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Abstract

The dramatic improvements in combinatorial optimization al-
gorithms over the last decades have had a major impact in ar-
tificial intelligence, operations research, and beyond, but the
output of current state-of-the-art solvers is often hard to ver-
ify and is sometimes wrong. For Boolean satisfiability (SAT)
solvers proof logging has been introduced as a way to cer-
tify correctness, but the methods used seem hard to general-
ize to stronger paradigms. What is more, even for enhanced
SAT techniques such as parity (XOR) reasoning, cardinal-
ity detection, and symmetry handling, it has remained be-
yond reach to design practically efficient proofs in the stan-
dard DRAT format. In this work, we show how to instead
use pseudo-Boolean inequalities with extension variables to
concisely justify XOR reasoning. Our experimental evalua-
tion of a SAT solver integration shows a dramatic decrease
in proof logging and verification time compared to existing
DRAT methods. Since our method is a strict generalization
of DRAT , and readily lends itself to expressing also 0-1 pro-
gramming and even constraint programming problems, we
hope this work points the way towards a unified approach for
efficient machine-verifiable proofs for a rich class of combi-
natorial optimization paradigms.

1 Introduction
Since around the turn of the millennium, combinatorial op-
timization has been successfully applied to solve an ever
increasing range of problems in e.g., resource allocation,
scheduling, logistics, and disaster management (Pardalos,
Du, and Graham 2013), and more recent applications in
biology, chemistry, and medicine (Archibald et al. 2019)
include, e.g., protein analysis and design (Allouche et al.
2014; Mann, Will, and Backofen 2008) and kidney trans-
plants (Manlove and O’Malley 2012). Yet other examples
are government auctions generating billions of dollars in
revenue (Leyton-Brown, Milgrom, and Segal 2017), as well
as allocation of education and work opportunities (Manlove
2016; Manlove, McBride, and Trimble 2017) and matching
of adoptive families with children (Delorme et al. 2019).

As more and more such problems are dealt with using
combinatorial optimization solvers, an urgent question is
whether we can trust that the solutions computed by such
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algorithms are correct and complete. The answer, unfor-
tunately, is currently a clear “no”: State-of-the-art solvers
sometimes return “solutions” that do not satisfy the con-
straints or erroneously claim optimality (Cook et al. 2013;
Akgün et al. 2018; Gillard, Schaus, and Deville 2019). This
can be fatal for applications such as, e.g., chip design, com-
piler optimization, and combinatorial auctions, where cor-
rectness is absolutely crucial, not to speak about when hu-
man lives depend on finding the best solutions.

Conventional software testing has made little progress in
addressing this problem, and formal verification techniques
cannot handle the level of complexity of modern solvers. In-
stead, the most successful approach to date has been that
of proof logging in the Boolean satisfiability (SAT) commu-
nity, where solvers are required to certify (McConnell et al.
2011) their answer by outputting also a simple, machine-
verifiable proof that this answer is correct. This does not
certify the correctness of the solver itself, but it does mean
that if it ever produces an incorrect answer (even if due to
hardware errors), then this can be detected. A number of
different proof logging formats such as RUP (Goldberg and
Novikov 2003), TraceCheck (Biere 2006), DRAT (Heule,
Hunt Jr., and Wetzler 2013a,b; Wetzler, Heule, and Hunt Jr.
2014), GRIT (Cruz-Filipe, Marques-Silva, and Schneider-
Kamp 2017), and LRAT (Cruz-Filipe et al. 2017) have been
developed, with DRAT now established as the standard in
the SAT competitions (www.satcompetition.org).

A quite natural, and highly desirable, goal would be to ex-
tend these proof logging techniques to stronger paradigms
such as pseudo-Boolean (PB) optimization, MaxSAT solv-
ing, mixed integer programming, and constraint program-
ming, but such attempts have had limited success. Either the
proofs require trusting in powerful and complicated rules
(as in, e.g., (Veksler and Strichman 2010)), defeating sim-
plicity and verifiability, or they have to justify such rules
by long explanations, leading to an exponential slow-down
(see (Gange and Stuckey 2019)). In fact, even for SAT
solvers a long-standing problem is that more advanced tech-
niques reasoning with parity constraints (XORs), cardinal-
ity constraints, and symmetries have remained out of reach
for efficient proof logging. Although in theory there should
be no problems—DRAT is extremely powerful, and can in
principle justify such reasoning and much more with at
most a polynomial amount of work (Sinz and Biere 2006;
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Heule, Hunt Jr., and Wetzler 2015; Philipp and Rebola-
Pardo 2016)—in practice the overhead seems completely
prohibitive. Thus, a key challenge on the road to efficient
proof logging for more general combinatorial optimization
solvers would seem to be to design a method that can capture
the full range of techniques used in modern SAT solvers.

Our Contribution
In this work, we present a new, efficient proof logging
method for parity reasoning that is—perhaps somewhat
surprisingly—based on pseudo-Boolean reasoning with 0-1
linear inequalities. Though such inequalities might seem ill-
suited to representing XOR constraints, this can be done
elegantly by introducing auxiliary so-called extension vari-
ables (Dixon, Ginsberg, and Parkes 2004). Using this obser-
vation, we strengthen the VeriPB tool recently introduced
in (Elffers et al. 2020), which can be viewed as a gen-
eralization to pseudo-Boolean proofs of RUP (Goldberg
and Novikov 2003). Borrowing inspiration from (Heule,
Kiesl, and Biere 2017; Buss and Thapen 2019), we develop
stronger, but still efficient, rules that can handle also exten-
sion variables, making VeriPB, in effect, into a strict gener-
alization of DRAT .

