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Abstract

A property of functions on a vector space is said to be linear-invariant if it is closed under linear
transformations of the domain. Linear-invariant properties are some of the most well-studied properties
in the field of property testing. Testable linear-invariant properties can always be characterized by so-
called local constraints, and of late there has been a rapidly developing body of research investigating the
testability of linear-invariant properties in terms of their descriptions using such local constraints. One
problematic aspect that has been largely ignored in this line of research, however, is that syntactically
distinct local characterizations need not at all correspond to semantically distinct properties. In fact,
there are known fairly dramatic examples where seemingly infinite families of properties collapse into a
small finite set that was already well-understood.

In this work, we therefore initiate a systematic study of the semantics of local characterizations
of linear-invariant properties. For such properties the local characterizations have an especially nice
structure in terms of forbidden patterns on linearly dependent sets of vectors, which can be encoded
formally as matroid constraints. We develop techniques for determining, given two such matroid con-
straints, whether these constraints encode identical or distinct properties, and show for a fairly broad
class of properties that these techniques provide necessary and sufficient conditions for deciding be-
tween the two cases. We use these tools to show that recent (syntactic) testability results indeed provide
an infinite number of infinite strict hierarchies of (semantically) distinct testable locally characterized
linear-invariant properties.

1 Introduction

Call a function f : {0, 1}n → {0, 1} linear if it is a homomorphism between the groups {0, 1}n and {0, 1}
with the group operations being bitwise XOR addition. Then f is linear if and only if it satisfies the “local
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constraints” f(x1 + x2) = f(x1) + f(x2) for all x1,x2 ∈ {0, 1}n. But linearity can be characterized by
many other families of local constraints. For instance, f(x1+x2+x3+x4) = f(x1)+f(x2)+f(x3)+f(x4)
for all x1,x2,x3,x4 ∈ {0, 1}n also holds exactly when f is linear. A natural question is how we can find
all the families of local constraints that characterize a particular property of a function. Also, given two
families of constraints, how do we know if they characterize the same or distinct properties?

These questions lie at the heart of a fundamental problem of property testing, namely to determine
what makes a property testable. The field of property testing, as initiated by [BLR93, BFL91] and de-
fined formally by [RS96, GGR98], is the study of algorithms that query their input a very small number
of times and with high probability decide correctly whether it satisfies a given property or is “far” from
satisfying that property. A property is called testable, or sometimes strongly testable or locally testable, if
the number of queries can be made independent of the size of the object without affecting the correctness
probability. Perhaps quite surprisingly, it has been found that a large number of natural properties meet this
strong requirement; see e.g. the surveys [Rub06, Ron09, Sud10] for more information. The aforementioned
fundamental problem is to find a combinatorial description that captures these testable properties.

To explain the connection to local constraints, consider a property which has a so-called one-sided tester
that always accepts if the input satisfies the property and rejects with some nonzero probability otherwise.
This is the case for most natural testable properties, and especially for testable algebraic properties, which
are the focus of this work. It is well-known [KS08, GR09] that any such property must necessarily have a
characterization in terms of local constraints, in the sense we described above for linearity. It has proven
particularly productive to use such characterizations in terms of local constraints to understand testability of
properties. Indeed, this approach was suggested even in the early seminal work [RS96], and the project of
finding combinatorial descriptions of the testable graph properties was successfully completed in [AFNS06]
employing local constraints. In the setting of algebraic properties, and more specifically linear-invariant
properties (which we will define shortly), there has also been a sequence of recent results [Gre05, BCSX09,
Sha09, KSV10, BGS10, CSX11], showing testability in terms of local characterizations.

However, one issue that has been largely ignored in this context is that one and the same property can
have many different local characterizations. The example of linearity above illustrates this situation. A
quite dramatic generalization of this example was given in [BCSX09], where it was shown that any prop-
erty of functions f : {0, 1}n → {0, 1} that is generated by applying any non-monotone constraint on
f(x1), . . . , f(xk), f(x1 + · · ·+ xk) for all x1, . . . ,xk ∈ {0, 1}n in fact collapses into one of a small finite
set of already well-studied properties, regardless of k and of the exact form of the constraint placed on the
evaluations of the function! This result clearly demonstrates the need for a better understanding of the corre-
spondence between local constraints and the properties they characterize. If we are to analyze the testability
of properties through their local characterizations, we must also be able to understand the semantics of local
constraints. It is not sufficient to have just the testability results for two properties characterized by two
different families of local constraints, but we also want to understand whether these two properties are truly
different, meaning that the testability of one is not automatically implied by the testability of the other, or
whether they are essentially the same.

The purpose of the current work is to initiate a systematic study of these issues in the context of algebraic
properties. Let us start by making some of the above discussion formal.

1.1 Local Characterizations, Linear Invariance, and Matroid Freeness

Consider properties of functions mapping some domain D to some range R. We let {D → R} denote
the set of all such functions, and we describe a property P by the set of functions P ⊆ {D → R} sat-
isfying the property. For a positive integer k, a k-local constraint C = (a1, . . . ,ak;S) is given by k
elements a1, . . . ,ak ∈ D and a set S ⊆ Rk. A function f : D → R is said to satisfy the constraint C if
(f(a1), . . . , f(ak)) /∈ S, and a property P ⊆ {D → R} satisfies C if every function f ∈ P does so. A
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collection of k-local constraints C1, . . . , Cm k-locally characterizes the property P if f ∈ P holds exactly
when f satisfies Ci for every i ∈ [m]. If k is not a function of the size of D, the property is said to be locally
characterized.

In the following, we will consider the domain D = Fn for some finite field F. A property P ⊆
{Fn → R} is said to be linear-invariant if for every function f ∈ P and for every F-linear map L :
Fn → Fn the function f ◦ L is also in P , where ◦ denotes function composition (f ◦ L)(x) = f(L(x)).
Linear invariance has been found to be a natural way to abstract the key features of some of the most
well-studied algebraic properties such as linearity [BLR93], being a polynomial of low degree [RS96,
AKK+05], being a homogeneous polynomial [KS08], having a small number of nonzero Fourier coeffi-
cients [GOS+09], et cetera. For linear-invariant properties, local characterizations have an especially nice
structure. To see this, observe that specifying a property to be linear-invariant also enforces a symme-
try among the local constraints satisfied by the property. If a linear-invariant property P satisfies C =
(a1, . . . ,ak;S), then it must also conform to the constraint C ◦ L = (L(a1), . . . , L(ak);S) for any linear
map L : Fn → Fn. Thus, P must satisfy all constraints in the orbit of C, i.e., the family of constraints
{C ◦ L | linear L : Fn → Fn}. It is straightforward to verify that one can encode the orbit of a constraint
C = (a1, . . . ,ak;S) by a tuple (v1, . . . ,vk;S) for vectors vi in the smaller space Fk such that the or-
bit of C equals {(L(v1), . . . , L(vk);S) | linear L : Fk → Fn}. For this, the exact identity of the elements
v1, . . . ,vk is not important – the only thing that matters is the linear dependencies between them. Hence, it
is convenient to think of them as the representation of a linear matroid1 M = {v1, . . . ,vk}. Furthermore,
it is not hard to show that if a linear-invariant property is locally characterized, then it can be characterized
by the orbit of a single constraint (see Proposition 1 of [BCSX10]). We thus have the following fact.

Fact 1.1. If a linear-invariant property P ⊆ {Fn → R} is k-locally characterized, there exists a linear
matroid M = {v1, . . . ,vK} ⊆ FK and a set S ⊆ RK for some K = O(exp(k)) such that a function
f : Fn → R is in P if and only if (f(L(v1)), . . . , f(L(vK))) /∈ S for all F-linear maps L : FK → Fn.

