
On the Relative Strength of Pebbling and Resolution (Extended Abstract)

Jakob Nordström
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Email: jakobn@mit.edu

Abstract—The last decade has seen a revival of interest in
pebble games in the context of proof complexity. Pebbling has
proven to be a useful tool for studying resolution-based proof
systems when comparing the strength of different subsystems,
showing bounds on proof space, and establishing size-space
trade-offs. The typical approach has been to encode the pebble
game played on a graph as a CNF formula and then argue
that proofs of this formula must inherit (various aspects of) the
pebbling properties of the underlying graph. Unfortunately, the
reductions used here are not tight. To simulate resolution proofs
by pebblings, the full strength of nondeterministic black-white
pebbling is needed, whereas resolution is only known to be
able to simulate deterministic black pebbling. To obtain strong
results, one therefore needs to find specific graph families which
either have essentially the same properties for black and black-
white pebbling (not at all true in general) or which admit
simulations of black-white pebblings in resolution.

This paper contributes to both these approaches. First, we
design a restricted form of black-white pebbling that can be
simulated in resolution and show that there are graph families
for which such restricted pebblings can be asymptotically better
than black pebblings. This proves that, perhaps somewhat
unexpectedly, resolution can strictly beat black-only pebbling,
and in particular that the space lower bounds on pebbling
formulas in [Ben-Sasson and Nordström 2008] are tight.
Second, we present a versatile parametrized graph family
with essentially the same properties for black and black-white
pebbling, which gives sharp simultaneous trade-offs for black
and black-white pebbling for various parameter settings. Both
of our contributions have been instrumental in obtaining the
time-space trade-off results for resolution-based proof systems
in [Ben-Sasson and Nordström 2009].

Keywords-proof complexity; resolution; pebble games; peb-
bling formula; space; trade-off;

I. INTRODUCTION

Pebbling is a tool for studying time-space relationships
by means of a game played on directed acyclic graphs.
This game models computations where the execution is
independent of the input and can be performed by straight-
line programs. Each such program is encoded as a graph,
and a pebble on a vertex in the graph indicates that the
corresponding value is currently kept in memory. The goal
is to pebble the output vertex of the graph with minimal
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dation Olle Engkvist Byggmästare, the Sven and Dagmar Salén Foundation,
and the Foundation Blanceflor Boncompagni-Ludovisi, née Bildt.

number of pebbles (amount of memory) and steps (amount
of time).

Pebble games were originally devised for studying pro-
gramming languages and compiler construction, but have
later found a broad range of applications in computational
complexity theory. The pebble game model seems to have
appeared for the first time (implicitly) in [36], where it was
used to study flowcharts and recursive schemata, and it was
later employed to model register allocation [41], and analyze
the relative power of time and space as Turing-machine
resources [17], [25]. Moreover, pebbling has been used to
derive time-space trade-offs for algorithmic concepts such as
linear recursion [16], [43], fast Fourier transform [42], [44],
matrix multiplication [44], and integer multiplication [40].
An excellent survey of pebbling up to ca 1980 is [37], and
some more recent developments are covered in the author’s
upcoming survey [33].

The pebbling price of a directed acyclic graph G in the
black pebble game captures the memory space, or number of
registers, required to perform the deterministic computation
described by G. We will mainly be interested in the the more
general black-white pebble game modelling nondeterministic
computation. Black-white pebbling was introduced in [18]
and has been studied in [23], [26], [27], [29]–[31], [46] and
other papers. Let us refer to vertices of a directed graph
having indegree 0 as sources and vertices having outdegree 0
as sinks.

Definition 1 (Pebble game). Let G be a directed acyclic
graph (DAG) with a unique sink vertex z. The black-white
pebble game on G is the following one-player game. At any
time t, we have a configuration Pt = (Bt,Wt) of black
pebbles Bt and white pebbles Wt on the vertices of G, at
most one pebble per vertex. The rules of the game are as
follows:

1) If all immediate predecessors of an empty vertex v have
pebbles on them, a black pebble may be placed on v.
In particular, a black pebble can always be placed on
a source vertex.

2) A black pebble may be removed from any vertex at any
time.

3) A white pebble may be placed on any empty vertex at
any time.



4) If all immediate predecessors of a white-pebbled ver-
tex v have pebbles on them, the white pebble on v may
be removed. In particular, a white pebble can always
be removed from a source vertex.

A (complete) black-white pebbling of G, also called a peb-
bling strategy for G, is a sequence of pebble configurations
P = {P0, . . . , Pτ} such that P0 = (∅, ∅), Pτ = ({z}, ∅),
and for all t ∈ [τ ], Pt follows from Pt−1 by one of the
rules above. The time of a pebbling P = {P0, . . . , Pτ}
is simply time(P) = τ and the space is space(P) =
max0≤t≤τ{|Bt ∪ Wt|}. The black-white pebbling price
(also known as the pebbling measure or pebbling number)
of G, denoted BW-Peb(G), is the minimum space of any
complete pebbling of G.

A black pebbling is a pebbling using black pebbles only,
i.e., having Wt = ∅ for all t. The (black) pebbling price
of G, denoted Peb(G), is the minimum space of any
complete black pebbling of G.

In the last decade, there has been renewed interest in peb-
bling in the context of proof complexity.1 A (non-exhaustive)
list of proof complexity papers using pebbling in one way
or another is [2], [5], [6], [8]–[13], [19], [21], [22], [24],
[32], [35], [39]. The way pebbling results have been used
in proof complexity has mainly been by studying so-called
pebbling contradictions (also known as pebbling formulas
or pebbling tautologies). These are CNF formulas encoding
the pebble game played on a DAG G by postulating the
sources to be true and the sink to be false, and specifying that
truth propagates through the graph according to the pebbling
rules. The idea to use such formulas seems to have appeared
for the first time in [28], and they were also studied in [13],
[38] before being explicitly defined in [12].

Definition 2 (Pebbling contradiction). Suppose that G is
a DAG with sources S and a unique sink z. Identify every
vertex v ∈ V (G) with a propositional logic variable v.
The pebbling contradiction over G, denoted PebG, is the
conjunction of the following clauses:

• for all s ∈ S, a unit clause s (source axioms),
• For all non-sources v with immediate predecessors

pred(v), the clause
∨

u∈pred(v) u∨v (pebbling axioms),
• for the sink z, the unit clause z (target or sink axiom).

