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Abstract
We prove near-optimal trade-offs for quantifier depth versus num-
ber of variables in first-order logic by exhibiting pairs of n-element
structures that can be distinguished by a k-variable first-order sen-
tence but where every such sentence requires quantifier depth at
least nΩ(k/ log k). Our trade-offs also apply to first-order count-
ing logic, and by the known connection to the k-dimensional
Weisfeiler–Leman algorithm imply near-optimal lower bounds
on the number of refinement iterations. A key component in our
proof is the hardness condensation technique recently introduced
by [Razborov ’16] in the context of proof complexity. We apply
this method to reduce the domain size of relational structures while
maintaining the quantifier depth required to distinguish them.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Computational Logic, Model theory; F.2.3 [Tradeoffs between
Complexity Measures]

Keywords First-order logic, first-order counting logic, bounded
variable fragment, quantifier depth, Weisfeiler–Leman, refine-
ment iterations, lower bounds, trade-offs, hardness condensation,
XORification

1. Introduction
The k-variable fragment of first-order logic Lk consists of those
first-order sentences that use at most k different variables. A simple
example is the L2 sentence

∃x∃y(Exy ∧ ∃x(Eyx ∧ ∃y(Exy ∧ ∃xEyx))) (1)

stating that there exists a directed path of length 4 in a digraph.
Extending Lk with counting quantifiers ∃≥ix yields Ck, which can
be more economical in terms of variables. As an illustration, the
L8 sentence

∃x∃y1 · · · ∃y7

(∧
i 6=j yi 6= yj ∧

∧
iExyi

)
(2)

stating the existence of a vertex of degree at least 7 in a graph can
be written more succinctly as the C2 sentence

∃x∃≥7yExy . (3)

Bounded variable fragments of first order logic have found numer-
ous applications in finite model theory and related areas (see [19]
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for a survey). Their importance stems from the fact that the model
checking problem (given a finite relational structure A and a sen-
tence ϕ, does A satisfy ϕ?) can be decided in polynomial time
[25, 35]. Moreover, the equivalence problem (given two finite rela-
tional structures A and B, do they satisfy the same sentences?) for
Lk and Ck can be decided in time nO(k) [26], i.e., polynomial for
constant k.

Quantifier Depth If A and B are not equivalent in Lk or Ck, then
there exists a sentence ϕ that defines a distinguishing property, i.e.,
such that A |= ϕ and B 6|= ϕ, which certifies that the structures
are non-isomorphic. But how complex can such a sentence be?
In particular, what is the minimal quantifier depth of an Lk or
Ck sentence that distinguishes two n-element relational structures
A and B? The best upper bound for the quantifier depth of Lk and
Ck is nk−1 [26], while to the best of our knowledge the strongest
lower bounds have been only linear in n [13, 20, 16]. In this paper
we present a near-optimal lower bound of nΩ(k/ log k).

Theorem 1.1. There are ε > 0, K0 ∈ N such that for all k, n
with K0 ≤ k ≤ n1/12 there is a pair of n-element (k− 1)-
ary relational structures An,Bn that can be distinguished in k-
variable first-order logic but satisfy the same Lk and Ck sentences
up to quantifier depth nεk/ log k.

Note that any two non-isomorphic n-element σ-structures A
and B can always be distinguished by a simple n-variable first-
order sentence of quantifier depth n, namely

∃x1 · · · ∃xn

(∧
i 6=j

xi 6= xj ∧
∧
R∈σ,

(vi1 ,...,vir )∈RA

Rxi1 , . . . , xir

∧
∧
R∈σ,

(vi1 ,...,vir )/∈RA

¬Rxi1 , . . . , xir

)
. (4)

Since our nΩ(k/ log k) lower bound for k-variable logics grows sig-
nificantly faster than this trivial upper bound n on the quantifier
depth as the number of variables increases, Theorem 1.1 also de-
scribes a trade-off in the super-critical regime above worst-case in-
vestigated by Razborov [32]: If one reduces one complexity mea-
sure (the number of variables), then the other complexity parameter
(the quantifier depth) increases sharply even beyond its worst-case
upper bound.

The equivalence problem for Ck+1 is known to be closely re-
lated to the k-dimensional Weisfeiler–Leman algorithm (k-WL) for
testing non-isomorphism of graphs and, more generally, relational
structures. It was shown by Cai, Fürer, and Immerman [13] that
two structures are distinguished by k-WL if and only if there exists
a Ck+1 sentence that differentiates between them. Moreover, the



quantifier depth of such a sentence also relates to the complexity of
the WL algorithm in that the number of iterations k-WL needs to
tell A and B apart coincides with the minimal quantifier depth of a
distinguishing Ck+1 sentence. Therefore, Theorem 1.1 also implies
a near-optimal lower bound on the number of refinement steps re-
quired in the Weisfeiler–Leman algorithm. We discuss this next.

The Weisfeiler–Leman Algorithm The Weisfeiler–Leman algo-
rithm, independently introduced by Babai in 1979 and by Immer-
man and Lander in [26] (cf. [13] and [2] for historic notes), is a
hierarchy of methods for isomorphism testing that iteratively re-
fine a partition (or colouring) of the vertex set, ending with a sta-
ble colouring that classifies similar vertices. Since no isomorphism
can map non-similar vertices to each other, this reduces the search
space. Moreover, if two structures end up with different stable
colourings, then we can immediately deduce that the structures are
non-isomorphic. The 1-dimensional Weisfeiler–Leman algorithm,
better known as colour refinement, initially colours the vertices ac-
cording to their degree (clearly, no isomorphism identifies vertices
of different degree). The vertex colouring is then refined based on
the colour classes of the neighbours. For example, two degree-5
vertices get different colours in the next step if they have a different
number of degree-7 neighbours. This refinement step is repeated
until the colouring stays stable (i.e., every pair of equally coloured
vertices have the same number of neighbours in every other colour
class). This algorithm is already quite strong and is extensively used
in practical graph isomorphism algorithms.

In k-dimensional WL this idea is generalized to colourings of
k-tuples of vertices. Initially the k-tuples are coloured by their
isomorphism type, i.e., two tuples ~v = (v1, . . . , vk) and ~w =
(w1, . . . , wk) get different colours if the mapping vi 7→ wi is
not an isomorphism on the substructures induced on {v1, . . . , vk}
and {w1, . . . , wk}. In the refinement step, we consider for each
k-tuple ~v = (v1, . . . , vk) and every vertex v the colours of the
tuples ~vj := (v1, . . . , vj−1, v, vj+1, . . . , vk), where v is substi-
tuted at the jth position in the tuple ~v. We refer to the tuple
(c(~v1), . . . , c(~vk)) of these k colours as the colour type t(~v, v)
and let v be a t-neighbour of ~v if t = t(~v, v). Now two tuples ~v
and ~w get different colours if they are already coloured differently,
or if there exists a colour type t such that ~v and ~w have a different
number of t-neighbours. The refinement step is repeated until the
colouring stays stable. Since in every round the number of colour
classes grows, the process stops after at most nk steps. The colour
names can be chosen in such a way that the stable colouring is
canonical, which means that two isomorphic structures end up with
the same colouring, and such a canonical stable colouring can be
computed in time nO(k).

This simple combinatorial algorithm is surprisingly powerful.
Grohe [21] showed that for every non-trivial graph class that ex-
cludes some minor (such as planar graphs or graphs of bounded
treewidth) there exists some k such that k-WL computes a different
colouring for all non-isomorphic graphs, and hence solves graph
isomorphism in polynomial time on that graph class. Weisfeiler–
Leman has also been used as a subroutine in algorithms that solve
graph isomorphism on all graphs. As one part of his very recent
graph isomorphism algorithm, Babai [2] applies k-WL for poly-
logarithmic k to relational (k-ary) structures and makes use of the
quasi-polynomial running time of this algorithm.

Given the importance of the Weisfeiler–Leman procedure, it is
a natural question to ask whether the trivial nk upper bound on the
number of refinement steps is tight. By the correspondence between
the number of refinement steps of k-WL and the quantifier depth
of Ck+1 [13], our main result implies a near-optimal lower bound
even up to polynomial, but still sublinear, values of k (i.e., k = nδ

for small enough constant δ).