In this case, we say that P is characterized by (M,S)-freeness. In this work, we study the following
problem: Given matroids M1,M2 and sets S1, S2, what is the relationship between the properties charac-
terized by (M1, S1)-freeness and (M2, S2)-freeness? Is there a set of combinatorial conditions that, given
M1,M2, S1, and S2, allows us to decide whether the two corresponding properties are “very close” to or
“very far” from each other? In general, this is a formidable question to answer, but we are able to resolve it
in some natural (and interesting) restricted cases.

The main restriction that we impose on the properties is that we require they be characterized as (M,S)-
freeness with |S| = 1. Note that if S = S1 ∪ S2, we can express (M,S)-freeness as the intersection of
(M,S1)-freeness and (M,S2)-freeness. Thus, in this sense the properties studied here are the building
blocks of all locally characterized linear-invariant properties. To keep the notation concise, let us introduce
some new nomenclature for these so-called matroid freeness properties.

Definition 1.2 (Matroid freeness). Given integers k ≥ r ≥ 1, a set M = {v1, . . . ,vk} of k vectors in Fr,
and a string σ ∈ Rk, we say that a function f : Fn → R is (M,σ)-free if there does not exist any linear map
L : Fr → Fn such that f(L(vi)) = σi for all i ∈ [k]. Otherwise, if such an L exists we say f contains
(M,σ) at L.

We often refer to σ as the label and the pair (M,σ) as a labeled matroid. We write MF,R[¬σ] to denote
the subset of (M,σ)-free functions in

⋃
n∈N+{Fn → R}. Usually, however, the domain Fn and range R of

the functions will be clear from context, and therefore we will drop the indices and just write M[¬σ].

The testability of matroid freeness properties has been an area of intense research recently, and serves as
an important source of motivation for our work on the semantics of these properties. We discuss this next.

1The formal definition of a matroid is not too important in this context. So although we provide a definition in Appendix A for
completeness, in the rest of this paper the reader can just think of a matroid as a set of elements in a vector space over F.
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1.2 Testability of Matroid Freeness Properties

Given a propertyP of functions in {Fn → R}, we say that f : Fn → R is δ-far fromP if ming∈P Prx∈Fn [f(x) 6=
g(x)] > δ and δ-close otherwise. P is said to be testable (with one-sided error) if there is a function
q : (0, 1) → Z+ and an algorithm T that, given as input a parameter δ ∈ (0, 1) and oracle access to a
function f : Fn → R, makes at most q(δ) queries to the oracle for f , always accepts if f ∈ P and rejects
with probability at least 2/3 if f is δ-far from P .

The study of matroid freeness properties is a fundamental part of the general program of characterizing
the testable linear-invariant properties. It is believed that the fact that the properties are endowed with
linear-invariance will allow for clean rules that determine testability. In fact, if we restrict ourselves to
proximity-oblivious testable properties2 as defined in [GR09], then it is conjectured that linear-invariant
properties are testable if and only if they are locally characterized. Furthermore, it is known that a tester for
a testable linear-invariant property can be assumed, without loss of generality, to be checking for (M,S)-
freeness for some matroid M and some set S. Thus, our study of the relationship between local constraints
and the properties they characterize may be viewed as a study of what property is actually being tested by a
given test. Note that in this sense our work runs counter to the direction of most property testing research,
where the primary concern is instead understanding what tests can be used for testing a given property. We
refer to [GK10, Sud10] for more detailed discussions of invariance, testability and local characterizations.

In what follows, let us focus on F = F2 and R = {0, 1} since this is the setting in which testability
of matroid freeness properties have been systematically investigated. This line of work was initiated by
Green [Gre05], who showed that M[¬σ] is testable for the matroid M =

{
e1, . . . , ek,

∑
i∈[k] ei

}
(where

ei denotes the ith unit vector) and for σ being the all-ones string, henceforth denoted σ = 1∗. This was
generalized in [BCSX09] to show that if M is any graphic matroid (see Section 2), then M[¬1∗] is testable.
It is easy to check that such a property is monotone, i.e., if f is (M, 1∗)-free and f ′ is obtained from f
by flipping f(x) from 1 to 0 at any point x ∈ Fn

2 , then f ′ is also (M, 1∗)-free. The papers [KSV10] and
[Sha09] independently showed that the restriction to graphic matroids could be dropped, again assuming
σ = 1∗. Very recently, [BGS10] proved that for arbitrary σ, but now reintroducing the requirement that M
be graphic,3 the non-monotone property M[¬σ] (and any intersection of such properties) is testable.

This sequence of testability results for increasing sets of matroids M and labels σ seems to hold out
the hope for a complete characterization of all testable linear-invariant properties in a not too distant future.
However, there is a potentially very problematic gap in results such as those in [BGS10] that can make
such hopes very misleading! The issue is that although these results establish testability of (M,σ)-freeness
for an infinite syntactic collection of labeled matroids (M,σ), it is not at all clear that this provides an
infinite collection of new, semantically distinct properties not previously known to be testable. Indeed, as
was observed in the very first lines of this paper, it can certainly happen that the properties M1[¬σ1] and
M2[¬σ2] are identical for two different labeled matroids (M1, σ1) and (M2, σ2). A little more subtly, it
could also be the case that for distinct (M1, σ1) and (M2, σ2), any function which is (M1, σ1)-free is very
close to being (M2, σ2)-free, so that even though the properties are not identical, any one-sided tester for
(M1, σ1)-freeness can be easily modified to be a tester for (M2, σ2)-freeness. A third pitfall is that it could
be the case for three distinct labeled matroids (M1, σ1), (M2, σ2) and (M3, σ3) that the property M3[¬σ3]
is equal to (or very close to) the union of the properties M1[¬σ1] and M2[¬σ2]. In this case, testability
of (M3, σ3)-freeness is trivially guaranteed by the testability of (M1, σ1)-freeness and (M2, σ2)-freeness.
Thus, for the above cited result of [BGS10] to be nontrivial, one should ensure that the properties covered

2Proximity oblivious testable properties have testers which have q equal to a constant, independent of δ, but which reject with
some nonzero probability for every δ > 0.

3It should be noted that strictly speaking, the properties in [BGS10, KSV10, Sha09] are described in terms of forbidding
solutions to systems of linear equations rather then satisfying local matroid constraints. These two formulations are essentially
equivalent, however, as explained in Appendix A.
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in that result are not close to the union of properties already previously known to be testable.
It should be stressed again that these concerns are far from hypothetical. As mentioned earlier, it was

shown in [BCSX09] that if M =
{
e1, . . . , ek,

∑k
i=1 ei

}
for any k, then while there is an infinite hierarchy of

distinct properties when σ = 0∗ or σ = 1∗, it turns out that M[¬σ] when σ /∈ {0∗, 1∗} always degenerates
to one of a finite set of properties that have all been known to be testable ever since [BLR93]. It is a
natural question whether it could be the case more generally that non-monotone matroid freeness properties
degenerate to one of a small set of already well-studied properties. This is posed as an open problem in
[BCSX09], and resolving this question was an important motivation for this work.

1.3 Summary of Our Results

Very briefly, given two labeled matroids (M,σ) and (N, τ), we establish necessary and sufficient conditions
for when the two properties M[¬σ] and N [¬τ ] are identical or distinct, provided that the constraints meet
certain structural conditions. We then go on to show the existence of labeled matroids that satisfy these
conditions. Finally, we use these results to rule out the aforementioned objections about testability results
for matroid freeness properties by exhibiting infinite hierarchies of distinct non-monotone testable matroid
freeness properties. We now describe these results in some more detail.

