
In Between Resolution and Cutting
Planes: A Study of Proof Systems
for Pseudo-Boolean SAT Solving

Marc Vinyals2, Jan Elffers1, Jesús Giráldez-Cru1, Stephan Gocht1,
and Jakob Nordström1(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
{elffers,giraldez,gocht,jakobn}@kth.se

2 Tata Institute of Fundamental Research, Mumbai, India
marc.vinyals@tifr.res.in

Abstract. We initiate a proof complexity theoretic study of subsystems
of cutting planes (CP) modelling proof search in conflict-driven pseudo-
Boolean (PB) solvers. These algorithms combine restrictions such as that
addition of constraints should always cancel a variable and/or that so-
called saturation is used instead of division. It is known that on CNF
inputs cutting planes with cancelling addition and saturation is essen-
tially just resolution. We show that even if general addition is allowed,
this proof system is still polynomially simulated by resolution with
respect to proof size as long as coefficients are polynomially bounded.

As a further way of delineating the proof power of subsystems of CP,
we propose to study a number of easy (but tricky) instances of problems
in NP. Most of the formulas we consider have short and simple tree-like
proofs in general CP, but the restricted subsystems seem to reveal a much
more varied landscape. Although we are not able to formally establish
separations between different subsystems of CP—which would require
major technical breakthroughs in proof complexity—these formulas
appear to be good candidates for obtaining such separations. We believe
that a closer study of these benchmarks is a promising approach for
shedding more light on the reasoning power of pseudo-Boolean solvers.

1 Introduction

The efficiency of modern Boolean satisfiability (SAT) solvers is one of the most
fascinating success stories in computer science. The SAT problem lies at the
foundation of the theory of NP-completeness [13], and as such is believed to be
completely beyond reach from a computational complexity point of view. Yet
solvers based on conflict-driven clause learning (CDCL) [4,38,40] are nowadays
used routinely to solve instances with millions of variables.

From a theoretical point of view, it is an intriguing question how to explain
the performance of state-of-the-art SAT solvers, and unfortunately our under-
standing of this remains quite limited. Perhaps the only tool currently available

c© Springer International Publishing AG, part of Springer Nature 2018
O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 292–310, 2018.
https://doi.org/10.1007/978-3-319-94144-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94144-8_18&domain=pdf

In Between Resolution and Cutting Planes 293

for giving rigorous answers to such questions is provided by proof complexity [14],
where one essentially ignores the question of algorithmic proof search and instead
studies the power and limitations of the underlying method of reasoning.

Conflict-Driven Clause Learning and Resolution. It is well-known (see,
e.g., [5]) that CDCL solvers search for proofs in the proof system resolution [7].
Ever since resolution-based SAT solvers were introduced in [16,17,46], subsys-
tems of resolution corresponding to these algorithms, such as tree-like and regular
resolution, have been studied. Exponential lower bounds for general resolution
proofs were established in [11,29,51], and later it was proven that general reso-
lution is exponentially stronger than regular resolution, which in turn is expo-
nentially stronger than tree-like resolution (see [1,6,52] and references therein).
More recently, CDCL viewed as a proof system was shown to simulate general
resolution efficiently [3,43] (i.e., with at most a polynomial blow-up), though an
algorithmic version of this result seems unlikely in view of [2].

A problem that is arguably even more intriguing than the analysis of CDCL
solver performance is why attempts to build SAT solvers on stronger methods
of reasoning than resolution have had such limited success so far. Resolution lies
very close to the bottom in the hierarchy of proof systems studied in proof com-
plexity, and even quite a limited extension of this proof system with algebraic or
geometric reasoning holds out the prospect of exponential gains in performance.

Pseudo-Boolean Solving and Cutting Planes. In this paper we consider one
such natural extension to pseudo-Boolean (PB) solving using linear inequalities
over Boolean variables with integer coefficients, which is formalized in the proof
system cutting planes (CP) [10,15,28]. By way of a brief overview, Hooker [31,32]
considered generalizations of resolution to linear constraints and investigated the
completeness of such methods. More general algorithms were implemented by
Chai and Kuehlman [9], Sheini and Sakallah [49], and Dixon et al. [18–20]. The
focus in all of these papers is mostly on algorithmic questions, however, and not
on properties of the corresponding proof systems.

Papers on the proof complexity side have studied tree-like cutting planes [34]
and CP with bounded constant terms in the inequalities [27], and resolution has
been shown to simulate cutting planes when this upper bound is constant [30].
Exponential lower bounds for cutting planes with coefficients of polynomial mag-
nitude were obtained in [8], and for general cutting planes with coefficients
of arbitrary size strong lower bounds were proven in [45] and (very recently)
in [26,33]. These papers consider more general derivation rules than are used
algorithmically, however, and in contrast to the situation for resolution we are
not aware of any work analysing the proof complexity of subsystems of CP cor-
responding to the reasoning actually being used in pseudo-Boolean solvers.

Our Contributions. We initiate a study of proof systems intended to capture
the reasoning in pseudo-Boolean solvers searching for cutting planes proofs. In
this work we focus on cdcl-cuttingplanes [21] and Sat4j [36,48], which are the
two CP-based solvers that performed best in the relevant satisfiability problems

294 M. Vinyals et al.

category DEC-SMALLINT-LIN in the Pseudo-Boolean Competition 2016 [44].1

Our subsystems of CP combine algorithmically natural restrictions such as that
addition should always cancel a variable and/or that saturation is used instead
of the more expensive to implement division rule. We stress that these derivation
rules are nothing new—indeed, the point is that they are already used in practice,
and they are formally defined in, e.g., the excellent survey on pseudo-Boolean
solving [47]. Our contribution is to initiate a systematic study of concrete com-
binations of these rules, using tools from proof complexity to establish concrete
limitations on what solvers using these rules can achieve.

PB solvers typically perform poorly on inputs in conjunctive normal form
(CNF), and it has been known at least since [31,32] that in this case CP with
cancelling addition and saturation degenerates into resolution. We observe that
strengthening just one of these rules is not enough to solve this problem: CP with
cancelling addition and division is easily seen still to be resolution, and resolution
can also polynomially simulate the saturation rule plus unrestricted additions as
long as the coefficients are of polynomial magnitude. The issue here is that while
all versions of CP we consider are refutationally complete, meaning that they
can prove unsatisfiability of an inconsistent set of constraints, the subsystems of
CP are not implicationally complete, i.e., even though some linear constraint is
implied by a set of other constraints there might be no way of deriving it. This
makes reasoning in these subsystems very sensitive to exactly how the input is
encoded. Thus, a strong conceptual message of our paper is that in order to
function robustly over a wide range of input formats (including, in particular,
CNF), PB solvers will need to explore a stronger set of reasoning rules.