We have implemented our method for representing XOR
constraints and performing Gaussian elimination in a library
with a simple, clean interface for SAT solvers. As a proof
of concept, we have also integrated it in MiniSat (Eén and
Sörensson 2004), which still serves as the foundation of
most state-of-the-art SAT solvers. Our library also provides
DRAT proof logging for XORs as described in (Philipp and
Rebola-Pardo 2016), but with some optimizations, to allow
for a comparative evaluation. Our experiments show that the
overhead for proof logging, the size of the produced proofs,
and the time for verification all go down by orders of mag-
nitude for our method compared to DRAT . Furthermore,
the fact that PB reasoning forms the basis for solvers like
Sat4j (Le Berre and Parrain 2010) and RoundingSat (Elffers
and Nordström 2018) means that our library can also em-
power such pseudo-Boolean solvers to reason with parities.

Since cardinality constraints are just a special case of PB
constraints, it is clear that our method should suffice to jus-
tify the cardinality reasoning used in SAT solvers. Symme-
try reasoning remains a challenge, but at least our method
can subsume anything done by DRAT . More excitingly, the
original VeriPB tool has already been shown to be capable
of efficiently justifying a number of constraint programming
techniques (Elffers et al. 2020; Gocht, McCreesh, and Nord-
ström 2020; Gocht et al. 2020). Our optimistic interpretation
is that pseudo-Boolean reasoning with extension variables
shows great potential as a unified method of proof logging
for SAT solving, pseudo-Boolean optimization, constraint
programming, and maybe even mixed integer programming.

Organization of This Paper After some brief background
in Section 2, we introduce the key technical notions needed
in Section 3 and show how they can be used to justify parity
reasoning in Section 4 with a worked out example in Sec-
tion 5. We present an experimental evaluation in Section 6
and provide some concluding remarks in Section 7.

2 Preliminaries
Let us start by quickly reviewing the required material
on pseudo-Boolean reasoning, referring the reader to, e.g.,
(Buss and Nordström 2021) for more context. A literal `
over a Boolean variable x is x itself or its negation
x = 1− x, where variables take values 0 (false) or 1 (true).
The set of all literals is denoted Lits. For notational con-
venience, we define x = x. A pseudo-Boolean (PB) con-
straint C is a 0-1 linear inequality∑

iai`i ≥ A , (1)

which without loss of generality we always assume to be in
normalized form; i.e., all literals `i are over distinct variables
and the coefficients ai and the degree (of falsity) A are non-
negative integers. We will use equality∑

iai`i = A (2a)

as syntactic sugar for the pair of inequalities∑
iai`i ≥ A (2b)∑

i − ai`i ≥ −A (2c)

(but rewritten in normalized form) and the negation ¬C
of (1) is (the normalized form of)∑

i − ai`i ≥ −A+ 1 . (3)

A pseudo-Boolean formula is a conjunction F =
∧
j Cj of

PB constraints. Note that a clause `1∨· · ·∨`k is equivalent to
the constraint `1 + · · ·+ `k ≥ 1, so formulas in conjunctive
normal form (CNF) are special cases of PB formulas.

A (partial) assignment is a (partial) function from vari-
ables to { 0, 1 } and a substitution is a (partial) function from
variables to Lits∪{ 0, 1 }. For an assignment or substitution ρ
we will use the convention ρ(x) = x for x not in the domain
of ρ, denoted x 6∈ dom(ρ), and define ρ(x) = 1− ρ(x). We
also write x 7→ b instead of ρ(x) = b for b ∈ Lits ∪ { 0, 1 }
when ρ is clear from context or is immaterial. Applying ρ to
a constraint C as in (1), denoted C�ρ, yields the constraint
obtained by substituting values for all assigned variables,
shifting constants to the right-hand side, and adjusting the
degree appropriately, i.e.,

C�ρ =
∑
iaiρ(`i) ≥ A (4)

with appropriate normalization, and for a formula F we de-
fine F�ρ =

∧
j Cj�ρ. The constraint C is satisfied by ρ if∑

ρ(`i)=1 ai ≥ A (or, equivalently, if the restricted con-
straint (4) has a non-positive degree and is thus trivial). A PB
formula is satisfied by ρ if all constraints in it are, in which
case it is satisfiable. If there is no satisfying assignment, the
formula is unsatisfiable. Two formulas are equisatisfiable if
they are both satisfiable or both unsatisfiable.

Cutting planes as defined in (Cook, Coullard, and Turán
1987) is a method for iteratively deriving new constraints C
implied by a PB formula F . If C and D are previously
derived constraints, or are axiom constraints in F , then
any positive integer linear combination of these constraints
can be added. We can also add literal axioms `i ≥ 0 at
any time. Finally, from a constraint in normalized form
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∑
i ai · `i ≥ A we can use division by a positive integer d

to derive
∑
idai/de`i ≥ dA/de, dividing and rounding up

the degree and coefficients.
For PB formulas F , F ′ and constraints C, C ′, we say that

F implies or models C, denoted F |= C, if any assignment
satisfying F must also satisfy C, and we write F |= F ′

if F |= C ′ for all C ′ ∈ F ′. It is not hard to see that any
collection of constraints F ′ derived (iteratively) from F by
cutting planes are implied in this sense, and so it holds that
F and F ∧ F ′ are equisatisfiable. A piece of terminology
that we will use is that C ′ is implied syntactically by C if C ′
can be derived from C using only addition of literal axioms.

A constraint C is said to unit propagate the literal ` un-
der ρ if C�ρ cannot be satisfied unless ` 7→ 1. During unit
propagation on F under ρ, we extend ρ iteratively by any
propagated literals ` 7→ 1 until an assignment ρ′ is reached
under which no constraint C ∈ F is propagating, or under
which some constraintC propagates a literal that has already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C in
this case, and ρ′ is called a conflicting assignment.