Theorem 1.2. There are ε > 0, K0 ∈ N such that for all k, n with
K0 ≤ k ≤ n1/12 there is an n-element k-ary relational structure
An for which the k-dimensional Weisfeiler–Leman algorithm needs
nεk/ log k refinement steps to compute the stable colouring.

In addition to the near-optimal lower bounds for a specific
dimension (or number of variables) k, we also obtain the following
trade-off between the dimension and the number of refinement
steps: If we fix two parameters `1 and `2 (possibly depending
on n) satisfying `1 ≤ `2 ≤ n1/6/`1, then there are n-element
structures such that k-WL needs nΩ(`1/ log `2) refinement steps for
all `1 ≤ k ≤ `2. A particularly interesting choice of parameters
is `1 = logc n for some constant c > 1 and `2 = n1/7. This
implies the following quasi-polynomial lower bound on the number
of refinement steps for Weisfeiler–Leman from polylogarithmic
dimension all the way up to dimension n1/7.

Theorem 1.3. For every c > 1 there is a sequence of n-element
relational structures An for which the k-dimensional Weisfeiler–
Leman algorithm needs nΩ(logc−1 n) refinement steps to compute
the stable colouring for all k with logc n ≤ k ≤ n1/7.

Previous Lower Bounds In their seminal work [13], Cai, Fürer
and Immerman showed that there exist non-isomorphic n-vertex
graphs that cannot be distinguished by any first-order counting
sentence with o(n) variables. Since every pair of non-isomorphic
n-element structures can be distinguished by a Cn (or even Ln)
sentence (as shown in (4) above), this result also implies a linear
lower bound on the quantifier depth of Ck if k = Ω(n). For all
constant k ≥ 2, a linear Ω(n) lower bound on the quantifier depth
of Ck follows implicitly from an intricate construction of Grohe
[20], which was used to show that the equivalence problems for
Lk and Ck are complete for polynomial time. An explicit linear
lower bound based on a simplified construction was subsequently
presented by Fürer [16].

For the special case of C2, Krebs and Verbitsky [29] recently
obtained an improved (1 − o(1))n lower bound on the quantifier
depth, nearly matching the upper bound n. In contrast, Kiefer and
Schweitzer [27] showed that if two n-vertex graphs can be distin-
guished by a C3 sentence, then there is always a distinguishing sen-
tence of quantifier depth O(n2/ logn). Hence, the trivial n2 upper
bound is not tight in this case.

As far as we are aware, the current paper presents the first lower
bounds that are super-linear in the domain size n.

Discussion of Techniques The hard instances we construct are
based on propositional XOR (exclusive or) formulas, which can al-
ternatively be viewed as systems of linear equations over GF(2).
There is a long history of using XOR formulas for proving lower
bounds in different areas of theoretical computer science such as,
e.g., finite model theory, proof complexity, and combinatorial opti-
mization/hardness of approximation. Our main technical insight is
to combine two methods that, to the best of our knowledge, have
not been used together before, namely Ehrenfeucht-Fraı̈ssé games
on structures based on XOR formulas and hardness amplification
by variable substitution as used in proof complexity.

More than three decades ago, Immerman [24] presented a way
to encode an XOR formula into two graphs that are isomorphic if
and only if the formula is satisfiable. This can then be used to show
that the two graphs cannot be distinguished by a sentence with
few variables or low quantifier depth using Ehrenfeucht-Fraı̈ssé
games. Arguably the most important application of this method
is the result in [13] establishing that a linear number of variables
is needed to distinguish two graphs in first-order counting logic.
Graph constructions based on XOR formulas have also been used
to prove lower bounds on the quantifier depth of Ck [24, 16].



We remark that for our result we have to use a slightly different
encoding of formulas into relational structures rather than graphs.

In proof complexity, various flavours of XOR formulas (usu-
ally called Tseitin formulas when used to encode the handshak-
ing lemma saying that the sum of all vertex degrees in an undi-
rected graph has to be an even number) have been used to obtain
lower bounds for proof systems such as resolution [34], polyno-
mial calculus [12], and bounded-depth Frege [5]. Such formulas
have also played an important role in many lower bounds for the
Positivstellensatz/sums-of-squares proof system [18, 28, 33] cor-
responding to the Lasserre semidefinite programming hierarchy,
which has been the focus of much recent interest in the context
of combinatorial optimization.1 Another use of XOR in proof com-
plexity has been for hardness amplification, where one takes a (typ-
ically non-XOR) formula that is moderately hard with respect to
some complexity measure, substitutes all variables by exclusive
ors over pairwise distinct sets of variables, and then shows that
the new XORified formula must be very hard with respect to some
other (more important) complexity measure. This technique was
perhaps first made explicit in [6] and has later appeared in, e.g.,
[11, 7, 8, 4, 15].

An even more crucial role in proof complexity is played by well-
connected so-called expander graphs. For instance, given a formula
in conjunctive normal form (CNF) one can look at its bipartite
clause-variable incidence graph (CVIG), or some variant of the
CVIG derived from the combinatorial structure of the formula, and
prove that if this graph is an expander, then this implies that the
formula must be hard for proof systems such as resolution [9] and
polynomial calculus [1, 30].

In a striking recent paper [32], Razborov combines XOR-
ification and expansion in a simple (with hindsight) but amazingly
powerful way. Namely, instead of replacing every variable by an
XOR over new, fresh variables, he recycles variables from a much
smaller pool, thus decreasing the total number of variables. This
means that the hardness amplification proofs no longer work, since
they crucially use that all new substitution variables are distinct.
But here expansion come into play. If the pattern of variable substi-
tutions is described by a strong enough bipartite expander, it turns
out that locally there is enough “freshness” even among the recy-
cled variables to make the hardness amplification go through over a
fairly wide range of the parameter space. And since the formula has
not only become harder but has also had the number of variables
decreased, this can be viewed as a kind of hardness compression or
hardness condensation.

What we do in this paper is to first revisit Immerman’s old
quantifier depth lower bound for first-order counting logic [24] and
observe that the construction can be used to obtain an improved
scalable lower bound for the k-variable fragment. We then translate
Razborov’s hardness condensation technique [32] into the language
of finite variable logics and use it—perhaps somewhat amusingly
applied to XORification of XOR formulas, which is usually not the
case in proof complexity—to reduce the domain size of relational
structures while maintaining the minimal quantifier depth required
to distinguish them.

Outline of This Paper The rest of this paper is organized as fol-
lows. In Section 2 we describe how to translate XOR formulas to
relational structures and play combinatorial games on these struc-
tures. This then allows us to state our main technical lemmas in
Section 3 and show how these lemmas yield our results. Turning
to the proofs of these technical lemmas, in Section 4 we present
a version of Immerman’s quantifier depth lower bound for XOR
formulas, and in Section 5 we apply Razborov’s hardness conden-

1 No proof complexity is needed in this paper, and so readers unfamiliar
with these proof systems need not worry—this is just an informal overview.

sation technique to these formulas. Finally, in Section 6 we make
some concluding remarks and discuss possible directions for fu-
ture research. Due to space constraints, we omit some of the more
standard technical proofs in this conference version, referring the
reader to the upcoming full-length version for the missing details.

2. From XOR Formulas to Relational Structures
In this paper all structures are finite and defined over a relational
signature σ. We use the letters X , E, and R for unary, binary, and
r-ary relation symbols, respectively, and let XA, EA, and RA be
their interpretation in a structure A. We write V (A) to denote the
domain of the structure A. The k-variable fragment of first-order
logic Lk consists of all first-order formulas that use at most k dif-
ferent variables (possibly re-quantifying them as in Equation (1)).
We also consider k-variable first-order counting logic Ck, which is
the extension of Lk by counting quantifiers ∃≥ixϕ(x), stating that
there exist at least i elements u ∈ V (A) such that (A, u) |= ϕ(x).
For a survey of finite variable logics and their applications we refer
the reader to, e.g., [19].