In a further attempt to understand the relative strength of these subsystems
of cutting planes, we present some (to the best of our knowledge) new combina-
torial formulas encoding NP-complete problems, but with the concrete instances
chosen to be “obviously” unsatisfiable. We then investigate these formulas, as
well as the even colouring formulas in [37], from the point of view of proof com-
plexity. Most of these formulas have very short and simple proofs in general cut-
ting planes, and these proofs are even tree-like. With some care the applications
of addition in these proofs can also be made cancelling, but having access to the
division rule rather than the saturation rule appears critical. Although we are not
able to establish any formal separations between the subsystems of cutting planes
that we study (other than for the special case of CNF inputs as noted above), we
propose a couple of formulas which we believe are promising candidates for sep-
arations. Obtaining such results would require fundamentally new techniques,
however, since the tools currently available for analysing CP cannot distinguish
between subsystems defined in terms of different sets of syntactic rules.2

1 There is now an updated version of cdcl-cuttingplanes called RoundingSat [24], but
any theoretical claims we make in this paper hold for this new version also.

2 Essentially all lower bound proofs for CP work for any semantically sound proof
system operating on pseudo-Boolean constraints, completely ignoring the syntactic
rules, and the one exception [25] that we are aware of uses a very specific trick to
separate fully semantic (and non-algorithmic) CP from the syntactic version.

In Between Resolution and Cutting Planes 295

We also consider these formulas for other ranges of parameter values and
show that for such values the formulas are very easy even for the weakest sub-
systems of CP that we consider. This would seem to imply that solving such
instances should be well within reach for cdcl-cuttingplanes and Sat4j. However,
as reported in [22] many of these instances are instead very challenging in prac-
tice. This suggests that in order to make significant advances in pseudo-Boolean
solving one crucial aspect is to make full use of the division rule in cutting planes,
and we believe that further study of these benchmarks is a promising approach
for gaining a deeper understanding of the theoretical reasoning power of pseudo-
Boolean solvers implementing conflict-driven proof search.

Organization of This Paper. We discuss conflict-driven proof search in reso-
lution and cutting planes and give formal definitions of proof systems in Sect. 2.
In Sect. 3 we prove simulation results for different subsystems of CP, and in
Sect. 4 we present our new combinatorial formulas providing candidates for sep-
arations. We make some brief concluding remarks in Sect. 5. We refer the reader
to the upcoming full-length version of the paper for all missing proofs.

2 Proof Systems for Pseudo-Boolean SAT Solving

Let us start by giving a more formal exposition of the proof systems studied
in this paper. Our goal in this section is to explain to complexity theorists
without much prior exposure to applied SAT solving how these proof systems
arise naturally in the context of pseudo-Boolean (PB) solving, and to this end we
start by reviewing resolution and conflict-driven clause learning (CDCL) solvers.
By necessity, our treatment is very condensed, but an excellent reference for more
in-depth reading on PB solving is [47], and more details on proof complexity
material relevant to this paper can be found, e.g., in [41,42].

We use the standard notation N = {0, 1, 2, 3, . . .} and N
+ = N\{0} for natural

numbers and positive natural numbers, respectively, and write [n] = {1, 2, . . . , n}
and [n,m] = {n, n + 1, . . . ,m} for m,n ∈ N

+, m > n.

Resolution and Conflict-Driven Clause Learning. Throughout this paper
we identify 1 with true and 0 with false. A literal over a Boolean variable x
is either a positive literal x or a negative or negated literal x. It will also be
convenient to write xσ, σ ∈ {0, 1}, to denote x1 = x and x0 = x. A clause
C = �1 ∨ · · · ∨ �k is a disjunction of literals over pairwise disjoint variables. A
CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We write Vars(F)
to denote the set of variables appearing in a formula F . We think of clauses and
formulas as sets, so that order is irrelevant and there are no repetitions.

We can represent a partial truth value assignment ρ as the set of literals set to
true by ρ. We write ρ

(
xσ

)
= 1 if xσ ∈ ρ, ρ

(
xσ

)
= 0 if x1−σ ∈ ρ, and ρ

(
xσ

)
= ∗

otherwise (i.e., when ρ does not assign any truth value to x). A clause C is
satisfied by ρ if it contains some literal set to true by ρ; falsified if ρ sets all
literals in C to false; and undetermined otherwise. The restricted clause C�ρ is

296 M. Vinyals et al.

the trivial clause 1 if ρ satisfies C and otherwise C with all literals falsified by ρ
removed, i.e., C�ρ = C \{xσ | x1−σ ∈ ρ}. A unit clause is a clause with only one
literal. We say that C is unit under ρ if C�ρ = {xσ} is a unit clause, and if so C
is also said to propagate xσ under ρ.

A resolution refutation π of F is a sequence of clauses π = (D1,D2, . . . , DL)
such that DL = ⊥ is the empty clause without literals and each Di is either
an axiom clause Di ∈ F or a resolvent on the form Di = B ∨ C derived from
Dj = B ∨ x and Dk = C ∨ x for j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C

. (1)

It is sometimes convenient to add also a weakening rule

B
B ∨ C

, (2)

which allows to derive any strictly weaker clause from an already derived clause,
but it is not hard to show that any use of weakening in a resolution refutation
can be eliminated without loss of generality. It is a standard fact that resolution
is implicationally complete, meaning that a clause C can be derived from a for-
mula F if and only if F semantically implies C.3 In particular, F is unsatisfiable
if and only if there exists a resolution refutation of F .

The length L(π) of a refutation π is the number of clauses in it. Viewing the list
of clauses π as annotated with explanations how they were obtained, we define an
associated directed acyclic graph (DAG) Gπ with vertices {v1, v2, . . . , vL} labelled
by the clauses {D1,D2, . . . , DL} and with edges from resolved clauses to resol-
vents. We say that π is tree-like if Gπ is a tree, or, equivalently, if every clause Di

is used at most once as a premise in the resolution rule (repetitions of clauses in π
are allowed; i.e., different vertices can be labelled by the same clause). The (clause)
space at step i in π is the number of clauses Dj , j < i used to obtain resolvents Dj′ ,
j′ ≥ i, plus 1 for the clause Di itself, and the space Sp(π) of the refutation is the
maximal space at any step in π.