The main tool we use to show separations between matroid freeness properties is the notion of a la-
beled matroid homomorphism. Just as the notions of graph homomorphisms and its variants are helpful
in counting occurrences of (induced) subgraphs inside graphs (see [AS06] for a survey), labeled matroid
homomorphisms allow us to count the number of times a given labeled matroid is “contained” in a function.
More precisely, we define a labeled matroid homomorphism φ from (M,σ) to (N, τ) to be a map φ that
(i) is linear, (ii) maps vectors of M to vectors of N , and (iii) preserves labels in the sense that the σ-label of
any vector v in M equals the τ -label of w = φ(v) in N . Observe that since φ is linear, if some vectors of
M are linearly dependent, then their images in N are also linearly dependent.

Dichotomy theorems. It is not hard to show that if there is a labeled matroid homomorphism from
(M,σ) to (N, τ), then any (M,σ)-free function is also (N, τ)-free. It is reasonable to ask whether the fact
that (M,σ) does not map homomorphically into (N, τ) can also provide some information about the rela-
tionship between the two properties of (M,σ)-freeness and (N, τ)-freeness. If we are very optimistically
inclined, we might even inquire whether the existence or non-existence of homomorphisms exactly deter-
mines the relationship between these two properties in the sense that (M,σ)-freeness is far in Hamming
distance from being contained in (N, τ)-freeness in this latter case. Somewhat surprisingly, it turns out that
this is in fact true for monotone matroid freeness properties.

Theorem 1.3 (First main theorem (informal)). For any two labeled matroids (M, 1∗) and (N, 1∗) it holds
that either M[¬1∗] is contained in N [¬1∗] or M[¬1∗] is “well separated” from N [¬1∗] in the sense that
there is a function that is (M, 1∗)-free but far from being (N, 1∗)-free. The first case applies if there exists a
labeled matroid homomorphism from (M, 1∗) to (N, 1∗), and the second case applies otherwise.

Notice that this implies a strong dichotomy: one of the two cases in Theorem 1.3 must hold, and it can
never be the case that the two properties are distinct but close in a property testing sense. (See Theorem 3.6
for the formal statement of Theorem 1.3.) It should be noted that some limited results of the same flavor were
proven for specific graphic matroids and monotone patterns in [BCSX09], and our techniques are inspired
by that paper. However, our results are much stronger in that they apply to arbitrary (non-graphic) linear
matroids and provide an exact criterion for when two labeled matroids with monotone labels are distinct.

An obvious next question is whether this dichotomy, and the characterization in terms of labeled matroid
homomorphisms, hold not only for monotone properties but also for matroid freeness properties in general.
We provide two answers to this question.
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Our first answer is that we identify a fairly broad class of examples where the dichotomy in terms of
homomorphisms applies also in the non-monotone case. We restrict ourselves in the theorem statement
below to graphic matroid freeness properties, which, as mentioned previously, are of special interest since
they are essentially the properties shown to be testable in [BGS10],4 although our results hold in slightly
larger generality and in particular extend even to properties not currently known to be testable.

Theorem 1.4 (Second main theorem (informal)). If M and N are graphic matroids and σ and τ are
non-monotone patterns that satisfy certain structural conditions, then it holds that either (M,σ)-freeness is
contained in (N, τ)-freeness or the former property is “well separated” from the latter, and this is exactly
determined by the existence or non-existence of a labeled matroid homomorphism from (M,σ) to (N, τ).

We refer to Theorem 3.6 and Theorem 3.7 for formal instantiations of Theorem 1.4. Our focus in
Theorem 1.4 is on matroids over complete graphs Kd. Our technical contribution lies in using the structure
of the complete graph to argue that if (M,σ) does not embed homomorphically into (N, τ), where M,N are
graphic submatroids of the complete graph and σ, τ have the needed properties as will be described below,
then it is possible to pack into a function many copies of (N, τ), i.e., many violations of (N, τ)-freeness,
while still keeping the function (M,σ)-free.

Our second answer is that the dichotomy as stated above does not hold in general for arbitrary non-
monotone matroid freeness properties. Namely, we exhibit two labeled (graphic) matroids (M,σ) and
(N, τ) such that (M,σ) does not embed into (N, τ) and yet M[¬σ] is contained in N [¬τ ]. However, it can
easily be shown that (M,σ) “almost” embeds into (N, τ) in the sense that there is mapping if we are also
allowed to send vectors in M to the all-zero vector 0 (which is not a member of N ), so our construction
naturally leads to a more refined version of the dichotomy question that remains open.

The next main theorem tackles an issue brought up in the discussion about testability above. We would
like to demonstrate that a given matroid freeness property is not close to the union of a collection of other
matroid freeness properties. For instance, we might want to separate a property newly discovered to be
testable from a union of properties already known to be so. We provide necessary and sufficient criteria for
such a separation but again in a restricted setting. One interesting case in which the theorem below can be
applied is when M is the complete graph matroid. (See Theorem 3.9 for the formal statement.)

Theorem 1.5 (Third main theorem (informal)). Suppose that
{
(N1, τ1), . . . , (N t, τ t)

}
is a collection of

labeled binary matroids and that M ⊆ Fk
2 is a binary matroid containing F≤2

k . Then either M[¬1∗] is
contained in

⋃t
i=1N i[¬τ i] or M[¬1∗] is “well-separated” from this union. This is exactly determined by

whether or not there exists a labeled matroid homomorphism from (M, 1∗) to some (N i, τ i).

Hierarchy Theorems. We apply these dichotomy results to rule out the concerns discussed earlier about
degeneracy of matroid freeness properties.

Theorem 1.6 (Fourth main theorem (informal)). There are infinite hierarchies of testable, non-monotone
and monotone matroid freeness properties such that for each hierarchy, consecutive properties in the hier-
archy are well separated. Furthermore, it is not the case that any one of the properties equals (or is close
to) the union of some subset of the other properties, and the properties are not close to the well-studied class
of low-degree polynomials.

Thus, in particular, Theorem 1.6 allows us to conclude that the properties shown to be testable in
[BGS10] do indeed constitute a new, infinitely large class of testable linear-invariant properties. We prove
two slightly incomparable formalizations of the above theorem, and they yield two hierarchies with many

4To be precise, [BGS10] shows testability for a strictly larger class of so-called complexity-1 matroids, but we do not want to
get into too much technicalities here.
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“well separations” involving a large number of graphic matroid freeness properties. (The formal statements
are described in Theorems 5.4 and 5.5.) The proof of these theorems turn out to be fairly involved, and there
are a surprising number of intricacies involved in the relationship between the different properties. Due to
the space constraints all proofs of the results discussed above, and even some of the formal definitions, have
to be deferred to the full-length version of this paper (attached as an appendix).

1.4 Organization of This Paper

In Section 2, we provide some necessary background and elaborate on the motivation behind this work.
Section 3 is devoted to establishing the dichotomy theorems. In Section 4, we prove the non-existence of
labeled matroid homomorphisms, which can then be combined with the results from Section 3 to establish
the infinite hierarchies of testable non-monotone properties in Section 5. We defer the proof of Theorem
5.5 to Appendix B. In Section 6 we describe a counterexample to the question of whether the non-existence
of labeled homomorphisms determine containment between the respective properties, which leads to a new
intriguing open problem as discussed above. We conclude in Section 7 by discussion some further ques-
tions left open by our work. Some background material, which might be useful although not necessary to
understand the rest of the paper, is presented in Appendix A for completeness.

2 Preliminaries and Motivation

Let N = {0, 1, . . .} denote the set of natural numbers and let N+ = N \ {0}. Let n ≥ 1 be a natural number.
We write [n] to denote the set {1, 2, . . . , n}. We write F to denote a (finite) field.

2.1 Properties of Functions

Recall that a property P is a subset of functions from domain(s) Dn to range(s) Rn, that is P =
⋃

n∈N+ Pn

where Pn ⊆ {Dn → Rn}. It is customary to suppress n in this notation. Throughout this paper, we will
have Dn = Fn and Rn = R for some fixed R, often R = {0, 1}. Also, unless otherwise stated calligraphic
letters P,Q, et cetera will denote properties. Recall also that the (relative) distance between functions f
and g is the probability Prx∈D[f(x) 6= g(x)] that they differ on some x drawn uniformly at random from D,
and that f is δ-far from a propety P if it has distance at least δ to every function g ∈ P . The following two
definitions capture the notion of two properties being “well separated” from each other.