Using the generalization of (Goldberg and Novikov 2003)
in (Elffers et al. 2020), we say that F implies C by reverse
unit propagation (RUP), and write RUP(F,C), if F ∧ ¬C
unit propagates to conflict under the empty assignment. It
is not hard to see that RUP(F,C) implies F |= C, but the
opposite direction is not necessarily true.

3 Substitution Redundancy
In order to provide proof logging for parity reasoning, we
need the ability not only to perform cutting planes reason-
ing, but also to introduce fresh variables not occurring in
the formula F under consideration. In particular, we want to
be able to use a fresh variable y to encode the reification of
a constraint

∑
i ai`i ≥ A, i.e., that y is true if and only if the

constraint is satisfied. We will use the shorthand

y ↔
∑
iai`i ≥ A (5)

for the two constraints

Ay +
∑
iai`i ≥ A (6a)(

−A+1+
∑
iai
)
· y +

∑
iai`i ≥ −A+ 1 +

∑
iai (6b)

enforcing this condition. By way of a concrete example, the
reification of the constraint

x1 + x2 + x3 ≥ 2 (7)

using y is encoded as

2y + x1 + x2 + x3 ≥ 2 (8a)
2y + x1 + x2 + x3 ≥ 2 (8b)

in pseudo-Boolean form. Note that introducing such con-
straints maintains equisatisfiability provided that y does
not appear in any other constraint, since depending on
whether (7) is satisfied or not we can assign y freely to sat-
isfy (8a) or (8b) as needed.

More generally, it would be convenient to allow the
“derivation” of any constraint C from F such that F and

F ∧ C are equisatisfiable—in which case we say that C is
redundant with respect to F—regardless of whether F |= C
holds or not. A moment of thought reveals that such a com-
pletely generic rule would be too good to be true—for any
unsatisfiable formula F we would then be able to “derive”
contradiction (say, 0 ≥ 1) in just one step, and this clearly
would not be efficiently verifiable. What we need, therefore,
is a sufficient criterion for redundancy of pseudo-Boolean
constraints that is simple to verify. To this end, we general-
ize the characterization of redundancy in (Heule, Kiesl, and
Biere 2017; Buss and Thapen 2019) from CNF formulas to
PB formulas as follows.
Proposition 1 (Substitution redundancy). A PB con-
straint C is redundant with respect to the formula F if and
only if there is a substitution ω, called a witness, for which
it holds that

F ∧ ¬C |= (F ∧ C)�ω .

Proof. (⇒) Suppose C is redundant. If F is unsatisfiable,
then for any constraint C ′ it vacuously holds that F |= C ′.
Hence, any substitution ω fulfils the condition. If F is satis-
fiable, then F ∧C must also be satisfiable as C is redundant
by assumption. If we choose ω to be a satisfying assignment
for F∧C, the implication in the proposition again vacuously
holds since (F ∧ C)�ω is fixed to true.

(⇐) Suppose now that ω is such that
F ∧ ¬C |= (F ∧ C)�ω . If F is unsatisfiable, then ev-
ery constraint is redundant and there is nothing to check.
Otherwise, let α be a (total) satisfying assignment for F . If
α also satisfies C, then clearly the constraint is redundant.
Now consider the case that α does not satisfy C. If so, α
must satisfy ¬C and hence, by the assumed implication,
also (F ∧ C)�ω . But then the assignment β defined by

β(x) =

{
α(x) if x 6∈ dom(ω),
ω(x) otherwise,

(9)

satisfies both C and F (since (F ∧ C)�β = ((F ∧ C)�ω)�α
by construction), so F ∧ C is satisfiable.

We remark that this proof does not make use of that we
are operating with a pseudo-Boolean constraint C—we only
need that the negation ¬C is easy to represent in the same
formalism. Thus, the argument generalizes to other types of
constraints with this property.

Let us return to our example reification of the constraint
in (7) and show how this can be derived using substitution
redundancy. Let us write C8a for the constraint in (8a) and
C8b for (8b), where y is fresh with respect to the current
formula F . To show that C8b is substitution redundant with
respect to F we choose the witness ω = { y 7→ 1 }, which
clearly satisfies C8b. Since y does not appear in F we have
F�ω = F , and so the implication F ∧ ¬C8b |= (F ∧ C)�ω
vacuously holds. Showing that C8a is substitution redundant
with respect to F ∧ C8b is a bit more interesting. For this
we choose ω = { y 7→ 0 }, which satisfies C8a and again
leaves F unchanged. Thus, the only implication for which
we need to do some work is F ∧C8b ∧¬C8a |= C8b�ω . The
negation of C8a is

−2y − x1 − x2 − x3 ≥ −1 , (10)
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Algorithm 1 Checking substitution redundancy
1: procedure REDUNDANCYCHECK(F,C, ω)
2: . C, ω are given in the proof log to be verified
3: if RUP(F,C) then return pass
4: for D ∈ (F ∧ C)�ω do
5: if (not (D ∈ F or ¬C |= D syntactically)
6: and not RUP(F ∧ ¬C,D)) then
7: return fail
8: return pass

or, converted to normalized form,

2y + x1 + x2 + x3 ≥ 4 (11)

using the rewriting rule ` = 1− `. Adding the literal axiom
y ≥ 0 twice to ¬C8a, and using rewriting again to cancel
y + y = 1, we obtain

x1 + x2 + x3 ≥ 2, (12)

which is C8b�ω . Hence, ¬C8a syntactically implies C8b�ω ,
and so F ∧C8b ∧¬C8a |= C8b�ω , completing the proof that
C8a is redundant with respect to F ∧ C8b.

