom clauses in (4.1) for PebΠ2

[∨2].
Second, note that if we have a black pebble on z with white pebbles on x and y

corresponding to the clauses in (4.1) and a black pebble on x with white pebbles on u and v
corresponding to the clauses in (4.2), we can derive the clauses in (4.3) corresponding to
z black-pebbled and u, v and y white-pebbled but no pebble on x. This suggests that a
natural rule for white pebble removal is that a white pebble can be removed from a vertex
if a black pebble is placed on that same vertex (and not on its immediate predecessors).

Third, if we then just erase all clauses in (4.3), this corresponds to all pebbles disap-
pearing. On the face of it, this is very much unlike the rule for white pebble removal in
the standard pebble game, where it is absolutely crucial that a white pebble can only be
removed when its predecessors are pebbled. However, the important point here is that not
only do the white pebbles disappear, but the black pebble that has been placed on z with
the help of these white pebbles disappears as well. What this means is that we cannot treat
black and white pebbles in isolation, but we have to keep track of for each black pebble
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which white pebbles it depends on, and make sure that the black pebble also is erased if
any of the white pebbles supporting it is erased. The way we do this is to label each black
pebble v with its supporting white pebbles W , and define the pebble game in terms of
moves of such labelled pebble subconfigurations v〈W 〉.

Formalizing the loose description above, our pebble game is then defined as follows.

Definition 4.1 (Labelled pebbling [Nor12]). For v a vertex andW a set of vertices such that
v /∈ W , we say that v〈W 〉 is a pebble subconfiguration with a black pebble on v supported
by white pebbles on all w ∈ W . The black pebble on v in v〈W 〉 is said to be dependent on
the white pebbles in its support W . We refer to v〈∅〉 as an independent black pebble.

For G any DAG with unique sink z, a (complete) labelled pebbling of G is a sequence
L = {L0, . . . ,Lτ} of labelled pebble configurations such that L0 = ∅, Lτ = {z〈∅〉}, and for
all t ∈ [τ ] it holds that Lt can be obtained from Lt−1 by one of the following rules:

Introduction: Lt = Lt−1 ∪ {v〈pred (v)〉}, where pred (v) is the set of immediate predeces-
sors of v.

Merger: Lt = Lt−1 ∪
{
v〈(V ∪W ) \ {w}〉

}
for v〈V 〉, w〈W 〉 ∈ Lt−1 such that w ∈ V (and

v /∈ W ). We denote this subconfiguration merge(v〈V 〉, w〈W 〉), and refer to it as a merger
on w.

Erasure: Lt = Lt−1 \ {v〈V 〉} for v〈V 〉 ∈ Lt−1.

Let Bl(Lt) = {v | v〈W 〉 ∈ Lt} denote the set of all black-pebbled vertices in Lt andWh(Lt) =⋃ {W | v〈W 〉 ∈ Lt} the set of all white-pebbled vertices. Then the space of a labelled peb-
bling L = {L0, . . . ,Lτ} is maxL∈L{|Bl(L) ∪ Wh(L)|} and the time of L = {L0, . . . ,Lτ} is
time(L) = τ .

The game in Definition 4.1 might look quite different from the standard black-white
pebble game, but it is not hard to show that labelled pebblings are essentially just a re-
stricted form of black-white pebblings.

Lemma 4.2 ([Nor12]). If G is a single-sink DAG and L is a complete labelled pebbling
of G, then there is a complete black-white pebbling PL of G with time(PL) ≤ 4

3 time(L) and
space(PL) ≤ space(L).

However, the definition of space of labelled pebblings does not seem quite right from the
point of view of resolution. Not only does the space measure fail to capture the exponential
blow-up in the number of white pebbles discussed above. We also have the problem that
if one white pebble is used to support many different black pebbles, then in a resolution
refutation simulating such a pebbling we have to pay multiple times for this single white
pebble, once for every black pebble supported by it. To get something that can be simulated
by resolution, we therefore need to restrict the labelled pebble game even further.

Definition 4.3 (Bounded labelled pebblings [Nor12]). An (m,S)-bounded labelled pebbling
is a labelled pebbling L = {L0, . . . ,Lτ} such that every Lt contains at most m pebble
subconfigurations v〈W 〉 and every v〈W 〉 has white support size |W | ≤ S.

Observe that if a graph G with fan-in ℓ has a black-only pebbling strategy in time τ and
space s, then the labelled pebbling simulating this strategy is an (s+ 1, ℓ)-bounded pebbling
in time at most τ(ℓ+ 1).14 Thus, the power of bounded labelled pebbling is somewhere in
between black-only and black-white pebbling.

14Every black pebble in the black pebbling will correspond to a subconfiguration in the labelled pebbling
plus that we need one extra subconfiguration to remove the white pebbles in v〈pred(v)〉 after an introduction
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Note also that boundedness automatically implies low space complexity, since an (m,S)-
bounded labelled pebbling L clearly satisfies space(L) ≤ m(S + 1). And if we can design
an (m,S)-bounded pebbling for a graph G, then such a pebbling can be used to refute any
pebbling contradiction PebG[f] in resolution by constructing a refutation mimicking L.
Lemma 4.4 ([Nor12]). Suppose that L is any complete (m,S)-bounded pebbling of a DAG G
and that f : {0, 1}d → {0, 1} is any nonconstant Boolean function. Then there is a reso-
lution refutation πL of PebG[f] in length L(πL) = time(L) · exp

(
O(dS)

)
and total space

TotSp(πL) = m · exp
(
O(dS)

)
. In particular, fixing f it holds that resolution can simulate

(m,O(1))-bounded pebblings in a time- and space-preserving manner.

The whole problem thus boils down to the question whether there are graphs with
(a) asymptotically different properties for black and black-white pebbling for which (b) op-
timal black-white pebblings can be carried out in the bounded labelled pebbling framework.
The answer to this question is positive, and using Lemma 4.4 one can prove that resolution
can be strictly better than black-only pebbling, both for time-space trade-offs and with
respect to space in absolute terms. It turns out that for all known separation results in
the pebbling literature where black-white pebbling does asymptotically better than black-
only pebbling, there are graphs exhibiting these separations for which optimal black-white
pebblings can be simulated by bounded labelled pebblings. This means that resolution
refutations of pebbling contradictions over such DAGs can do asymptotically strictly better
than what is suggested by black-only pebbling, matching the bounds in terms of black-white
pebbling.

More precisely, such results can be obtained for (at least) three families of graphs. The
first family are the so-called bit reversal graphs, for which Lengauer and Tarjan [LT82]
established that black-white pebblings have quadratically better trade-offs than black peb-
blings. More formally, they showed that there are DAGs {Gn}∞n=1 of size Θ(n) with black
pebbling price Peb(Gn) = 3 such that any optimal black pebbling Pn of Gn exhibits a
trade-off time(Pn) = Θ

(
n2/space(Pn) + n

)
but optimal black-white pebblings Pn of Gn

achieve a trade-off time(Pn) = Θ
(
(n/space(Pn))

2 + n
)
.

Theorem 4.5 ([Nor12]). Fix any non-constant Boolean function f and let PebGn
[f] be

pebbling contradictions over the bit reversal graphs Gn of size Θ(n) in [LT82]. Then for
any monotonically nondecreasing function s(n) = O(

√
n) there are resolution refutations

πn of PebGn
[f] in total space O(s(n)) and length O

(
n2/s(n)2

)
, beating the lower bound

Ω
(
n2/s(n)

)
for black-only pebblings of Gn.

Let us next focus on absolute bounds on space rather than time-space trade-offs. Here
the best known separation between black and black-white pebbling for polynomial-size
graphs is the one shown by Wilber [Wil88], who exhibited graphs {G(s)}∞s=1 of size poly-
nomial in s with black-white pebbling price BW-Peb(G(s)) = O(s) and black pebbling
price Peb(G(s)) = Ω(s log s/ log log s). For pebbling formulas over these graphs we do not
know how to beat the black pebbling space bound—we return to this somewhat intriguing

move, so the total number of subconfigurations will be s+1. In a black pebbling every pebble except the one
on the sink is both placed and removed. In a labelled pebbling, a black pebble placement on and removal
from v corresponds to one step for introducing v〈pred(v)〉, at most ℓ steps for merging away all the white
pebbles in pred(v), at most ℓ steps for erasing the intermediate subconfigurations, and one final step when
v〈∅〉 is erased. Since the graph must contain at least one source vertex for which the 2ℓ intermediate steps
above are not needed, the stated time bound follows.
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problem below—but using instead the graphs with essentially the same pebbling properties
constructed in [KS91], we can obtain the desired result.

Theorem 4.6 ([Nor12]). Fix any non-constant Boolean function f and let PebG(s)[f] be

pebbling contradictions over the graphs G(s) in [KS91] with the same pebbling properties
as in [Wil88]. Then there are resolution refutations πn of PebG(s)[f] in total space O(s),

beating the lower bound Ω(s log s/ log log s) for black-only pebbling.

If we remove all restrictions on graph size, there is a quadratic separation of black and
black-white pebbling established by Kalyanasundaram and Schnitger [KS91]. They proved
that there are DAGs {G(s)}∞s=1 of size exp(Θ(s log s)) such that BW-Peb(G(s)) ≤ 3s + 1
but Peb(G(s)) ≥ s2. For pebbling formulas over these graphs, resolution again matches the
black-white pebbling bounds.

Theorem 4.7 ([Nor12]). Fix any non-constant Boolean function f and let PebG(s)[f] be

pebbling contradictions over the graphs G(s) in [KS91] exhibiting a quadratic separation of
black and black-white pebbling. Then there are resolution refutations πn of PebG(s)[f] in

total space O(s), beating the lower bound Ω
(
s2
)
for black-only pebbling.

Note that, in particular, this means that if we want to prove lower bounds on resolution
refutations of pebbling contradictions in terms of pebble games, the best we can hope for in
general are bounds expressed in terms of black-white pebbling and not black-only pebbling.

Also, it should be noted that the best length-space separation that could possibly be
provided by pebbling contradictions are for formulas of size Θ(n) that are refutable in
length O(n) but require clause space Ω(n/ log n). This is so since Hopcroft et al. [HPV77]
showed that any graph of size n with bounded maximal indegree has a black pebbling in
space O(n/ log n). In fact, we can say more than that, namely that if any formula F has
a resolution refutation π in length L, then it can be refuted in clause space O(L/ log L)
(as was mentioned in Section 1.2). To see this, consider the graph representation Gπ of π.
By [HPV77], this graph can be black-pebbled in space O(L/ log L). It is not hard to see
that we can construct another refutation that simulates this pebbling Gπ by keeping exactly
the clauses in memory that correspond to black-pebbled vertices, and that this refutation
will preserve the pebbling space.15

In view of the results above, an intriguing open question is whether resolution can always
simulate black-white pebblings, so that the refutation space of pebbling contradictions is
asymptotically equal to the black-white pebbling price of the underlying graphs.

Open Problem 6 ([Nor12]). Is it true for any DAG G with bounded vertex indegree and
any (fixed) Boolean function f that the pebbling contradiction PebG[f] can be refuted in total
space O(BW-Peb(G))?

More specifically, one could ask—as a natural first line of attack if one wants to in-
vestigate whether the answer to the above question could be yes—if it holds that bounded
labelled pebblings are in fact as powerful as general black-white pebblings. In a sense, this
is asking whether only a very limited form of nondeterminism is sufficient to realize the full
potential of black-white pebbling.

15As a matter of fact, the original definition of the clause space of a resolution refutation in [ET01] was
as the black pebbling price of the graph Gπ , but (the equivalent) Definition 2.2 as introduced by [ABRW02]
has turned out to be more convenient to work with for most purposes.
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Open Problem 7 ([Nor12]). Does it hold that any complete black-white pebbling P of a
single-sink DAG G with bounded vertex indegree can be simulated by a (O(space(P)),O(1))-
bounded pebbling L?