Definition 2.1 (δ-separated). For two properties P,Q ⊆
⋃

n∈N+{Fn → R}, we say that Q is δ-separated
from P if for infinitely many n there are functions fn : Fn → R that are in Q but are δ-far from being in P
(where δ > 0 is fixed and in particular independent of n).

When the exact value of the parameter δ is not of importance (which is the case most of the time), we
will simply say that Q is well separated from P , and we say that P and Q are mutually well separated if
there are separations in both directions. For brevity, we will sometimes use the notation Q *δ P to signify
that Q is δ-separated from P and P 6=δ Q to signify that the properties are mutually well separated.

Definition 2.2 (δ-strictly contained). For two properties P,Q ⊆
⋃

n∈N+{Fn → R}, we say that P is
δ-strictly contained, or just strictly contained, in Q if P ⊆ Q but Q is δ-separated from P . We will use the
notation P ⊂δ Q to signify that P is strictly contained in Q.

2.2 Matroids and Labeled Homomorphisms

Turning next to matroids, for the purposes of this paper the reader can think of a linear matroid M as a set
of vectors {v1, . . . ,vk} in Fr for r ≤ k. We will often write N to denote some other matroid {w1, . . . ,w`}
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over Fs for s ≤ `, and unless otherwise stated vi is assumed to denote a vector in M and wj to denote a
vector in N .

We let e1, e2, . . . denote the unit vectors in the ambient space, i.e., ei is 1 at coordinate i and 0 every-
where else. Sometimes when we need to distinguish basis vectors of different matroids we will also write
f1, f2, . . . to denote unit vectors with respect to some other matroid. The support set of a vector v, denoted
by supp(v), is defined to the set of coordinates at which v is non-zero: supp(v) = {i ∈ [n] : vi 6= 0}. The
weight |v| of a vector v is the number of non-zero coordinates in v, i.e., |v| = |supp(v)|.

We write 1r to denote the vector in Fr with all coordinates equal to one and 0r to denote the vector
with zeros in all coordinates. In what follows below, the ambient vector space Fr will usually be clear from
context, in which case we will drop the dimension subindex and write just 1 and 0. For any vector v ∈ Fr

2

we write v to denote the vector 1r + v, i.e., the vector that is zero in some position i if and only if vi = 1,
and we will refer to v as the complement of v. Note that for every v we have |v| + |v| = r. We will
sometimes write u = v|w to denote that we decompose the vector u into the two vectors v and w such that
u is the concatenation of v and w.

We write σ = 〈σ1, . . . , σk〉 ∈ Rk and τ = 〈τ1, . . . , τ`〉 ∈ R` to denote labels or patterns corresponding
to the matroids M and N respectively. As mentioned in the introduction, we will refer to the pair (M,σ)
as a labeled matroid, that is, a matroid M = {v1, . . . ,vk} with each vector vi labeled by σi ∈ R for
i = 1, . . . , k. We use fraktur letters M and N to denote sets of labeled matroids. We let f and g denote
functions Fn → R, where we will often, but not always, have F = F2 = GF(2) and R = {0, 1}. Note that
k, `, r, s are all fixed while we think of n as going to infinity.

In what follows, it will be convenient to have a compact notation for matroid freeness properties. Thus,
we will write MF,R[¬σ] to denote the subset of (M,σ)-free functions in

⋃
n∈N+{Fn → R}. Usually,

however, the domain Fn and range R of the functions will be clear from context in this paper, and therefore
we will drop the subindices and write just M[¬σ]. Notice that (M,σ) denotes a matroid M labeled by the
pattern σ, whereas M[¬σ] written with a calligraphic letter denotes the property of all functions f that are
free from any occurrences of the labeled matroid (M,σ). The way to read this notation is that whenever we
pick a set of vectors in Fn with linear dependencies as specified by M and evaluate f on these points, we
do not see the pattern σ.

For L : Fr → Fn a linear transformation and f : Fn → R a function, we will sometimes use the
notation f(L(M)) to denote the pattern obtained by evaluating f at L(v1), L(v2), . . . , L(vk). So, for
instance f(L(M)) = σ means that f(L(vi)) = σi for all i = 1, 2, . . . , k, or in other words that we do see
the pattern σ when f is evaluated on L(M).

A central notion of this work will be that of a matroid homomorphism.

Definition 2.3 (Matroid homomorphism [BCSX09]). Let M = {v1, . . . ,vk} and N = {w1, . . . ,w`} be
two matroids with M ⊆ Fr and N ⊆ Fs. A matroid homomorphism φ : M → N is a F-linear map5 from
Fr to Fs such that φ(vi) ∈ {w1, . . . ,w`} for every 1 ≤ i ≤ k. We will also say that φ is an embedding of
the matroid M into the matroid N , or that M embeds into N .

In contrast to [BCSX09], we want to be able to study not only monotone but also non-monotone matroid
freeness properties, i.e., properties characterized by matroid constraints (M,σ) where we can have σ /∈{
0r, 1r

}
. In order to do so, we need the following generalization of Definition 2.3 to arbitrary matroid

constraints.

Definition 2.4 (Labeled matroid homomorphism). A labeled matroid homomorphism φ : (M,σ) →
(N, τ) is a matroid homomorphism from M to N which in addition preserves labels in the sense that if
φ(vi) = wj , then σi = τj . If there exists a labeled homomorphism from (M,σ) to (N, τ), we say that
(M,σ) embeds into (N, τ) and write (M,σ) ↪→ (N, τ); otherwise, we write (M,σ) 6↪→ (N, τ).

5φ : Fr → Fs is F-linear if for any a, b ∈ F, x, y ∈ Fr it holds that φ(ax + by) = aφ(x) + bφ(y)
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2 Preliminaries and Motivation

We say that M is a submatroid of N if there is an injective matroid homomorphism mapping M into N .
If in addition this homomorphism is surjective we say that M and N are isomorphic. In what follows, we
will usually implicitly consider all isomorphic matroids to be the same. The concepts of submatroids and
isomorphic matroids extend to labeled matroids in the natural way by considering matroid homomorphisms
that are also label-preserving.

A matroid M = {v1, . . . ,vk} is said to be graphic if there exists a graph G with k edges for which
these edges can be associated with the vectors v1, . . . ,vk in M in such away that any subset of vectors
S ⊆ {v1, . . . ,vk} is linearly dependent if and only if the associated set of edges contains a cycle. In this
case, we denote M by M(G). (Also notice that we write v and e for vectors to distinguish them from
vertices v and edges e in graphs.) We require the graph G to be simple; that is, G has no self-loops or
parallel edges. It is a well-known fact that graphic matroids always can be represented as binary matroids,
i.e., linear matroids over F2.

Let us now fix R = {0, 1} for the rest of this section. We can visualize a graphic matroid constraint
(M(G), σ) as the graph G with 0/1-labels σi on its edges. In what follows, we will sometimes identify
(M(G), σ) with this labeled graph (G, σ). We say that (G, σ) is a labeled subgraph of (H, τ) if G is a
subgraph of H such that the edge labels of the common edges coincide. For graphic matroid constraints
(M(G), σ) and (M(H), τ), a labeled matroid homomorphism is simply a mapping of edges in G to edges
with the same labels in H such that cycles in G map to cycles in H . Clearly, if (G, σ) is a labeled subgraph
(H, τ), then the embedding of the vertices of G in H induces a matroid homomorphism in the natural way.
These are not the only labeled graphic homomorphisms, however. In particular, a matroid homomorphism
need not map edges incident to the same vertex in G to incident edges in H .