Turning next to CDCL solvers, we give a simplified description below that is
sufficient for our needs—a more complete (theoretical) treatment can be found
in [23]. In one sentence, a CDCL solver running on a CNF formula F repeatedly
decides on variable assignments and propagates values that follow from such
assignments until a clause is falsified, at which point a learned clause is added to
the clause database D (where we always have F ⊆ D) and the search backtracks.
In a bit more detail, the solver maintains a current partial assignment ρ, where
every assignment also has a decision level (the initial state is at decision level 0
with ρ = ∅ and D = F). If there is a clause C ∈ D that is unit under ρ, the
solver adds the propagated literal xσ = C�ρ to ρ with reason clause C and
repeats the check for unit clauses until either (i) some clause D ∈ D is falsified

3 In case the definition of resolution without weakening is used, the notion of implica-
tional completeness is adapted in the natural way to mean that resolution can derive
either C or some clause C′ that subsumes C, i.e., such that C′

� C.

In Between Resolution and Cutting Planes 297

by the current assignment (referred to as a conflict clause), or else (ii) there
are no propagating clauses. In the latter case the solver makes a decision y = ν
and adds yν to ρ with decision level increased by 1 (unless there are no more
variables left, in which case ρ is a satisfying assignment for F). In the former
case, the solver instead performs a conflict analysis as described next.

Suppose for concreteness that the last propagated literal in ρ before reaching
the conflict clause D was xσ with reason clause C = C∗ ∨ xσ. Since this propa-
gation caused a conflict the variable x must appear with the opposite sign in D,
which can hence be written on the form D = D∗∨x1−σ. The solver can therefore
resolve C∗ ∨ xσ and D∗ ∨ x1−σ to get D′ = C∗ ∨ D∗, after which xσ is removed
from ρ. We refer to D′ as the new conflict-side clause. During conflict analysis
the conflict-side clause D′ is resolved in reverse chronological order with the rea-
son clauses propagating literals in D′ to false, and these literals are removed one
by one from ρ. An important invariant during this process is that the current
conflict-side clause is always falsified by the partial assignment ρ after removing
the literal just resolved over. Therefore, every derived clause on the conflict side
provides an “explanation” why the corresponding partial assignment fails.

The conflict analysis loop ends when the conflict-side clause contains only
one literal from the current decision level at which point the solver learns this
clause and adds it to the database D. By the invariant, this learned clause is
still falsified by ρ, and so the solver removes further literals from ρ in reverse
chronological order until the decision level decreases to that of the second largest
decision level of any literal in the learned clause. At this point the solver returns
from conflict analysis and resumes the main loop described above. By design it
now holds that the newly learned clause immediately causes unit propagation,
flipping some previously assigned literal to the opposite value. Learned clauses
having this property are called asserting , and a common feature of essentially all
clause learning schemes used in practice is that they learn such asserting clauses.

The CDCL solver terminates either when it finds a satisfying assignment or
when it detects unsatisfiability by learning the empty clause ⊥ (or, more pre-
cisely, when it reaches a conflict at decision level 0, in which case the conflict
analysis is guaranteed to derive the empty clause). There are, of course, lots of
details that we are omitting above. The important conclusions, as we prepare
to generalize the description of CDCL to a pseudo-Boolean context, is that the
CDCL solver decides on variables and propagates values based on the clauses
currently in the database, and that when a conflict is reached a new clause is
added to the database obtained by a resolution derivation from the conflict and
reason clauses. This means that from any run of CDCL on an unsatisfiable for-
mula F we can extract a resolution refutation of F .

Cutting Planes and Pseudo-Boolean Solving. Recall that throughout this
paper we are considering pseudo-Boolean constraints encoded as linear inequal-
ities over Boolean variables with integral coefficients (and all linear inequalities
discussed are assumed to be over {0, 1}-valued variables unless stated otherwise).
In order to give a description of cutting planes that is suitable when we want to
reason about pseudo-Boolean solvers, it is convenient to keep negated literals as
objects in their own right, and to insist that all inequalities consist of positive

298 M. Vinyals et al.

linear combinations of literals. Therefore, we will write all linear constraints in
normalized form

∑

i∈[n], σ∈{0,1}
aσ

i xσ
i ≥ A , (3)

where for all aσ
i ∈ N with i ∈ [n] and σ ∈ {0, 1} at least one of a0

i or a1
i equals 0.

(variables occur only with one sign in any given inequality), and where the right-
hand constant term A ∈ N is called the degree of falsity (or just degree). Note
that the normalization is only a convenient form of representation and does not
affect the strength of the proof system. If the input is a CNF formula F we just
view every clause C = xσ1

1 ∨ · · · ∨ xσw
w as a linear constraint xσ1

1 + · · · + xσw
w ≥ 1,

i.e., a constraint on the form (3) with aσ
i ∈ {0, 1} and A = 1.

When generalizing CDCL to a pseudo-Boolean setting we want to build a
solver that decides on variable values and propagates forced values until conflict,
at which point a new linear constraint is learned and the solver backtracks. The
main loop of a conflict-driven PB solver can be made identical to that of a CDCL
solver, except that we change the word “clause” to “constraint.” However, a
naive generalization of the conflict analysis does not work. For an example of
this, suppose we have ρ = {x1, x2, x3} under which x1 +2x2 +x3 +2x4 +2x6 ≥ 3
unit propagates x6 to true, causing a conflict with x3+2x5+2x6 ≥ 3. By analogy
with the CDCL conflict analysis, we “resolve” (i.e., add and normalize) these two
constraints to eliminate x6, yielding x1+2x2+2x3+2x4+2x5 ≥ 3+3−2 = 4 (since
2x6 + 2x6 = 2). But now the important invariant that the derived constraint is
falsified by the current partial assignment fails, because the new constraint is not
falsified by ρ = {x1, x2, x3}! There are different ways of modifying the pseudo-
Boolean conflict analysis to address this problem, and these different approaches
are partly reflected in the different proof systems studied in this paper.