Note that a positive answer to this second question would immediately imply a positive
answer to the first question as well by Lemma 4.4.

We have no strong intuition either way regarding Open Problem 6, but as to Open
Problem 7 it would perhaps be somewhat surprising if bounded labelled pebblings turned
out to be as strong as general black-white pebblings. Interestingly, although the optimal
black-white pebblings of the graphs in [KS91] can be simulated by bounded pebblings, the
same approach does not work for the original graphs separating black-white from black-
only pebbling in [Wil88]. Indeed, these latter graphs might be a candidate graph family
for answering Open Problem 7 in the negative, i.e., showing that standard black-white
pebblings can be asymptotically stronger than bounded labelled pebblings.

4.2. Techniques for Lower Bounds on Resolution Trade-offs. To prove lower bounds
on resolution refutations in terms of pebble games, we need to construct a reduction from
refutations to pebblings. Let us again use formulas PebG[∨2] to illustrate our reasoning.

For black pebbles, we can reuse the ideas above for transforming pebblings into refu-
tations and apply them in the other direction. That is, if the clause v1 ∨ v2 is implied by
the current content of the blackboard, we will let this correspond to a black pebble on v.
A white pebble in a pebbling is a “debt” that has to be paid. It is difficult to see how
any clause could be a liability in the same way and therefore no set of clauses corresponds
naturally to isolated white pebbles. But if we think of white pebbles as assumptions that
allow us to place black pebbles higher up in the DAG, it makes sense to say that if the
content of the blackboard conditionally implies v1 ∨ v2 given that we also assume the set of
clauses {w1 ∨ w2 | w ∈ W} for some vertex set W , then this could be interpreted as a black
pebble on v and white pebbles on the vertices in W .

Using this intuitive correspondence, we can translate sets of clauses in a refutation of
PebG[∨2] into black and white pebbles in G as in Figure 4. To see this, note that if we
assume v1 ∨ v2 and w1 ∨ w2, this assumption together with the clauses on the blackboard
in Figure 4(a) imply y1 ∨ y2, so y should be black-pebbled and v and w white-pebbled in
Figure 4(b). The vertex x is also black since x1 ∨x2 certainly is implied by the blackboard.
This translation from clauses to pebbles is arguably quite straightforward, and furthermore
it seems to yield well-behaved black-white pebblings for all “sensible” resolution refutations
of PebG[∨2]. (What this actually means is that all refutations of pebbling contradictions
that we are able to come up with can be described as simulations of labelled pebblings as
defined in Definition 4.1, and for such refutations the reduction just sketched will essentially
give us back the pebbling we started with.)

The problem, however, is that we have no guarantee that resolution refutations will
be “sensible”. Even though it might seem more or less clear how an optimal refutation of
a pebbling contradiction should proceed, a particular refutation might contain unintuitive
and seemingly non-optimal derivation steps that do not make much sense from a pebble
game perspective. It can happen that clauses are derived which cannot be translated, at
least not in a natural way, to pebbles in the fashion indicated above.

Some of these clauses we can afford to ignore. For example, considering how axiom
clauses can be used in derivations it seems reasonable to expect that a derivation never
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x1 ∨ x2
v1 ∨ w1 ∨ y1 ∨ y2
v1 ∨ w2 ∨ y1 ∨ y2
v2 ∨ w1 ∨ y1 ∨ y2
v2 ∨ w2 ∨ y1 ∨ y2




(a) Clauses on blackboard.

z

x y

u v w

(b) Corresponding pebbles in the graph.

Figure 4: Intuitive translation of clauses to black and white pebbles.




v1 ∨w1 ∨ y1 ∨ z1 ∨ z2
v1 ∨w2 ∨ y1 ∨ z1 ∨ z2
v2 ∨w1 ∨ y1 ∨ z1 ∨ z2
v2 ∨w2 ∨ y1 ∨ z1 ∨ z2




(a) New set of clauses on blackboard.

z

x y

u v w

(b) Corresponding blobs and pebbles.

Figure 5: Intepreting sets of clauses as black blobs and white pebbles.

writes an isolated axiom vi∨wj ∨y1∨y2 on the blackboard. And in fact, if three of the four
axioms for v in Figure 4 are written on the blackboard but the fourth one v2 ∨w2 ∨ y1 ∨ y2
is missing, we will just discard these three clauses and there will be no pebbles on v, w, and
y corresponding to them.

A more dangerous situation is when clauses are derived that are the disjunction of
positive literals from different vertices. For instance, a derivation starting from Figure 4(a)
could add the axioms x1∨y2∨z1∨z2 and x2∨y2∨z1∨z2 to the blackboard, derive that the
truth of v and w implies the truth of either y or z, i.e., the clauses vi ∨wj ∨ y1 ∨ z1 ∨ z2 for
i, j = 1, 2, and then erase x1 ∨ x2 to save space, resulting in the blackboard in Figure 5(a).
As it stands, the content of this blackboard does not correspond to any pebbles under our
tentative translation. However, the clauses can easily be used to derive something that
does. For instance, writing down the axioms xi ∨ yj ∨ z1 ∨ z2, i, j = 1, 2, on the blackboard,
we get that the truth of v, w, and x implies the truth of z. We have decided to interpret
such a set of clauses as a black pebble on z and white pebbles on v, w, and x, but this
pebble configuration cannot arise out of nothing in an empty DAG. Hence, the clauses in
Figure 5(a) have to correspond to some set of pebbles. But what pebbles?

Although it is hard to motivate from such a small example, this turns out to be a very
serious problem. There appears to be no way that we can interpret derivations as the one
described above in terms of black and white pebbles without making some component in
the reduction from resolution to pebbling break down.

So what can we do? Well, if you can’t beat ’em, join ’em! In order to prove their
results, [Nor09a, NH13, BN08] gave up the attempts to translate resolution refutations into
black-white pebblings and instead invented new pebble games (in three different flavours).
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These pebble games are on the one hand somewhat similar to the black-white pebble game,
but on the other hand they have pebbling rules specifically designed so that tricky clause
sets such as that in Figure 5(a) can be interpreted in a satisfying fashion. Once this has been
taken care of, one proceeds with the construction of the proof as outlined in Section 3.1, but
using the modified pebble games instead of standard black-white pebbling. In what follows,
we describe how this is done employing the pebble game defined in [BN08] (though using
the more evocative terminology from [NH13]). The games in [Nor09a, NH13], although
somewhat different on the surface, can also be recast in the framework presented below.

The new pebble game in [BN08] is similar to the one in Definition 4.1, but with a crucial
change in the definition of the “subconfigurations.” There are white pebbles just as before,
but the black pebbles are generalized to blobs that can cover multiple vertices instead of just
a single vertex. A blob on a vertex set V can be thought of as truth of some vertex v ∈ V ,
unknown which. The clauses in Figure 5(a) are consequently translated into white pebbles
on v and w, as before, and a black blob covering both y and z as in Figure 5(b). To parse
the formal definition of the game given next, it might be helpful to study the examples in
Figure 6.

Definition 4.8 (Blob-pebble game [BN08]). If B and W are sets of vertices with B 6= ∅,
B ∩ W = ∅, we say that [B]〈W 〉 is a blob subconfiguration with a black blob on B and white
pebbles on W supporting B. A blob-pebbling of a DAG G with unique sink z is a sequence
P =

{
P0, . . . ,Pτ

}
of blob subconfiguration sets, or blob-pebbling configurations, such that

P0 = ∅, Pτ = {[z]〈∅〉}, and for all t ∈ [τ ], Pt is obtained from Pt−1 by one of the following
rules:

Introduction: Pt = Pt−1 ∪ {[v]〈pred (v)〉}.
Merger: Pt = Pt−1 ∪

{
[B1 ∪ B2]〈W1 ∪ W2〉

}
if there are blob subconfigurations

[B1]〈W1 ∪ {v}〉, [B2 ∪ {v}]〈W2〉 ∈ Pt−1 such that B1 ∩ W2 = ∅.
Inflation: Pt = Pt−1 ∪

{
[B ∪ B′]〈W ∪ W ′〉

}
if [B]〈W〉 ∈ Pt−1 and (B ∪B′)∩ (W ∪ W ′) =

∅.
Erasure: Pt = Pt−1 \

{
[B]〈W〉

}
for [B]〈W〉 ∈ Pt−1.

Let us now return to the proof outline in Section 3.1. The first step in our approach
is to establish that any resolution refutation of a pebbling contradiction can be interpreted
as a pebbling (but now in our modified game) of the DAG in terms of which this pebbling
contradiction is defined. Intuitively, axiom downloads in the refutation will be matched by
introduction moves in the blob-pebbling, erasures correspond to erasures, and seemingly
suboptimal derivation steps can be modelled by inflation moves in the blob-pebbling. In
all three papers [Nor09a, NH13, BN08], the formal definitions are set up so that a theorem
along the following lines can be proven.

Tentative Theorem 4.9. Consider a pebbling contradiction PebG[f] over any DAG G.
Then there is a translation function from sets of clauses over Vars

(
PebG[f]

)
to sets of

black blobs and white pebbles in G that translates any resolution refutation π of PebG[f]
into a blob-pebbling Pπ of G.

The next step is to show pebbling lower bounds. Since the rules in the blob-pebble game
are different from those of the standard black-white pebble game, known bounds on black-
white pebbling price in the literature no longer apply. But again, provided that we have
got the right definitions in place, we hope to be able to establish that the blob-pebblings
can do no better than standard black-white pebblings.
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(a) Empty pyramid. (b) Introduction move.

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

(e) Subconfiguration before inflation. (f) Subconfiguration after inflation.

Figure 6: Examples of moves in the blob-pebble game.

Tentative Theorem 4.10. If there is a blob-pebbling of a DAG G in time τ and space s,
then there is a standard black-white pebbling of G in time O(τ) and space O(s).

Finally, we need to establish that the number of pebbles used in Pπ in Tentative Theo-
rem 4.9 is related to the space of the resolution refutation π. As we know from Section 3.1,
such a bound cannot be true for formulas PebG so this is where we need to do substitutions
with some suitable Boolean function fd over d ≥ 2 variables and study PebG[fd].

Tentative Theorem 4.11. If π is a resolution refutation of a pebbling contradiction
PebG[fd] for some suitable Boolean function fd, then the time and space of the associated
blob-pebbling Pπ of G are upper bounded by π by time(Pπ) = O(L(π)) and space(Pπ) =
O(Sp(π)).



PEBBLE GAMES, PROOF COMPLEXITY, AND TIME-SPACE TRADE-OFFS 35

If we put these three theorems together, it is clear that we can translate pebbling
trade-offs to resolution trade-offs as described in the “theorem template” at the end of
Section 3.1.

There is a catch, however, which is why we have used the label “tentative theorems”
above. It is reasonably straightforward to come up with natural definitions that allow us to
prove Tentative Theorem 4.9. But this in itself does not yield any lower bounds. (Indeed,
there is a natural translation from refutations to pebbling even for PebG, for which we know
that the lower bounds we are after do not hold!) The lower bounds instead follow from the
combination of Tentative Theorems 4.10 and 4.11, but there is a tension between these two
theorems.