2.3 Matroid representations

As long as we are only studying monotone patterns, we need not worry too much about exactly how our
linear matroids are represented. When we want to discuss (M,σ)-freeness for a non-monotone pattern σ,
however, we have to specify exactly how M is represented in order to make sure that the matroid constraint
is well-defined.

Definition 2.5 (Standard binary matroid representation). We say that a binary matroid M ={v1, . . . ,vk}
is in standard representation if there is a d < k such that vi = ei for i = 1, . . . , d and the rest of the vectors
are linear combinations of these vectors, i.e., for all j > d we have vj =

∑
i∈Ij

ei for index sets Ij ⊆ [d],
where vj , j > d, are enumerated in lexicographical order with respect to Ij .

It is easy to see that any matroid has a standard linear representation, namely by associating unit vectors
to a basis of the matroid and then representing the other elements by appropriate linear combinations of the
basis elements. When we talk about matroid constraints from now on, it will always be for linear matroids
in standard representation.

We remark that the standard representation does not uniquely specify matroid constraints (M,σ) —
for a fixed M in standard representation there can be several distinct patterns σ1, σ2, . . . such that (M,σi)
all represent the same labeled matroid. For instance, for the complete graph Kd on d vertices, all labeled
matroids

(
M(Kd), 1d101d2

)
are easily verified to be the same for all d1 + d2 =

(
d
2

)
− 1. However, it is

not the case that for all d1 + d2 + d3 =
(
d
2

)
− 2 the labeled matroids

(
M(Kd), 1d101d201d3

)
are all the

same. On the contrary, one can prove (although we do not do so here) that one gets two different cases
depending on whether the two 0-labeled edges are incident to a common vertex or not. The point is that the
standard representation of M gives us at least one well-defined description of the labeled matroid, whereas
the example just discussed shows that without such a representation a non-monotone labeled matroid (M,σ)
could be ambiguous.
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In this work, we will focus on a particular class of matroid freeness properties, the understanding of
which is arguably fundamental to the broader study of the space of testable linear-invariant properties.
Before explaining what we mean by this we introduce some useful definitions.

Definition 2.6 (Full and partial matroids). The full (linear binary) matroid Fd of dimension d is Fd ={∑
i∈I ei

∣∣∅ 6= I ⊆ [d]
}

. The partial matroid of weight w is the matroid F≤w
d =

{∑
i∈I ei

∣∣∅ 6= I ⊆
[d], |I| ≤ w

}
.

It was shown in [BGS10] that any linear-invariant property in Fn
2 → {0, 1} that is testable with a

one-sided tester can be written as an M-freeness property for a possible infinite collection M of matroid
constraints.6 In other words, any such property can be characterized as the intersection of a possibly infi-
nite number of (M,σ)-freeness properties. Moreover, each (M,σ)-freeness property can be written as the
intersection of a finite collection of (Fd, σ

′)-freeness properties, where Fd is the full linear matroid defined
above.

Namely, suppose that the matroid M lives in Fd
2 and let us for simplicity assume that it consists of the

first k ≤ 2d − 1 vectors in the standard representation. Then it is straightforward to verify that (M,σ)-
freeness is exactly the intersection of all (Fd, στ)-freeness properties, where τ ranges over all patterns
in {0, 1}2d−(k+1) and στ denotes concatenation. (This corresponds to that a violation of (M,σ)-freeness
occurs as soon as the first k vectors in Fd are mapped to points in Fn evaluating to the pattern σ ∈ {0, 1}k,
regardless of what the evaluation pattern looks like for the rest of the points.) As another example of the
expressive power of matroid constraints, note that low-degree polynomials (with constant term zero), can be
specified as the intersection of all (Fd, τ)-freeness properties, where d is fixed and σ ranges over all patterns
in {0, 1}2d−1 of odd parity.

It follows from the preceding paragraph that all linear-invariant properties in Fn
2 → {0, 1} that are one-

sided-testable are collections of full linear matroid freeness properties, so matroid constraints (Fd, σ) can
be seen to be the building blocks of all one-sided-testable linear-invariant properties. In the other direction,
[BGS10] established that any collection M of graphic matroid freeness properties is testable by a one-sided
tester. It is again not hard to see that for any graphic matroid contraint (M(G), σ), where G is a graph on
d vertices, one can represent (M(G), σ)-freeness as the intersection of all (M(Kd), στ)-freeness properties
where σ labels the edges of G and τ ranges over all possible labels on the edges in Kd not present in G.

Thus, to gain an understanding of the semantics of matroid freeness properties in general, and of the
testability results in [BGS10] in particular, a necessary first step is to comprehend graphic matroid con-
straints (M(Kd), σ). Furthermore, even this first step appears to be a challenging problem in its own right.
Therefore, in what follows we will mostly focus on matroids over complete graphs. For the rest of this
paper, we fix the representation of such matroids as follows.

Definition 2.7 (Standard representation of complete graph matroids). We choose the d− 1 independent
basis vectors of M(Kd) to be the d− 1 edges incident to some (arbitrarily chosen but) fixed vertex. The

(
d
2

)
vectors in M(Kd) will then consist of all the d − 1 weight-1 vectors and all the

(
d−1
2

)
weight-2 vectors in

Fd−1
2 . Moreover, these

(
d
2

)
vectors are always ordered lexicographically as

M(Kd) = {e1, e2, . . . , ed−1, e1 + e2, e1 + e3, . . . , e1 + ed−1, e2 + e3, e2 + e4, . . . , ed−2 + ed−1} .

Notice that M(Kd) is an example of a partial matroid as defined above, namely M(Kd) = F≤2
d−1.

See Figure 1 for an illustration of the standard matroid representation of M(K5). We make the obser-
vation, which will be used later, that for any fixed vector v ∈ M(Kd) we can find a standard matroid basis
that that contains v and is on the form in Definition 2.7, i.e., where every non-basis matroid vectors is a sum

6Modulo a standard technical assumption that is not relevant to this discussion — we refer to [BGS10] for the precise statement.
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3 A Method for Proving Distinctness of Matroid Freeness Properties

e1

e2 e3

e4

e1 + e2

e1 + e3

e1 + e4

e2 + e3

e2 + e4

e3 + e4

Figure 1: The standard matroid representation for M(K5).

of two basis vectors. For the weight-1 vectors this is by definition, but it also holds for weight-2 vectors
by symmetry. Namely, if we fix a vector ei + ej for i < j, it is immediate to verify that the set of vectors
{ei, ei + e1, . . . ei + ei−1, ei + ei+1 . . . ei + ej , . . . ei + ed−1} and their pairwise sums generate M(Kd).
Another easy way of seeing this is perhaps to take a look at Figure 1 and make a “proof by picture.”

As a final notational convention, we make explicit our use of wildcards in patterns, allowing the use
of * when the meaning is clear from context. For instance, we will write 1∗ to denote the all-ones pattern,
and 0d1∗ denotes the pattern with ones everywhere except in the first d positions (relative to some fixed
representation of the matroid in question).

3 A Method for Proving Distinctness of Matroid Freeness Properties

In this section, we develop a method to determine the relations between matroid freeness properties by
way of labeled matroid homomorphisms. In brief, we establish a connection between the existence of
an embedding from (M,σ) to (N, τ) on the one hand and the distance between the property of being
(M,σ)-free and the property of being (N, τ) -free on the other. Namely, we show that if there exists a
labeled homomorphism between (M,σ) and (N, τ) then (N, τ)-freeness contains (M,σ)-freeness, and that
otherwise, at least in some specific cases which we characterize, these properties are well separated in the
sense of Definition 2.1. We find this quite surprising, since it is not at all clear a priori how to amplify non-
existence of embeddings into statistical distance between the associated properties. We note that it remains
an intriguing open problem in what generality this connection holds for any pair of binary matroids (M,σ)
and (N, τ).