Let fd : {0, 1}d 7→ {0, 1} be any any nonconstant Boolean
function. Then the substitution pebbling contradiction with
respect to fd is the CNF formula PebG[fd] obtained by sub-
stituting fd(x1, . . . , xd) for every variable x and expanding
the result to conjunctive normal form in the canonical way.

If the graph G has n vertices and maximal indegree `,
PebG[fd] is easily verified to be an unsatisfiable formula
over dn variables with less than 2d(`+1) · n clauses of size

1We remark that the pebble game studied in this paper should not be
confused with the (very different) existential pebble games that have also
been used in proof complexity, for instance, in the papers [3], [4], [7].

at most d(` + 1) (i.e., a (d(` + 1))-CNF formula as defined
shortly). An example illustrating Definition 2 is given in
Figure 1.

Let us also briefly recall some proof complexity defini-
tions for completeness. A literal is either a propositional
logic variable or its negation, denoted x and x, respectively.
A clause C = a1 ∨ · · · ∨ ak is a set of literals. A clause
containing at most k literals is called a k-clause. A CNF
formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A k-CNF
formula is a CNF formula consisting of k-clauses. We say
that F implies C, denoted F � C, if any truth value
assignment satisfying F must also satisfy C.

Definition 3 (Resolution [1]). A sequence of clause config-
urations (sets of clauses) π = {C0, . . . , Cτ} is a resolution
refutation of a CNF formula F if C0 = ∅, Cτ contains the
contradictory empty clause 0 without any literals, and for all
t ∈ [τ ], Ct is obtained from Ct−1 by one of the following
rules:

Download Ct = Ct−1 ∪ {C} for some C ∈ F (an axiom
clause).

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.
Inference Ct = Ct−1 ∪ {D} for some D inferred from

C1, C2 ∈ Ct−1 by the resolution rule, i.e., D =
C1 ∪ C2 \ {x, x} for some variable x such that
x ∈ C1 \ C2 and x ∈ C2 \ C1.

Definition 4 (Length and space). The length L(π) of
a resolution derivation π is the total number of axiom
downloads and inferences made in π, i.e., the total number
of clauses counted with repetitions.

The clause space Sp(C) of a clause configuration C is
|C|, i.e., the number of clauses in C, and the total space
TotSp(C) is

∑
C∈C|C|, i.e., the total number of literals in

C counted with repetitions. The clause space (total space)
of a derivation π is the maximal clause space (total space)
of any clause configuration C ∈ π.

Taking the minimum over all refutations of a CNF
formula F , we define L(F ` 0) = minπ:F ` 0{L(π)},
Sp(F ` 0) = minπ:F ` 0{Sp(π)}, and TotSp(F ` 0) =
minπ:F ` 0{TotSp(π)} as the length, clause space, and total
space of refuting F in resolution, respectively.

Given any black-only pebbling P of G, it is straight-
forward to simulate this pebbling in resolution to refute
the corresponding pebbling contradiction PebG[fd] in length
O

(
time(P)

)
and total space O

(
space(P)

)
. This was per-

haps first noted in [8] for the simple PebG formulas, but the
simulation extends readily to any formula PebG[fd], with
the constants hidden in the asymptotic notation depending
on fd and the maximal indegree of G. In the other direction,
it was recently shown in [11] (strengthening results in [9])
that if fd has the right properties—for instance, if it is the
exclusive or function or the threshold function evaluating to
true if k out of d variables are true for 1 < k < d—then
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(a) Pyramid graph Π2 of height 2.

u

∧ v

∧ w

∧ (u ∨ v ∨ x)
∧ (v ∨ w ∨ y)
∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2
.

(u1 ∨ u2) ∧ (v2 ∨ w1 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v2 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (x1 ∨ y1 ∨ z1 ∨ z2)
∧ (u1 ∨ v1 ∨ x1 ∨ x2) ∧ (x1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ v2 ∨ x1 ∨ x2) ∧ (x2 ∨ y1 ∨ z1 ∨ z2)
∧ (u2 ∨ v1 ∨ x1 ∨ x2) ∧ (x2 ∨ y2 ∨ z1 ∨ z2)
∧ (u2 ∨ v2 ∨ x1 ∨ x2) ∧ z1

∧ (v1 ∨ w1 ∨ y1 ∨ y2) ∧ z2

∧ (v1 ∨ w2 ∨ y1 ∨ y2)

(c) Substitution pebbling contradiction PebΠ2
[∨2] with respect to binary logical or.

Figure 1. Example of pebbling contradiction with substitution for the pyramid graph Π2.

any resolution refutation π of PebG[fd] can be translated
into a black-white pebbling of G with time and space upper-
bounded by the length and space of π, respectively (adjusted
for small multiplicative constants depending on the maximal
indegree of G).

There is an obvious gap in these reductions between
pebbling and resolution. To interpret a resolution refutation
of a pebbling contradiction in terms of a pebbling of the
underlying graph, the full power of black-white pebbling is
needed to make the reduction work. If we want to translate
pebblings of graphs into refutations of the corresponding
pebbling contradictions, however, we only know how to do
this for the weaker black pebble game.

To see why resolution has a hard time simulating black-
white pebblings, let us start by discussing a black-only peb-
bling P . We can easily mimic such a pebbling in a resolution
refutation of PebG[fd] by deriving that fd(v1, . . . , vd) is
true whenever the corresponding vertex v in G is black-
pebbled. We end up deriving that fd(z1, . . . , zd) is true
for the sink z, at which point we can download the sink
axioms and derive a contradiction. The intuition behind this
translation is that a black pebble on v means that we know v,
which in resolution translates into truth of v. In the pebble
game, having a white pebble on v instead means that we
need to assume v. By duality, we let this correspond to
falsity of v in resolution. Focusing on the pyramid Π2 and

pebbling contradiction PebΠ2
[∨2] in Figure 1, our intuitive

understanding then becomes that white pebbles on x and y
and a black pebble on z should correspond to the set of
clauses

{xi ∨ yj ∨ z1 ∨ z2 | i, j = 1, 2} (1)

which indeed encode that assuming x1∨x2 and y1∨y2, we
can deduce z1 ∨ z2. See Figure 2(a) for an illustration of
this.