The attentive reader might already have noted that two crucial details in Definition 4.8
are missing—we have not defined pebbling time and space for blob-pebblings. And for a
good reason, because this turns out to be where the difficulty lies. On the one hand, we
want the time and space measures for blob-pebblings to be as strong as possible, so that we
can make Tentative Theorem 4.10 hold, saying that blob-pebblings can do no better than
standard pebblings. On the other hand, we do not want the definitions to be too strong,
for if so the bounds we need in Tentative Theorem 4.11 might break down. This turns out
to be the major technical difficulty in the construction

In the papers [Nor09a, NH13], which study formulas PebG[∨2] defined in terms of binary
logical or, we cannot make any connection between pebbling time and refutation length in
Tentative Theorems 4.10 and 4.11, but instead have to focus on only clause space. Also,
the constructions work not for general DAGs but only for binary trees in [Nor09a], and only
for a somewhat more general class of graphs also including pyramids in [NH13]. The reason
for this is that it is hard to charge for black blobs and white pebbles. If we could charge
for all vertices covered by blobs and pebbles, or at least one space unit for every black blob
and every white pebble, we would be in good shape. But it appears hard to do so without
losing the connection to clause space that we want in Tentative Theorem 4.11. Instead, for
formulas PebG[∨2] the best space measure that we can come up with is as follows.

Definition 4.12 (Blob-pebbling price with respect to ∨2). Let P = {[Bi]〈Wi〉 | i = 1, . . . , n}
be a set of blob subconfigurations over some DAG G.

A chargeable black blob collection of P is an ordered subset {B1, . . . , Bm} of black blobs
in P such that for all i ≤ m it holds that Bi \

⋃
j<iBj 6= ∅ (i.e., the unions

⋃
j<iBj are

strictly expanding for i = 1, . . . ,m). We say that such a collection has black cost m.
The set of chargeable white pebbles of a subconfiguration [Bi]〈Wi〉 ∈ P is the subset of

vertices w ∈ Wi that are below all b ∈ Bi (where “below” means that there is a path from
w to b in G). The chargeable white pebble collection of P is the union of all such vertices for
all [Bi]〈Wi〉 ∈ P, and the white cost is the size of this set.

The space of a blob-pebbling configuration P is the largest black cost of a chargeable blob
collection plus the cost of the chargeable white pebble collection, and the space of a blob-
pebbling is the maximal space of any blob-pebbling configuration in it. The blob-pebbling
price Blob-Peb(G) of a DAG G is the minimum space of any complete blob-pebbling of G.

Using the translation of clauses to blobs and pebbles in [BN08] it can be verified that
Tentative Theorem 4.9 as proven in that paper holds also for formulas PebG[∨2]. Moreover,
extending the proof techniques in [Nor09a, NH13] it is also not too hard to show the space



36 J. NORDSTRÖM

bound in Tentative Theorem 4.11.16 But we do not know how to establish the space part
in Tentative Theorem 4.10 for general DAGs. This is the part of the construction where
[Nor09a] works only for binary trees and [NH13] can be made to work also for pyramids
but not for general graphs.

The crucial new idea added in [BN08] to make the approach outlined above work for
general DAGs was to switch formulas from PebG[∨2] to PebG[f] for other functions f such
as for instance binary exclusive or ⊕2. However, while this does make the analysis much
simpler (and stronger), it is not at all clear that the change of formulas should be necessary.
We find it an intriguing question whether the program in Tentative Theorems 4.9, 4.10,
and 4.11 could in fact be carried out for formulas PebG[∨2].

Open Problem 8 ([Nor12]). Is it true for any DAG G that any resolution refutation π
of PebG[∨2] can be translated into a black-white pebbling of G with time and space upper-
bounded in terms of the length and space of π?

In particular, can we translate upper bounds in the blob-pebble game in Definition 4.8
with space defined as in Definition 4.12 to upper bounds for standard black-white pebbling?
(From which clause space lower bounds for PebG[∨2] would immediately follow.)

Our take on the results in [Nor09a, NH13] is that they can be interpreted as indicating
that this should indeed be the case. Although, as noted above, these results apply only to
limited classes of graphs, and only capture space lower bounds and not time-space trade-offs,
the problems arising in the analysis seem to have to do more with artifacts in the proofs
than with any fundamental differences between formulas PebG[∨2] and, say, PebG[⊕2].
We remark that the papers [BN08, BN11] do not shed any light on this question, as the
techniques used there inherently cannot work for formulas defined in terms of (non-exclusive)
logical or.

If Open Problem 8 could be resolved in the positive, this could potentially be useful
for settling the complexity of decision problems for resolution proof space, i.e., the problem
given a CNF formula F and a space bound s to determine whether F has a resolution
refutation in space at most s. Reducing from pebbling space by way of formulas PebG[∨2]
would avoid the blow-up of the gap between upper and lower bounds on pebbling space
that cause problems when using, for instance, exclusive or.

But let us return to the paper [BN08] that resolves the problems identified in [Nor09a,
NH13]. The reason that we gain from switching from formulas PebG[∨2] to, for instance,
formulas PebG[⊕2] is that for the latter formulas we can define a much stronger space
measure for the blob-pebblings. In this case, it turns out that one can in fact charge for
all vertices covered by blobs or pebbles in the blob-pebble game, and then the space bound
in Tentative Theorem 4.11 follows for arbitrary DAGs. In the follow-up work [BN11] this
result was improved to capture not only space but also the connection between pebbling
time and refutation length, thus realizing the full program described in Section 3.1.

In this process, [BN11] also presented a much cleaner way to argue more generally about
how the refutation length and space of a CNF formula F change when we do substitution

16Although it is phrased in very different terms, what is shown in [Nor09a, NH13] is essentially the
somewhat more restricted result that if we charge only for the set of black vertices V such that every v ∈ V

is the unique bottom black vertex in some subconfiguration [B]〈W〉 that have all vertices b ∈ B topologically
ordered (i.e., the blob B is a chain) and only for supporting white pebbles w ∈ W that are located below
their bottom black vertex in such subconfigurations, then the space bound in Tentative Theorem 4.11. holds.
The proofs in [Nor09a, NH13] extend to the more general definition of blob-pebbling space in Definition 4.12,
however.
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with some Boolean function f to obtain F [f]. Since we believe that this is an interesting
result in its own right, we give an exposition of it in Section 5. Before doing so, we want to
conclude the current discussion by giving some examples from [BN08, BN11] of the kind of
results obtained by these techniques.

4.3. Statement of Space Lower Bounds and Length-Space Trade-offs. Regarding
the question of the relationship between length and space in resolution, [BN08] showed
that in contrast to the tight relation between length versus width, length and space are as
uncorrelated as they can possibly be.

Theorem 4.13 (Length-space separation for resolution [BN08]). There exist explicitly con-
structible families of k-CNF formulas {Fn}∞n=1 of size Θ(n) that can be refuted in resolution
in length O(n) and width O(1) simultaneously, but for which any resolution refutation must
have clause space Ω(n/ log n).

An extension of this theorem to k-DNF resolution in [BN11] showed that this family of
proof systems does indeed form a strict hierarchy with respect to space.

Theorem 4.14 (k-DNF resolution space hierarchy [BN11]). For every k ≥ 1 there exists
an explicitly constructible family {Fn}∞n=1 of CNF formulas of size Θ(n) and width O(1)
such that there are R(k + 1)-refutations πn : Fn ⊢⊥ in simultaneous length L(πn) = O(n)
and formula space Sp(πn) = O(1), but any R(k)-refutation of Fn requires formula space

Ω
(

k+1
√

n/ log n
)
. The constants hidden by the asymptotic notation depend only on k.

The formula families {Fn}∞n=1 in Theorems 4.13 and 4.14 are obtained by considering
pebbling formulas defined in terms of the graphs in [GT78] requiring black-white pebbling
space Θ(n/ log n), and substituting a k-non-authoritarian Boolean function f of arity k+1,
for instance XOR over k + 1 variables, in these formulas.

The above theorems give absolute lower bounds on space for resolution and R(k).
Applying the techniques in [BN11] we can also derive length-space trade-offs for these proof
systems. In fact, we can obtain a multitude of such trade-offs, since for any graph family
with tight dual trade-offs for black and black-white pebbling, or for which black-white
pebblings can be cast in the framework of Section 4.1 and simulated by resolution, we can
obtain a corresponding trade-off for resolution-based proof systems. Since a full catalogue
listing all of these trade-off results would be completely unreadable, we try to focus on some
of the more salient examples below.

From the point of view of space complexity, the easiest formulas are those refutable in
constant total space, i.e., formulas having so simple a structure that there are resolution
refutations where we never need to keep more than a constant number of symbols on the
proof blackboard. A priori, it is not even clear whether we should expect that any trade-
off phenomena could occur for such formulas, but it turns out that there are quadratic
length-space trade-offs.

Theorem 4.15 (Quadratic trade-offs for constant space [BN11]). For any fixed positive
integer K there are explicitly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width
O(1) such that the following holds (where all multiplicative constants hidden in the asymp-
totic notation depend only on K):

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ⊢⊥) =
O(1).
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• For any monotone function shi(n) = O
(√

n
)
there are syntactic resolution refutations

πn of Fn in simultaneous length L(πn) = O
(
(n/shi(n))

2
)
and total space TotSp(πn) =

O(shi(n)).
• For any semantic resolution refutation πn : Fn ⊢⊥ in clause space Sp(πn) ≤ shi(n) it
holds that L(πn) = Ω

(
(n/shi(n))

2
)
.

• For any k ≤ K, any semantic k-DNF resolution refutation πn of Fn in formula space

Sp(πn) ≤ shi(n) must have length L(πn) = Ω
((

n/shi(n)
k+1

)2)
. In particular, any se-

mantic constant-space R(k)-refutation must also have quadratic length.

Theorem 4.15 follows by combining the techniques to be discussed in Section 5 with the
seminal work on pebbling trade-offs by Lengauer and Tarjan [LT82] and the structural
results on simulations of black-white pebblings by resolution in Theorem 4.5.

Remark 4.16. Notice that the trade-off applies to both formula space—i.e., clause space
for R(1)—and total space. This is because the upper bound is stated in terms of the larger
of these two measures (total space) while the lower bound is in terms of the smaller one
(formula space). Note also that the upper bounds hold for the usual, syntactic versions of
the proof systems, whereas the lower bounds hold for the much stronger semantic systems,
and that for standard resolution the upper and lower bounds are tight up to constant factors.
These properties hold for all trade-offs stated below. Finally, we remark that we have to
pick some arbitrary but fixed limit K for the size of the terms when stating the results for
k-DNF resolution, since for any family of formulas we consider there will be very length-
and space-efficient R(k)-refutation refutations if we allow terms of unbounded size.

Our next example is based on the pebbling trade-off result in [Nor12], building on
earlier work by Carlson and Savage [CS80, CS82]. Using this new result, we can derive
among other things the rather striking statement that for any arbitrarily slowly growing non-
constant function, there are explicit formulas of such (arbitrarily small) space complexity
that nevertheless exhibit superpolynomial length-space trade-offs.

Theorem 4.17 (Superpolynomial trade-offs for arbitrarily slowly growing space [BN11]).
Let slo(n) = ω(1) be any arbitrarily slowly growing function17 and fix any ǫ > 0 and positive
integer K. Then there are explicitly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and
width O(1) such that the following holds:

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ⊢⊥) =
O(slo(n)).

• There are syntactic resolution refutations πn of Fn in simultaneous length L(πn) = O(n)

and total space TotSp(πn) = O
((

n/slo(n)
2
)1/3)

.

• Any semantic resolution refutation of Fn in clause space O
((

n/slo(n)
2
)1/3−ǫ

)
must have

superpolynomial length.
• For any k ≤ K, any semantic k-DNF resolution refutation of Fn in formula space

O
((

n/slo(n)
2
)1/(3(k+1))−ǫ

)
must have superpolynomial length.

All multiplicative constants hidden in the asymptotic notation depend only on K, ǫ and slo.