An `-XOR clause is a tuple (x1, . . . , x`, a) consisting of
` Boolean variables and a Boolean value a ∈ {0, 1}. We refer to `
as the width of the clause. An assignmentα satisfies (x1, . . . , x`, a)
if α(x1) + · · · + α(x`) ≡ a (mod 2). An `-XOR formula F is a
conjunction of XOR clauses of width at most ` and is satisfied by
an assignment α if α satisfies all clauses in F .

For every `-XOR formula F on n variables we can define a
pair of 2n-element structures A = A(F ) and B = B(F ) that are
isomorphic if and only if F is satisfiable. The domain of the struc-
tures contains two elements x0

i and x1
i for each Boolean variable

xi. There is one unary predicate Xi for every variable xi identify-
ing the corresponding two elements x0

i and x1
i . Hence these unary

relations partition the domain of the structures into two-element
sets, i.e., XAi = XBi = {x0

i , x
1
i }. To encode the XOR clauses, we

introduce one m-ary relation Rm for every 1 ≤ m ≤ ` and set

RAm=
{(
xa1i1 , . . . , x

am
im

) ∣∣(xi1 , . . . , xim , a)∈F,
∑
iai≡0

}
(5a)

and

RBm=
{(
xa1i1 , . . . , x

am
im

) ∣∣(xi1 , . . . , xim , a)∈F,
∑
iai≡a

}
(5b)

(where the sums are taken mod 2). Every bijection β between the
domains of A(F ) and B(F ) that preserves the unary relations Xi
can be translated to an assignment α for the XOR formula via the
correspondence α(xi) = 0 ⇔ β(x0

i ) = x0
i ⇔ β(x1

i ) = x1
i and

α(xi) = 1 ⇔ β(x0
i ) = x1

i ⇔ β(x1
i ) = x0

i . It is not hard to show
that such a bijection defines an isomorphism between A(F ) and
B(F ) if and only if the corresponding assignment satisfies F .

This kind of encodings of XOR formulas into relational struc-
tures have been very useful for proving lower bounds for finite
variable logics in the past. Our transformation of XOR clauses of
width ` into `-ary relational structures resembles the way Gurevich
and Shelah [22] encode XOR formulas as hypergraphs. It is also
closely related to the way Cai, Fürer, and Immerman [13] obtain
two non-isomorphic graphs G andH from an unsatisfiable 3-XOR
formula F in the sense that G andH can be seen to be the incidence
graphs of our structures A(F ) and B(F ).

In order to prove our main result, we make use of the combina-
torial characterization of quantifier depth of finite-variable logics
in terms of pebble games for Lk and Ck, which are played on two
given relational structures. Since in our case the structures are based
on XOR formulas, for convenience we consider a simplified com-
binatorial game that is played directly on the formulas rather than
on their structure encodings. We first describe this game and then
show in Lemma 2.1 that this yields an equivalent characterization.

The r-round k-pebble game is played on an XOR formula F
by two players, whom we will refer to as Player 1 and Player 2.



A position in the game is a partial assignment α of at most k vari-
ables of F and the game starts with the empty assignment. In each
round, Player 1 can delete some variable assignments from the cur-
rent position (he chooses some α′ ⊆ α). If the current position
assigns values to exactly k variables, then Player 1 has to delete at
least one variable assignment. Afterwards, Player 1 chooses some
currently unassigned variable x and asks for its value. Player 2 an-
swers by either 0 or 1 (independently of any previous answers to
the same question) and adds this assignment to the current position.

A winning position for Player 1 is an assignment falsifying
some clause from F . Player 1 wins the r-round k-pebble game if
he has a strategy to win every play of the k-pebble game within at
most r rounds. Otherwise, we say that Player 2 wins (or survives)
the r-round k-pebble game. Player 1 wins the k-pebble game if he
wins the r-round k-pebble game within a finite number of rounds r.
Note that if Player 1 wins the k-pebble game, then he can always
win the k-pebble within 2knk+1 rounds, because there are at most∑k
i=0 2i

(
n
i

)
≤ 2knk+1 different positions with at most k pebbles

on n-variable XOR formulas. We say that Player 1 can reach a
position β from a position α within r rounds, if he has a strategy
such that in every play of the r-round k-pebble game starting from
position α he either wins or ends up with position β.

Let us now show that the game described above is equivalent
to the pebble game for Lk and to the bijective pebble game for Ck

played on the structures A(F ) and B(F ).

Lemma 2.1. Let k, p, r be integers such that r > 0 and k ≥ p
and let F be a p-XOR formula giving rise to structuresA = A(F )
and B = B(F ) as described in the paragraph preceding (5a)–(5b).
Then the following statements are equivalent:

(a) Player 1 wins the r-round k-pebble game on F .
(b) There is a k-variable first-order sentence ϕ ∈ Lk of quantifier

depth r such that A(F ) |= ϕ and B(F ) 6|= ϕ.
(c) There is a k-variable sentence in first-order counting logic

ϕ ∈ Ck of quantifier depth r such that A(F ) |= ϕ and
B(F ) 6|= ϕ.

(d) The (k − 1)-dimensional Weisfeiler–Leman procedure can dis-
tinguish between A(F ) and B(F ) within r refinement steps.

Proof sketch. Let us start by briefly recalling known character-
izations in terms of Ehrenfeucht-Fraı̈ssé games of Lk [3, 25]
and Ck [13, 23]. In both cases the game is played by two play-
ers, referred to as Spoiler and Duplicator, on the two struc-
tures A and B. Positions in the games are partial mappings
p =

{
(u1, v1), . . . , (ui, vi)

}
from V (A) to V (B) of size at

most k. The games start from the empty position and proceed in
rounds. At the beginning of each round in both games, Spoiler
chooses p′ ⊆ p with |p′| < k.

• In the Lk-game, Spoiler then selects either some u ∈ V (A)
or some v ∈ V (B) and Duplicator responds by choosing an
element v ∈ V (B) or u ∈ V (A) in the other structure.

• In the Ck-game, Duplicator first selects a global bijection
f : V (A)→ V (B) and Spoiler chooses some pair (u, v) ∈ f .
(If |V (A)| 6= |V (B)|, Spoiler wins the Ck-game immediately.)

The new position is p′∪{(u, v)}. Spoiler wins the r-round Lk /Ck

game if he has a strategy to reach within r rounds a position
that does not define an isomorphism on the induced substructures.
Both games characterize equivalence in the corresponding logics:
Spoiler wins the r-round Lk /Ck game if and only if there is a
depth-r sentence ϕ ∈ Lk /Ck such that A |= ϕ and B 6|= ϕ.

When these games are played on the two structures A(F )
and B(F ) obtained from an XOR formula F , it is not hard to verify
that both games are equivalent to the k-pebble game on F . To see

this, we identify Spoiler with Player 1, Duplicator with Player 2,
and partial mappings p = {(xaii , x

bi
i ) | i ≤ `} with partial assign-

ments α = {xi 7→ ai ⊕ bi | i ≤ `}. Because of the Xi-relations,
we can assume that partial assignments of any other form will not
occur as they are losing positions for Duplicator.

If Spoiler asks for some x0
i or x1

i in the Lk-game, which corre-
sponds to a choice by Player 1 of xi ∈ Vars(F ), the only mean-
ingful action for Duplicator is to choose either x0

i or x1
i in the other

structure, corresponding to an assignment to xi by Player 2. With
any other choice Duplicator would lose immediately because of the
unary relationsXi. Thus, there is a natural correspondence between
strategies in the Lk-game and the k-pebble game.

The players in the k-pebble game can be assumed to have per-
fect knowledge of the strategy of the other player. This means that
at any given position in the game, without loss of generality we
can think of Player 1 as being given a complete truth value as-
signment to the remaining variables, out of which he can pick one
variable assignment. By the correspondence discussed above we
see that this can be translated to a bijection f chosen by Duplicator
in the Ck-game (which has to preserve the Xi relations). There-
fore, Spoiler picking some pair of the form (xai , x

b
i ) from f can be

viewed as Player 1 asking about the assignment to xi and getting a
response from Player 2 in the game on F (again using the above-
mentioned correspondence between partial mappings p and partial
assignments α). Finally, we observe that by design a partial map-
ping that preserves the Xi-relations defines a local isomorphism if
and only if the corresponding α does not falsify any XOR clause.