If we now place white pebbles on u and v, this allows
us to remove the white pebble from x. Rephrasing this in
terms of resolution, we can say that x follows if we assume
u and v, which is encoded as the set of clauses

{ui ∨ vj ∨ x1 ∨ x2 | i, j = 1, 2} (2)

(see Figure 2(b)), and indeed, from the clauses in (1) and (2)
we can derive in resolution that z is black-pebbled and u, v
and y are white pebbled, i.e., the set of clauses

{ui ∨ vj ∨ yk ∨ z1 ∨ z2 | i, j, k = 1, 2} (3)

(see Figure 2(c)). This toy example indicates one of the
problems one runs into when one tries to simulate black-
white pebbling in resolution: as the number of white pebbles
grows, there is an exponential blow-up in the number of
clauses. The clause set in (3) is twice the size of those in
(1) and (2), although it corresponds to only one more white
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(a) {xi ∨ yj ∨ z1 ∨ z2 | i, j = 1, 2}.
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(b) {ui ∨ vj ∨ x1 ∨ x2 | i, j = 1, 2}.
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(c) {ui ∨ vj ∨ yk ∨ z1 ∨ z2 | i, j, k=1, 2}.

Figure 2. Black and white pebbles and (intuitively) corresponding sets of clauses.

pebble. This suggests that as a pebbling starts to make heavy
use of white pebbles, a resolution refutation will not be able
to mimic such a pebbling in a length- and space-preserving
manner.

This leads to the thought that perhaps black pebbling
provides not only upper but also lower bounds on reso-
lution refutations of pebbling contradictions. This would
be consistent with what has been known so far. For all
pebbling contradictions with proven space lower bounds,
the underlying graphs have asymptotically the same black
and black-white pebbling price, and hence all known lower
bounds can be expressed in terms of black pebbling. There
have been no examples of pebbling contradictions where
resolution can do strictly better than black pebbling and
tightly match smaller bounds on space in terms of black-
white pebbling.

II. OUR RESULTS

Our first set of results is that resolution can in fact
be strictly better than black-only pebbling, both for time-
space trade-offs and with respect to space in absolute terms.
We prove this by designing a limited version of black-
white pebbling, where we explicitly restrict the amount
of nondeterminism, i.e., white pebbles, a pebbling strategy
can use. Such restricted pebbling use “few white pebbles
per black pebble” (in a sense that will be made formal
below), and can therefore be simulated in a time- and space-
preserving manner by resolution, avoiding the exponential
blow-up just discussed. We then show that for all known
separation results in the pebbling literature where black-
white pebbling does asymptotically better than black-only
pebbling, there are graphs exhibiting these separations for
which optimal black-white pebblings can be carried out in
our limited version of the game. This means that resolution
refutations of pebbling contradictions over such DAGs can
do strictly asymptotically better than what is suggested by
black-only pebbling, matching the lower bounds in terms of
(general) black-white pebbling.

More precisely, we obtain such results for three families of

graphs.2 The first family are the bit reversal graphs studied
by Lengauer and Tarjan [30], for which black-white pebbling
has quadratically better trade-offs than black pebbling.

Lemma 5 ([30]). There are DAGs {Gn}∞n=1 of size Θ(n)
with black pebbling price Peb(Gn) = 3 such that any
optimal black pebbling Pn of Gn exhibits a trade-off
time(Pn) = Θ

(
n2/space(Pn) + n

)
but optimal black-

white pebblings Pn of Gn achieve a trade-off time(Pn) =
Θ

(
(n/space(Pn))2 + n

)
.

Theorem 6. Fix any non-constant Boolean function f and
let PebGn

[f] be pebbling contradictions over the graphs in
Lemma 5. Then for any monotonically nondecreasing func-
tion s(n) = O(

√
n) there are resolution refutations πn of

PebGn
[f] in total space O(s(n)) and length O

(
(n/s(n))2

)
,

beating the lower bound Ω
(
n2/s(n)

)
for black-only peb-

blings of Gn.

Focusing next on absolute bounds on space rather than
time-space trade-offs, the best known separation between
black and black-white pebbling for polynomial-size graphs
is the one shown by Wilber [46].

Lemma 7 ([46]). There are DAGs {G(s)}∞s=1 having size
polynomial in s such that the black-white pebbling price
of G(s) is BW-Peb(G(s)) = O(s) but the black pebbling
price is Peb(G(s)) = Ω(s log s/ log log s).

For pebbling formulas over these graphs we do not know
how to beat the black pebbling space bound—we return
to this somewhat intriguing problem in Section IV—but
using instead graphs in [26] exhibiting the same pebbling
properties, we can obtain the desired result.

Theorem 8. Fix any non-constant Boolean function f and
let PebG(s)[f] be pebbling contradictions over the graphs
G(s) in [26] with pebbling properties as in Lemma 7. Then
there are resolution refutations πn of PebG(s)[f] in total

2All graphs discussed in this paper are explicitly constructible and have
bounded vertex indegree. Also, unless otherwise stated they have a single,
unique sink. We do not repeat this in the formal statements here in order
not to clutter the text unnecessarily.



space O(s), beating the lower bound Ω(s log s/ log log s)
for black-only pebbling.

If we remove all restriction on graph size, there is
a quadratic separation of black and black-white pebbling
established by Kalyanasundaram and Schnitger [26].

Lemma 9 ([26]). There are DAGs {G(s)}∞s=1 of size
exp(Θ(s log s)) such that BW-Peb(G(s)) ≤ 3s + 1 but
Peb(G(s)) ≥ s2.

For pebbling formulas over these graphs, resolution again
matches the black-white pebbling bounds.

Theorem 10. Fix any non-constant Boolean function f and
let PebG(s)[f] be pebbling contradictions over the graphs
G(s) in Lemma 9. Then there are resolution refutations πn

of PebG(s)[f] in total space O(s), beating the lower bound
Ω

(
s2

)
for black-only pebbling.