17For technical reasons, we also assume that slo(n) = O
(

n1/7
)

, i.e., that slo(n) does not grow too quickly.
This restriction is inconsequential since for faster-growing functions the trade-off results presented below
yield much stronger bounds.
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Observe the robust nature of this trade-off, which is displayed by the long range of space
complexity in standard resolution, from ω(1) up to ≈ n1/3, which requires superpolynomial
length. Note also that the trade-off result for standard resolution is very nearly tight in the
sense that the superpolynomial lower bound on length in terms of space reaches up to very
close to where the linear upper bound kicks in.

The two theorems above focus on trade-offs for formulas of low space complexity, and the
lower bounds on length obtained in the trade-offs are somewhat weak—the superpolynomial
growth in Theorem 4.17 is something like nslo(n). We next present a theorem that has both a
stronger superpolynomial length lower bounds than Theorem 4.17 and an even more robust
trade-off covering a wider (although non-overlapping) space interval. This theorem again
follows by applying our tools to the pebbling trade-offs in [LT82].

Theorem 4.18 (Robust superpolynomial trade-off for medium space [BN11]). For any
positive integer K, there are explicitly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and
width O(1) such that the following holds (where the hidden constants depend only on K):

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ⊢⊥) =
O(log2 n).

• There are syntactic resolution refutations of Fn in length O(n) and total space O(n/ log n).
• Any semantic resolution refutation of Fn in clause space Sp(πn) = o(n/ log n) must have

length L(πn) = nΩ(log logn).
• For any k ≤ K, any semantic k-DNF resolution refutation of Fn in formula space
Sp(πn) = o

(
(n/ log n)1/(k+1)

)
must have length L(πn) = nΩ(log logn).

Having presented trade-off results in the low-space and medium-space range, we conclude
by presenting a result at the other end of the space spectrum. Namely, appealing one last
time to yet another result in [LT82], we can deduce that there are formulas of nearly linear
space complexity (recall that any formula is refutable in linear formula space) that exhibit
not only superpolynomial but even exponential trade-offs.

We state this final theorem for standard resolution only since it is not clear whether
it makes sense for R(k). That is, we can certainly derive formal trade-off bounds in terms
of the (k + 1)st square root as in the theorems above, but we do not know whether there
actually exist R(k)-refutation in sufficiently small space so that the trade-offs apply. Hence,
such trade-off claims for R(k), although impressive-looking, might simply be vacuous. It is
possible to obtain other exponential trade-offs for R(k) but they are not quite as strong as
the result below for resolution. We refer to [BN11] for the details.

Theorem 4.19 (Exponential trade-offs for nearly-linear space [BN11]). Let κ be any suf-
ficiently large constant. Then there are CNF formulas Fn of size Θ(n) and width O(1) and
a constant κ′ ≪ κ such that:

• The formulas Fn have syntactic resolution refutations in total space κ′ · n/ log n.
• Fn is also refutable in syntactic resolution in length O(n) and total space O(n) simulta-
neously.

• However, any semantic refutation of Fn in clause space at most κ · n/ log n has length

exp
(
nΩ(1)

)
.

To get a feeling for this last trade-off result, note again that the lower bound holds for proof
systems with arbitrarily strong derivation rules, as long as they operate with disjunctive
clauses. In particular, it holds for proof systems that can in one step derive anything
that is semantically implied by the current content of the blackboard. Recall that such a



40 J. NORDSTRÖM

proof system can refute any unsatisfiable CNF formula F with n clauses in length n + 1
simply by writing down all clauses of F on the blackboard and then concluding, in one single
derivation step, the contradictory empty clause implied by F . In Theorem 4.19 the semantic
resolution proof system has space nearly sufficient for such an ultra-short refutation of the
whole formula. But even so, when we feed this proof system the formulas Fn and restrict it
to having at most O(n/ log n) clauses on the blackboard at any one given time, it will have
to keep going for an exponential number of steps before it is finished.

5. Deriving Time-Space Trade-offs via the Substitution Theorem

A paradigm that has turned out to be useful in many contexts in proof complexity is to take
a CNF formula family {Fn}∞n=1 with interesting properties, tweak it by substituting some
function f(x1, . . . , xd) for each variable x, and then use this new formula family to prove the
desired result. Although this approach often is not made explicit in the respective papers,
most of the results reviewed in Sections 3 and 4 can be viewed as applying variations on
this theme to pebbling formulas.

Another example of this approach is the observation by Alekhnovich and Razborov,
referenced (and used) in [Ben09, BP07], that if we take a CNF formula F and apply
substitution with binary exclusive or ⊕2, then the length of refuting the substituted for-
mula F [⊕2] in resolution is exponential in the refutation width of the original formula, i.e.,
L(F [⊕2] ⊢⊥) = exp

(
Ω(W(F ⊢⊥))

)
. The proof is by applying a random restriction to the

variables of F [⊕2] by picking one variable xi from each pair x1, x2 and setting this variable
to a random value. This restriction gives us back the original formula F (possibly after
flipping polarity of literals), and also eliminates all wide clauses in a refutation with high
probability. Since restrictions preserve resolution refutations, we can conclude that if there
is no narrow refutation of F , then there cannot be a short refutation of F [⊕2].

If we take a closer look at the space lower bounds and length-space trade-offs for substi-
tuted pebbling contradictions in Section 4.3, it turns out that the only fact we need about
the pebbling formulas is that they have linear-length proofs in small width but that there
is a weak trade-off between length and variable space. The rest of the argument can be
seen to be totally oblivious to the fact that we are dealing with pebbling formulas. The
only property we use for these formulas is the trade-off between length and variable space,
and that substitution with the right function f can be used to lift these trade-offs to length
versus the much stronger measure clause space.

In this section, we want to give a clean exposition of how substitution in CNF formulas
can be used to amplify length-space trade-offs for resolution-based proof systems. We believe
that these results are interesting in their own right, and that they can potentially open the
way for similar results for even stronger proof systems.

5.1. Preserving Upper Bounds for Substituted Formulas. If we want to use sub-
stitution to prove tight trade-offs, we need to show that the substituted formulas become
harder but not too hard, since we want to be able to establish matching upper bounds. It
is straightforward to show that if F is easy for resolution, then any substitution formula
F [f] is also easy in the following sense.

Lemma 5.1 ([BN11]). Suppose that F is an unsatisfiable CNF formula and that f is a
non-constant Boolean function of arity d. If there is a resolution refutation π of F in length
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L(π) = L, clause space Sp(π) = s, and width W(π) = w, then there is also a resolution
refutation πf of F [f] in length L

(
πf

)
= L·exp(O(dw)), clause space Sp

(
πf

)
= s·exp(O(dw)),

and width W
(
πf

)
= O(dw).

In particular, if the refutation π : F ⊢⊥ has constant width, then it is possible to refute
F [f] with only a constant factor blow-up in length and space as compared to π (where
this constant depends on W(π) and f). Of course, the same holds for any sequential proof
system P that can simulate resolution proofs efficiently line by line, such as, for instance,
cutting planes or polynomial calculus resolution.

The upper bounds for F [f] in Lemma 5.1 are not hard to show. Briefly, the proof is
as follows. Given a resolution refutation π of F , we construct a refutation πf : F [f]⊢⊥
mimicking the derivation steps in π. When π downloads an axiom C, we download all the
axiom clauses in C[f], which is a set of at most exp

(
O(d ·W(C))

)
clauses. When π resolves

C1∨x and C2∨x to derive C1∨C2, we use the fact that resolution is implicationally complete
to derive (C1 ∨ C2)[f] from (C1 ∨ x)[f] and (C2 ∨ x)[f] in at most exp

(
O(d ·W(C1 ∨ C2))

)

steps. When a clause C is erased in π, we erase all clauses C[f] in πf . We refer to [BN11]
for the formal details.

A more interesting question is under which circumstances moderate hardness results
for F can be amplified to stronger hardness results for F [f]. In what follows, we will
describe a general framework in which weak space lower bounds and length-space trade-offs
for resolution can be lifted to strong lower bounds and trade-offs for resolution or even
more powerful proof systems. This framework is just a straightforward generalization and
unification of what was done in [BN11], but we believe that the more general language below
helps us to uncover the essence of the argument and makes it easier to see the potential for
(as well as the problems with) strengthening the results in [BN11] even further.

5.2. Projections. The idea behind our approach is as follows: Start with a CNF for-
mula F which has some nice properties for resolution. Consider now some proof system P
(which might be resolution, or some other, stronger system) and study the substitution
formula F [f], where we have chosen f to have the right properties with respect to P. Let
πf be any P-refutation of F [f]. Intuitively, we want to argue that the best thing P can do
is to mimic a resolution refutation π of F as described in the proof sketch for Lemma 5.1
above. We then observe that in such simulations of resolution refutations of F , the weak
lower bounds for F are blown up to strong lower bounds for F [f].

Formally speaking, we cannot really hope to prove this, since it is hard to place re-
strictions on what P might or might not do when refuting F [f]. However, what we can
do is to argue that whatever a P-refutation πf of F [f] looks like, we can extract from
this πf a resolution refutation π of F . Our way of doing this is to define projections of arbi-

trary Boolean function over Varsd(V ) to clauses over V , and to show that such projections
translate P-refutations to resolution refutations.

Roughly, our intuition for projections is that if, for instance, a P-configuration D implies
f(~x) ∨ ¬f(~y), then this should project the clause x ∨ y. It will be useful for us, however,
to relax this requirement a bit and allow other definitions of projections as well as long
as they are “in the same spirit.” We specify next which formal properties a projection
must satisfy for our approach to work. For this definition, it will be convenient to have a
compact notation for evaluating either f or the complement of f. Extending our notation
for literals, where x1 = x and x0 = ¬x, we define f1(~x) = f(~x) and f0(~x) = ¬f(~x). Also for
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compactness, in what follows below we will sometimes write xν ∈ C instead of xν ∈ Lit(C)
for a literal xν occuring in a clause C.

Definition 5.2 (Semantic projection). Let f : {0, 1}d → {0, 1} be a fixed Boolean function.
Let P be a sequential proof system, and let D denote arbitrary sets of Boolean functions
over Varsd(V ) of the form specified by P. Let C denote arbitrary sets of disjunctive clauses
over V . Then the function projf mapping set of Boolean functions D to clauses C is a
semantic f-projection, or in what follows just an f-projection for short, if it is:

Complete: If D �
∨

xν∈C f ν(~x) then the clause C either is in projf(D) or is derivable from
projf(D) by weakening.

Nontrivial: If D = ∅, then projf(D) = ∅.
Monotone: If D′ � D and C ∈ projf(D), then either C ∈ projf(D

′) or C is derivable from
projf(D

′) by weakening.
Incrementally sound: Let A be a clause over V and let LA be the encoding of some clause

in A[f] as a Boolean function of the type prescribed by P. Then if C ∈ projf(D ∪ {LA}),
it holds for all literals a ∈ Lit(A) \ Lit(C) that the clause a ∨ C either is in projf(D) or
can be derived from projf(D) by weakening.

In what follows, for conciseness we will use the phrase that some clause C “can be derived
from projf(D) by weakening” to mean that there is some clause C ′ ⊆ C such that C ′ ∈
projf(D), i.e., to cover both cases that C ∈ projf(D) or that the clause is derivable by
weakening of some other clause in projf(D).

A special kind of projections are those that look not only on all of D “globally,” but
measure the semantic content of D more precisely.

Definition 5.3 (Local projection). If projf is an f-projection, then its localized version

projLf is defined to be projLf (D) =
⋃

D′⊆D projf(D
′). If projf = projLf , we say that projf is a

local projection.

It is easily verified that the localized version of a projection is indeed itself a projection
in the sense of Definition 5.2.

In order for our approach outlined above to work, the most important property of a
projection is that it should somehow preserve space when going from the proof system P
to resolution.