So far, we have not discussed how the implications are
verified. Arbitrary implication checks are as hard as deter-
mining satisfiability, and hence a certificate that the impli-
cation is correct is necessary for efficient verification. One
way of providing a certificate could be to exhibit a cutting
planes derivation establishing the validity of the implication,
as in the example just presented. A more convenient alterna-
tive from a proof logging point of view is to follow the lead
of DRAT and only allow constraints for which the implica-
tion can be verified using unit propagation. We describe our
pseudo-Boolean version of this method in Algorithm 1. This
algorithm is very similar to what is used for checking DRAT ,
except that our unit propagation is on PB constraints rather
than clauses and that we need an extra syntactic check on
line 5. To see why this check is necessary, note that only
unit propagation would fail to certify the correctness of our
example above. Assuming for simplicity that F = ∅, if we
try to verify C8b ∧ ¬C8a |= C8b�ω by reverse unit propaga-
tion we get the constraints

2y + x1 + x2 + x3 ≥ 2 [C8b in (8b)] (13a)
2y + x1 + x2 + x3 ≥ 4 [¬C8a in (11)] (13b)

x1 + x2 + x3 ≥ 2 [¬(C8b�ω)] (13c)

and although visual inspection shows that this collection of
constraints is inconsistent, since it requires a majority of the
variables {x1, x2, x3 } to be true and false at the same time,
unit propagation is too myopic to see this contradiction and
only yields y 7→ 1. Using Algorithm 1, however, allows us to
introduce extension variables encoding reifications y ↔ C,
which is straightforward to prove by carrying out the same
argument as in our example above but for (6a) and (6b) in-
stead of (8a) and (8b).
Proposition 2. Let F be a PB formula and C be a PB con-
straint, and y is a fresh variable that does not appear in F
or C. Then the constraints (6a) and (6b) encoding y ↔ C
can be added to F and checked as redundant by Algorithm 1.

4 Proof Logging for XOR Constraints
An XOR or parity constraint, i.e., an equality modulo 2, over
k variables is written as

x1 ⊕ x2 ⊕ · · · ⊕ xk = b (14)
where b ∈ { 0, 1 }. Note that we can assume that there is no
parity constraint with a negated variable x, because we can
always substitute x = x⊕ 1.

Systems of XOR constraints can arise in a solver during
Gaussian elimination (Soos, Nohl, and Castelluccia 2009;
Han and Jiang 2012; Laitinen, Junttila, and Niemelä 2012)
or conflict analysis (Laitinen, Junttila, and Niemelä 2012).
To provide proof logging for these approaches we need four
ingredients:
1. An efficient encoding of XORs to pseudo-Boolean con-

straints.
2. A way to derive that encoding for a new XOR constraint

from the encodings of existing XORs.
3. A method to translate to this efficient encoding from CNF

(which is where we will need to go beyond cutting planes
by using extension variables).

4. The ability to provide so-called reason clauses from the
PB encoding that can be used by a SAT solver during con-
flict analysis.

In the example in Section 5, we will see how these ingredi-
ents come together for propagations from parity constraints.

It was observed by (Dixon, Ginsberg, and Parkes 2004)
that XOR constraints can be encoded and refuted efficiently
in pseudo-Boolean form by rewriting (14) as∑

i∈[k]xi = b+
∑
i∈[bk/2c]2yi (15)

for fresh variables yi (where we recall that equality (2a) is a
shorthand for (2b) and (2c)). Since the variables yi are oth-
erwise unconstrained, the right-hand side can take any even
(odd) value for b = 0 (b = 1) in the range from 0 to k, which
are exactly the values that we want to allow for

∑
i∈[k] xi.

In fact, we can generalize this by observing that if we letB
denote any integer linear combination of variables, possibly
also with a constant term, then the two inequalities∑

i∈[k]xi ≥ b+ 2B (16a)∑
i∈[k] − xi ≥ −b− 2B , (16b)

forming the equality
∑
i∈[k] xi = b+ 2B, imply the parity

x1 ⊕ x2 ⊕ · · · ⊕ xk = b . (16c)
We will make repeated use of this observation below.

XOR Reasoning
Whenever we want to combine two XOR constraints to de-
rive a new XOR constraint, as is done during Gaussian elim-
ination, we only need to add the equalities that imply it. For
example, suppose that we want to do the derivation

x1 ⊕ x2 ⊕ x3 = 1 x2 ⊕ x3 ⊕ x4 = 1
x1 ⊕ x4 = 0

(17)

and assume the XORs are represented in pseudo-Boolean
form as x1+x2+x3 = 2y1+1 and x2+x3+x4 = 2y2+1.
Then adding both equalities together we obtain x1 + 2x2 +
2x3 + x4 = 2y1 + 2y2 + 2, which implies the desired XOR
by the observation we just made above for (16c).
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Reason Generation
Modern SAT solvers built on conflict-driven clause learning
(CDCL) (Bayardo Jr. and Schrag 1997; Marques-Silva and
Sakallah 1999; Moskewicz et al. 2001) operate with clauses.
If we want to use XOR constraints to propagate forced vari-
able assignments or derive contradiction, then we need to
provide reason clauses that justify such derivation steps. We
next show how to derive such reason clauses from pseudo-
Boolean encodings of XOR constraints.

Suppose we have a parity constraint encoded by inequali-
ties of the form (16a) and (16b), and let ρ be an assignment
to the k variables xi that is inconsistent with (16a) and (16b),
because it falsifies the implied XOR (16c). We want to de-
rive a clause that is falsified under ρ.