In particular, Theorems 8 and 10 show that the lower
bound on proof space for pebbling contradictions in terms
of black-white pebbling price in [9] is tight (up to constant
factors).

Turning to our second set of results, we first note that in
spite of the theorems above, for general pebbling formulas
we still do not know of any way of simulating black-white
pebbling in resolution. Instead, we are limited to deriving
upper bounds from black-only pebblings while lower bounds
have to be obtained in terms of black-white pebblings. At
first sight, this might not look too bad since the space gap
between the two can be at most quadratic, as shown by
Meyer auf der Heide [31]. However, the translation given in
[31] of a black-white pebbling in space s to a black pebbling
in space O

(
s2

)
incurs an exponential blow-up in pebbling

time, destroying all hope of obtaining nontrivial time-space
trade-off results for resolution in this way. Hence, to get
meaningful trade-offs for pebbling formulas we need graph
families with strong dual trade-offs for black and black-
white pebbling simultaneously. In this paper, we present
such a family of graphs, building on and strengthening
previous work by Carlson and Savage [14], [15].

Theorem 11. There is an explicitly constructible two-
parameter graph family Γ(c, r), for c, r ∈ N+, having
unique sink, vertex indegree 2, and size Θ

(
cr3 + c3r2

)
, and

satisfying the following properties:
1) The graph Γ(c, r) has black-white pebbling price

BW-Peb(Γ(c, r)) = r+O(1) and black pebbling price
Peb(Γ(c, r)) = 2r + O(1).

2) There is a black-only pebbling of Γ(c, r) in time linear
in the graph size and in space O(c + r).

3) Suppose that P is a black-white pebbling of Γ(c, r) with
space(P) ≤ r + s for 0 < s ≤ c/8. Then time(P) ≥(

c−2s
4s+4

)r · r! .

The graph family in Theorem 11 turns out to be sur-

prisingly versatile. For instance, we can use it to prove
among other things the rather striking statement that for
any arbitrarily slowly growing non-constant function, there
are explicit graphs of such (arbitrarily small) pebbling space
complexity that nevertheless exhibit superpolynomial time-
space trade-offs for black and black-white pebbling simul-
taneously.

Theorem 12. Let g(n) be any arbitrarily slowly growing3

monotone function ω(1) = g(n) = O
(
n1/7

)
, and let ε > 0

be an arbitrarily small positive constant. Then there is a
family of explicitly constructible single-sink DAGs {Gn}∞n=1

of size Θ(n) such that the following holds:
1) Gn has black-white pebbling price BW-Peb(G) =

g(n) + O(1) and black pebbling price Peb(G) =
2 · g(n) + O(1).

2) There is a complete black pebbling P of Gn with
time(P) = O(n) and space(P) = O

(
3
√

n/g2(n)
)

3) Any complete black-white pebbling of Gn in space at
most

(
n/g2(n)

)1/3−ε
requires pebbling time superpoly-

nomial in n.

More examples of interesting trade-offs that can be ob-
tained from the graphs in Theorem 11 are given in the full-
length version [34] of this paper.

In the rest of this paper, we outline the main ideas in the
proofs of our results in Section III and then discuss some
remaining open problems in Section IV. We refer to [34]
for missing formal definitions and full proofs.

III. OUTLINE OF CONSTRUCTIONS AND PROOFS

We need to set up a fair amount of technical machinery
before we can give the full, formal proofs of our results.
In order not to obscure unnecessarily what are in essence
reasonably straightforward arguments, in this extended ab-
stract we focus on giving an overview of the main ideas,
eschewing unnecessary technicalities.

A. Labelled Black-White Pebbling and Resolution

Let us start by discussing the tools used to establish
Theorems 6, 8, and 10. The idea is to design a version
of the black-white pebble game that is tailor-made for
resolution. This game is essentially just a formalization of
the naive resolution simulation sketched in Section I, but
before stating the formal definitions, let us try to provide
some intuition why the rules of this new game look the way
they do.

First, if we want a game that can be mimicked by
resolution, then placements of isolated white vertices do not

3Note that we also assume g(n) = O
`
n1/7

´
, i.e., that g(n) does not

grow to fast. This is just a simplifying technical assumption. If we allow
the minimal space to grow as fast as nε for some ε > 0, then it is easy to
use our graph family with other parameter settings to obtain even stronger
results. Hence, the interesting aspect here is that g(n) is allowed to grow
arbitrarily slowly.



make much sense. What a resolution derivation can do is
to download axiom clauses, and intuitively this corresponds
to placing a black pebble on a vertex together with white
pebbles on its immediate predecessors, if it has any. There-
fore, we adopt such aggregate moves as the only admissible
way of placing new pebbles. For instance, looking at the
graph Π2 and pebbling contradiction PebΠ2

[∨2] in Figure 1
again, placing a black pebble on z and white pebbles on x
and y corresponds to downloading the axiom clauses in (1).

Second, note that if we have a black pebble on z with
white pebbles on x and y corresponding to the clauses
in (1) and a black pebble on x with white pebbles on u
and v corresponding to the clauses in (2), we can derive the
clauses in (3) corresponding to z black-pebbled and u, v
and y white-pebbled but no pebble on x. This suggests that
a natural rule for white pebble removal is that a white pebble
can be removed from a vertex if a black pebble is placed on
that same vertex (and not on its immediate predecessors).

Third, if we then just erase all clauses in (3), this
corresponds to all pebbles disappearing. On the face of it,
this is very much unlike the rule for white pebble removal in
the standard pebble game, where it is absolutely crucial that
a white pebble can only be removed when its predecessors
are pebbled. However, the important point here is that not
only do the white pebbles disappear—the black pebble
that has been placed on z with the help of these white
pebbles disappears as well. What this means is that we
cannot treat black and white pebbles in isolation, but we
have to keep track of for each black pebble which white
pebbles it depends on, and make sure that the black pebble
also is erased if any of the white pebbles supporting it is
erased. The way we do this is to label each black pebble
v with its supporting white pebbles W , and define the
pebble game in terms of moves of such labelled pebble
subconfigurations v〈W 〉.