Definition 5.4 (Space-faithful projection). Consider a sequential proof system P with
space measure Sp(·). Let f : {0, 1}d → {0, 1} be a fixed Boolean function, and suppose that
projf is an f-projection. Then we say that projf is space-faithful of degree K with respect
to P if there is a polynomial Q of degree at mostK such that for any set of Boolean functions
D over Varsd(V ) on the form prescribed by P, it holds that Q(Sp(D)) ≥

∣∣Vars(projf(D))
∣∣.

We say that projf is linearly space-faithful if Q has degree 1, and that projf is exactly
space-faithful if we can choose Q(x) = x.

The way Definition 5.4 should be understood is that the smaller the degree, the tighter
the reduction between the proof system P and resolution will be.

5.3. The Substitution Theorem and Trade-off Lower Bounds. We now show that
if we can design a projection in accordance with Definition 5.2, then this projection can
be used to extract resolution refutations from refutations in sequential implicational proof
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systems P (as defined at the beginning of Section 2.2). Furthermore, if our projection is
space-faithful, this extraction operation will preserve length-space trade-off (with some loss
in parameters depending on how high the degree K is).

Lemma 5.5. Let P be a sequential implicational proof system and let f : {0, 1}d → {0, 1}
be a Boolean function, and suppose that projf is an f-projection. Then for any CNF for-
mula F it holds that if πf = {D0,D1, . . . ,Dτ} is a semantic P-refutation of the substitution
formula F [f], the sequence of sets of projected clauses

{
projf(D0), projf(D1), . . . , projf(Dτ )

}

forms the “backbone” of a resolution refutation π of F in the following sense:

(1) projf(D0) = ∅.
(2) ⊥ ∈ projf(Dτ ).
(3) All transitions from projf(Dt−1) to projf(Dt) for t ∈ [τ ] can be accomplished in syntactic

resolution in such a fashion that VarSp(π) = O
(
maxD∈πf

{VarSp(projf(D))}
)
, or, if

projf is a local projection, so that VarSp(π) ≤ maxD∈πf
{VarSp(projf(D))}.

(4) The length of π is upper-bounded by πf in the sense that the only time π performs a
download of an axiom C ∈ F is when πf downloads some axiom D ∈ C[f] from F [f].

On the one hand, Lemma 5.5 is very strong in the sense that even semantic P-refutations
can be translated to syntactic resolution refutations. On the other hand, it would have been
nice if the bound in part 4 of Lemma 5.5 could have been made into a true upper bound in
terms of the length of πf , but it is easy to see that this is not possible. The reason for this
is precisely that the P-proof refuting F [f] is allowed to use any arbitrarily strong semantic
inference rules, and this can lead to exponential savings compared to syntactic resolution.
For a concrete example, just let F be an encoding of the pigeonhole principle and let πf
be the refutation that downloads all axioms of F [f] and then derives contradiction in one
step. An interesting question is whether it would be possible to circumvent this problem
by modifying Definition 5.2 to some kind of “syntactic” projection instead, but we do not
know if and how this can be done. Also, it is not clear that it would help much—for the
applications we have in mind the bound in terms of axiom downloads is enough, and allows
us to obtain stronger bounds that hold not only for syntactic but even semantic P-proofs.

Before proving Lemma 5.5 let us see how it can be used to prove trade-offs provided
that we can construct space-faithful projections.

Theorem 5.6. Let P be a sequential proof system with space measure Sp(·). Suppose
f : {0, 1}d → {0, 1} is a Boolean function such that there exists an f-projection which is
space-faithful of degree K with respect to P. Then if F is any unsatisfiable CNF formula
and πf is any semantic P-refutation of the substitution formula F [f], there is a resolution
refutation π of F such that:

• The length of π is upper-bounded by πf in the sense that π makes at most as many axiom
downloads as πf.

• The space of π is upper-bounded by πf in the sense that VarSp(π) = O
(
Sp(πf)

K
)
.

In particular, if there is no syntactic resolution refutation of F in variable space O(s) making
O(L) axiom downloads, then there is no semantic P-refutation of F [f] in simultaneous
length O(L) and P-space O

(
K
√
s
)
.

Proof of Theorem 5.6. Let πf be a semantic P-refutation of F [f], and let π be the resolution
refutation we obtain by applying the the projection projf on πf as in Lemma 5.5. By
part 4 of Lemma 5.5 we know that π makes at most as many axiom downloads as πf .
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By part 3 of the lemma we have VarSp(π) = O
(
maxD∈πf

{VarSp(projf(D))}
)
. Fix some

P-configuration D maximizing the right-hand side of this expression. For this D we have
VarSp(projf(D)) = O

(
Sp(D)K

)
= O

(
Sp(πf)

K
)
according to Definition 5.4. The theorem

follows.

Clearly, the key to the proof of Theorem 5.6 is the claim that projections translate
P-refutations to resolution refutations. Let us substantiate this claim.

Proof of Lemma 5.5. Fix any sequential proof system P, any f-projection projf , and any
CNF formula F . Recall that we want to show that if πf = {D0,D1, . . . ,Dτ} is a seman-
tic P-refutation of the substitution formula F [f], then the sequence of projected clause
sets

{
projf(D0), projf(D1), . . . , projf(Dτ )

}
is essentially a resolution refutation π except for

some details that we might have to fill in when going from projf(Dt−1) to projf(Dt) in the
derivation.

Parts 1 and 2 of Lemma 5.5 are immediate from the definition of projection, since we
have projf(D0) = projf(∅) = ∅ by nontriviality and ⊥ ∈ projf(Dτ ) by completeness (note
that Dτ � ⊥ =

∨
xν∈⊥ f ν(~x) and the empty clause clearly cannot be derived by weakening).

We want to show that a resolution refutation of F can get from projf(Dt−1) to projf(Dt)
as claimed in part 3 of the lemma. For brevity, let us write Ci = projf(Di) for all i, and
consider the possible derivation steps at time t.

Inference: Suppose Dt = Dt−1 ∪ {Lt} for some Lt inferred from Dt−1. Since P is sound
we have Dt−1 � Dt, and since the projection is monotone by definition we can conclude that
all clauses in Ct \ Ct−1 are derivable from Ct−1 by weakening. We go from Ct−1 to Ct in
three steps. First, we erase all clauses C ∈ Ct−1 for which there are no clauses C ′ ∈ Ct

such that C ⊆ C ′. Then, we derive all clauses in Ct \ Ct−1 by weakening, noting that all
clauses needed for weakening steps are still in the configuration. Finally, we erase the rest
of Ct \Ct−1. At all times during this transition from Ct−1 to Ct−1, the variable space of the
intermediate clause configurations is upper-bounded by max{VarSp(Ct−1),VarSp(Ct)}.

Erasure: Suppose Dt = Dt−1 \ {Lt−1} for some Lt−1 ∈ Dt−1. Again we have that
Dt−1 � Dt, and we can appeal to the monotonicity of the projection and proceed exactly as
in the case of an inference above.

Axiom download: So far, the only derivation rules used in the resolution refutation π
that we are constructing are weakening and erasure, which clearly does not help π to make
much progress towards proving a contradiction. Also, the only properties of the f-projec-
tion that we have used are completeness, nontriviality, and monotonicity. Note, however,
that a “projection” that sends ∅ to ∅ and all other configurations to {⊥} also satisfies these
conditions. Hence, the axiom downloads are where we must expect the action to take place,
and we can also expect that we will have to make crucial use of the incremental soundness
of the projection.

Assume that Dt = Dt−1 ∪ {LA} for a function LA encoding some clause from the
substitution clause set A[f] corresponding to an axiom A ∈ F . We want to show that
all clauses in Ct \ Ct−1 can be derived in π by downloading A, resolving (and possibly
weakening) clauses, and then perhaps erasing A, and that all this can be done without the
variable space exceeding VarSp(Ct−1 ∪ Ct) ≤ VarSp(Ct−1) + VarSp(Ct).

We already know how to derive clauses by weakening, so consider a clause C ∈ Ct\Ct−1

that cannot be derived by weakening from Ct−1. By the incremental soundness of the
projection, it holds for all literals a ∈ Lit(A) \Lit(C) that the clauses a∨C can be derived
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from Ct−1 by weakening. Once we have these clauses, we can resolve them one by one with
A to derive C.

Some care is needed, though, to argue that we can stay within the variable space
bound VarSp(Ct−1) + VarSp(Ct). Observe that what was just said implies that for all
a ∈ Lit(A) \ Lit(C) there are clauses a ∨ Ca ∈ Ct−1 with Ca ⊆ C. In particular, we have
a ∈ Lit(Ct−1) for all a ∈ Lit(A) \ Lit(C). This is so since by the incremental soundness
there must exist some clause C ′ ∈ Ct−1 such that a∨C is derivable by weakening from C ′,
and if a /∈ Lit(C ′) we would have that C is derivable by weakening from C ′ as well, contrary
to assumption. Note furthermore that if the projection is local, then a∨Ca ∈ Ct−1 implies
that a∨Ca ∈ Ct as well, since no clauses can disappear from the projection when enlarging
Dt−1 to Dt. Thus, for local projections we have VarSp(Ct−1 ∪ {A}) ⊆ VarSp(Ct).

If it happens that all clauses in Ct \Ct−1 can be derived by weakening, we act as in the
cases of inference and erasure above. Otherwise, to make the transition from Ct−1 to Ct in
a space-efficient fashion we proceed as follows.

(1) Download the axiom clause A.
(2) Infer all clauses in Ct \ Ct−1 that can be derived by weakening from Ct−1 ∪ {A}.
(3) For all remaining clauses C ∈ Ct \Ct−1, derive a∨C for all literals a ∈ Lit(A) \Lit(C)

and then resolve these clauses with A to obtain C.
(4) Erase all clauses in the current configuration that are not present in Ct, possibly in-

cluding A.

Since it follows from what was argued above that Vars(A) ⊆ Vars(Ct−1 ∪ Ct), all the vari-
ables in all the intermediate configurations above will be contained in this set, meaning that
the variable space never exceeds VarSp(Ct−1) +VarSp(Ct). If in addition the projection is
local, then VarSp(Ct−1 ∪ {A}) ⊆ VarSp(Ct) and the variable space increases monotonically
from Ct−1 to Ct.

Wrapping up the proof, we have shown that no matter what P-derivation step is
made in the transition Dt−1  Dt, it is possible to perform the corresponding transition
Ct−1  Ct for our projected clause sets in resolution without the variable space going above
VarSp(Ct−1) + VarSp(Ct) (or even above VarSp(Ct) for local projections). Also, the only
time we need to download an axiom A ∈ F in our projected refutation π of F is when πf
downloads some axiom from A[fd]. The lemma follows.

5.4. Resolution and k-DNF Resolution Have Space-Faithful Projections. Let us
recall again what Theorem 5.6 says. Suppose we have a family of CNF formulas with lower
bounds for refutation variable space in resolution, or with trade-offs between refutation
length and refutation variable space18 (such as for instance pebbling contradictions over
suitable graphs). Then we can lift these lower bounds and trade-offs to stronger measures
in a potentially stronger proof system P, provided that we can find a Boolean function
f : {0, 1}d → {0, 1} and an f-projection projf that is space-faithful with respect to P.

Thus, at this point we can in principle forget everything about proof complexity. If we
want to prove space lower bounds or time-space trade-offs for a proof system P, we can focus
on studying Boolean functions of the form used by P and trying to devise space-faithful
projections for such functions. Below, we describe how this can be done for resolution and
R(k)-systems.