Let us start with the lemma establishing the easy direction of the connection between labeled matroid
homomorphisms and containment of matroid freeness properties. Recall that M[¬σ] and N [¬τ ] denote
the properties consisting of all functions

⋃
n∈N+{Fn → R} that are free from occurrences of (M,σ) and

(N, τ), respectively. Furthermore, let us write Kd[¬τ ] to denote the property of being free from (Kd, τ) =
(M(Kd), τ) and F≤w

d [¬τ ] the property of being free from (F≤w
d , τ). Recall also that M[¬σ] *δ N [¬τ ]

denotes that M[¬σ] is well separated from N [¬τ ] and M[¬σ] 6=δ N [¬τ ] denotes that the properties are

11
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mutually well separated.

Lemma 3.1. If M and N are any linear matroids such that there is a labeled matroid homomorphism from
(M,σ) to (N, τ), then M[¬σ] ⊆ N [¬τ ]

Before proving the lemma, we state a simple corollary that will be useful later on.

Corollary 3.2. If (G, σ) is a labeled subgraph of (H, τ) and f : Fn
2 → R is a (M(G), σ)-free function,

then f is also (M(H), τ)-free.

Proof of Corollary 3.2. If (G, σ) is a labeled subgraph of (H, τ), then in particular there is a labeled matroid
homomorphism from (M(G), σ) to (M(H), τ), namely the one induced by the embedding of the vertices
of G in H . The claim now follows by Lemma 3.1.

Proof of Lemma 3.1. Let φ : M → N be a labeled matroid homomorphism. Suppose that f : Fn → R is
not (N, τ)-free and in particular that f contains (N, τ) at a linear map L : N → Fn. We claim that this
implies that f contains (M,σ) at the linear map L ◦ φ : M → Fn. By assumption, for all j ∈ [m] we have
f(L(wj)) = τj . Suppose φ(vi) = wji . Then by definition σi = τji since φ preserves labels, and for all
i ∈ [k] it clearly holds that f((L ◦ φ)(vi)) = f(L(φ(vi))) = f(L(wij ))) = τji = σi, establishing the
claim.

Lemma 3.1 provides a method of arguing that some syntactically different properties are in fact identical.
Consider for example K3[¬1∗] and K4[¬1∗]. Since (K3, 1∗) is a labeled subgraph of (K4, 1∗), clearly
K3[¬1∗] ⊆ K4[¬1∗]. Perhaps somewhat counter-intuitively, we can also show that there is a labeled matroid
homomorphism from (Kd, 1∗) to (K3, 1∗) and hence the containment holds in the other direction as well.
To see this, write K3 in standard representation over e1, e2 and K4 in standard representation over f1, f2, f3.
Define φ : K4 → K3 by φ(f1) = e1, φ(f2) = e2, and φ(f3) = e1 +e2 and extend it to all of K4 by linearity.
We leave it to the reader to verify that φ(fi + fj) ∈ K3 for all 1 ≤ i < j ≤ 3. Since φ is trivially label
preserving when all vectors are 1-labeled, it follows that φ is a labeled matroid homomorphism. We write
this down as a proposition for reference.

Proposition 3.3. The labeled matroid (M(K4), 1∗) embeds into (M(K3), 1∗), so K3[¬1∗] = K4[¬1∗].

To provide some more intuition, we give another hopefully instructive example, this time of non-
identical properties. Observe that any function which is (M(K3), 011)-free is also (M(K4), 011111)-free
by Corollary 3.2, since (K3, 011) is clearly a labeled subgraph of (K4, 011111). Also, it is not too hard
to show that K3[¬011] and K4[¬011111] are not exactly the same. To see this, fix any y ∈ Fn

2 \ {0} and
consider the function fy : Fn

2 → {0, 1} defined by fy(x) = 1 if x = y and fy(x) = 0 otherwise. We want
to argue that fy is (M(K4), 011111)-free but not (M(K3), 011)-free. Let again M(K3) be represented over
unit vectors e1, e2 and M(K4) over unit vectors f1, f2, f3. The linear map L1 : M(K3) → Fn

2 sending e1

to 0 and e2 to y gives a pattern 〈011〉 for M(K3). Now suppose that fy would contain (M(K4), 011111)
at some linear map L2 : M(K4) → Fn

2 . Then in particular fy(L2(f2)) = fy(L2(f3)) = 1, so we must have
L2(f2) = L2(f3) = y. But then fy(L2(f2 + f3)) = fy(L2(f2) + L2(f3)) = fy(0) = 0 6= 1. Contradiction.
Hence fy is (M(K4), 011111)-free.

Note that the above argument shows that K3[¬011] and K4[¬011111] are distinct, but does not rule out
that the two properties are “essentially” the same in that they are very close in Hamming distance. However,
it follows as a corollary of results that we will prove later in this paper (see Lemma 5.2) that not only does
K4[¬011111] contain K3[¬011], but this containment is strict in the sense of Definition 2.2.

We next consider the other, harder, direction in the correspondence between labeled matroid homomor-
phisms and matroid freeness properties.
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3 A Method for Proving Distinctness of Matroid Freeness Properties

3.1 The High-Level Idea

We want to reduce the problem of separating (M,σ)-freeness from (N, τ)-freeness to a question about
matroid homomorphisms. Our goal is to prove a statement of the following kind:

Suppose that (M,σ) and (N, τ) are matroid constraints such that there is no labeled matroid
homomorphism from (M,σ) to (N, τ). Then the property of (M,σ)-freeness is δ-separated
from that of (N, τ)-freeness.

To prove such a statement, we need to exhibit an infinite family of functions fn : Fn → R for n → ∞ that
is (M,σ)-free but far from (N, τ)-free. The general outline of the argument is as follows:

1. First, we define a “canonical function” f(N,τ) : Fn → R that encodes the structure of the labeled
matroid (N, τ). More precisely, suppose that N = {w1, . . . ,w`} ⊆ Fs. Then f(N,τ) is constructed
by splitting x ∈ Fn into y|z for y ∈ Fs and z ∈ Fn−s and letting f(N,τ)(x) be (in some sense) the
indicator function for whether y ∈ Fs is a vector in N and if so what label it has.

2. Then, we prove that f(N,τ) is dense in instances of the matroid pattern (N, τ) and has to be changed
in many positions to become (N, τ)-free.

3. Finally, we assume that f(N,τ) contains an instance of the matroid (M,σ) as witnessed by the linear
transformation L : M → Fn. Then we want to argue that composing L with the projection π : Fn →
Fs that maps x = y|z to y, we obtain a labeled matroid homomorphism π ◦L from (M,σ) to (N, τ).
But this contradicts the assumption that there is no such homomorphism.

To construct a function that is dense in a pattern is relatively straightforward, and we achieve this (es-
sentially) by a padding argument. The hard part is the third and final step in the argument. Notice that π ◦L
is linear by construction, but we are only guaranteed that it maps M to Fs, not into N . In general, most
vectors in Fs are not in N , so we somehow have to make sure that we land only in this subset of vectors.
Furthermore, if it holds that (π ◦ L)(vi) = wj , then we must make sure that the labels σi and τj agree. We
remark that in fact, it is not at all clear what it actually means that f(N,τ) should be an “indicator function”
for (N, τ). The function f(N,τ) has to map all of Fn to R, and in general for each value τj ∈ R there will be
some vector wj ∈ N such that τj is the correct value. However, all the (majority of) vectors x ∈ Fn that
do not correspond to vectors in N also have to map somewhere in R, and we need to detect that when such
a vector maps to τi, this does not indicate that x is a vector in N labeled by τi. This is the tricky part, and
indeed we do not know how to accomplish this for completely general labeled linear matroids (M,σ) and
(N, τ). However, by imposing some structural restrictions on our matroids, we can still derive theorems of
the same type that yield strong results when applied in the right way.