Formalizing the proof sketch above, it is not hard to show that
statements (a)–(c) are all equivalent. The equivalence between (c)
and (d) was proven in [13]. The lemma follows.

3. Proofs of Main Theorems
To prove our lower bounds of the quantifier depth of finite vari-
able logics in Theorem 1.1 and the number of refinement steps
of the Weisfeiler–Leman algorithm in Theorems 1.2 and 1.3, we
utilize the characterization in Lemma 2.1 and show that there
are n-variable XOR formulas on which Player 1 is able to win
the k-pebble game but cannot do so in significantly less than
nk/ log k rounds. The next lemma states this formally and also pro-
vides a trade-off as the number of pebbles increases.

Lemma 3.1 (Main technical lemma). There is an absolute con-
stantK0 ∈ N+ such that for klo, khi, and n satisfyingK0 ≤ klo ≤
khi ≤ n1/6/klo there is an XOR formula F with n variables such
that Player 1 wins the klo-pebble game on F , but does not win the
khi-pebble game within nklo/(10 log khi)−1/5 rounds.

Let us see how this lemma yields the theorems in Section 1.

Proof of Theorem 1.1. This theorem can be seen to follow imme-
diately from Lemmas 2.1 and 3.1, but let us write out the details
for clarity. By setting klo = khi = k in Lemma 3.1, we can
find XOR formulas with n variables such that Player 1 wins the
k-pebble game on Fn but needs more than nεk/ log k rounds in or-
der to do so (provided we choose ε < 1/10 and K0 large enough).
We can then plug these XOR formulas into Lemma 2.1 to obtain
n-element structures An = A(Fn) and Bn = B(Fn) that can be
distinguished in the k-variable fragments of first-order logic Lk and
first-order counting logic Ck, but where this requires sentences of
quantifier depth at least nεk/ log k.

Proof of Theorem 1.2. If we let Fn be the XOR formula from
Lemma 3.1 for klo = khi = k, then by Lemma 2.1 it holds that
the structures A(Fn) and B(Fn) will be distinguished by the k-
dimensional Weisfeiler–Leman algorithm, but only after nεk/ log k



refinement steps. Hence, computing the stable colouring of either of
these structures requires at least nεk/ log k refinement steps (since
they would be distinguished earlier if at least one of the computa-
tions terminated earlier).

Proof of Theorem 1.3. This is similar to the proof of Theorem 1.2,
but setting klo = blogncc and khi =

⌈
n1/7

⌉
in Lemma 3.1.

The proof of Lemma 3.1 splits into two steps. We first estab-
lish a rather weak lower bound on the number of rounds in the
pebble game played on suitably chosen m-variable XOR formu-
las for m� n. We then transform this into a much stronger lower
bound for formulas over n variables using hardness condensation.
To help the reader keep track of which results are proven in which
setting, in what follows we will write `lo and `hi to denote parame-
ters depending on m and klo and khi to denote parameters depend-
ing on n.

To implement the first step in our proof plan, we use tools
developed by Immerman [24] to establish a lower bound as stated in
the next lemma. It gives non-trivial lower bounds for the `hi-pebble
game on m-variable formulas for `hi up to 2

√
logm.

Lemma 3.2. For all `hi,m ≥ 3 there is an m-variable 3-XOR
formula F `hi

m on which Player 1

(a) wins the 3-pebble game, but
(b) does not win the

(
1

dlog `hie
m1/(1+dlog `hie)−2

)
-round `hi-pebble

game.

We defer the proof of Lemma 3.2 to Section 4, but at this
point an expert reader might wonder why we would need to prove
this lower bound at all, since a much stronger Ω(m) bound on
the number of rounds in the pebble game on 4-XOR formulas
was already obtained by Fürer [16]. The reason is that in Fürer’s
construction Player 1 cannot win the game with o(`hi) pebbles.
However, it is crucial for the second step of our proof, where we
boost the lower bound but also significantly increase the number of
pebbles that are needed to win the game, that Player 1 is able to win
the original game with very few pebbles.

The second step in the proof of our main technical lemma is car-
ried out by using the techniques developed by Razborov [32] and
applying them to the XOR formulas in Lemma 3.2. Roughly speak-
ing, if we set klo = khi = k for simplicity, then the number of vari-
ables decreases from m to n ≈ m1/k, whereas the m1/ log k round
lower bound for the k-pebble game stays essentially the same and
hence becomes nk/ log k in terms of the new number of variables n.
The properties of hardness condensation are summarized in the
next lemma, which we prove in Section 5. To demonstrate the flex-
ibility of this tool we state the lemma in its most general form—
readers who want to see an example of how to apply it to the XOR
formulas in Lemma 3.2 can mentally fix p = 3, `lo = 3, `hi = khi,
r ≈ m1/ log khi , and ∆ ≈ khi/3 when reading the statement of the
lemma below.

Lemma 3.3 (Hardness condensation lemma). There is an ab-
solute constant ∆0 such that the following holds. Let F be an
m-variable p-XOR formula and suppose that we can choose pa-
rameters `lo > 0, `hi ≥ ∆0`lo and r > 0 such that Player 1

(a) has a winning strategy for the `lo-pebble game on F , but
(b) does not win the `hi-pebble game on F within r rounds.

Then for any ∆ satisfying ∆0 ≤ ∆ ≤ `hi/`lo and (2`hi∆)2∆ ≤ m
there is an (∆p)-XOR formulaH with

⌈
m3/∆

⌉
variables such that

Player 1

(a’) has a winning strategy for the (∆`lo)-pebble game on H , but
(b’) does not win the `hi-pebble game onH within r/(2`hi) rounds.

Taking Lemmas 3.2 and 3.3 on faith for now, we are ready
to prove our main technical lemma yielding an nΩ(k/ log k) lower
bound on the number of rounds in the k-pebble game.

Proof of Lemma 3.1. Let ∆0 be the constant from Lemma 3.3. We
let K0 ≥ 3∆0 + 9 be an absolute constant to be determined
later. We are given khi, klo, and n satisfying the conditions from
Lemma 3.1. In order to apply Lemma 3.3 to the XOR formulas
provided by Lemma 3.2 we fix the parameters p := 3, `lo := 3,
`hi := khi, ∆ := 3bklo/9c, and m := nbklo/9c.

By assumption we have `lo ≥ 3 and therefore we can appeal
to Lemma 3.2 to obtain an m-variable 3-XOR formula on which
Player 1 wins the 3-pebble game but cannot win the `hi-pebble
game within r := 1

dlog `hie
m1/(1+dlog `hie) − 2 rounds. Now we

apply hardness condensation to this formula and have to check that
the chosen parameters satisfy the conditions. By definition we have
`lo > 0 and furthermore `hi = khi ≥ K0 ≥ 3∆0 = ∆0`lo.
Statements (a) and (b) are satisfied by Lemma 3.2. To verify the
bounds on ∆ note that ∆0 ≤ 3bK0/9c ≤ 3bklo/9c = ∆ ≤
klo/3 ≤ khi/3 = `hi/`lo. We proceed with checking the condition
(2`hi∆)2∆ ≤ m. Because ∆ ≤ klo/3 and `hi = khi ≤ n1/6/klo

we get (2`hi∆)2∆ ≤ ( 2
3
n1/6)2∆ ≤ n∆/3 = m. Finally, we verify

that n = nbklo/9c3/∆ = m3/∆. Now Lemma 3.3 provides us
with an n-variable klo-XOR formula on which (a’) Player 1 has
a winning strategy for the (3∆)-pebble game and hence also for
the game with klo ≥ 9bklo/9c = 3∆ pebbles. Furthermore, by
(b’) Player 1 needs r/(2khi) rounds to win the khi-pebble game.
To complete the proof we note that (since khi ≤ n1/6)

r/(2khi) = 1
2khidlog khie

nbklo/9c/(1+dlog khie) − 2 (6)

≥ nklo/(10 log khi)−1/5 (7)

where the inequality holds for large enough klo, khi, n ≥ K0 and
we choose the global constantK0 such that the parameters are large
enough for this inequality to hold.