18Or, strictly speaking, between the number of axiom downloads and variable space.
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Definition 5.7 (Precise implication [BN11]). Let f be a Boolean function of arity d, let D
be a set of Boolean functions over Varsd(V ), and let C be a disjunctive clause over V . If

D �
∨

xν∈C

f ν(~x) (5.1a)

but for all strict subclauses C ′ $ C it holds that

D 2
∨

xν∈C′

f ν(~x) , (5.1b)

we say that the clause set D implies
∨

xν∈C f ν(~x) precisely and write

D ⊲
∨

xν∈C

f ν(~x) . (5.2)

Definition 5.8 (Resolution projection). Let f denote a Boolean function of arity d and let
D be any set of Boolean functions over Varsd(V ). Then we define

Rprojf(D) = {C | D ⊲
∨

xν∈C

f ν(~x)} (5.3)

to be the resolution projection of D. Also, we define RprojLf (D) =
⋃

D′⊆DRprojf(D
′) to be

the local resolution projection of D.

Lemma 5.9. The mapping Rprojf is an f-projection (for any sequential proof system P).

Proof. Suppose D �
∨

xν∈C f ν(~x). Then we can remove literals from C one by one until
we have some minimal clause C ′ ⊆ C such that no more literal can be removed if the
implication is to hold, and this clause C ′ is projected by D according to the definition. This
proves both completeness and monotonicity for Rprojf . Nontriviality is obvious.

For the incremental soundness, if C ∈ Rprojf(D ∪ {LA}) for an encoding LA of some
clause in A[f], then this means, in particular, that D ∪ {LA} �

∨
xν∈C f ν(~x). Consider any

truth value assignment α such that α(D) = 1 but α
(∨

xν∈C f ν(~x)
)
= 0. By assumption,

α(LA) = 0. But this means that for all literals yµ ∈ Lit(A) we have α
(
f1−µ(~y)

)
= 1. Since

this holds for any α, it follows for all yµ ∈ Lit(A) that D �
∨

xν∈(y1−µ∨C) f
ν(~x), and we

conclude by the completeness of the projection that the clause y1−µ ∨ C is derivable by
weakening from Rprojf(D).

With this projection, and using Theorem 5.6, the main technical result in [BN11] can
now be rephrased as follows, where we recall the notion of non-authoritarian functions from
Definition 2.13.

Theorem 5.10 ([BN11]). If f is a non-authoritarian Boolean function, then the projection
RprojLf is exactly space-faithful with respect to the resolution proof system.

This result was later extended to k-DNF resolution, although with slightly worse pa-
rameters.

Theorem 5.11 ([BN11]). If f is a (k + 1)-non-authoritarian function (for some fixed k),
then the projection Rprojf is space-faithful of degree k+1 with respect to k-DNF resolution.

It has subsequently been shown that the loss in the parameters in Theorem 5.11 as
compared to Theorem 5.10 is necessary, except perhaps for an additive constant 1 in the
degree.
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Theorem 5.12 ([NR11]). If f is the exclusive or of k + 1 variables, then the projection
Rprojf cannot be space-faithful with respect to k-DNF resolution for any degree K < k.

As an aside, it can be noted that Theorem 5.10 uses the local version of the projection,
whereas Theorem 5.11 uses the non-local definition. Theorem 5.10 can be made to work with
either variant (if we are willing to settle for a projection that is just linearly space-faithful
instead of exactly space-faithful), but for technical reasons the proof of Theorem 5.11 only
seems to work with the “global” version of the projection.

Although this might not be immediately obvious, Theorems 5.10 and 5.11 are remark-
ably powerful tools for understanding space in resolution-based proof systems. All the
trade-off lower bounds in Section 4 can be derived as immediate consequences of these
two theorems. Another interesting corollary of Theorem 5.10 is that that it yields optimal
lower bounds on clause space for resolution. Recall that Esteban and Torán [ET01] proved
that the clause space of refuting F is upper-bounded by the formula size. In the papers
[ABRW02, BG03, ET01] it was shown, using quite elaborate arguments, that there are
polynomial-size k-CNF formulas with lower bounds on clause space matching this upper
bound up to constant factors. Using Theorem 5.10 we can get a different and much shorter
proof of this fact.

Corollary 5.13 ([ABRW02, BG03, ET01]). There are families of k-CNF formulas {F}∞n=1

with Θ(n) clauses over Θ(n) variables such that SpR(Fn ⊢⊥) = Θ(n).

Proof. Just pick any formula family for which it is shown that any refutation of Fn must at
some point in the refutation mention Ω(n) variables at the same time (for example, from
[BW01]), and then apply Theorem 5.10 to, say, Fn[⊕2].

It should be noted, though, that to derive these linear lower bounds we have to change
the formula families by substitution, whereas the papers [ABRW02, BG03, ET01] prove
their lower bounds for the original formulas. Moreover, there is another, and even more
elegant way to derive Corollary 5.13 from [BW01] without changing the formulas, namely
by using the lower bound on clause space in terms of width in [AD08].

As we indicated above, we believe that this projection framework can potentially be
extended to other proof systems than resolution and R(k). In particular, it would be very
interesting to see if one could prove lower bounds for cutting planes, polynomial calculus,
or polynomial calculus resolution in this way. However, to do so another projection (in the
sense of Definition 5.2) than the one in Definition 5.8 would be needed. We conclude this
section by sketching the proofs of Theorems 5.10 and 5.11, and then explaining why the
same approach will not work for CP, PC, or PCR.

Proof sketch for Theorem 5.10. In the case of resolution, the set of Boolean functions D
just consists of disjunctive clauses over Varsd(V ). Fix some clause set D and let V ∗ =
Vars

(
RprojLf (D)

)
. What we want to prove is that |D| ≥ |V ∗|.

To this end, consider the bipartite graph with the vertices on the left labelled by clauses
D ∈ D and the vertices on the right labelled by variables x ∈ V ∗. We draw an edge between
D and x if some variable xi belonging to x appears in D. Let N(D′) denote the neighbours
on the right of a clause set D′. We claim without proof that N(D) = V ∗, i.e., that all x ∈ V ∗

have incoming edges from D (this follows from the condition (5.1b) in Definition 5.7).
Pick some D1 ⊆ D of maximal size (possibly empty) with a set of neighbours V ∗

1 =
N(D1) such that |D1| ≥ |V ∗

1 |. If D1 = D we are done, so let us suppose D1 6= D and argue
by contradiction. Let D2 = D \ D1 6= ∅ and V ∗

2 = V ∗ \ V ∗
1 . For all D′ ⊆ D2 we must have
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|D′| ≤ |N(D′) \ V ∗
1 | = |N(D′) ∩ V ∗

2 |, since otherwise D1 would not have been chosen of
maximal size. This in turns implies by Hall’s theorem that there is a matching M from D2

into V ∗
2 .

Consider some clause C ∈ RprojLf (D) such that D1 is “too weak” to project C (we are

fudging some details here again, but nothing important). Let Ci be the part of C that
mentions variables from V ∗

i for i = 1, 2. Then by Definitions 5.7 and 5.8 it holds that
D1 ∪ D2 �

∨
xν∈C1

f ν(~x) ∨ ∨
yν∈C2

f ν(~y) but D1 2
∨

xν∈C1
f ν(~x). This means that there is a

truth value assignment α1 to Varsd(V ∗
1 ) satisfying D1 but falsifying

∨
xν∈C1

f ν(~x). Observe

that Vars(D1) ⊆ Varsd(V ∗
1 ) by construction.

Using the matching M , we can find another partial truth value assignment α2 to
Varsd(V ∗

2 ) that satisfies D2 by setting at most one variable xi for every x ∈ V ∗
2 . This α2

leaves the truth value of
∨

yν∈C2
f ν(~y) undetermined since f is non-authoritarian, and this

means that we can extend α2 to a full assignment over Varsd(V ∗
2 ) such that

∨
yν∈C2

f ν(~y) is

falsified. But then α1 ∪α2 is an assignment that satisfies D1 ∪D2 but falsifies
∨

xν∈C1
f ν(~x)∨∨

yν∈C2
f ν(~y), which is a contradiction.

Proof sketch for Theorem 5.11 . Let us restrict our attention to 2-DNF resolution, since
this already captures the hardness of the general case. Also, we sweep quite a few technical
details under the rug to focus on the main idea of the proof.

Suppose that we have a set of 2-DNF formulas D of size |D| = m such that the set of
projected variables V ∗ = Vars(Rprojf(D)) has size |V ∗| ≥ K · m3 for some suitably large
constant K of our choice. We want to derive a contradiction.

As a first preprocessing step, let us prune all formulas D ∈ D one by one by shrinking
any 2-term a ∧ b in D to just a or just b, i.e., making D weaker, as long as this does not
change the projection Rprojf(D). This pruning step does not decrease the size (i.e., the
number of formulas) of D.

By counting, there must exist some formula D ∈ D containing literals belonging to
at least K · m2 different variables in V ∗. Consider some clause C ∈ Rprojf(D) such that
D \ {D} is too weak to project it. This means that there is an assignment α such that
α(D \ {D}) = 1 but α

(∨
xν∈C f ν(~x)

)
6= 1, i.e., α either fixes α

(∨
xν∈C f ν(~x)

)
to false or

leaves it undetermined. Let us pick such an α assigning values to the minimal amount of
variables. It is clear that the domain size of α will then be at most 2(m − 1) since the
assignment needs to fix only one 2-term for every formula in D \ {D}. But this means that
the formula D contains a huge number of unset variables. We would like to argue that
somewhere in D there is a 2-term that can be set to true without satisfying

∨
xν∈C f ν(~x),

which would lead to a contradiction.
We note first that if D contains 2m 2-terms xνi ∧ yµj with all literals in these terms

belonging to pairwise disjoint variable sets for distinct terms (but where we can have x = y),
we immediately get a contradiction. Namely, if this is the case we can find at least one
2-term xνi ∧yµj such that α does not assign values to any variables xi′ , yj′ . We can satisfy this

2-term, and hence all of D, without satisfying
∨

xν∈C f ν(~x) since by assumption f is 3-non-
authoritarian (so any assignments to xi and yj can be repaired by setting other variables
xi′ , yj′ to appropriate values).

But if D does not contain 2m such 2-terms over disjoint variables, then by counting
(and adjusting our constant K) there must exist some literal a that occurs in D in at
least 2m terms a∧ xνi with the xi belonging to different variables. Moreover, these 2-terms
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were not pruned in our preprocessing step, so they must all be necessary. Because of this,
one can argue that there must exist some other assignment α′ such that α′(D \ {D}) = 1,
α′
(∨

xν∈C f ν(~x)
)
6= 1, and α′(a) = 1. Now at least one of the 2m companion variables

of a is untouched by α′ and can be set to true without satisfying
∨

xν∈C f ν(~x). This is a
contradiction.

To see why we cannot hope to prove lower bounds for cutting planes or polynomial
calculus in the same fashion, consider the following examples.

Example 5.14. If we have variables x[1], x[2], x[3], . . . and make substitutions using binary
exclusive or ⊕2 to get new variables x[1]1, x[1]2, x[2]1, x[2]2, x[3]1, x[3]2, . . ., then the example

k∑

i=1

(x[i]1 − x[i]2) ≥ k (5.4)

shows that just a single CP inequality can project an arbitrarily large conjunction x[1] ∧
x[2] ∧ · · · ∧ x[k]. Thus, here we have |D| = 1 while VarSp(Rproj⊕2

(D)) goes to infinity.

Example 5.15. Again using substitutions with ⊕2, for polynomial calculus we have the
example

− 1 +
k∏

i=1

x[i]1x[i]2 (5.5)

showing that just two monomials can project the arbitrarily large conjunction x[1] ∧ x[2] ∧
· · · ∧ x[k] if we use the projection in Definition 5.8.

Let us also give a slightly more involved example for polynomial calculus resolution that
uses the extra formal variables encoding negative literals to obtain projected configurations
with many positive literals. Recall that in PCR we write x′ to denote the formal variable
that encodes the negation of x.