Starting with the most general version of the cutting planes proof system
used in the proof complexity literature, using the normalized form (3) we can
define the derivation rules4 to be literal axioms

xσ
i ≥ 0

, (4a)

linear combination
∑

i aσ
i xσ

i ≥ A
∑

i bσ
i xσ

i ≥ B
∑

i (αaσ
i + βbσ

i)xσ
i ≥ αA + βB

α, β ∈ N
+ , (4b)

and division
∑

i aσ
i xσ

i ≥ A
∑

i

⌈
aσ/α

⌉
xσ

i ≥
A/α�
α ∈ N

+ , (4c)

4 Attentive readers might note that division looks slightly stronger in our definition
than the standard rule in the proof complexity literature, but the two versions are
easily verified to be equivalent up to a linear factor in length. It is important to note
that multiplication is only ever performed in combination with addition.

In Between Resolution and Cutting Planes 299

where in the linear combination rule we tacitly assume that the cancellation rule
xσ +x1−σ = 1 is applied to bring the derived constraint into normalized form, as
in the example we just saw. Just as in this example, for any linear combination
that arises during conflict analysis it will be the case that there is a literal xσ

i

for which αaσ
i = βb1−σ

i > 0. We say that this is an instance of cancelling linear
combination since the variable xi vanishes, and we also require for such linear
combinations that α and β are chosen so that αaσ

i = βb1−σ
i is the least common

multiple of aσ
i and b1−σ

i . We remark that this is also referred to as generalized
resolution in the literature [31,32], since it is a natural generalization of (1) from
disjunctive clauses to general linear constraints, and we will sometimes refer to
the resulting constraint as a (generalized) resolvent .

We want to highlight that in the division rule (4c) we can divide and round
up to the closest integer, since we are only interested in {0, 1}-valued solutions.
This division rule is where the power of cutting planes lies. And indeed, this is
how it must be, since the other rules are sound also for real-valued variables, and
so without the division rule we would not be able to distinguish sets of linear
inequalities that have real-valued solutions but no {0, 1}-valued solutions.

Pseudo-Boolean solvers such as Sat4j [36,48] and cdcl-cuttingplanes [21] do
not implement the full set of cutting planes derivation rules as described above,
however. In proofs generated by these solvers the linear combinations will always
be cancelling. Division is used in cdcl-cuttingplanes only in a restricted setting
to ensure that the learned constraint is always conflicting, and Sat4j omits this
rule pretty much completely and instead applies the saturation rule

∑
(i,σ) aσ

i xσ
i ≥ A

∑
(i,σ) min

{
aσ

i , A
}·xσ

i ≥ A
, (5a)

saying that no coefficient on the left need be larger than the degree on the right.
(For instance, saturation applied to 3x1 +x2 +x3 ≥ 2 yields that 2x1 +x2 +x3 ≥
2 holds.) As the division rule, the saturation rule is sound only for integral
solutions. It is an interesting question how the division and saturation rules are
related. Saturation can be simulated by division, but it is not clear whether
this simulation can be made efficient in general. In the other direction, we give
examples in this paper of when division is exponentially stronger than saturation.

We remark that another rule that is important in practice is weakening

∑
(i,σ) aσ

i xσ
i ≥ A

∑
(i,σ) �=(i∗,σ∗) aσ

i xσ
i ≥ A − aσ∗

i∗
, (5b)

which—perhaps somewhat counter-intuitively—is used during conflict analysis
to maintain the invariant that the constraint being learned is conflicting with
respect to the current partial assignment. In contrast to the weakening rule in
resolution, the rule (5b) is crucial for pseudo-Boolean solvers, but since this rule

300 M. Vinyals et al.

can be implemented using (4a) and a cancelling linear combination we do not
need to include it in our formal proof system definitions.

In order to try to understand the reasoning power of pseudo-Boolean solvers
such as cdcl-cuttingplanes and Sat4j , in this paper we study the following four
subsystems of cutting planes, where for brevity we will write just cancellation
instead of cancelling linear combination:

General CP: Rules (4a), (4b), and (4c).
CP with saturation: Rules (4a), (4b), and (5a).
CP with saturation and cancellation: Rules (4a) and (5a) plus the can-
celling version of (4b); essentially corresponding to Sat4j .
CP with division and cancellation: Rules (4a) and (4c) plus the cancelling
version of (4b); strong enough to capture cdcl-cuttingplanes.

General cutting planes is refutationally complete in that it can disprove any
inconsistent set of linear inequalities [28]: One can show that there is no {0, 1}-
valued solution by using the cutting planes rules (4a)–(4c) to derive the contra-
diction 0 ≥ A for some A > 0, which is the pseudo-Boolean equivalent of the
empty clause, from the given linear inequalities. The length of such a cutting
planes refutation is the total number of inequalities in it, and the size also sums
the sizes of all coefficients (i.e., the bit size of representing them). We can also
define a line space measure analogous to the clause space measure counting the
number of inequalities in memory during a proof.

It is not hard to show—as we will argue shortly—that the three restricted
versions of CP defined above are also refutationally complete. However, while
general cutting planes is also implicationally complete [10], meaning that it can
derive any inequality that is implied by a set of linear equations, the subsystems
we consider are not even weakly implicationally complete.

Let us pause to explain what we mean by this terminology. For disjunctive
clauses C and D it is not hard to see that the only way C can imply D is if C ⊆ D.
In a pseudo-Boolean context, however, there are infinitely many ways to express
a linear threshold function over the Boolean hypercube as a linear inequality
(for instance, by multiplying the inequality by an arbitrary positive integer). We
say, therefore, that a PB proof system is weakly implicationally complete if when
some set of inequalities implies

∑
(i,σ) aσ

i xσ
i ≥ A it holds that the proof system

can derive some potentially syntactically different inequality
∑

(i,σ) bσ
i xσ

i ≥ B

implying
∑

(i,σ) aσ
i xσ

i ≥ A, and that it is (strongly) implicationally complete if
it can derive a constraint on the exact syntactic form

∑
(i,σ) aσ

i xσ
i ≥ A.