Let T be the variables that are set to true under ρ, and F
the variables set to false. Using literal axioms we can derive
(the normalized form of) the trivially true constraint∑

x∈Fx+
∑
x∈T − x ≥ −|T | , (18)

which when added to (16a), yields∑
x∈F2x ≥ b− |T |+ 2B . (19)

Observe that b − |T | is always odd, as otherwise ρ would
not falsify the XOR implied by (16a) and (16b), while ev-
erything else is divisible by 2. Hence we can divide by 2,
and rounding up will increase the degree. If we now multi-
ply by 2 again, then we get∑

x∈F2x ≥ b− |T |+ 1 + 2B . (20)

We continue by adding (16b) to get∑
x∈Fx−

∑
x∈T x ≥ 1− |T | , (21)

which is equivalent to the normalized constraint∑
x∈Fx+

∑
x∈T x ≥ 1 . (22)

This constraint, which is a disjunctive clause, is falsified un-
der ρ as desired, and is the reason clause that we need to give
to the solver to show why the assignment ρ is inconsistent.

Translating to the Pseudo-Boolean XOR Encoding
An XOR as in (14) can be encoded into CNF by having a
clause for each of the 2k−1 assignments that falsify the con-
straint. For example, for k = 3 and b = 1 we get the clauses

x1 + x2 + x3 ≥ 1 (23a)
x1 + x2 + x3 ≥ 1 (23b)
x1 + x2 + x3 ≥ 1 (23c)
x1 + x2 + x3 ≥ 1 (23d)

(in pseudo-Boolean form). Since the number of clauses in
this canonical CNF encoding of an XOR constraint scales
exponentially with the number of variables, it is only feasi-
ble to encode short XORs into CNF in this way. However,
it is possible to split up a long XOR into multiple constant-
size XORs using auxiliary variables zi. For example, (14)
can be represented as x1 ⊕ x2 ⊕ z2 = 0, z2 ⊕ x3 ⊕ z3 = 0,
. . . , zk−2 ⊕ xk−1 ⊕ xk = b. If a parity constraint is split

(a) A 1-bit full adder. (b) Chain of 1-bit full adders.

Figure 1: The output of 1-bit full adders is used to encode
new auxiliary Boolean variables, which represent the sum
of all Boolean input variables.

up in this way, we only need to re-encode these small par-
ity constraints from CNF into the pseudo-Boolean encoding.
Deriving the original long XOR constraint can then be done
by XOR reasoning as described earlier.

The translation to the pseudo-Boolean XOR encoding
from CNF is done in two steps. The first step is to derive
the constraint∑

i∈[k]xi =
∑
i∈[bk/2c]2yi + y′, (24)

where yi and y′ are all fresh variables. Note that adding (24)
to any formula does not change satisfiability because we can
always assign the fresh variables so that the equality holds.

Although the constraint is redundant, we cannot use
Proposition 1 directly, because we can not construct a wit-
ness assignment ω that is independent of the existing xi vari-
ables, and if ω contains any existing variables then the re-
dundancy check in Algorithm 1 may not be strong enough
in general. Instead we introduce each fresh variable individ-
ually, analogously to what was done in Section 3.

The second step is to brute-force all possible assignments
for the variables xi, which together with the CNF encoding
of the XOR allows us to derive y′ = b, meaning that we
have a constraint of the desired form (24). We remark that
this brute-force step is polynomial in the number of clauses
of the CNF encoding. We now describe this process in detail.

Step 1a. To derive (24) we will construct a chain of 1-bit
full adders (see Figure 1b). But let us start first by showing
how the encoding of a single 1-bit full adder can be derived.
A 1-bit full adder (Figure 1a) computes the sum of three
variables x1 to x3 and returns the result as a binary number.
This can be encoded using the pseudo-Boolean equality

2y + z = x1 + x2 + x3. (25)
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To obtain (25) we start by deriving the reifications

y ↔ x1 + x2 + x3 ≥ 2 (26a)
z ↔ x1 + x2 + x3 − 2y ≥ 1, (26b)

for fresh variables y and z using substitution redundancy as
described in Proposition 2. Writing the constraints in nor-
malized form yields

x1 + x2 + x3 + 2y ≥ 2 (27a)
x1 + x2 + x3 + 2y ≥ 2 (27b)

x1 + x2 + x3 + 2y + 3z ≥ 3 (27c)
x1 + x2 + x3 + 2y + 3z ≥ 3. (27d)

To derive the less-than-or-equal part of (25), which in nor-
malized form is

x1 + x2 + x3 + 2y + z ≥ 3 , (28)

we add Equation (27c) and 2 times Equation (27a) followed
by division by 3. In a similar fashion, to derive the greater-
than-or-equal part of (25), which in normalized form is

x1 + x2 + x3 + 2y + z ≥ 3 , (29)

we add Equation (27d) and 2 times Equation (27b) followed
by division by 3.

Step 1b. To derive Equation (24) we use a chain of 1-bit
full adders (Figure 1b). The xi variables are used as input
and x2k+1, which is used in the topmost adder, will only oc-
cur if the number of variables is odd, otherwise the topmost
adder will only have x2k and x2k−1 as input. The variables
yi, y

′ encode the sum of the input variables as required for
Equation (24). The zi variables are intermediate parity bits.
For the topmost adder in Figure 1b we thus have

2yk + zk = x2k+1 + x2k + x2k−1 , (30)

for the intermediate adders we have, for i ∈ { 2, . . . , k − 1 },
2yi + zi = zi+1 + x2i + x2i−1 , (31)

and for the bottom adder we have

2y1 + y′ = z2 + x2 + x1 . (32)

By adding the encoding of all 1-bit adders, i.e., Equa-
tions (30) to (32), we obtain

k∑
i=1

2yi + y′ +
k∑
i=2

zi =
k∑
i=2

zi +
2k+1∑
i=1

xi . (33)

Note that
∑k
i=2 zi appears on both sides of the equation and

hence Equation (33) is equivalent to Equation (24). Indeed,
we do not need to remove

∑k
i=2 zi explicitly during proof

logging because it will disappear automatically due to con-
straint normalization.