4. XOR Formulas over Pyramids
We now proceed to establish the k-pebble game lower bound stated
in Lemma 3.2. Our XOR formulas will be constructed over directed
acyclic graphs (DAGs) as described in the following definition.

Definition 4.1. Let G be a DAG with sources S and a unique sink z.
The XOR formula xor(G) contains one variable v for every vertex
v ∈ V (G) and consists of the following clauses:

(a) (s, 0) for every source s ∈ S,
(b) (v, w1, . . . , w`, 0) for all non-sources v ∈ V (G) \ S with in-

neighbours N−(v) = {w1, . . . , w`},
(c) (z, 1) for the unique sink z.

Note that the formula xor(G) is always unsatisfiable, since
all sources are forced to 0 by (a), which forces all other vertices
to 0 in topological order by (b), contradicting (c) for the sink.
Incidentally, these formulas are somewhat similar to the pebbling
formulas defined in [9], which have been very useful in proof
complexity (see the survey [31] for more details). The difference
is that pebbling formulas state that a vertex v is true if and only if
all of its in-neighbours are true, whereas xor(G) states that v is true
if and only if the parity of the number of true in-neighbours is odd.

It is clear that one winning strategy for Player 1 is to ask first
about the sink z, for which Player 2 has to answer 1 (or lose
immediately) and then about all the in-neighbours of the sink until
the answer for one vertex v is 1 (if there is no such vertex, Player 2
again loses immediately). At this point Player 1 can forget all other
vertices and then ask about the in-neighbours of v until a 1-labelled
vertex w is found, and then continue in this way to trace a path of



1-labelled vertices backwards through the DAG until some source s
is reached, which contradicts the requirement that s should be
labelled 0. Formalizing this as an induction proof on the depth of G
shows that if the in-degree is bounded, then Player 1 can win the
pebble game on xor(G) with few pebbles as stated next.

Lemma 4.2. Let G be a DAG with a unique sink and maximal in-
degree d. Then Player 1 wins the (d+ 1)-pebble game on xor(G).

As a warm-up for the proof of Lemma 3.2, let us describe a
very weak lower bound from [24] for the complete binary tree of
height h (with edges directed from the leaves to the root), which we
will denote Th. By the lemma above, Player 1 wins the 3-pebble
game on xor(Th) in O(h) steps by propagating 1 from the root
down to some leaf. On the other hand, Player 2 has the freedom
to decide on which path she answers 1. Hence, she can safely
respond 0 for a vertex v as long as there is some leaf with a pebble-
free path leading to the lowest pebble labelled 1 without passing v.
In particular, if Player 2 is asked about vertices at least ` layers
below the lowest pebbled vertex for which the answer 1 was given,
then she can answer 0 for 2`−1 queries. It follows that the height h
provides a lower bound on the number of rounds Player 1 needs to
win the game, even if he has an infinite amount of pebbles. We
remark that this proof in terms of pebble-free paths is somewhat
reminiscent of an argument by Cook [14] for the so-called black
pebble game corresponding to the pebbling formulas in [9] briefly
discussed above.

The downside of this lower bound is that the height is only
logarithmic in the number of vertices and thus too weak for us
as we are shooting for a lower bound of the order of n1/ log k.
To get a better bound for the black pebble game Cook instead
considered so-called pyramid graphs as in Figure 1. These will not
be sufficient to obtain strong enough lower bounds for our pebble
game, however. Instead, following Immerman we consider a kind
of high-dimensional generalization of these graphs, for which the
lower bound on the number of rounds in the k-pebble game is still
linear in the height hwhile the number of vertices is roughly hlog k.

Definition 4.3 ([24]). For d ≥ 1 we define the (d+1)-dimensional
pyramid of height h, denoted by Pdh , to be the following layered
DAG. We let L, 0 ≤ L ≤ h be the layer number and set
qd(L) := bL/dc and rd(L) := L (mod d). Hence, for any L
we have L = qd(L) · d+ rd(L). For integers xi ≥ 0 the vertex set
is

V
(
Pdh
)

=
{

(x0, . . . , xd−1, L) | L ≤ h;

xi ≤ qd(L) + 1 if i<rd(L);xi ≤ qd(L) if i≥rd(L)
}
,

(8a)

where we say that L is the layer of the vertex (x0, . . . , xd−1, L).
The edge set E

(
Pdh
)

consists of the pair of edges(
(x0, . . . , xd−1, L+1), (x0, . . . , xd−1, L)

)
,(

(x0, . . . , xrd(L)+1, . . . , xd−1, L+1),(x0, . . . , xd−1, L)
) (8b)

for all vertices (x0, . . . , xd−1, L) ∈ V (Pdh) and layers L < h,
so that every vertex in layer L has exactly two in-neighbours from
layer L+ 1.

We refer the reader to Figures 1 and 2 for illustrations of
2-dimensional and 3-dimensional pyramids (where all the edges
in the figures are assumed to be directed upwards). The ver-
tex (0, . . . , 0) at the top of the pyramid is the unique sink and
all vertices at the bottom layer h are sources.

As high-dimensional pyramids have in-degree 2, Lemma 4.2
implies that Player 1 wins the 3-pebble game on Pdh . Recall that,
as discussed in the proof sketch of the lemma, Player 1 starts his
winning strategy in the 3-pebble game by pebbling the sink of
the pyramid and its two in-neighbours. One of them has to be

Figure 1. 2D pyramid Figure 2. 3D pyramid

labelled 1. Then he picks up the two other pebbles and pebbles
the two in-neighbours of the vertex marked with 1 and so on.
Continuing this strategy, he is able to “move” the 1 all the way
to the bottom, reaching a contradiction, in a number of rounds that
is linear in the height of the pyramid. This strategy turns out to be
nearly optimal in the sense that in order to move a 1 from the top
to the bottom in Pdh , it makes no sense for Player 1 at any point in
the game to pebble a vertex that is d or more levels away from the
lowest level containing a pebble.

The next lemma states a key property of pyramids in this regard.
In order to state it, we need to make a definition.

Definition 4.4. We refer to a partial assignment M of Boolean
values to the vertices of a DAG G as a labelling or marking of G.
We say that M is consistent if no clause of type (b) or (c) in the
XOR formula xor(G) in Definition 4.1 is falsified byM.

That is, a consistent labelling does not violate any constraint on
any non-source vertex, but source constraints (a) may be falsified.
Such labellings are easy to find for high-dimensional pyramids.

Lemma 4.5 ([24]). LetM be a consistent labelling of all vertices
in a pyramid Pdh from layer 0 to layer L. Then for every set S of
2d−1 vertices on or below layerL+d there is a consistent labelling
of the entire pyramid that extendsM and labels all vertices in S
with 0.

To get some intuition why Lemma 4.5 holds, note that the
d-dimensional pyramids are constructed in such a way that they
locally look like binary trees. In particular, every vertex v ∈ V (Pdh)
together with all its predecessors at distance at most d form a
complete binary tree. By the same argument as for the binary
trees above, it follows that if v is labelled with 1, Player 2 can
safely answer 0 up to 2d − 1 times when asked about vertices
d layers below v. However, the full proof of Lemma 4.5 is more
challenging and requires some quite subtle reasoning. We refer the
reader to [24] (or the upcoming full-length version of this paper)
for the details.

In [24] logn-dimensional pyramids (where n is the number
of vertices) are used to prove a Ω

(
2
√

logn
)

lower bound on the
quantifier depth of full first-order counting logic. The next lemma
shows that if we instead choose the dimension to be logarithmic
in the number of variables (i.e., pebbles) in the game, we get an
improved quantifier depth lower bound for the k-variable fragment.

Lemma 4.6. For every d ≥ 2 and height h, Player 1 does not win
the 2d-pebble game on xor

(
Pdh
)

within bh/dc − 1 rounds.

Proof. We show that Player 2 has a counter-strategy to answer
consistently for at least bh/dc − 1 rounds. Starting at the top
layer L1 = 0, she maintains the invariant that at the start of round r
she has a consistent labelling of all vertices from layer 0 to layer Lr
with the property that there is no pebble on layers Lr+1 to Lr+d.