Returning to our previous discussion, given the constraint
∑k

i=1 xi ≥ d writ-
ten as a set of disjunctive clauses

{∑
i∈S xi ≥ 1

∣
∣S ⊆ [k], |S| = k − d + 1

}
(in

pseudo-Boolean notation), it is not hard to see that there is no way CP with
cancellation can derive any inequality implying the former encoding from the
constraints in the latter encoding [31].5 A slightly less obvious fact, which we
5 This is so since the only possibility to apply cancelling linear combinations is to use

literal axioms (4a) yielding (trivial) constraints on the form
∑

i∈S xi ≥ 0 for |S| ≥ 0,
and the set of such constraints is invariant under both division and saturation.

In Between Resolution and Cutting Planes 301

Resolution
(on CNF)

CP saturation
cancellation

CP division
cancellation

CP saturation
general

CP division
general

†
†

(a) Over pseudo-Boolean inputs

Resolution

CP saturation
cancellation

CP division
cancellation

CP saturation
general

CP division
general

†

†

(b) Over CNF inputs

Fig. 1. Relations between proof systems. A B: A polynomially simulates B; A B:
B cannot simulate A (there is an exponential separation); A B: candidate for a
separation, †: known only for coefficients of polynomial magnitude.

shall prove in Sect. 3, is that even with general addition and saturation it is not
possible to recover a cardinality constraint from its CNF encoding.

We want to emphasize again that we make no claims of originality when it
comes to defining the derivation rules—they arise naturally in the context of
pseudo-Boolean solving, and indeed all of them are described in [47]. However,
we are not aware of any previous work defining and systematically studying the
subsystems of CP described above from a proof complexity point of view, i.e.,
proving upper and lower bounds on proof resources. This is the purpose of the
current paper, and we study the strength of these proof systems both for CNF
inputs and general (linear) pseudo-Boolean inputs.

As a final remark for completeness, we want to point out that one further
important rule, which is used, e.g., in [9], is rounding to cardinality constraints
We leave as future work a study of formal proof systems using this rule.

3 Relations Between Subsystems of Cutting Planes

We now proceed to examine how having saturation instead of division and/or
requiring linear combinations to be cancelling affects the reasoning power of
cutting planes. The conclusions of this section are pictorially summarized in
Fig. 1.

For starters, it is an easy observation that all the subsystems of cutting planes
that we consider can simulate resolution when the input is in CNF, and we show
that this is still the case when we start with a pseudo-Boolean input for cutting
planes and the straightforward encoding into CNF of that input for resolution.
This is immediate if we have the division rule, but in fact it is not hard to prove
that the simulation also works with saturation.

302 M. Vinyals et al.

Let us make these claims formal. We say that a set of clauses Î represents a
pseudo-Boolean constraint I if both expressions are over the same variables6 and
encode the same Boolean function, and a CNF formula F̂ is said to represent a
set of inequalities F if F̂ =

⋃
I∈F Î (where it is important to note that each CNF

subformula Î represents one linear constraint I). Then the next lemma says that
even if each linear constraint I ∈ F is rewritten to a semantically equivalent
but obfuscated constraint I ′ in some awkward way, but encoded into a CNF
representation F̂ in some nice way, it is still the case that even the weakest
version of CP applied to F ′ =

⋃
I ′ can efficiently simulate resolution on F̂ .

Lemma 1. Let F be a set of pseudo-Boolean constraints over n variables and
let F̂ be any CNF representation of F as described above. Then if there is a
resolution refutation π̂ of F̂ in length L and clause space s, there is also a CP
refutation π of F in length O(nL) and line space s+O(1) using only cancellation
and saturation. If π̂ is tree-like, then π is also tree-like.

It follows from Lemma 1 that CP with saturation is refutationally complete.

Corollary 2. Any unsatisfiable set of pseudo-Boolean constraints over n vari-
ables has a tree-like CP refutation in length O(n2n) and line space O(n) using
cancellation and saturation.

In the other direction, cutting planes with cancellation is equivalent to resolu-
tion when restricted to CNF inputs, and this is so regardless of whether division
or saturation is used. The reason for this is that cancelling linear combinations of
disjunctive clauses can only produce inequalities with degree of falsity 1, which
are equivalent to clauses. This is essentially just an observation from [31] rewrit-
ten in the language of proof complexity, but let us state it here for the record.

Lemma 3. If cutting planes with cancellation and either division or saturation
can refute a CNF formula F in length L and line space s, then there is a reso-
lution refutation of F in length L and clause space s.

We can use this observation to show that systems allowing general linear
combinations can be strictly stronger than systems with cancellation. To see
this, consider subset cardinality formulas [39,50,53] defined in terms of 0/1 n×n
matrices A = (ai,j), which have variables xi,j for all ai,j = 1 and constraints
claiming that in each row there is a majority of positive variables but in each
column there is a majority of negative variables, i.e.,

∑

j∈Ri

xi,j ≥
|Ri|/2� i ∈ [n] (6a)
∑

i∈Cj

xi,j ≤ |Ci|/2� j ∈ [n] (6b)

where Ri = {j | ai,j = 1} and Cj = {i | ai,j = 1}. In the case when all rows
and columns have 2k variables, except for one row and column that have 2k + 1
6 We do not allow encodings with extension variables, since then formulas are no longer

semantically equivalent and it becomes very hard to make meaningful comparisons.

In Between Resolution and Cutting Planes 303

variables, these formulas are unsatisfiable and are easily refutable in general CP,
but if the matrix is expanding in a certain sense, then resolution proofs require
exponential length [39]. This yields the following corollary of Lemma 3.

Corollary 4. There are formulas on n variables that can be refuted in
length O(n) in general CP but require length exp(Ω(n)) in CP with cancella-
tion.

When it comes to comparing division versus saturation, it was observed in [9]
that saturation can be simulated by repeated division. Working out the details,
we obtain the following proposition.

Proposition 5. If a set of pseudo-Boolean constraints has a CP refutation with
saturation in length L and coefficients bounded by A, then there is a CP refuta-
tion with division in length AL.

We remark that a direct simulation may lead to an exponential blow-up if
the proof uses coefficients of exponential magnitude.

Our main contribution in this section is to show that when the input is in
CNF, then cutting planes proofs with saturation and unrestricted addition can
in fact be efficiently simulated by resolution assuming that all CP coefficients
are of polynomial magnitude. Observe that this last condition also implies that
the the degree of falsity has polynomial magnitude, which is the slightly more
precise assumption used in the next theorem.

Theorem 6. If a CNF formula F has a CP refutation π with saturation in
length L and every constraint in π has degree of falsity at most A, then there is
a resolution refutation of F in length O(AL).