Step 2. The final step is to obtain the value of y′ by
brute-forcing all values of xi. Consider an assignment ρwith
ρ(y′) = 1 − b that additionally assigns all variables xi and
no other variables. Note that there are 2k such assignments.
Either ρ falsifies one of the clauses that encode the XOR, or
else

∑
i∈[k] ρ(xi) mod 2 = b 6= ρ(y′), meaning that Equa-

tion (33) is falsified so that we can derive a clause falsified

under ρ as described above in our discussion of reason gen-
eration. Combining these 2k clauses together we can obtain
a clause that forces y′ to take value b, which we can add to
Equation (33) to replace y′ with a constant value. This con-
cludes the derivation of the pseudo-Boolean encoding (15)
of the XOR constraint from a CNF encoding.

5 A Worked-Out Proof Logging Example
Consider the two parity constraints x1 ⊕ x2 ⊕ x3 = 0 and
x2 ⊕ x3 ⊕ x4 = 1, which are encoded as clauses by writing

* #variable= 4 #constraint= 8
+1 ~x1 +1 x2 +1 x3 >= 1 ;
+1 x1 +1 ~x2 +1 x3 >= 1 ;
+1 x1 +1 x2 +1 ~x3 >= 1 ;
+1 ~x1 +1 ~x2 +1 ~x3 >= 1 ;
+1 x2 +1 x3 +1 x4 >= 1 ;
+1 x2 +1 ~x3 +1 ~x4 >= 1 ;
+1 ~x2 +1 x3 +1 ~x4 >= 1 ;
+1 ~x2 +1 ~x3 +1 x4 >= 1 ;

using the standard OPB file format1. The solver reads this
formula and runs an algorithm to detect clausal encodings
of parities. Once a parity is detected, a proof is generated
that translates the parity from the clausal encoding into the
PB encoding. For this translation it is necessary to introduce
fresh variables via substitution redundancy. The proof log
contains a line of the form

red [constraint C] ; [assignment omega]

where red identifies the line as a substitution redundancy
step, followed by the constraint C to be added and the wit-
ness substitution ω, where each variable to be substituted is
listed followed by its substitution. A variable and its substi-
tution can optionally be separated by ‘->’.

The translation from clausal to PB encoding starts with
the reification y1 ↔ x1 + x2 + x3 ≥ 2 for the fresh vari-
able y1. In the proof format this is done by the two lines

red 1 x1 1 x2 1 x3 2 ~y1 >= 2 ; y1 -> 0
red 1 ~x1 1 ~x2 1 ~x3 2 y1 >= 2 ; y1 -> 1

which can be checked using Algorithm 1 as discussed in
Section 3. After the check passes, the verifier adds these
two new constraints to the database and assigns them ids 9
and 10 (the ids 1 to 8 are used for the constraints from
the input formula). Similarly, we can do another reification
y2 ↔ x1 + x2 + x3 − 2y1 ≥ 1 using the proof lines

red 1 x1 1 x2 1 x3 2 ~y1 3 ~y2 >= 3 ; y2 0
red 1 ~x1 1 ~x2 1 ~x3 2 y1 3 y2 >= 3 ; y2 1

The variables y1, y2 now correspond to the output bits of
a single full adder. Because the parity is only over three
variables, we do not need to derive a chain of multiple full
adders. Note that the constraints arising from reification do
not need to be added to the database of the solver—they are
only used for the proof log—but the solver should stay clear
of using the variables y1, y2 for other purposes.

The next step is to combine the constraints we just derived
(ids 9 to 12) via a sequence of cutting planes steps, which are

1http://www.cril.univ-artois.fr/PB16/format.pdf
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written down in reverse polish notation (using the p-rule in
VeriPB), also known as postfix notation

p 11 9 2 * + 3 d
p 12 10 2 * + 3 d

The first line starts with the constraint with id 11 and adds
two times the constraint with id 9 and then divides by 3 and
rounds up. The same operations are done in the second line
but with the constraints with ids 12 and 10. The two lines
derive the constraints

(ID: 13) x1 + x2 + x3 + 2y1 + y2 ≥ 3 (34a)
(ID: 14) x1 + x2 + x3 + 2y1 + y2 ≥ 3 , (34b)

which correspond to (24). The constraints in (34a) and (34b)
do not correspond to a parity constraint yet, as they can al-
ways be satisfied by setting the fresh variables y1, y2 to the
right value. To get a proper PB encoding of the first parity
we need to fix the value of y2, which can be done by gen-
erating a brute-force proof via p-rules that derives y2 ≥ 1,
which gets id 15 and can be used to remove y2 from (34b).
To remove y2 from (34a) we can simply use the literal ax-
iom y2 ≥ 0 which is obtained by writing the literal y2 in the
p-rule. Both steps together can be written as

p 13 y2 +
p 14 15 +

deriving the inequalities encoding the first parity, namely

(ID: 16) x1 + x2 + x3 + 2y1 ≥ 2 (35a)
(ID: 17) x1 + x2 + x3 + 2y1 ≥ 3 , (35b)

which correspond to (15). Analogously, we can derive the
pseudo-Boolean encoding for the second parity

(ID: 25) x2 + x3 + x4 + 2y3 ≥ 3 (36a)
(ID: 26) x2 + x3 + x4 + 2y3 ≥ 4 . (36b)

This concludes the proof logging done after detecting pari-
ties. Note that the detection of parities and the proof genera-
tion for translating from clausal to PB encoding is only done
once in our implementation at the start of the solver.