3.2 Canonical Functions for Labeled Matroids

We now formalize the intuition from the previous section and generalize the definition of a canonical func-
tion for one matroid to a canonical function that encodes a collection of matroids.

Definition 3.4 (Matroid set canonical function). Suppose that N =
{
(N1, τ1), (N2, τ2), . . . , (N t, τ t)

}
is a set of labeled matroids for N i =

{
wi

1, . . . ,w
i
`i

}
⊆ Fsi and τ i =

〈
τ i
1 · · · τ i

`i

〉
for τ i

j ∈ R. Suppose that
n > s =

∑t
i=1 si and write the vector x ∈ Fn as x = y1|y2| . . . |yt|z for yi ∈ Fsi and z ∈ Fn−s. Let

b ∈ R and let S0 and Si,w be some sets in Fn−s for all i ∈ [t] and w ∈ N i. Then the matroid set canonical
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function f b
N : Fn → R for N (with respect to b and the sets S0, Si,w) is defined by

f b
N(x) = f b

N(y1|y2| . . . |yt|z) =


0 if yi = 0 for all i ∈ [t] and z ∈ S0;
τ i
j if yi = wi

j ∈ N i, z ∈ Si,wj , and yi′ = 0 for all i′ 6= i;
b otherwise.

If the set N = {(N, τ)} consists of just a single matroid (N, τ), we will write f b
(N,τ) to denote a

corresponding canonical function.
Note that b ∈ R denotes a “padding value.” Loosely speaking, our canonical function evaluates to b on

points that do not correspond to vectors in matroids N i.
The function f b

N encodes N in the sense that it is dense in the matroid pattern (N i, τ i) for all i ∈ [t], as
well as in any (M,σ) that maps homomorphically into (N i, τ i).

Lemma 3.5. Let f b
N : Fn → R be a canonical function for N =

{
(N1, τ1), (N2, τ2), . . . , (N t, τ t)

}
as in

Definition 3.4 such that all sets Si,w are identical and form a linear subspace of Fn−s of size |F|n−s−O(1).
If (M,σ) ↪→ (N l, τ l) for some l ∈ [t] then f b

N is δ-far from being (M,σ)-free, where δ is some universal
constant independent of n. Furthermore, if S0 = Fn−s and Si,w are instead randomly and independently
chosen as half of the elements in Fn−s, then f b

N is δ-far from being (M,σ)-free with high probility.

Proof. We proceed proving the first part of the lemma. Assume w.l.o.g. (M,σ) ↪→ (N1, τ1). Let φ :
(M,σ) → (N1, τ1) be a homomorphism. For simplicity of notation let ` = `1, k = s1 and S = S1,w.
Suppose that N1 = {w1, . . . ,w`} for wj ∈ Fk, and let L′ : Fk → Fn−s+k be any linear transformation
sending wj to wj|zj for arbitrary zj ∈ S ⊂ Fn−s. Let L : Fk → Fn be the linear transformation extending
L′ trivially by mapping wj to wj |0|zj with 0 ∈ Fs−k.

Then for all vi ∈ M , if φ(vi) = wj it is easy to verify that f b
N

(
(L ◦φ)(vi)

)
= f b

N

(
(L(wj)

)
= τj = σi,

where the last equality holds since φ preserves labels. Hence, f b
N contains (M,σ) at L ◦ φ.

The proof of δ-farness closely follows a similar argument in [BCSX09]. Set q = |F|. Suppose |S| ≤
qn−s−c (for some c = O(1)). Let g be a function such that dist(f b

N, g) = δ < q−s−k−c. Let f1 and g1 be the
restrictions of f b

N and g respectively, to the subspace Fk × Fn−s (corresponding to the projection of Fn to
the matroid N1 and the padding subspace). We will show that g1 contains (M,σ) at a linear transformation
L1 : M → Fk × Fn−s, and then extend L1 as before to a linear transformation L : Fk → Fn by padding it
with zeros on the subspaces corresponding to matroids N i, i ≥ 2. This will imply that g contains (M,σ) at
L and conclude that if g is δ-close then there is a matroid homomorphism between (M,σ) and (N1, τ1).

Define δ1 = dist(f1, g1) and notice that δ1 ≤ qs−kδ. Now for each w ∈ N1, since |S| ≤ qn−s−c it
follows that Pry∈Fk,z∈S [f1(y|z) 6= g1(y|z)] ≤ qcδ1. For wi ∈ N1 let δi = Prz∈S [f1(wi|z) 6= g1(wi|z)].
Notice that

δi ≤ qk Pr
y∈Fk,z∈S

[f1(y|z) 6= g1(y|z)] ≤ qc+kδ1.

Hence
∑

δi ≤ q2k+cδ1 < 1.
Now consider a random linear map L̃1 : Fk → S, and its extension L̃ : Fk → Fn−s+k given by

L̃(y) = y|L̃1(y). For every non-zero y and in particular for y ∈ N1, we have that L̃1(y) is distributed
uniformly over the subspace S. Thus, for any fixed i ∈ [`], we have

Pr
L̃1

[g1(L̃(wi)) 6= τi] = Pr
L̃1

[g1(L̃(wi)) 6= f1(L̃(wi))] ≤ δi . (3.1)

By the union bound, we get that

Pr
L̃1

[∃ i such that g(L̃(wi)) 6= τi] ≤
∑

i

δi < 1 . (3.2)

14
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In other words, there exists a linear map L̃1 (and thus L̃) such that for every i, g(L̃(wi)) = τi and so g
contains (N, τ) at L̃ and hence (M,σ) at the linear map L′ = L̃ ◦ φ.

To prove the second part of the lemma, we note that one can carry out the analysis of the last paragraph
in the above proof with probability over L̃1 and all Sw (instead of just L̃1) and then apply a version of the
Markov inequality. It is also easy to see that if τj is distinct from the padding value b, then different choices
of Swj yield distinct functions. In this way, we can obtain a very large family of canonical functions that
are (N, τ)-free but far from being (M,σ)-free.

3.3 Three Dichotomy Theorems

In Section 3.2, we carried out the first two steps in the proof outline in Section 3.1. We now present two
classes of pairs of labeled matroids (M,σ) and (N, τ) for which we can also successfully complete the
crucial third step, and thus establish a dichotomy in the sense that if containment does not hold between the
two properties, then they must be well separated.

Theorem 3.6 (First dichotomy theorem). Let M,N be any linear matroids and let τ be any pattern for N .
Then M[¬1∗] ⊆ N [¬τ ] if and only if there is a labeled matroid homomorphism from (M, 1∗) to (N, τ);
otherwise well-separation M[¬1∗] *δ N [¬τ ] holds.

Before proving this theorem, we note that as a corollary it immediately yields our first main result in
Theorem 1.3 on page 5 providing a full characterization of monotone matroid freeness properties. This
follows simply by setting τ = 1∗.

Proof of Theorem 3.6. The “if” part of the claim is Lemma 3.1. For the “only if” direction, let us assume
that (M, 1∗)-freeness is contained in (N, τ)-freeness. We need to prove that this implies that there is a
labeled matroid homomorphism from (M, 1∗) to (N, τ).

To this end, consider a canonical function f0
(N,τ) for (N, τ) padded with zeros and with the Sv-sets

independently and randomly chosen to be half of the available points. We know from Lemma 3.5 that such
a function f0

(N,τ) is not (N, τ)-free. Hence if (M, 1∗)-freeness is contained in (N, τ)-freeness it cannot be
(M, 1∗)-free either, so suppose it contains (M, 1∗) at the linear transformation L : M → Fn. We claim that
if we let π be the projection that maps x = y|z to y, then π ◦ L must be a labeled matroid homomorphism
from (M, 1∗) to (N, τ).