Example 5.16. In PCR, three monomials

− 1 +
k∏

i=1

x[i]1x[i]
′
2 +

k∏

i=1

x[i]′1x[i]2 (5.6)

can project the arbitrarily large conjunction x[1] ∧ x[2] ∧ · · · ∧ x[k] if we use the projection
in Definition 5.8.

Somehow, the reason that these counter-examples work is that the projection in Defini-
tion 5.8 allows the Boolean functions in the implication to be far too strong. These functions
do not really imply just conjunctions of exclusive ors, but something much stronger in that
they actually fix the variable assignments (to some particular assignment that happens to
satisfy exclusive ors). Note that formulas F [⊕2] do not speak about fixed variable assign-
ments for, say, x1 or x2, but only about the value of x1 ⊕ x2. Intuitively, therefore, the
only way we can know something more about x1 and x2 than the value of x1 ⊕ x2 is if the
refutation has already derived contradiction and is now deriving all kinds of other inter-
esting consequences from this. But before this happens, we would like to argue that any
refutation must pass through a stage where all it can know about x1 and x2 is the value
of x1 ⊕ x2 and nothing more. For this reason, we would like to find a more “fine-grained”
definition of a projection that can capture only these weaker implications and discard too
strong implications.
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Open Problem 9. Is it possible to prove space lower bounds and/or trade-offs between
proof length/size and space for cutting planes, polynomial calculus, or polynomial calculus
resolution by designing smarter projections than in Definition 5.8 that are space-faithful for
these proof systems?19

6. Some Open Problems Regarding Space Bounds and Trade-offs

Despite the progress made during the last few years on understanding space in resolution
and how it is related to other measures, there are quite a few natural questions that still
have not been resolved.

Perhaps one of the main open questions is how complex a k-CNF formula F can be
with respect to total space. If F has at most n clauses or variables (which is the case if, in
particular, F has size n) we know from [ET01] that SpR(F ⊢⊥) ≤ n +O(1). From this it
immediately follows that TotSpR(F ⊢⊥) = O

(
n2

)
. But is this upper bound tight?

Open Problem 10 ([ABRW02]). Are there k-CNF formula families {Fn}∞n=1 of size Θ(n)
such that TotSp(Fn ⊢⊥) = Ω

(
n2

)
?

As a first step towards resolving this question, Alekhnovich et al. [ABRW02] posed
the problem of finding k-CNF formulas over n variables and of size polynomial in n such
that TotSp(F ⊢ ⊥) = ω(n). (There is a lower bound TotSp(F ⊢ ⊥) = Ω(n2) proven
in [ABRW02], but it is for formulas of exponential size and linear width). Alekhnovich et
al. also conjectured that the answer to Open Problem 10 is yes, and suggested so-called
Tseitin formulas defined over 3-regular expander graphs as candidates for formulas Fn of
size n with TotSp(Fn ⊢⊥) = Ω

(
n2

)
.

Another natural open question is to separate polynomial calculus resolution from just
resolution with respect to space.

Open Problem 11. Are there k-CNF formula families {Fn}∞n=1 such that SpR(Fn ⊢⊥) =
ω
(
SpPCR(Fn ⊢⊥)

)
?20

The next two questions that we want to address concern upper bounds on resolution
length in terms of clause space. We know from [AD08] that clause space is an upper bound
for width, and width yields an upper bound on length simply by counting. However, it
would be more satisfying to find a more direct argument that explains why clause space
upper-bounds length. Focusing on constant clause space for concreteness, the problem can
be formulated as follows.

Open Problem 12. For k-CNF formulas F of size n, we know that Sp(F ⊢⊥) = O(1)
implies L(F ⊢⊥) = poly(n). Is there a direct proof of this fact, not going via [AD08]?

19As the camera-ready version of this article was being prepared, some new results on time-space trade-
offs for PCR and CP were reported in [HN12, BNT13]. We refer to Theorems 7.1, 7.4, and 7.5 below for
detailed statements.

20We note for completeness that [ABRW02] proved a constant factor separation between resolution clause
space and PCR monomial space, but this separation crucially depends on the definition of monomial space
as not counting repetitions of monomials in different polynomial equations (and is in any case not strong
enough to resolve this open question). For the arguably more natural concept of space in Definition 2.8
nothing is known by way of separations from resolution.
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If we could understand this problem better, we could perhaps also find out whether it
is possible to derive stronger upper bounds on length in terms of space. Esteban and Torán
ask the following question.

Open Problem 13 ([ET01]). Does it hold for k-CNF formulas F that Sp(F ⊢ ⊥) =
O(log n) implies L(F ⊢⊥) = poly(n)?

Turning to the relationship between width and length, recall that we know from [BW01]
that short resolution refutations imply the existence of narrow refutations, and that in
view of this an appealing proof search heuristic is to search exhaustively for refutations
in minimal width. One serious drawback of this approach, however, is that there is no
guarantee that the short and narrow refutations are the same one. On the contrary, the
narrow refutation constructed in the proof in [BW01] is potentially exponentially longer
than the short refutation that one starts with. However, we have no examples of formulas
where the refutation in minimum width is actually known to be substantially longer than
the minimum-length refutation. Therefore, it would be interesting to know whether this
increase in length is necessary. That is, is there a formula family which exhibits a length-
width trade-off in the sense that there are short refutations and narrow refutations, but
all narrow refutations have a length blow-up (polynomial or superpolynomial)? Or is the
exponential blow-up in [BW01] just an artifact of the proof?

Open Problem 14 ([NH13]). If F is a k-CNF formula over n variables refutable in
length L, can one always find a refutation π of F in width W(π) = O

(√
n logL

)
with

length no more than, say, L(π) = O(L) or at most poly(L)? Or is there a formula family
which necessarily exhibits a length-width trade-off in the sense that there are short refuta-
tions and narrow refutations, but all narrow refutations have a length blow-up (polynomial
or superpolynomial)?

As was mentioned above, for tree-like resolution Ben-Sasson [Ben09] showed that there
are formulas Fn refutable in linear length and also in constant width, but for which any
refutation πn must have W(πn) · log L(πn) = Ω(n/ log n). This shows that the length
blow-up in the proof of the tree-like length-width relationships in [BW01] is necessary.
That is, transforming a short tree-like proof into a narrow proof might necessarily incur
an exponential length blow-up. But tree-like resolution is very different from unrestricted
resolution in that upper bounds on width do not imply upper bounds on length (as shown
in [BW01] using PebG[∨2]-formulas), so it is not clear that the result for tree-like resolution
provides any intuition for the general case.

A related question about trade-offs between length and width on a finer scale, raised
by Albert Atserias and Marc Thurley, is as follows.

Open Problem 15 ([AT09]). For w ≥ 3 arbitrary but fixed, is there family of unsatisfiable
3-CNF formulas {Fw

n }∞n=1 of size Θ(n) that have resolution refutations of width w but cannot
be refuted in length O

(
nw−c

)
for some small positive constant c?

This question was prompted by the paper [AFT11], where it was shown for a fairly gen-
eral theoretical model of DPLL solvers with clause learning that in this model contradictory
formulas Fn with W(Fn ⊢⊥) = w are likely to be proven unsatisfiable in time nO(w). It is
natural to ask how much room for improvement there is for this time bound. Since these
algorithms are resolution-based, it would be nice if one could prove a lower bound saying
that there are formulas Fn with W(Fn ⊢⊥) = w that cannot be refuted by resolution in
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length no(w), or even nw−O(1). As a step towards proving (or disproving) this, resolving
special cases of Open Problem 15 for concrete instantiations of the parameters, say w = 10
and w − c = 2, would also be of interest.

For resolution clause space, we know that there can be very strong trade-offs with
respect to length for space s in the range ω(1) = s = o(n/ log log n), but we do not know
what holds for space outside of this range. Consider first formulas refutable by proofs π
in constant space. When we run such a refutation through the proof in [AD08] and obtain
another narrow, and thus short, refutation π′ we do not have any information about the
space complexity of this refutation. Is it possible to get a refutation in both short length
and small space simultaneously?

Open Problem 16 ([NH13]). Suppose that {Fn}∞n=1 is a family of polynomial-size k-CNF
formulas with refutation clause space Sp(Fn ⊢⊥) = O(1). Does this imply that there are
resolution refutations πn : Fn ⊢⊥ simultaneously in length L(πn) = poly(n) and clause space
Sp(πn) = O(1)? Or can it be that restricting the clause space, we sometimes have to end
up with really long refutations?

Note that if we instead look at the total space measure (that also counts the number
of literals in each clause with repetitions), then the answer to the above question is that
we can obtain refutations that are both short and space-efficient simultaneously, again by
a simple counting argument. But for clause space such a counting argument does not seem
to apply, and maybe strange things can happen. (They certainly can in the sense that as
soon as we go to arbitrarily slowly growing non-constant space, there provably exist strong
space-length trade-offs.) Of course, one would expect here that any insight regarding Open
Problem 12 should have bearing on this question as well.

Consider now space complexity at the other end of the range. Note that all trade-offs for
clause space proven so far are in the regime where the space Sp(π) is less than the number
of clauses |F | in F . On the one hand, this is quite natural, since the size of the formula is
an upper bound on the refutation clause space needed. On the other hand, it is not clear
that this should rule out length-space trade-offs for linear or superlinear space, since the
proof that any formula is refutable in linear space constructs a resolution refutation that
has exponential length. Assume therefore that we have a CNF formula F of size n refutable
in length L(F ⊢⊥) = L for L suitably large (say, L = poly(n) or L = nlogn or so). Suppose
that we allow clause space more than the minimum n+O(1), but less than the trivial upper
bound L/ log L. Can we then find a resolution refutation using at most that much space
and achieving at most a polynomial increase in length compared to the minimum?

Open Problem 17 ([Ben07, NH08]). Let F be any k-CNF formula with |F | = n clauses.
Suppose that L(F ⊢⊥) = L = poly(n). Does this imply that there is a resolution refutation
π : F ⊢⊥ in clause space Sp(π) = O(n) and length L(π) = poly(L)? Or are there formulas
with trade-offs in the range space ≥ formula size?21

Finally, a slightly curious aspect of the space lower bounds and length-space trade-offs
surveyed above is that the results in [Nor09a, NH13] only work for k-CNF formulas of
width k ≥ 4, and in [BN08, BN11] we even have to choose k ≥ 6 to find k-CNF formula
families that optimally separate space and length and exhibit time-space trade-offs. We

21As the camera-ready version of this article was being prepared, a solution of this problem was reported
in [BBI12], and this result was then further strengthened in [BNT13]. The answer is that there are (very)
strong trade-offs even in the superlinear space regime. See Theorems 7.2 and 7.3 for details.
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know from [ET01] that any 2-CNF formula is refutable in constant clause space, but should
there not be 3-CNF formulas for which we could prove similar separations and trade-offs?

Given any CNF formula F , we can transform it to a 3-CNF formula by rewriting every
clause C = a1 ∨ . . . ∨ am in F with m > 3 as a conjunction of 3-clauses

y0 ∧
∧

1≤i≤m

(yi−1 ∨ ai ∨ yi) ∧ yn, (6.1)

for some new auxiliary variables y0, y1, . . . , ym unique for this clause C. Let us write F̃

to denote the 3-CNF formula obtained from F in this way. It is easy to see that F̃ is
unsatisfiable if and only if F is unsatisfiable. Also, it is straightforward to verify that

L
(
F̃ ⊢⊥

)
≤ L(F ⊢⊥) + O(W(F ) · L(F )) and Sp

(
F̃ ⊢⊥

)
≤ Sp(F ⊢⊥) + O

(
1
)
. (Just note

that each clause of F can be derived from F̃ in length 2 ·W(F ) + 3 and space 3, and then
use this together with an optimal refutation of F .)