Definition 13 (Pebble subconfiguration). For v a vertex
and W a set of vertices, we say that v〈W 〉 is a pebble sub-
configuration with a black pebble on v supported by white
pebbles on W . The black pebble on v is said to be dependent
on the white pebbles in its support W . We refer to v〈∅〉 as
an independent black pebble.

Our next definition now formalizes the informal descrip-
tion of our new pebble game. We remark that this definition
is quite similar to the pebble game defined in [32], and
that we have borrowed freely from notation and terminology
there.

Definition 14 (Labelled pebbling). For G any DAG with
unique sink z, a (complete) labelled pebbling of G is a se-
quence L = {L0, . . . , Lτ} of labelled pebble configurations
such that L0 = ∅, Lτ = {z〈∅〉}, and for all t ∈ [τ ] it holds
that Lt can be obtained from Lt−1 by one of the following
rules:

Introduction Lt = Lt−1 ∪ {v〈pred(v)〉}, where pred(v)
is the set of immediate predecessors of v.

Erasure Lt = Lt−1 \ {v〈V 〉} for v〈V 〉 ∈ Lt−1.
Merger Lt = Lt−1 ∪

{
v〈(V ∪W ) \ {w}〉

}
for v〈V 〉,

w〈W 〉 ∈ Lt−1 with w ∈ V . We denote this sub-
configuration merge(v〈V 〉, w〈W 〉), and refer to it
as a merger on w.

Let the set of all black-pebbled vertices in Lt be de-
noted Bl(Lt) =

⋃
{v | v〈W 〉 ∈ Lt} and let Wh(Lt) =⋃

{W | v〈W 〉 ∈ Lt} be the set of all white-pebbled vertices.
Then the space of an labelled pebbling L = {L0, . . . , Lτ} is
maxL∈L{|Bl(L) ∪ Wh(L)|} and the time is time(L) = τ .

Figures 2(a) and 2(b) are both examples of subconfigu-
rations resulting from introduction moves, and if we merge
the two we get the subconfiguration in Figure 2(c).

The game in Definition 14 might look quite different from
the standard black-white pebble game, but it is not hard to
show that labelled pebblings are essentially just a restricted
form of black-white pebblings. (See [34] for the proof.)

Lemma 15. If G is a single-sink DAG and L is a complete
labelled pebbling of G, then there is a complete black-
white pebbling PL of G with time(PL) ≤ 4

3 time(L) and
space(PL) ≤ space(L).

However, the definition of space of labelled pebblings
does not seem quite right from the point of view of res-
olution. Not only does the space measure fail to capture
the exponential blow-up in the number of white pebbles
discussed above. We also have the problem that if one white
pebble is used to support many different black pebbles, then
in a resolution refutation simulating such a pebbling we have
to pay multiple times for this single white pebble, once for
every black pebble supported by it. To get something that
can be simulated by resolution, we therefore need to restrict
the labelled pebble game even further.

Definition 16 (Bounded labelled pebblings). An (m,S)-
bounded labelled pebbling is a labelled pebbling L =
{L0, . . . , Lτ} such that every Lt contains at most m pebble
subconfigurations v〈W 〉 and every v〈W 〉 has white support
size |W | ≤ S.

It is easy to see that boundedness automatically implies
low space complexity, since an (m,S)-bounded pebbling
L clearly satisfies space(L) ≤ m(S + 1). And using the
concept of bounded labelled pebblings, we can show that if
there is such a pebbling of a graph G, then this pebbling
can be used as a template for a resolution refutation of any
pebbling contradiction PebG[f]. (We again refer to [34] for
the proof.)

Lemma 17. Suppose that L is any complete (m,S)-bounded
pebbling of a graph G and that f is any nonconstant
Boolean function of arity d. Then there is a resolution
refutation πL of the formula PebG[f] in simultaneous
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Figure 3. Base case for Carlson-Savage graph with 3 spines and sinks.

length L(πL) = time(L) · exp
(
O(dS)

)
and total space

TotSp(πL) = m · exp
(
O(dS)

)
. In particular, fixing f

it holds that resolution can simulate (m,O(1))-bounded
pebblings in a time- and space-preserving manner.

The whole problem thus boils down to the question
whether there are graphs with (a) asymptotically different
properties for black and black-white pebbling for which
(b) optimal black-white pebblings can be carried out in the
bounded labelled pebbling framework. The answer to this
question turns out to be yes, and the space upper bounds
for the pebbling contradictions in Theorems 6, 8, and 10
are all proven by exhibiting bounded labelled pebblings for
the corresponding graphs. The details concerning how these
graphs are constructed, as well as how they are pebbled, are
somewhat intricate, however, and cannot be presented here
due to space constraints. We instead refer the reader to the
full-length version [34] of this paper.

B. A Graph Family with Tight Dual Trade-off Properties

Let us next outline the proof of our graph pebbling trade-
off results in Theorem 11. We remark that in what follows,
we will discuss a slightly different setting where graphs may
have multiple sinks, not just one, and where we only require
that a pebbling visits every sink once, touching it with a
black or white pebble, instead of leaving a black pebble on
the sink until the end of the pebbling. It is straightforward
to translate results for such pebblings back to the setting in
Theorem 11. (See [34] for the technical details.)

Our graph family is built on a construction by Carlson
and Savage [14], [15]. Carlson and Savage only prove their
trade-off for black pebbling, however, and the extension of
their results to black-white pebbling requires changing the
construction and doing a nontrivial amount of extra work (as
is usually the case when one wants to lift a black pebbling
result to black-white pebbling). The formal definition of the
family of graphs, which we will refer to as Carlson-Savage
graphs, is probably easier to parse if the reader first studies
the illustrations in Figures 3 and 4.

Definition 18 (Carlson-Savage graphs). The two-para-
meter graph family Γ(c, r), for c, r ∈ N+, is defined by
induction over r. The base case Γ(c, 1) is a DAG consisting
of two sources s1, s2 and c sinks γ1, . . . , γc with directed
edges (si, γj), for i = 1, 2 and j = 1, . . . , c, i.e., edges from
both sources to all sinks. The graph Γ(c, r + 1) has c sinks
and is built from the following components:

• c disjoint copies Π(1)
2r , . . . ,Π(c)

2r of a pyramid graph4 of
height 2r with sinks z1, . . . , zc.