Whenever Player 1 places a pebble on a layer aboveLr , Player 2
responds according to the labelling and whenever Player 1 puts a
pebble on or below layer Lr + d, she answers 0, and in both cases
sets Lr+1 = Lr . If Player 1 places a pebble between layer Lr + 1
and Lr + d, Player 2 first extends her labelling to the first layer
Lr+1 > Lr such that there is no pebble on layers Lr+1 + 1 to
Lr+1 + d and then answers according to the new labelling. The
existence of such an extension is guaranteed by Lemma 4.5. Note
that when Player 2 skips downward from layer Lr to layer Lr+1

she might jump over a lot of layers in one go, but if so there is at
least one pebble for every dth layer forcing such a big jump.

We see that following this strategy Player 2 survives for at least
bh/dc − 1 rounds, and this establishes the lemma.

Putting the pieces together, we can now present the lower bound
for the k-pebble game in Lemma 3.2.

Proof of Lemma 3.2. Recall that we want to prove that for all
`hi ≥ 3 and m ≥ 3 there is an m-variable 3-XOR formula F on
which Player 1 wins the 3-pebble game but cannot win the `hi-
pebble game within 1

dlog `hie
m1/(1+dlog `hie) − 2 rounds.

We choose the formula to be F = xor
(
Pdh
)

for parameters
d = dlog ke and h =

⌈
m1/(d+1)

⌉
. Since the graph Pdh has

indegree 2, Lemma 4.2 says that Player 1 wins the 3-pebble game
as claimed in Lemma 3.2(a). The lower bound for the `hi-pebble
game in Lemma 3.2(b) follows from Lemma 4.6 and the fact that
Pdh contains less than hd+1 vertices.

5. Hardness Condensation
In this section we establish Lemma 3.3, which shows how to con-
vert an XOR formula into a harder formula over fewer variables.
As discussed in the introduction, this part of our construction re-
lies heavily on Razborov’s recent paper [32]. We follow his line of
reasoning closely below, but translate it from proof complexity to a
pebble game argument for bounded variable logics.

A key technical concept in the proof is graph expansion. Let
us define the particular type of expander graphs we need and then
discuss some crucial properties of these graphs. We use standard
graph notation, letting G = (U

.
∪ V,E) denote a bipartite graph

with left vertex set U and right vertex set V . We let NG
(
U ′
)

={
v
∣∣{u, v} ∈ E(G), u ∈ U ′

}
denote the right neighbours of a left

vertex subset U ′ ⊆ U (and vice versa for right vertex subsets).

Definition 5.1 (Boundary expander). A bipartite graph G =
(U

.
∪ V,E) is an m × n (s, c)-boundary expander graph if

|U | = m, |V | = n, and for every set U ′ ⊆ U , |U ′| ≤ s, it
holds that

∣∣∂G(U ′)
∣∣ ≥ c|U ′|, where the boundary ∂G(U ′) is the

set of all v ∈ NG(U ′) having a unique neighbour in U ′, mean-
ing that

∣∣NG(v) ∩ U ′
∣∣ = 1. An (s,∆, c)-boundary expander is an

(s, c)-boundary expander where additionally
∣∣NG(u)

∣∣ ≤ ∆ for all
u ∈ U , i.e., the graph has left degree bounded by ∆.

In what follows, we will omit G from the notation when the
graph is clear from context.

In any (s, c)-boundary expander with c > 0 it holds that any
left vertex subset U ′ ⊆ U of size |U ′| ≤ s has a partial matching
into V where the vertices in U ′ can be ordered in such a way
that every vertex ui ∈ U ′ is matched to a vertex outside of the
neighbourhood of the preceding vertices u1, . . . , ui−1. The proof
of this fact is sometimes referred to as a peeling argument.

Lemma 5.2 (Peeling lemma). Let G = (U
.
∪ V,E) be an

(s, c)-boundary expander with s ≥ 1 and c > 0. Then for ev-
ery set U ′ ⊆ U , |U ′| = t ≤ s there is an ordering u1, . . . , ut of

its vertices and a sequence of vertices v1, . . . , vt ∈ V such that
vi ∈ N(ui) \N({u1, . . . , ui−1}).

Proof sketch. Fix any vt ∈ ∂(U ′) and let ut ∈ U ′ be the unique
vertex such that

∣∣N(vt) ∩ U ′
∣∣ = {ut}. Then it holds that

vt ∈ N(ut) \ N
(
U ′ \ {ut}

)
. By induction we can now find

sequences u1, . . . , ut−1 and v1, . . . , vt−1 for U ′ \ {ut} such that
vi ∈ N(ui) \ N({u1, . . . , ui−1}), to which we can append ut
and vt at the end. The lemma follows.

For a right vertex subset V ′ ⊆ V in G = (U
.
∪ V,E) we define

the kernel Ker
(
V ′
)
⊆ U to be the set of all left vertices whose

entire neighbourhood is contained in V ′, i.e.,

Ker
(
V ′
)

=
{
u ∈ U

∣∣N(u) ⊆ V ′
}
. (9)

We let G\V ′ denote the subgraph of G induced on
(
U \Ker(V ′)

) .
∪(

V \ V ′
)
. Thus, we obtain G \ V ′ from G by first deleting V ′ and

afterwards all isolated vertices from U .
The next lemma states that for any small enough right vertex

set V ′ in an expander G we can find a closure γ
(
V ′
)
⊇ V ′ with a

small kernel such that G \ γ(V ′) has good expansion. The proof of
this lemma (albeit with slightly different parameters) can be found
in [32] and is also provided in the full-length version of this paper.

Lemma 5.3 ([32]). Let G be an (s, 2)-boundary expander. Then
for every V ′ ⊆ V with |V ′| ≤ s/2 there exists a subset γ

(
V ′
)
⊆

V with γ(V ′) ⊇ V ′ such that
∣∣Ker

(
γ
(
V ′
))∣∣ ≤ ∣∣V ′∣∣ and the

induced subgraph G \ γ(V ′) is an (s/2, 1)-boundary expander.

In order for Lemmas 5.2 and 5.3 to be useful, we need to
know that there exist good expanders. This can be established by
a standard probabilistic argument. A proof of the next lemma is
given in [32] and can also be found in the full version of this paper.

Lemma 5.4. There is a constant ∆0 such that for all ∆, s, m
satisfying ∆ ≥ ∆0 and (s∆)2∆ ≤ m there exist m ×

⌈
m3/∆

⌉
(s,∆, 2)-boundary expanders.

We will use such expanders G = (U
.
∪ V,E) when we do XOR

substitution in our formulas as described in the next definition.
In words, variables in the XOR formula are identified with left
vertices U in G, the pool of new variables is the right vertex set V ,
and every variable u ∈ U in an XOR clause is replaced by an
exclusive or

⊕
v∈N(u) v over its neighbours v ∈ N(u).

Definition 5.5 (XOR substitution with recycling). Let F be an
XOR formula with Vars(F ) = U and let G = (U

.
∪ V,E)

be a bipartite graph. For every clause C = (u1, . . . , ut, a) in F
we let C[G] be the clause (v1

1 , . . . , v
z1
1 , . . . , v1

t , . . . , v
zt
t , a), where

N(ui) = {v1
i , . . . , v

zi
i } for all 1 ≤ i ≤ t. Taking unions, we let

F [G] be the XOR formula F [G] = {C[G] | C ∈ F}.

When using an m × m3/∆ (s,∆, 2)-boundary expander as
in Lemma 5.4 for substitution in an m-variable XOR formula F
as described in Definition 5.5, we obtain a new XOR formula
F [G] where the number of variables have decreased significantly
to m3/∆. The next lemma, which is at the heart of our logic-
flavoured version of hardness condensation, states that a round
lower bound for the k-pebble game on F implies a round lower
bound for the k-pebble game on F [G].

Lemma 5.6. Let k be a positive integer and let G an m × n
(2k, 2)-boundary expander. Then if F is an XOR formula over
m variables such that Player 2 wins the r-round k-pebble game
on F , she also wins the r/(2k)-round k-pebble game on F [G].