Let us now assume that the solver decides x1 = 0.
Note that adding the two parities of the formula yields
x1 ⊕ x4 = 1, and hence x4 should propagate to 1, which is
detected by the XOR propagator via Gaussian elimination.
The proof for this step is to perform the same addition of the
parities, but on their PB representations

p 16 25 +
p 17 26 +

which yields new constraints

(ID: 27) x1 + 2x2 + 2x3 + x4 + 2y1 + 2y3 ≥ 5 (37a)
(ID: 28) x1 + 2x2 + 2x3 + x4 + 2y1 + 2y3 ≥ 7. (37b)

These two constraints imply the parity x1 ⊕ x4 = 1 by the
observation made in connection with (16a)–(16c).

The reason clause x1 + x4 ≥ 1 provided by the XOR
propagator must be derived in the proof. The assignment
falsifying the reason clause is ρ = {x1 7→ 0, x4 7→ 0 }. Fol-
lowing the approach in (18)–(22), we derive x1 + x4 ≥ 0
and combine it with the constraints representing the parity

Instance MiniSat + XOR PR2DRAT
(PBP) (DRAT)

Urquhart-s5-b1 76.8 3033.1 3878.4
Urquhart-s5-b2 79.8 2844.4 3575.2
Urquhart-s5-b3 116.9 7584.0 7521.0
Urquhart-s5-b4 94.7 5058.6 5271.5

Table 1: Proof sizes (KiB) for previous Tseitin formulas.

p 27 x1 x4 + + 2 d 2 * 28 +

which derives the constraint x1 + x4 ≥ 1 as desired. The
solver can continue using this clause in the same way as any
other clause in its database. These steps for XOR reasoning
and reason generation are repeated for every propagation.

6 Implementation and Evaluation
As just illustrated in Section 5, we have added a rule to
VeriPB2 and its pseudo-Boolean proof format (PBP) to sup-
port redundancy checks as described in Algorithm 1, and
have implemented our proof logging approach for XOR rea-
soning in a library together with an XOR engine using Gaus-
sian elimination mod 2 to detect XOR propagations.3 We
integrated this library into MiniSat to call the XOR propaga-
tion method every time propagation reached fix point. If the
library detects a propagation or conflict a callback is used
to notify MiniSat, but the reason clause is only generated
when needed in conflict analysis. This lazy reason genera-
tion technique (Soos, Gocht, and Meel 2020) is crucial, since
it avoids generating proofs for reasons that are not used. For
comparison, our library also provides DRAT proof logging
for XORs as described in (Philipp and Rebola-Pardo 2016).

Importantly, our goal was not to investigate whether XOR
reasoning is useful—this is already known—but to provide
efficient proof logging for such reasoning. Therefore, we fo-
cused on SAT competition benchmarks from the last 5 years
that could be solved by MiniSat with our XOR propagator
but not by Kissat, the winner of the 2020 SAT competition.
There were 39 such instances, and they could be solved in
0.03 seconds on average by MiniSat with the XOR propa-
gator. With our new proof logging the average running time
increased to 0.05 seconds and unsatisfiability could be veri-
fied in 1.71 seconds on average. For DRAT proof logging, on
the other hand, the average solving time jumped to 7.72 sec-
onds and verification took 3291 seconds on average.

In order to get systematic measurements for the perfor-
mance of our new proof logging technique, we ran exper-
iments on so-called Tseitin formulas, including some that
have been studied before in the context of proof logging.
Tseitin formulas consist of a large inconsistent set of par-
ity constraints, and can thus be viewed as a worst case for
XOR reasoning. To the best of our knowledge, the short-
est DRAT proofs4 for these formulas obtained so far are
based on hand-crafted so-called propagation redundancy

2https://gitlab.com/miao%5Fresearch/veripb
3https://gitlab.com/miao%5Fresearch/xorengine
4The proofs and instances can be found at https://github.com/

marijnheule/drat2er-proofs
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(PR) proofs which have been translated to DRAT using the
tool PR2DRAT (Kiesl, Rebola-Pardo, and Heule 2018). Ta-
ble 1 shows the disk space required for the proofs of Tseitin
formulas in (Kiesl, Rebola-Pardo, and Heule 2018). The
pseudo-Boolean proofs obtained by MiniSat with the XOR
propagator are dramatically smaller than the DRAT proofs
it produces, and the size of our DRAT proofs are similar to
that of the best previously known DRAT proofs.

To get a sense of the asymptotic behaviour of the proof
logging we generated 50 new, larger Tseitin formulas with
up to 500 XORs and up to 1250 variables. In Figure 2
we compare the proof size of the proofs as generated. No-
tice that both proof logging approaches result in a straight
line in the log-log plot, which is a strong indication that
both approaches are polynomial. Studying the slopes of the
lines yields the estimates that DRAT produces quadratic-size
proofs while the proof size of the pseudo-Boolean proof is
linear in the size of the formula. In Figure 3 we compare the
running time (system time + user time) of solving and pro-
ducing the proof, as well as time spend for verification. It
is clear that the larger proof size required for DRAT proofs
does not only increase verification time, but also causes a
clearly increased time overhead during solving. All running
times were measured on an Intel® Core™ i3-7100U CPU
@ 2.40GHz×2 with a memory limit of 8GB, disk write
speed of 154 MB/s and read speed of 518 MB/s. The used
tools, benchmarks, data and evaluation scripts are available
at https://doi.org/10.5281/zenodo.4569840.

7 Conclusion
In this work, we present an efficient method for proof
logging parity reasoning in conflict-driven clause learning
(CDCL) solvers, which has been a long-standing challenge
in SAT solving. Our method circumvents the prohibitive
overhead of current DRAT-based methods by instead using
pseudo-Boolean inequalities with extension variables. An
experimental evaluation shows that this makes the proof log-
ging overhead, the size of the proof, and the time required
for verification all go down by an order of magnitude or
more compared to DRAT . While there is certainly ample
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Figure 3: Solving and verification time for Tseitin formulas.

room for further improvements, our first proof-of-concept
implementation already shows the power of this approach.