We can then use subset cardinality formulas again to separate CP with divi-
sion from CP with saturation. The formal claim follows below, where the con-
stant hidden in the asymptotic notation depends on the size of the coefficients.

Corollary 7. There are formulas on n variables that can be refuted in length
O(n) in general CP but require length exp(Ω(n)) in CP with saturation if all
coefficients in the proofs have polynomial magnitude.

The idea behind the proof of Theorem 6 is to maintain for every inequality
with degree of falsity A a set of A clauses that implies the inequality. We simulate
linear combination steps by resolving the sets of clauses corresponding to the
two inequalities over the variables that cancel, and we do not do anything for
saturation steps.

Note that this approach does not work if the input is not in CNF. For
instance, if we start with the pseudo-Boolean constraint x + y + z ≥ 2 with
degree of falsity 2, which is equivalent to the clauses (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z),
then it is not possible to pick any 2 out of these 3 clauses that would imply the
inequality.

We remark that we do not know of any separation between CP with satura-
tion and division except those exhibited by CNF formulas. These separations are

304 M. Vinyals et al.

somewhat artificial in that they crucially use that the implicationally incomplete
subsystems of CP cannot recover the the cardinality constraints “hidden” in the
CNF encodings. In Sect. 4 we propose more natural candidates for separations
between CP with division and cancellation and CP with saturation, where the
difficulty would not be due to an “obfuscated” CNF encoding.

We conclude this section by the observation that any version of CP considered
in this paper can easily refute any set of linear constraints that define an empty
polytope over the reals, i.e., for which there is no real-valued solution. For general
addition this is an immediate consequence of Farkas’ lemma, and we can make the
additions cancelling using the Fourier–Motzkin variable elimination procedure.

Lemma 8. If a set of linear inequalities on n variables defines an empty polytope
over the reals, then there is a tree-like CP refutation using only addition in length
O(n) and space O(1), and a CP refutation using only cancelling addition in
length O(n2) and space O(n).

As a consequence of Corollary 7 and Lemma 8 we obtain the following theo-
rem.

Theorem 9. CP with saturation is not (even weakly) implicationally complete.

4 Tricky Formulas Based on Easy NP Instances

In this section we present candidates for achieving separations between the sub-
systems of cutting planes studied in this paper, and where these separations
would not be a consequence of presenting pseudo-Boolean constraints as “obfus-
cated” CNF formulas but would highlight fundamental differences in pseudo-
Boolean reasoning power between the proof systems.

All of our candidate formulas have short proofs for CP with division (and
all refutations have constant-size coefficients unless stated otherwise), but for
appropriately chosen parameter values it seems plausible that some of them are
not possible to refute efficiently using the saturation rule. We also show that it is
possible to chose other parameter values for these formulas to generate instances
that are very easy in theory even for the weakest subsystem of CP that we con-
sider. This is in striking contrast to what one can observe empirically when
running pseudo-Boolean solvers on these instances, as reported in [22]—in prac-
tice, many of these theoretically easy instances appear to be very challenging.

Even Colouring. The even colouring formula EC (G) [37] over a connected
graph G = (V,E) with all vertices of even degree consists of the constraints

∑

e∈E(v)
xe = deg(v)/2 v ∈ V (7)

(where E(v) denotes the set of edges incident to v), claiming that each vertex
has an equal number of incident 0- and 1-edges. The formula is unsatisfiable if
and only if |E| is odd, which we assume is always the case it what follows.

In Between Resolution and Cutting Planes 305

Even colouring formulas have short CP proofs: just add all positive and
negative inequalities separately, divide by 2 and round up, and add the results.
We can make the additions cancelling by processing inequalities in breadth-first
order, alternating between positive and negative inequalities.

Proposition 10. Tree-like CP with division and cancellation can refute EC (G)
in length O(n) and space O(1).

If the graph is t-almost bipartite, by which we mean that removing t edges
yields a bipartite graph, then we can make the proof work with saturation instead
of division at the price of an exponential blow-up in t (which becomes a constant
factor if t is constant).

Proposition 11. If G is a t-almost bipartite graph then the formula EC (G)
can be refuted in length O(2t + n) and space O(t) by CP with saturation and
cancellation, and the refutation can be made tree-like in length O(2tn).

An example of such graphs are rectangular m × n grids (where edges wrap
around the borders to form a torus) and where we subdivide one edge into
a degree-2 vertex to get an odd number of edges. If both m and n are even,
then the graph is bipartite except for 1 edge, so we have cutting planes proofs
with saturation and cancellation of length O(mn), and if m is even and n is
odd, then the graph is bipartite except for m + 1 edges, so we have proofs of
length O(2m +mn). In all cases even colouring formulas on grids have resolution
refutations of length 2O(m)n and space 2O(m) which we can simulate.

We conjecture that these formulas are exponentially hard for CP with satu-
ration when the graph is a square grid of odd side length, i.e., m = n = 2� + 1
(so that the graph is far from bipartite), or is a 2d-regular random graph.

Vertex Cover. Recall that a vertex cover of a graph G = (V,E) is a subset of
vertices V ′ ⊆ V such that every edge (u, v) ∈ E is incident to some vertex in V ′.
A graph G has a vertex cover of size at most S ∈ N

+ if and only if the formula
VC (G,S) given by the constraints

xu + xv ≥ 1 (u, v) ∈ E; (8a)
∑

v∈V
xv ≤ S (8b)

has a {0, 1}-valued solution.
We consider vertex cover instances over grid graphs Rm,n Since a grid has

degree 4 any cover must have size at least mn/2. This bound is not achievable
when one dimension, say n, is odd, in which case the minimal cover size is
m
n/2�. We can choose the parameter S in (8b) in the interval

[
mn/2,m
n/2�−

1
]

to obtain unsatisfiable formulas with different levels of overconstrainedness.
Vertex cover formulas have short cutting planes proofs: add the horizontal

edge inequalities (8a) for every row, divide by 2 (which rounds up the degree of
falsity), and add all of these inequalities to find a contradiction with the upper
bound (8b), and these additions can be reordered to be made cancelling.

306 M. Vinyals et al.

Proposition 12. CP with division and cancellation can refute VC (Rm,n, S)
with n odd and S < m
n/2� in length O(mn) and space O(1).