Before embarking on a formal proof of Lemma 5.6, which is
rather technical and will take the rest of this section, let us discuss



the intuition behind it. The main idea to obtain a good strategy for
Player 2 on the substituted formula F [G] is to think of the game as
being played on F and simulate the survival strategy there for as
long as possible (which is where expansion comes into play).

Let G = (U
.
∪V,E) be an (s, 2)-boundary expander as stated in

the lemma. We have Vars(F ) = U and Vars(F [G]) = V . Given
a strategy for Player 2 in the r-round k-pebble game on F , we want
to convert this into a winning strategy for Player 2 for the r/(2k)-
round k-pebble game on F [G]. The first idea (which will not quite
work) is the following.

While playing on the substituted formula F [G], Player 2 simu-
lates the game on F . For every position β in the game on F [G], she
maintains a corresponding position α on F , which is defined on all
variables whose entire neighbourhood in the expander is contained
in the domain of β, i.e., Vars(α) = Ker(Vars(β)). The assign-
ments of α should be defined in such a way that they are consistent
with β, i.e., α(u) =

⊕
v∈N(u) β(v). It follows from the definition

of XORification that α falsifies an XOR clause of F if and only if
β falsifies an XOR clause of F [G].

Now Player 2 wants to play in such a way that if β changes
to β′ in one round of the game on F [G], then the corresponding
position α also changes to α′ in one round of the game on F .
Intuitively, this should be done as follows. Suppose that starting
from a position β, Player 1 asks for a variable v ∈ V . If v is
not the last free vertex in a neighbourhood of some u ∈ U , i.e.,
Ker(Vars(β)) = Ker(Vars(β) ∪ {v}), then Player 2 can make
an arbitrary choice as α = α′ is consistent with both choices.
If v is the last free vertex in the neighbourhood of exactly one
vertex u, i.e., {u} = Ker(Vars(β) ∪ {v}) \ Ker(Vars(β)), then
Player 2 assumes that she was asked for u in the simulated game
on F . If in her strategy for the r-round k-pebble game on F she
would answer with an assignment a ∈ {0, 1} which would yield
the new position α′ = α ∪ {u 7→ a}, then in the game on F [G]
she now sets v to the right value b ∈ {0, 1} so that the new
position β′ = β ∪ {v 7→ b} satisfies the consistency property
α′(u) =

⊕
v∈N(u) β

′(v). Following that strategy, the number of
rounds Player 2 survives the game on F [G] is lower-bounded by
the number of rounds she survives in the game on F .

The gap in this intuitive argument is how to handle the case
when the queried variable v completes the neighbourhood of
two (or more) vertices u1, u2 at the same time, i.e., if we have
{u1, u2} ⊆ Ker(Vars(β) ∪ {v}) \ Ker(Vars(β)). This would
indeed be a problem, as u1 and u2 could guide to two different
ways of assigning v, implying that for the new position β′ there
will be no consistent assignment α′ of Ker(Vars(β′)).

To circumvent this problem and implement the proof idea
above, we will use the boundary expansion of G to ensure that
this problematic case does not occur. For instance, suppose that the
graph G′ = G \ Vars(β), which is the induced subgraph of G on
U \Vars(α) and V \Vars(β), has boundary expansion at least 1.
Then the bad situation described above with two variables u1, u2

having neighbourhood NG
′
(u1) = NG

′
(u2) = {v} in G′ can-

not arise, since this would imply ∂G
′
({u1, u2}) = ∅, contradicting

the expansion properties of G′. Unfortunately, we cannot ensure
boundary expansion of G \ Vars(β) for every position β, but we
can apply Lemma 5.3 and extend the current position to a larger
one that is defined on γ(Vars(β)) and has the desired expansion
property. Since Lemma 5.3 ensures that Ker(γ(Vars(β))), the do-
main of the consistent α, is bounded by |α| ≤ |β| ≤ k, this is still
good enough.

We now proceed to present a formal proof. When doing so, it
turns out to be convenient for us to prove the contrapositive of
the statement discussed above. That is, instead of transforming a
strategy for Player 2 in the r-round k-pebble game on F to a

strategy for the r/(2k)-round k-pebble game on F [G], we will
show that a winning strategy for Player 1 in the game on F [G] can
be used to obtain a winning strategy for Player 1 in the game on F .

Suppose that β is a position in the k-pebble game on F [G], i.e.,
a partial assignment of variables in V . Since |β| ≤ k, we can apply
Lemma 5.3 to obtain a superset γ(Vars(β)) ⊇ Vars(β) such that
|Ker(γ(Vars(β)))| ≤ |Vars(β)| and the induced subgraph G \
γ(Vars(β)) is an (s/2, 1)-boundary expander. For the rest of this
section, fix a minimal such set γ(V ′) for for every V ′ = Vars(β)
corresponding to a position β in the k-pebble game. This will allow
us to define formally what we mean by consistent positions in the
two games on F and F [G] as described next.

Definition 5.7. Let α be a partial assignment of variables in U
and β be a partial assignment of variables in V . We say that
α is consistent with β if there exists an extension βext ⊇ β
with Vars(βext) = N

(
Vars(α)

)
∪ Vars(β) such that for all

u ∈ Vars(α) it holds that α(u) =
⊕

v∈N(u) βext(v).
For every position β in the k-pebble game on the XOR-

substituted formula F [G] we let Cons(β) be the set of all posi-
tions α with Vars(α) = Ker(γ(Vars(β))) that are consistent
with β.

Observe that by Lemma 5.3 it holds that |α| ≤ |β| for all
α ∈ Cons(β). The next claim states the core inductive argument.

Claim 5.8. Let β be a position on F [G] and suppose that Player 1
wins the i-round k-pebble game on F [G] from position β. Then
Player 1 has a strategy to win the k-pebble game on F within 2ki
rounds from every position α ∈ Cons(β).

We note that this claim is just a stronger (contrapositive) version
of Lemma 5.6.

Proof of Lemma 5.6 assuming Claim 5.8. We apply Claim 5.8 with
parameters β = ∅ and i = r/(2k). Since Cons(∅) = {∅}, we di-
rectly get the contrapositive statement of Lemma 5.6 that if Player 1
wins the r/(2k)-round k-pebble game on F [G], then he wins the
r-round k-pebble game on F .

All that remains for us to do now is to establish Claim 5.8, after
which the hardness condensation lemma will follow easily.

Proof of Claim 5.8. The proof is by induction on i. For the base
case i = 0 we have to show that if β falsifies an XOR clause
in F [G], then every assignment α ∈ Cons(β) falsifies an XOR
clause in F . But if β falsifies a clause of F [G], which by construc-
tion has the form C[G] for some clause C from F , then by Defini-
tions 5.5 and 5.7 it holds that every α ∈ Cons(β) falsifies C.

For the induction step, suppose that the statement holds for i−1
and assume that Player 1 wins the i-round k-pebble game on F [G]
from position β. Note that a move of Player 1 from position β
consists of two steps:

1. Player 1 first chooses a subassignment β′ ⊆ β.
2. He then asks for the value of one variable v ∈ V , to which

Player 2 has to choose an assignment a ∈ {0, 1} yielding the
new position β′ ∪ {v 7→ a}.

As Player 1 has a strategy to win from β within i rounds, it follows
that he can win from both β′ ∪ {v 7→ 0} and β′ ∪ {v 7→ 1} within
i − 1 rounds. By the inductive assumption we then immediately
obtain the following statement for the set of assignments

Cons
(
β′ ∗ v

)
:=
⋃
a∈{0,1} Cons

(
β′ ∪ {v 7→ a}

)
(10)

consistent with either β′ ∪ {v 7→ 0} or β′ ∪ {v 7→ 1}.

Subclaim 5.9. Player 1 can win the k-pebble game on F within
2k(i− 1) rounds from all positions in Cons

(
β′ ∗ v

)
.



Note that a position is in Cons
(
β′ ∗ v

)
if it is consistent with

either β′ ∪ {v 7→ 0} or β′ ∪ {v 7→ 1}. Therefore, Cons
(
β′ ∗ v

)
is

the set of all positions over Ker
(
γ
(
β′
)
∪ {v}

)
that are consistent

with β′. What remains to show is that from every position α ∈
Cons(β) Player 1 can reach some position in Cons

(
β′ ∗v

)
within

2k rounds. We split the proof into two steps, corresponding to the
two steps in the move of Player 1 from position β.