• one copy of Γ(c, r), for which we denote the sinks by
γ1, . . . , γc.

• c disjoint and identical spines, where each spine is
composed of cr sections, and every section contains
2c vertices. We let the vertices in the ith section of a
spine be denoted v[i]1, . . . , v[i]2c.

The edges in Γ(c, r + 1) are as follows:

• All “internal edges” in Π(1)
2r , . . . ,Π(c)

2r and Γ(c, r) are
present also in Γ(c, r + 1).

• For each spine, there are edges
(
v[i]j , v[i]j+1

)
for all

j = 1, . . . , 2c − 1 within each section i and edges(
v[i]2c, v[i + 1]1

)
from the end of a section to the

beginning of next for i = 1, . . . , cr − 1, i.e., for all
sections but the final one, where v[cr]2c is a sink.

• For each section i in each spine, there are edges(
zj , v[i]j

)
from the jth pyramid sink to the jth vertex

in the section for j = 1, . . . , c, as well as edges(
γj , v[i]c+j

)
from the jth sink in Γ(c, r) to the (c+j)th

vertex in the section for j = 1, . . . , c.

Let us focus on the trade-off lower bound in part 3 of
Theorem 11, which is the hard part to prove, and let us start
by trying to provide some intuition why this bound should
hold. For simplicity, consider first black-only pebblings.
Assume inductively that part 3 of Theorem 11 has been
proven for Γ(c, r − 1) and consider Γ(c, r). Any pebbling
strategy for this DAG will have to pebble through all sections
in all spines. Consider the first section anywhere, let us
say on spine j, that has been completely pebbled, i.e.,
there have been pebbles placed on and removed from all
vertices in the section. Let us say that this happens at
time τ1. But this means that Γ(c, r − 1) and all pyramids
Π(1)

2(r−1), . . . ,Π
(c)
2(r−1) must have been completely pebbled

during this part of the pebbling as well. Fix any pyramid and
consider some point in time σ1 < τ1 when there are at least
r + 1 pebbles on its vertices, which must happen because
of known pebbling lower bounds for pyramids [17], [27].
At this point, the rest of the graph must contain very few
pebbles (think of s here as being very small). In particular,
there are very few pebbles on the subgraph Γ(c, r − 1)
at time σ1, so for all practical purposes we can think of
Γ(c, r − 1) as being essentially empty of pebbles.

Consider now the next section in the spine j that is
completed, say, at time τ2 > τ1. Again, we can argue that
some pyramid is completely pebbled in the time interval
[τ1, τ2], and thus has r + 1 pebbles on it at some time
σ2 > τ1 > σ1. This means that Γ(c, r − 1) is essentially
empty of pebbles at time σ2 as well. But note that all sinks
in the subgraph Γ(c, r − 1) must have been pebbled in the

4We omit the formal definition here, but as an example the graph in
Figure 1(a) is a pyramid of height 2.
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Figure 4. Inductive definition of Carlson-Savage graph Γ(3, r + 1) with 3 spines and sinks.



time interval [σ1, σ2], and since we know that Γ(c, r − 1) is
(almost) empty at times σ1 and σ2, this allows us to apply
the induction hypothesis. Since P has to pebble through a
lot of sections in different spines, we will be able to repeat
the above argument many times and apply the induction
hypothesis on Γ(c, r − 1) each time. Adding up all the lower
bounds obtained in this way, the induction step goes through.

This is the spirit of the proof of the black-only pebbling
trade-off in [15]. When we instead want to deal with black-
white pebblings, things get much more complicated. Black
pebblings must by necessity pebble through a graph in a
bottom-up fashion, and it is therefore straightforward to
measure “how far” a black pebbling has progressed. A black-
white pebbling, however, can place and remove pebbles
anywhere in the DAG at any time. Therefore, it is more
difficult to control the progress of a black-white pebbling,
and one has to use different ideas and work harder in the
proof.

We establish part 3 of Theorem 11 by proving a slightly
stronger lemma, dealing with conditional pebblings that start
with some pebbles already present on the graph, and can also
leave some pebbles on the graph at the end of the pebbling.
A crucial ingredient in the proof is that we assume below
(without loss of generality) that all pebblings are frugal,
meaning that no obviously redundant pebble placements are
made, but that all pebbles placed on the graph are used to
place other black pebbles on successors or to remove white
pebbles from successors. (Again, we refer to [34] for a more
thorough discussion of these pebbling technicalities.)

Lemma 19. Suppose that P = {Pσ, . . . , Pτ} is a condi-
tional black-white pebbling on Γ(c, r) such that

1) max
{

space(Pσ), space(Pτ )
}

< s for s in the range
0 < s ≤ c/8− 1.

2) P pebbles all sinks in Γ(c, r) during the interval [σ, τ ].
3) space(P) < r + s + 2.

Then it holds that time(P) = τ − σ ≥
(

c−2s
4s+4

)r · r! .

To establish this result we will need the following four
technical lemmas, the proofs of which are omitted due to
space constraints but can be found in [34]. The first two
technical lemmas are easy, but the second pair of lemmas
are somewhat less immediate and provide the key to the
proof.

Our first technical lemma gives important information
about how black-white pebbling strategies must treat the
spines of the Carlson-Savage graphs.

Lemma 20. Suppose that G is a DAG and that v is a vertex
in G with a path Q to some sink zi of G such that all vertices
in Q \ {zi} have outdegree 1. Then any frugal black-white
pebbling strategy pebbles v exactly once, and the path Q
contains pebbles during one contiguous time interval.

The next technical lemma speaks about subgraphs H of
a DAG G whose only connection to the rest of the graph

G \ H are via the sink of H . Note that the pyramids in
Γ(c, r) satisfy this condition.