A similar approach works with saturation instead of division, but since we
cannot round up every row we need a stronger cover size constraint (8b).

Proposition 13. Tree-like CP with saturation and cancellation is able to refute
VC (Rm,n, S) with n odd and S ≤ mn/2� in length O(mn) and space O(1).

Alternatively, using what we find to be a rather nifty approach it turns out
to be possible to derive all the 2m clauses over the m variables corresponding to
vertices in the first column, after which one can simulate a brute-force resolution
refutation of this formula.

Proposition 14. Tree-like CP with saturation and cancellation is able to refute
VC (Rm,n, S) with n odd and S < m
n/2� in length O(2mmn) and space O(m).

We conjecture that the exponential gap between Propositions 12 and 14 for
m = Θ(n) and S = m
n/2� − 1 is real and is due to the weakness of saturation.

Dominating Set. A dominating set of a graph G = (V,E) is a subset of
vertices V ′ ⊆ V such that every vertex in V \ V ′ has a neighbour in V ′. G has a
dominating set of size S ∈ N

+ if and only if there is a {0, 1}-valued solution to
the set of constraints DS (G,S) defined as

xv +
∑

u∈N(v)
xu ≥ 1 v ∈ V ; (9a)

∑

v∈V
xv ≤ S (9b)

We consider dominating set formulas over hexagonal grid graphs Hm,n, which
can be visualized as brick walls. As it turns out these formulas have short proofs
even in CP with saturation and cancellation, but the proofs are not obvious
and the formulas have a surprisingly rich structure and present particularly
challenging benchmarks in practice.

Since a hexagonal grid has degree 3, the minimum size of a dominating set is

|V |/4� =
mn/4�, so we set S = mn/4�. Whether these formulas are satisfiable
depends on the largest power of 2 that divides m and n—also known as the 2-
adic valuation or v2. Formulas where v2(mn) = 1 are unsatisfiable and can be
refuted by adding all inequalities, and these additions can be made cancelling
with some care.

Proposition 15. Tree-like CP with cancellation can refute DS (Hm,n, mn/4�)
with v2(mn) = 1 in length O(mn) and space O(1).

Formulas where v2(mn) = 2 are unsatisfiable and the proof follows by divid-
ing the resulting inequalities in the previous proof by 2 and rounding up.

Proposition 16. Tree-like CP with division and cancellation is able to refute
DS (Hm,n,mn/4) with v2(mn) = 2 in length O(mn) and space O(1).

In Between Resolution and Cutting Planes 307

When v2(n) ≥ 2 the dominating set must in fact define a tiling of the hexag-
onal grid. If furthermore v2(m) ≥ 1 then formulas are satisfiable. Among the
remaining formulas some are satisfiable and some are not, and the next lemma
sums up our knowledge in this matter.

Lemma 17. Dominating set formulas over hexagonal grids are unsatisfiable if

– v2(m) ≥ 2 and v2(n) = 1, or
– v2(m) = 0 and v2(n) ≥ 3 and v2(n) ≤ v2(4 m/4�), or
– v2(n) = 0 and v2(m) ≥ 3 and v2(m) ≤ v2(4 n/4�).

We conjecture that Lemma 17 in fact provides an exact characterization.
To find CP refutations of the unsatisfiable dominating set instances, we can

derive tiling constraints xv +
∑

u∈N(v) = 1 for all vertices using only cancelling
addition. CP with saturation and cancellation can then easily refute these for-
mulas with tiling constraints in polynomial length.

Proposition 18. If DS (Hm,n,mn/4) is as in Lemma 17, then it can be refuted
in length O((nm)2) in CP with saturation and cancellation.

5 Concluding Remarks

In this paper, we investigate subsystems of cutting planes motivated by pseudo-
Boolean proof search algorithms. Using tools from proof complexity, we differ-
entiate between the reasoning power of different methods and show that current
state-of-the-art pseudo-Boolean solvers are inherently unable to exploit the full
strength of cutting planes even in theory, in stark contrast to what is the case
for CDCL solvers with respect to resolution.

Some of these limitations are in some sense folklore, in that it is known that
pseudo-Boolean solvers perform badly on input in CNF, but we show that this
is true for all natural restrictions suggested by current solvers that fall short of
full-blown cutting planes reasoning. Also, we propose a number of new crafted
benchmarks as a way of going beyond CNF-based lower bounds to study the
inherent limitations of solvers even when given natural pseudo-Boolean encod-
ings. We show how the parameters for these benchmarks can be varied to yield
versions that appear to be hard or easy for different subsystems of cutting planes.

Although we cannot establish any formal separations between the subsystems
of cutting planes studied in this paper—this would seem to require the develop-
ment of entirely new proof complexity techniques—it is our hope that further
investigations of these benchmarks could yield more insights into the power and
limitations of state-of-the-art pseudo-Boolean solvers.

Acknowledgements. We are most grateful to Daniel Le Berre for long and
patient explanations of the inner workings of pseudo-Boolean solvers, and to
João Marques-Silva for helping us get an overview of relevant references for pseudo-
Boolean solving. We would like to thank Susanna F. de Rezende, Arnold Filtser, and
Robert Robere for helpful discussions on polytopes. We also extend our gratitude to

308 M. Vinyals et al.

the SAT 2018 anonymous reviewers for the many detailed comments that helped to
improve the paper considerably.

Some empirical pseudo-Boolean solver experiments made within the context of this
work were performed on resources provided by the Swedish National Infrastructure
for Computing (SNIC) at the High Performance Computing Center North (HPC2N)
at Ume̊a University. For these experiments we also used the tool CNFgen [12,35], for
which we gratefully acknowledge Massimo Lauria.

The first author performed part of this work while at KTH Royal Institute of Tech-
nology. All authors were funded by the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agree-
ment no. 279611. The first author was also supported by the Prof. R Narasimhan
post-doctoral award, and the fourth and fifth authors received support from Swedish
Research Council grants 621-2012-5645 and 2016-00782.