Subclaim 5.10. From every position α ∈ Cons(β) Player 1 can
reach some position in Cons

(
β′
)

for β′ ⊆ β within k rounds.

Subclaim 5.11. From every position α ∈ Cons
(
β′
)

Player 1 can
reach some position in Cons

(
β′ ∗ v

)
within k rounds.

We now establish Subclaim 5.11. The proof of Subclaim 5.10 is
similar and deferred to the full-length version of the paper.

Proof of Subclaim 5.11. Player 1 starts with some assignment
αstart ∈ Cons

(
β′
)

defined over Ustart = Ker
(
γ
(
Vars

(
β′
)))

,
and wants to reach some assignment αend ∈ Cons

(
β′ ∗ v

)
de-

fined over the variables Uend = Ker
(
γ
(
Vars

(
β′
)
∪ {v}

))
. To do

this, he first deletes all assignments of variables in Ustart \ Uend

from αstart. Afterwards, he asks for all remaining variables U ′ =
Uend \ Ustart. The difficult part is to ensure that final position is
consistent with β′ and here the Peeling lemma comes into play.

As discussed above, by our choice of the closure γ
(
Vars

(
β′
))

(which used Lemma 5.3) we know that the bipartite graph G′ =
G \ γ

(
Vars

(
β′
))

is an (s/2, 1)-boundary expander and further-
more that for U ′ = Uend \ Ustart it holds that |U ′| ≤ |Uend| ≤∣∣Vars(β′) ∪ {v}∣∣ ≤ s/2. Hence, we can apply the peeling argu-
ment in Lemma 5.2 to G′ and U ′ to obtain an ordered sequence
u1, . . . , ut satisfying NG

′
(ui) \NG

′
({u1, . . . , ui−1}) 6= ∅. We

will think of Player 1 as querying the (at most k) vertices in U ′ in
this order, after which he ends up with a position αend defined on
the variables Uend. We want to argue that independently of how
Player 2 answers, the position αend obtained in this way is consis-
tent with β′, and hence contained in Cons

(
β′ ∗ v

)
. We argue this

by showing inductively that all positions encountered during the
transition from αstart to αend are consistent with β′. This clearly
holds for the starting position αstart by assumption, and hence also
for the position obtained from αstart by deleting all assignments
of variables in Ustart \ Uend. For the induction step, let i ≥ 0 and
assume inductively that the current position αi over

Ui := (Ustart ∩ Uend) ∪ {uj | 1 ≤ j ≤ i} (11)

is consistent with β′. Now Player 1 asks about the variable ui+1

and Player 2 answers with a value ai+1. Since αi is consistent
with β′, there is an assignment βext ⊇ β′ that sets the vari-
ables v ∈ N(Vars(αi)) to the right values such that αi(u) =⊕

v∈N(u) βext(v) for all u ∈ Vars(αi). By our ordering of
U ′ = {u1, . . . , ut} chosen above we know that ui+1 has at
least one neighbour on the right-hand side V that is neither con-
tained in NG(Ui) = NG(Vars(αi)) nor in the domain of β′.
Hence, regardless of which value ai+1 Player 2 chooses for
her answer we can extend the assignment βext to the variables
NG(ui+1) \

(
NG
(
Vars(αi)

)
∪ Vars

(
β′
))

in such a way that⊕
v∈N(ui+1) βext(v) = ai+1. This shows that αi+1 defined over

Ui+1 = (Ustart ∩ Uend) ∪ {uj | 1 ≤ j ≤ i + 1} is consistent
with β′. Subclaim 5.11 now follows by the induction principle. a

Combining Subclaims 5.9, 5.10 and 5.11, we conclude that
Player 1 wins from every positionα ∈ Cons(β) within 2ki rounds.
This concludes the proof of Claim 5.8.

We are finally in a position to give a formal proof of Lemma 3.3.

Proof of Lemma 3.3. We let ∆0 be the constant in Lemma 5.4. Sup-
pose we are given an m-variable p-XOR formula F and parame-
ters `lo, `hi, r, ∆ that satisfy the conditions in Lemma 3.3. We set
s := 2`hi. By the requirements on ∆ we have (s∆)2∆ ≤ m and
∆ ≥ ∆0. Hence we can apply Lemma 5.4 to obtain anm×dm3/∆e
(s,∆, 2)-boundary expander G = (U

.
∪V,E), and applying XOR-

ification with respect to G we construct the formula H := F [G].
For the upper bound in Lemma 3.3(a’), we recall that Player 1

has a winning strategy in the `lo-pebble game on F by assump-
tion (a) in the lemma. He uses this strategy to win the (∆ · `lo)-
pebble game on H as follows. Whenever his strategy tells him
to ask for a variable u ∈ U = Vars(F ), he instead asks for
the at most ∆ variables in N(u) ⊆ V = Vars(H) and as-
signs to u the value that corresponds to the parity of the answers
Player 2 assigns to N(u). In this way, he can simulate his strat-
egy on F until he reaches an assignment that contradicts an XOR
clauseC from F . As the corresponding assignment of the variables
{v | v ∈ N(u), u ∈ Vars(C)} falsifies the constraint C[G] ∈ H ,
at this point Player 1 wins the (∆ · `lo)-pebble game on H .

The lower bound in Lemma 3.3(b’) follows immediately from
Lemma 5.6. Since by assumption (b) in Lemma 3.3 Player 1 does
not win the `hi-pebble game on F within r rounds, Lemma 5.6
implies that he does not win the `hi-pebble game on H within
r/(2`hi) rounds either.

6. Concluding Remarks
In this paper we prove an nΩ(k/ log k) lower bound on the mini-
mal quantifier depth of Lk and Ck sentences that distinguish two
finite n-element relational structures, nearly matching the trivial
nk−1 upper bound. By the known connection to the k-dimensional
Weisfeiler–Leman algorithm, these results imply near-optimal
nΩ(k/ log k) lower bounds also on the number of refinement steps
of this algorithm.

An obvious open problem is to improve the lower bound. One
way to achieve this would be to strengthen the lower bound on
the number of rounds in the k-pebble game on 3-XOR formulas
in Lemma 3.2 from nlog−1 k to nδ for some δ � log−1 k. By
the hardness condensation lemma this would directly improve our
lower bound from nΩ(k/ log k) to nΩ(δk).

The structures on which our lower bounds hold are n-element
relational structures of arity Θ(k) and size nΘ(k). We would have
liked to have this results also for structures of bounded arity, such
as graphs. However, the increase of the arity is inherent in the
construction as the method of substitution decreases the number
of variables in an XOR formula, while the number of clauses re-
mains unchanged. An optimal lower bound of nΩ(k) on the quanti-
fier depth required to distinguish two n-vertex graphs has been ob-
tained by the first author in an earlier work [10] for the existential-
positive fragment of Lk. Determining the quantifier rank of full Lk

and Ck on n-vertex graphs remains an open problem.
Another open question concerns the complexity of finite vari-

able equivalence for non-constant k. What is the complexity of de-
ciding, given two structures and a parameter k, whether the struc-
tures are equivalent in Lk or Ck? As this problem can be solved
in time (‖A‖ + ‖B‖)O(k), it is in EXPTIME (if k is part of the
input). It has been conjectured that this problem is EXPTIME-
complete [17], but it is not even known whether it is NP-hard. Note
that the quantifier depth is connected to the computational com-
plexity of the equivalence problem by the fact that an upper bound
of the form nO(1) on n-element structures would have implied that
testing equivalence is in PSPACE. Hence, our lower bounds on the
quantifier depth can be seen as a necessary requirement for estab-
lishing EXPTIME-hardness of the equivalence problem.
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[13] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on
the number of variables for graph identifications. Combinatorica,
12(4):389–410, 1992.

[14] S. A. Cook. An observation on time-storage trade off. J. Computer
and System Sciences, 9(3):308–316, 1974.

[15] Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals.
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