Lemma 21. Let G be a DAG and H a subgraph in G such
that H has a unique sink zh and the only edges between
V (H) and V (G) \V (H) emanate from zh. Suppose that P
is any frugal complete pebbling of G having the property
that H is completely empty of pebbles at some given time τ ′

but at least one vertex of H has been pebbled during the
time interval [0, τ ′]. Then P pebbles H completely during
the interval [0, τ ′].

Our final two technical lemmas say that not too many
pyramids can be pebbled simultaneously in a space-efficient
pebbling, and that this is true for the spines as well. This
means that any space-efficient pebbling will have to alternate
back and forth between time intervals when there are a lot of
pebbles on some pyramid and time intervals when all sinks
in Γ(c, r − 1) are being pebbled. Assuming inductively that
we already know that Lemma 19 holds for Γ(c, r − 1), these
alternations in the pebbling strategies will allow us to apply
the induction hypothesis to Γ(c, r − 1) multiple times, which
yields the required lower bound for Γ(c, r).

Lemma 22. At all times during a pebbling of Γ(c, r) as in
Lemma 19, strictly less than 4(s+1) pyramids Π(j)

2r contain
pebbles simultaneously.

Lemma 23. At all times during a pebbling of Γ(c, r) as in
Lemma 19, strictly less than 4(s+1) spine sections contain
pebbles simultaneously.

Now we can prove the black-white pebbling time-space
trade-offs for the Carlson-Savage graphs.

Proof of Lemma 19: Let P = {Pσ, . . . , Pτ} be a
pebbling as in the statement of the lemma. We show that
time(P) ≥ T (c, r, s) =

(
c−2s
4s+4

)r · r! by induction over r.
For r = 1, the assumptions in the lemma imply that more

than c − 2s sinks are empty at times σ and τ . These sinks
must be pebbled, which trivially requires strictly more than
c− 2s >

(
c−2s
4s+4

)
= T (c, 1, s) time steps.

Assume that the lemma holds for Γ(c, r − 1) and consider
any pebbling of Γ(c, r). Less than 2s spines contain pebbles
at time σ or time τ . All the other strictly more than c− 2s
spines are empty at times σ and τ but must be completely
pebbled during [σ, τ ] since their sinks are pebbled during
this time interval. (This can be more formally argued but
we omit the technicalities here.)

Consider the first time σ′ when any spine gets a pebble
for the first time. Let us denote this spine by Q′. By
Lemma 20 we know that Q′ contains pebbles during a
contiguous time interval until it is completely pebbled and
emptied at, say, time τ ′. During this whole interval [σ′, τ ′]
less than 4s + 4 sections contain pebbles at any one given
time by Lemma 23, so in particular less then 4s + 4 spines
contain pebbles. Moreover, Lemma 20 says that every spine



containing pebbles will remain pebbled until completed.
What this means is that if we order the spines with respect
to the time when they first receive a pebble in groups of size
4s + 4, no spine in the second group can be pebbled until
the at least one spine in the first group has been completed.

We observe that this divides the spines that are empty
at the beginning and end of P into strictly more than c−2s

4s+4
groups. Furthermore, we claim that completely pebbling just
one empty spine requires at least r · T (c, r − 1, s) time
steps. Given this claim we are done, since it follows that
the total pebbling time must then be lower-bounded by
c−2s
4s+4r · T (c, r − 1, s) = T (c, r, s). This is so since at least
one spine from each group is pebbled in a time interval
totally disjoint from the time intervals for all spines in the
next group.

It remains to establish the claim. To this end, fix any
spine Q∗ empty at times σ∗ and τ∗ but completely pebbled
in [σ∗, τ∗]. Consider the first time τ1 ∈ [σ∗, τ∗] when any
section in Q∗, let us denote it by R1, has been completely
pebbled (i.e., all vertices has been touched by pebbles but
are now empty again). During the time interval [σ∗, τ1] all
pyramid sinks z1, . . . , zc must be pebbled (since they are
immediate predecessors). Since less than 2 · (4s + 4) < c
pyramids contain pebbles at times σ∗ or τ1 (Lemma 22),
at least one pyramid is pebbled completely (Lemma 21),
which requires r+1 pebbles. Moreover, there is at least one
pebble on the section R1 during this whole interval. Hence,
there must exist a point in time σ1 ∈ [σ∗, τ1] when there are
strictly less than (r+2)+s− (r+1)−1 = s pebbles on the
subgraph Γ(c, r − 1). Also, at this time σ1 less than 4s + 4
sections contain pebbles (Lemma 23), and in particular this
means that there are pebbles on less than 4s+3 other section
of our spine Q∗. This puts an upper bound on the number
of sections of Q∗ that can have been touched by pebbles
this far, since every section is completely pebbled during
a contiguous time interval before being emptied again, and
we chose to focus on the first section R1 in Q∗ that was
finished.

Look now at the first section R2 in Q∗ other than the
less than 4s + 4 sections containing pebbles at time σ1 that
is completely pebbled, and let the time when R2 is finished
be denoted τ2 (clearly, τ2 > τ1). During [σ1, τ2] all sinks of
Γ(c, r − 1) must have been pebbled, and at time τ2− 1 less
than 4s + 3 other section in Q∗ contain pebbles.

Finally, consider the first new section R3 in our spine Q∗

to be completely pebbled among those not yet touched at
time τ2 − 1. Suppose that R3 is finished at time τ3. Then
during [τ2, τ3] some pyramid is completely pebbled, and thus
there is some time σ3 ∈ (τ2, τ3) when there are at least
r+1 pebbles on this pyramid and at least one pebble on the
spine Q∗, leaving less than s pebbles for Γ(c, r − 1). But
this means that we can apply the induction hypothesis on the
interval [σ1, σ3] and deduce that σ3 − σ1 ≥ T (c, r − 1, s).
Note also that at time σ3 less than 8s + 8 < c sections in

Q∗ have been finished.
Continuing in this way, for every group of 8s + 8 < c

finished sections in the spine Q∗ we get one pebbling of
Γ(c, r − 1) in space less than r + s+1 and with less than s
pebbles in the start and end configurations, which allows us
to apply the induction hypothesis a total number of at least

cr
8s+8 > r times. (Just to argue that we get the constants
right, note that 8s+8 < c implies that after the final pebbling
of the sinks of Γ(c, r − 1) has been done, there is still some
empty section left in Q∗. When this final section is taken
care of, we will again get at least r + 1 pebbles on some
pyramid while at least one pebble resides on Q∗, so we get
the space on Γ(c, r − 1) down below s as is needed for the
induction hypothesis.)