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theory Comput. 3(5), 81–102 (2007).
preliminary version in STOC 2002

2. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P]
is tractable. SIAM J. Comput. 38(4), 1347–1363 (2008). Preliminary version in
FOCS 2001

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011).
Preliminary version in SAT 2009

4. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), pp. 203–208, July 1997

5. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004). Preliminary
version in IJCAI 2003

6. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica 24(4), 585–603 (2004)

7. Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

8. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small
coefficients. J. Symbolic Logic 62(3), 708–728 (1997). Preliminary version in STOC
1995

9. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 24(3), 305–317 (2005). Preliminary ver-
sion in DAC 2003

10. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Math. 4(1), 305–337 (1973)

11. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

12. CNFgen: Combinatorial benchmarks for SAT solvers. https://github.com/
MassimoLauria/cnfgen

13. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158
(1971)

https://github.com/MassimoLauria/cnfgen
https://github.com/MassimoLauria/cnfgen

In Between Resolution and Cutting Planes 309

14. Cook, S.A., Reckhow, R.: The relative efficiency of propositional proof systems. J.
Symbolic Log. 44(1), 36–50 (1979)

15. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Appl. Math. 18(1), 25–38 (1987)

16. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Commun. ACM 5(7), 394–397 (1962)

17. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

18. Dixon, H.E., Ginsberg, M.L., Hofer, D.K., Luks, E.M., Parkes, A.J.: Generalizing
Boolean satisfiability III: implementation. J. Artif. Intell. Res. 23, 441–531 (2005)

19. Dixon, H.E., Ginsberg, M.L., Luks, E.M., Parkes, A.J.: Generalizing Boolean sat-
isfiability II: theory. J. Artif. Intell. Res. 22, 481–534 (2004)

20. Dixon, H.E., Ginsberg, M.L., Parkes, A.J.: Generalizing Boolean satisfiability I:
Background and survey of existing work. J. Artif. Intell. Res. 21, 193–243 (2004)

21. Elffers, J.: CDCL-cuttingplanes: A conflict-driven pseudo-Boolean solver (2016).
Submitted to the Pseudo-Boolean Competition 2016

22. Elffers, J., Giráldez-Cru, J., Nordström, J., Vinyals, M.: Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In: Proceed-
ings of the 21st International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2018), July 2018. To appear

23. Elffers, J., Johannsen, J., Lauria, M., Magnard, T., Nordström, J., Vinyals, M.:
Trade-offs between time and memory in a tighter model of CDCL SAT solvers.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 160–176.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 11

24. Elffers, J., Nordström, J.: Divide and conquer: towards faster pseudo-Boolean solv-
ing. In: Proceedings of the 27th International Joint Conference on Artificial Intel-
ligence (IJCAI-ECAI 2018), July 2018. To appear

25. Filmus, Y., Hrubeš, P., Lauria, M.: Semantic versus syntactic cutting planes. In:
Proceedings of the 33rd International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2016). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 47, pp. 35:1–35:13, February 2016

26. Fleming, N., Pankratov, D., Pitassi, T., Robere, R.: Random θ(log n)-CNFs are
hard for cutting planes. In: Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2017), pp. 109–120, October 2017

27. Goerdt, A.: The cutting plane proof system with bounded degree of falsity. In:
Proceedings of the 5th International Workshop on Computer Science Logic (CSL
1991), pp. 119–133, October 1991

28. Gomory, R.E.: An algorithm for integer solutions of linear programs. In: Graves,
R., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302.
McGraw-Hill, New York (1963)

29. Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39(2–3), 297–
308 (1985)

30. Hirsch, E.A., Kojevnikov, A., Kulikov, A.S., Nikolenko, S.I.: Complexity of semi-
algebraic proofs with restricted degree of falsity. J. Satisfiability Boolean Model.
Comput. 6, 53–69 (2008). Preliminary version in SAT 2005 and SAT 2006

31. Hooker, J.N.: Generalized resolution and cutting planes. Ann. Oper. Res. 12(1),
217–239 (1988)

32. Hooker, J.N.: Generalized resolution for 0-1 linear inequalities. Ann. Math. Artif.
Intell. 6(1), 271–286 (1992)

https://doi.org/10.1007/978-3-319-40970-2_11

310 M. Vinyals et al.

33. Hrubeš, P., Pudlák, P.: Random formulas, monotone circuits, and interpolation.
In: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2017), pp. 121–131, October 2017

34. Impagliazzo, R., Pitassi, T., Urquhart, A.: Upper and lower bounds for tree-like
cutting planes proofs. In: Proceedings of the 9th Annual IEEE Symposium on
Logic in Computer Science (LICS 1994). pp. 220–228, July 1994

35. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
464–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 30

36. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59–64 (2010)

37. Markström, K.: Locality and hard SAT-instances. J. Satisfiability Boolean Model.
Comput. 2(1–4), 221–227 (2006)

38. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). Preliminary version in
ICCAD 1996

39. Mikša, M., Nordström, J.: Long proofs of (seemingly) simple formulas. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 121–137. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3 10

40. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001), pp. 530–535, June 2001

41. Nordström, J.: Pebble games, proof complexity and time-space trade-offs. Log.
Methods Comput. Sci. 9(3), 15:1–15:63 (2013)

42. Nordström, J.: On the interplay between proof complexity and SAT solving. ACM
SIGLOG News 2(3), 19–44 (2015)

43. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell. 175(2), 512–525, February 2011. Preliminary ver-
sion in CP 2009

44. Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/, July
2016

45. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbol. Log. 62(3), 981–998 (1997)

46. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

47. Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In:
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 22, pp.
695–733. IOS Press, February 2009

48. SAT4J: The Boolean satisfaction and optimization library in Java. http://www.
sat4j.org/

49. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-Boolean SAT solver. J.
Satisfiability Boolean Model. Comput. 2(1–4), 165–189, March 2006. Preliminary
version in DATE 2005

50. Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks. J.
Exp. Algorithmics 15, 1.2:1–1.2:15, March 2010

51. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
52. Urquhart, A.: A near-optimal separation of regular and general resolution. SIAM

J. Comput. 40(1), 107–121 (2011). Preliminary version in SAT 2008
53. Van Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances.

In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 388–397.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 37

https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.1007/978-3-319-09284-3_10
http://www.cril.univ-artois.fr/PB16/
http://www.sat4j.org/
http://www.sat4j.org/
https://doi.org/10.1007/978-3-642-14186-7_37

	In Between Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SAT Solving
	1 Introduction
	2 Proof Systems for Pseudo-Boolean SAT Solving
	3 Relations Between Subsystems of Cutting Planes
	4 Tricky Formulas Based on Easy NP Instances
	5 Concluding Remarks
	References