It seems like a natural idea to rewrite pebbling contradictions PebG[f] for suitable
functions f as 3-CNF formulas P̃ebG[f] and study length-space trade-offs for such formulas.

For this to work, we would need lower bounds on the refutation clause space of F̃ in terms
of the refutation clause space of F , however.

Open Problem 18. Is it true that Sp
(
P̃ebG[⊕] ⊢⊥

)
≥ BW-Peb(G)? In general, can we

prove lower bounds on Sp
(
F̃ ⊢⊥

)
in terms of Sp(F ⊢⊥),22 or are there counter-examples

where the two measures differ asymptotically?

This final open problem is of course of a somewhat technical nature. However, we still

find it interesting in the sense that if it could be shown to hold in general that Sp
(
F̃ ⊢⊥

)
=

Θ
(
Sp(F ⊢⊥)

)
or even Sp

(
F̃ ⊢⊥

)
= Sp(F ⊢⊥) + O(1), then we would get all space lower

bounds, and maybe also the length-space trade-offs, for free for 3-CNF formulas. It would
be aesthetically satisfying not having to insist on using 6-CNF formulas to obtain these
bounds. If, on the other hand, such an equality does not hold, it would further strengthen
the argument that space should only be studied for formulas of fixed width (as was discussed
above).

7. Concluding Remarks

In this survey, we have tried to give an overview of how pebble games have been used
as a tool to derive many strong results in proof complexity. Our main focus has been
on explaining how CNF formulas encoding pebble games played on graphs can be shown
to inherit trade-off properties for proof length (size) and space from pebbling time-space
trade-offs for these graphs. While these connections have turned out to be very useful, the
reductions are far from tight. It would be interesting to clarify the true relationship between
pebble games and pebbling formulas for resolution-based proof systems.

As discussed in Section 5, all the length-space trade-offs for resolution and k-DNF
resolution can be described as starting with simple CNF formulas possessing useful moderate
hardness properties (namely, the pebbling contradictions with just one variable per vertex
exhibiting weak length-space trade-offs) and then studying how variable substitutions in
these formulas can amplify the hardness properties. We find it an intriguing open question

22Some limited results along these lines were reported in [FLN+12] but the general question still remains
wide open. We refer to Theorem 7.6 below for more details.



54 J. NORDSTRÖM

whether this approach can be made to work for stronger proof systems such as cutting
planes or variants of polynomial calculus.

Finally, throughout the survey, and in particular in Section 6, we have tried to highlight
a number of open problems, pebbling-related or non-pebbling-related, which we believe
merit further study.

Note Added in Proof

While this survey paper was being reviewed and revised, there were a number of new
developments regarding some of the open problems discussed in the paper. We attempt to
give an overview of (some of) these recent results below.

As we have tried to describe in this survey, there is a a wealth of results on space
lower bounds and time-space trade-offs for resolution-based proof systems. For polynomial
calculus and cutting planes the situation has been very different in that almost nothing has
been known. As far as we are aware, the first trade-off results to be reported for these latter
proof systems are those in [HN12].

Theorem 7.1 ([HN12]). There are k-CNF formulas {Fn}∞n=1 of size Θ(n) that can be
refuted in length O(n) in resolution, polynomial calculus (and hence also PCR) and cutting
planes, but for which the following holds:

• Any PCR refutation of Fn in length L and monomial space s must satisfy

s logL = Ω
(

4
√
n
)
.

• Any CP refutation of Fn in length L and line space23 s must satisfy

s logL log(s logL) = Ω
(

4
√
n/ log2 n

)
.

The formulas used in this theorem are a particular flavour of pebbling formulas over pyra-
mid graphs (not obtained by substitution but by a related operation of lifting as defined
in [BHP10]), but the results were obtained by other techniques than the space-faithful
projections discussed in this survey; namely, by tools from communication complexity.

It should be pointed out that it is not clear whether Theorem 7.1 provides “true trade-
offs,” however. The issue is that to be able to speak about a trade-off between proof length
and proof space in a strict sense, we would also like the formulas to have space complexity
smaller than the space bound at where the trade-off kicks in. This is not the case for
pebbling formulas over pyramid graphs, since we do not know how to refute them in space
less than O(

√
n). And indeed, it can be argued that the formulas seem more likely to have

space complexity Ω(
√
n), as is known to be the case for similar formulas with respect to

resolution.
Interestingly, the statements in Theorem 7.1 closely parallel the result obtained by

Ben-Sasson in 2002 (journal version in [Ben09]), when he proved for pebbling formulas
obtained by XOR substition that a trade-off on the form s logL = Ω(n/ log n) must hold in
resolution for any refutation in length L and clause space s. Six years later, the factor logL
was shown to be an artifact of the proof technique and was removed in [BN08] to obtain an
unconditional space lower bound Ω(n/ log n) as stated in Theorem 4.13. It is very tempting
to conjecture that the situation should be the same for PCR and CP, so that Theorem 7.1

23That is, charging one unit of space for each linear inequality.
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should be understood as providing “conditional space lower bounds” from which we should
strive to remove the logL factors.

In another line of research, Beame et al. [BBI12] made progress on Open Problem 17
by showing that there are non-trivial trade-offs between proof length and proof space in
resolution even for superlinear space.

Theorem 7.2 ([BBI12]). There is a family of explicitly constructible CNF formulas Fn of
size Θ(n) and width Θ(log n) such that the following holds:

• The formulas Fn have resolution refutations in simultaneous length and clause space
nO(logn).

• The formulas Fn can also be refuted in clause space O(n) (since the refutation clause
space is always upper-bounded by the formula size).

• Any resolution refutation of Fn in length L and clause space s must satisfy the inequalitity

L ≥
(
n0.58 logn/s

)Ω(log logn/ log log logn)
.

In particular, resolution refutations of Fn in linear clause space must have length superpoly-
nomial in nlogn.

For the restricted system of regular resolution (see Section 3.2), the paper [BBI12]
contains more dramatic trade-offs that hold for formulas of constant width. The proof of
Theorem 7.2, however, crucially requires CNF formulas of unbounded width. In the very
recent paper [BNT13], the analysis in [BBI12] was simplified and strengthened to produce
similar time-space trade-offs for CNF formulas of constant width, completely resolving Open
Problem 17, and these trade-off results were then further extended to apply also to PCR.

Theorem 7.3 ([BNT13]). Let F be a field of odd characteristic. There are explicitly con-
structible families of 8-CNF formulas {Fn,w}, with w = w(n) satisfying 1 ≤ w ≤ n1/4,
which are of size Θ(n) and have the following properties:

• The formulas Fn have resolution refutations πn in (short) length L(πn) ≤ nO(1)2w and

clause space Sp(πn) ≤ 2w + nO(1).
• They also have resolution refutations π′

n in (small) clause space Sp(π′
n) = O

(
w log n

)
and

length L(π′
n) ≤ 2O(w logn).

• For any PCR refutation πn of Fn over F, the proof size is bounded by

S (πn) =
(

2Ω(w)

Sp(πn)

)Ω
(

log logn
log log log n

)

.

As a side note, we remark that the formulas in Theorems 7.2 and 7.3 are not pebbling
formulas—not surprisingly, since as discussed above such formulas do not exhibit trade-offs
in the superlinear space regime—but so-called Tseitin formulas over grid-like graphs.

The paper [BNT13] also lifts the time-space trade-offs for pebbling formulas in [BN11]
from resolution to PCR. This is achieved by using space-faithful projections, but combined
with a random restriction argument that leads to some loss in the parameters as compared
to corresponding results for resolution. Two examples of the results obtained in this way
are as follows.

Theorem 7.4 ([BNT13]). Let slo(n) = ω(1) be any arbitrarily slowly growing function24

and fix any ε > 0. Then there are explicitly constructible 6-CNF formulas {Fn}∞n=1 of size
Θ(n) such that the following holds:

24As in Theorem 4.17, for technical reasons we also need the assumption slo(n) = O
(

n1/7
)

but again this

restriction is not important.
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• There are resolution refutations and polynomial calculus refutations πn of Fn in total
space TotSp(πn) = O(slo(n)).

• There are resolution refutations and PC refutations πn of Fn in simultaneous size S (πn) =

O(n) and total space TotSp(πn) = O
((

n/slo(n)
2
)1/3)

.

• Any PCR refutation of Fn in monomial space O
((

n/(slo(n)
3 log n)

)1/3−ε
)

must have

superpolynomial size.

Theorem 7.5 ([BNT13]). There is a family of explicitly constructible 6-CNF formulas
{Fn}∞n=1 of size Θ(n) such that the following holds:

• The formulas Fn are refutable in resolution and PC in total space O
(
n1/11

)
.

• There are resolution refutations and PC refutations πn of Fn in size S (πn) = O(n) and

total space TotSp(πn) = O
(
n3/11

)
.

• Any PCR refutation of Fn in monomial space at most n2/11/(10 log n) must have size at

least
(
n1/11

)
! .

The trade-off results obtained in [BNT13] subsume those from [HN12] for polynomial cal-
culus and PCR in Theorem 7.1, but for cutting planes [HN12] still remains state-of-the-art
to the best of our knowledge.

Intriguingly, what Theorems 7.1, 7.4, and 7.5 seem to say is that the pebbling properties
of graphs are preserved even when these graphs are translated to CNF formulas and one uses
polynomial calculus/PCR and cutting planes to reason about such CNF formulas. A priori,
it was not clear at all whether any such connections should exist or not. We still cannot
prove that the correspondence is as tight as for resolution—since we lose a logarithmic factor
in the proof length/pebbling time, and in addition can only prove the correspondence for a
fairly limited set of graphs when it comes to cutting planes—but as already hinted to above
we believe that this is due to limitations in our current techniques.

The attentive reader will have noticed that we need CNF formulas of width 6 or higher
in the theorems above. Somewhat annoyingly, we still do not know of any time-space trade-
offs for 3-CNF formulas, but some limited progress on Open Problem 18 has been reported
in [FLN+12].

Theorem 7.6 ([FLN+12]). Let us say that a CNF formula F is weight-constrained if it
has the property that for every clause a1∨a2∨· · ·∨aw in F of width w ≥ 4, F also contains

the clauses ai ∨ aj for all 1 ≤ i < j ≤ w. Then if F is a weight-constrained CNF and F̃ is
the corresponding 3-CNF formula as defined in (6.1), it holds that

SpR(F ⊢⊥) = SpR

(
F̃ ⊢⊥

)
+O(1) .

Last but not least, we want to mention that in a technical tour-de-force, Berkholz [Ber12]
recently managed to show that resolution width is EXPTIME-complete. In fact, he obtained
the slightly stronger result stated next.

Theorem 7.7 ([Ber12]). Let F be a CNF formula and let w ≥ 15 be an integer. Then
the question of whether F has a resolution refutation in width at most w cannot be decided
in time |F |(w−3)/12 on a multi-tape Turing machine. In particular, the problem of deciding
resolution refutation width is EXPTIME-complete.

Using similar techniques, Berkholz also proved a limited form of trade-off between
length and width, but unfortunately nothing that seems to shed light on Open Problems 14



PEBBLE GAMES, PROOF COMPLEXITY, AND TIME-SPACE TRADE-OFFS 57

or 15. And the problem of proving (or disproving) the PSPACE-completeness of resolution
clause space (Open Problem 3) remains stubbornly out of reach.
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[Kra01] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-3):123–140,
2001.

[KS91] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles.
Combinatorica, 11(2):157–171, June 1991. Preliminary version appeared in STOC ’88.

http://www.cs.utoronto.ca/~ahertel/
http://www.tcs.ifi.lmu.de/~jjohanns/notes.html


62 J. NORDSTRÖM
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