This proves our claim that pebbling one spine takes time
at least r · T (c, r − 1, s). Lemma 19 now follows.

IV. CONCLUDING REMARKS

It is known that the black-white pebbling price is always
a lower bound on the resolution space of refuting pebbling
contradictions PebG[f] with respect to the “right” func-
tions f, as proven in [9]. Also, for all graphs studied in this
context so far there have been shown to exist refutations of
the corresponding pebbling contradictions in space upper-
bounded by the black-white pebbling price—trivially for
graphs where the black and black-white pebbling prices
coincide, and more interestingly for the graphs in the current
paper where the black-white pebbling price is asymptotically
smaller than the black pebbling price. This naturally raises
the question whether it holds in general that the refutation
space of pebbling contradictions is asymptotically equal to
the black-white pebbling price of the underlying graphs.

Open Question 1. Is in true for any DAG G with bounded
vertex indegree and any (fixed) Boolean function f that the
pebbling contradiction PebG[f] can be refuted in total space
O(BW-Peb(G))?

More specifically, one could ask—as a natural first line
of attack if one wants to investigate whether the answer to
the above question could be yes—if it holds that bounded
labelled pebblings are in fact as powerful as general black-
white pebblings. In a sense, this is asking whether only a
very limited form of nondeterminism is sufficient to realize
the full potential of black-white pebbling.

Open Question 2. Does it hold that any complete black-
white pebbling P of a single-sink DAG G with bounded ver-
tex indegree can be simulated by a (O(space(P)),O(1))-
bounded pebbling L?

Note that a positive answer to this second question would
immediately imply a positive answer to the first question as
well by Lemma 17.

We have no strong intuition either way regarding Open
Question 1, but as to Open Question 2 it would perhaps be



somewhat surprising if bounded labelled pebblings turned
out to be as strong as general black-white pebblings. Inter-
estingly, although the optimal black-white pebblings of the
graphs in Lemma 9 can be simulated by bounded pebblings,
the same approach does not work for the original graphs
separating black-white from black-only pebbling in [46].
Indeed, these latter graphs might be a candidate graph family
for answering Open Question 2 in the negative.

Finally, we are intrigued by the question of whether the
properties of the formulas PebG[f] shown to hold in [9], [11]
for “the right kind” of functions f in fact extend to the sim-
pler formulas PebG[∨] defined in terms of non-exclusive or.

Open Question 3. Is it true for any DAG G that any
resolution refutation π of PebG[∨] can be translated into
a black-white pebbling with time and space upper-bounded
in terms of the length and space of π?

Earlier results in [32], [35] can be interpreted as indicating
that this should be the case, but the results there only apply
to limited classes of graphs and only capture space lower
bounds, not time-space trade-offs. And the papers [9], [11]
do not shed any light on this question, as the techniques
used there inherently cannot work for formulas defined in
terms of non-exclusive or.

If the answer to Open Question 3 is yes—which we would
cautiously expect it to be—then this could be useful for
settling the complexity of decision problems for resolution
proof space, i.e., the problem given a CNF formula F and
a space bound s to determine whether F has a resolution
refutation in space at most s. Reducing from pebbling space
by way of formulas PebG[∨] would avoid the blow-up of
the gap between upper and lower bounds on pebbling space
that cause problems when using, for instance, exclusive or.
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[35] J. Nordström and J. Håstad, “Towards an optimal separation
of space and length in resolution (Extended abstract),” in
Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC ’08), May 2008, pp. 701–710.

[36] M. S. Paterson and C. E. Hewitt, “Comparative schematol-
ogy,” in Record of the Project MAC Conference on Concur-
rent Systems and Parallel Computation, 1970, pp. 119–127.

[37] N. Pippenger, “Pebbling,” IBM Watson Research Center,
Technical Report RC8258, 1980, appeared in Proceedings of
the 5th IBM Symposium on Mathematical Foundations of
Computer Science, Japan.

[38] R. Raz and P. McKenzie, “Separation of the monotone NC
hierarchy,” Combinatorica, vol. 19, no. 3, pp. 403–435, Mar.
1999, preliminary version appeared in FOCS ’97.

[39] A. Sabharwal, P. Beame, and H. Kautz, “Using problem
structure for efficient clause learning,” in 6th International
Conference on Theory and Applications of Satisfiability Test-
ing (SAT ’03), Selected Revised Papers, ser. Lecture Notes in
Computer Science, vol. 2919. Springer, 2004, pp. 242–256.

[40] J. E. Savage and S. Swamy, “Space-time tradeoffs for
oblivious interger multiplications,” in Proceedings of the
6th Colloquium on Automata, Languages and Programming
(ICALP ’79), 1979, pp. 498–504.

[41] R. Sethi, “Complete register allocation problems,” SIAM
Journal on Computing, vol. 4, no. 3, pp. 226–248, Sep. 1975.

[42] S. Swamy and J. E. Savage, “Space-time trade-offs on the
FFT-algorithm,” Brown University, Technical Report CS-31,
1977.

[43] ——, “Space-time tradeoffs for linear recursion,” Mathemat-
ical Systems Theory, vol. 16, no. 1, pp. 9–27, 1983.

[44] M. Tompa, “Time-space tradeoffs for computing functions,
using connectivity properties of their circuits,” in Proceedings
of the 10th annual ACM symposium on Theory of computing
(STOC ’78), 1978, pp. 196–204.

[45] J. Torán, “Lower bounds for space in resolution,” in Proceed-
ings of the 13th International Workshop on Computer Science
Logic (CSL ’99), ser. Lecture Notes in Computer Science, vol.
1683. Springer, 1999, pp. 362–373.

[46] R. E. Wilber, “White pebbles help,” Journal of Computer
and System Sciences, vol. 36, no. 2, pp. 108–124, 1988,
preliminary version appeared in STOC ’85.