It is clear that the same method can also be used to solve
another task that has remained very challenging for DRAT ,
namely efficient proof logging for cardinality detection and
reasoning. We have not investigated this in this paper, since
this is mostly an engineering issue rather than a research
problem, given the methods that have already been devel-
oped in (Biere et al. 2014; Elffers and Nordström 2020).

Dealing with symmetries appears to be much more chal-
lenging, but our method can do at least as well as (Heule,
Hunt Jr., and Wetzler 2015) since it is a strict generalization
of DRAT . We would therefore propose that the current ex-
tension of the VeriPB method in (Elffers et al. 2020) should
be an allowed proof logging format in the SAT competitions.
This would make it possible for solvers making use of these
advanced techniques to take part in the main track of the
SAT competitions, where proof logging is mandatory.

However, we believe that the potential benefit of PB proof
logging with extension variables goes well beyond the SAT
competitions. The original VeriPB method is capable of effi-
cient justification of important constraint programming tech-
niques (Elffers et al. 2020), and can also provide proof log-
ging for a wide range of graph problem solvers (Gocht,
McCreesh, and Nordström 2020; Gocht et al. 2020). The
pseudo-Boolean rules for reasoning with 0-1 linear con-
straints provide a simple yet very expressive formalism, and
it does not seem out of the question to hope that they could
be extended to deal with mixed integer programming (MIP).
Thus, we believe that the ultimate goal of this line of re-
search should be to design a unified proof logging approach
for as wide as possible a range of combinatorial optimiza-
tion paradigms. In addition to furnishing efficient machine-
verifiable proofs of correctness, proof logging could also
serve as a valuable tool for debugging and empirical perfor-
mance analysis during solver development. Furthermore, the
proofs produced could in principle provide auditability by
third parties using independently developed software, and/or
be a stepping stone towards explainability by showing, e.g.,
why certain solutions are optimal.
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Eén, N.; and Sörensson, N. 2004. An Extensible SAT-solver.
In 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’03), Selected Revised Papers,
volume 2919 of LNCS, 502–518. Springer.
Elffers, J.; Gocht, S.; McCreesh, C.; and Nordström, J. 2020.
Justifying All Differences Using Pseudo-Boolean Reason-
ing. In Proceedings of the 34th AAAI Conference on Artifi-
cial Intelligence (AAAI ’20), 1486–1494.
Elffers, J.; and Nordström, J. 2018. Divide and Conquer:
Towards Faster Pseudo-Boolean Solving. In Proceedings of
the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI ’18), 1291–1299.
Elffers, J.; and Nordström, J. 2020. A Cardinal Improve-
ment to Pseudo-Boolean Solving. In Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI ’20),
1495–1503.
Gange, G.; and Stuckey, P. 2019. Certifying Optimality in
Constraint Programming. Presentation at KTH Royal Insti-
tute of Technology. Slides available at https://www.kth.se/
polopoly fs/1.879851.1550484700!/CertifiedCP.pdf.
Gillard, X.; Schaus, P.; and Deville, Y. 2019. SolverCheck:
Declarative Testing of Constraints. In Proceedings of the
25th International Conference on Principles and Practice of
Constraint Programming (CP ’19), volume 11802 of LNCS,
565–582. Springer.
Gocht, S.; McBride, R.; McCreesh, C.; Nordström, J.;
Prosser, P.; and Trimble, J. 2020. Certifying Solvers
for Clique and Maximum Common (Connected) Subgraph
Problems. In Proceedings of the 26th International Confer-
ence on Principles and Practice of Constraint Programming
(CP ’20), volume 12333 of LNCS, 338–357. Springer.
Gocht, S.; McCreesh, C.; and Nordström, J. 2020. Subgraph
Isomorphism Meets Cutting Planes: Solving With Certi-
fied Solutions. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI ’20),
1134–1140.
Goldberg, E.; and Novikov, Y. 2003. Verification of Proofs
of Unsatisfiability for CNF Formulas. In Proceedings of

3776



the Conference on Design, Automation and Test in Europe
(DATE ’03), 886–891.

Han, C.; and Jiang, J. R. 2012. When Boolean Satisfiabil-
ity Meets Gaussian Elimination in a Simplex Way. In Pro-
ceedings of the 24th International Conference on Computer
Aided Verification, (CAV ’12), volume 7358 of LNCS, 410–
426. Springer.

Heule, M. J. H.; Hunt Jr., W. A.; and Wetzler, N. 2013a.
Trimming While Checking Clausal Proofs. In Proceedings
of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), 181–188.

Heule, M. J. H.; Hunt Jr., W. A.; and Wetzler, N. 2013b.
Verifying Refutations with Extended Resolution. In Pro-
ceedings of the 24th International Conference on Automated
Deduction (CADE-24), volume 7898 of LNCS, 345–359.
Springer.

Heule, M. J. H.; Hunt Jr., W. A.; and Wetzler, N. 2015.
Expressing Symmetry Breaking in DRAT Proofs. In Pro-
ceedings of the 25th International Conference on Automated
Deduction (CADE-25), volume 9195 of LNCS, 591–606.
Springer.

Heule, M. J. H.; Kiesl, B.; and Biere, A. 2017. Short Proofs
Without New Variables. In Proceedings of the 26th Inter-
national Conference on Automated Deduction (CADE-26),
volume 10395 of LNCS, 130–147. Springer.

Kiesl, B.; Rebola-Pardo, A.; and Heule, M. J. H. 2018. Ex-
tended Resolution Simulates DRAT. In Proceedings of the
9th International Joint Conference on Automated Reasoning
(IJCAR ’18), volume 10900 of LNCS, 516–531. Springer.

Laitinen, T.; Junttila, T.; and Niemelä, I. 2012. Conflict-
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