To verify the claim, notice first that the map π ◦ L is clearly linear. We need to check that it sends every
vector vi ∈ M to some vector wj in N and in addition that the labels of the vectors are preserved. But since
M has the monotone pattern 〈1∗〉 the label is always 1; hence, by assumption we have f0

(N,τ)(L(vi)) = 1
for all i. It follows from the way the canonical function was constructed in Definition 3.4 that we must have
L(vi) = yi|zi where yi = wj for some wj ∈ N labeled by τj = 1, since these are the only vectors for
which f0

(N,τ) evaluates to 1. Thus, π ◦L is a labeled matroid homomorphism from (M, 1∗) to (N, τ), which
establishes the claim. As a final note, we point out that the structure of the Sv-sets did not matter at all in
this proof.

We can use Theorem 3.6 not only to separate monotone properties from non-monotone ones, but also
to separate two non-monotone properties from each other. Namely, let

(
N1, τ1

)
and

(
N2, τ2

)
be non-

monotone labeled matroids such that
(
N1, τ1

)
is a submatroid of

(
N2, τ2

)
(for instance, by being a labeled

subgraph). Suppose furthermore that we can find a monotone matroid (M, 1∗) having the property that
(M, 1∗) ↪→

(
N2, τ2

)
but (M, 1∗) 6↪→

(
N1, τ1

)
. Then it follows from Lemma 3.1 and Theorem 3.6 that(

N1, τ1
)
-freeness must be strictly contained in

(
N2, τ2

)
-freeness. We will see examples of such results in

Section 5.
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However, while this is already considerably stronger than the monotone separation results in [BCSX09],
it is still not quite satisfactory. The problem is that results obtained in this manner do not show that non-
monotonicity adds anything essential to matroid freeness properties. For all that we know, it might be
the case that

(
N1, τ1

)
-freeness is identical to (M, 1∗)-freeness so that the only essential constraint is the

monotone one and the non-monotone constraints are just syntactic sugar. Our second dichotomy theorem,
while being more restricted in the structural conditions it places on the matroids, is also much more powerful
in that it directly separates non-monotone properties without going via monotone ones.

Theorem 3.7 (Second dichotomy theorem). Let N be a matroid in Fd
2 containing partial matroid F≤w

d′ of
weight w ≥ 2 as a submatroid on the first d′ ≤ d basis vectors, and let 〈0d′1∗〉 be the pattern for N that
gives 0-labels to the vectors e1, . . . , ed′ and 1-labels to all other vectors.

ThenF≤w
c [¬0c1∗] ⊆ N [¬0d′1∗] if and only if there is a labeled matroid homomorphism from (F≤w

c , 0c1∗)
to (N, 0d′1∗); otherwise well-separation F≤w

c [¬0c1∗] *δ N [¬0d′1∗] holds.

The two theorems 3.6 and 3.7 together constitute the formal version of our second main result in Theo-
rem 1.4. We remark that in contrast to Theorem 3.6, in Theorem 3.7 we are only considering the case when
the range of the functions in our properties is R = {0, 1}.

Proof of Theorem 3.7. The “if” direction is again Lemma 3.1. For the “only if” direction, suppose that
F≤w

c -freeness is contained in (N, 0d′1∗)-freeness. Consider a canonical function f = f1
(N,0d′1∗)

where all

Sw-sets are chosen to be the same (large) linear subspace S ⊆ Fn−d
2 for some arbitrary choice of such a

subspace. Observe that we are now padding the canonical function with ones, as opposed to the zero-padding
in the proof of Theorem 3.6.

We know from Lemma 3.5 that f is far from being (N, 0d′1∗)-free. Hence, by our assumption it cannot
be F≤w

c -free either. Suppose that f contains F≤w
c at L : F≤w

c → Fn
2 . Let π be the projection that maps

x = y|z ∈ Fn
2 to y ∈ Fd

2. We want to argue that π ◦ L must be a labeled matroid homomorphism from
(F≤w

c , 0c1∗) to (N, 0d′1∗).
Let us first focus on the basis vectors in F≤w

c , which we will denote f1, . . . , fc and which are all
0-labeled. Since f applied on the image of F≤w

c under L evaluates to the pattern 〈0c1∗〉, we have f(L(fi)) = 0
for all i ∈ [c]. Looking at the definition of f , this means that L(fi) = yi|zi where either yi = el for some
el ∈ N , l ≤ d′, or else yi = 0. We also note for the record, since we will need it later in the proof, that we
must have zi ∈ S in both of these cases.

Clearly, if L(fi) = yi|zi for yi = 0, the linear map π ◦ L is no matroid homomorphism (since 0 /∈ N )
and the construction breaks down. We claim, however, that this can never happen. Given this claim, which
willl be established at the end of the proof, all basis vectors fi ∈ F≤w

c must then be mapped by L to eli |zi

for some eli ∈ N , li ≤ d′ and some zi ∈ S.
Consider now the weight-2 vectors in F≤w

c , i.e., sums fi + fj . By linearity we have (π ◦ L)(fi + fj) =
eli +elj ∈ Fd for li, lj ≤ d′. Again we have two cases. If eli 6= elj , then by the assumptions in the statement
of the theorem we have that eli + elj is a vector in N labeled by 1 as desired. If, however, eli = elj , then
fi + fj gets mapped to 0 and the construction breaks down. This cannot happen, however, since it would
imply that f(L(fi + fj)) = f(0|zi + zj) = 0. (Again for the record, this holds because zi, zj ∈ S implies
that also zi + zj ∈ S, since S is a linear subspace). But f(L(fi + fj)) = 0 6= 1 contradicts the assumption
that f evaluates to the pattern 〈0c1∗〉 on the image of F≤w

c under L. But from this it follows that since all
basis vectors in F≤w

c get mapped to distinct 0-labeled basis vectors in N , and since all w′-wise sums of
these basis vectors for w′ ≤ w are also in N and are labeled by 1 by assumption, all vectors in F≤w

c must in
fact map into N in a label-preserving way. Hence, π ◦ L is a labeled matroid homomorphism from F≤w

c to
N .

It remains to prove the claim that L(fi) 6= 0|zi for all basis vectors fi ∈ F≤w
c . Suppose on the contrary

that there is a vector fi such that L(fi) = 0|zi. Fix some other basis vector fj , j 6= i, in F≤w
c that is mapped
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by L to yj |zj for yj ∈ {e1, . . . , ed′} ∪ {0}, and consider L(fi + fj) = L(fi) + L(fj) = yj |zi + zj .
By assumption f(L(fi)) = f(L(fj)) = 0, which by the definition of f implies that zi, zj ∈ S. This in
turn means that f(L(fi + fj)) = f(L(fj)) = 0. But this is again a contradiction to the assumption that f
evaluates to the pattern 〈0c1∗〉 on L(F≤w

c ), which requires that f(L(fi + fj)) = 1. The claim follows, and
the proof of the theorem is complete.

We remark that, unlike the proof of Theorem 3.6, here we crucially use the fact that all Sw-sets are
identically the same linear subspace and so we cannot replace these sets by, for instance, random subsets.

There is a simple but very useful way of strengthening Theorem 3.7 that we present next.

Corollary 3.8. Let M be a binary linear matroids containing F≤2
c as a submatroid, and suppose σ is any

pattern for M such that f1, . . . , fc ∈ F≤2
c are all 0-labeled and fi + fj , 1 ≤ i < j ≤ c are all 1-labeled,

but where the other labels are arbitrary. Let N be another binary linear matroids containing F≤2
d and let

τ be a pattern for N that labels the vectors e1, . . . , ed ∈ F≤2
d by 0 and where all other vectors of N are

1-labeled. Then if c > d it holds that M[¬σ] *δ N [¬τ ].

Proof. Consider a canonical function f = f1
(N,τ) chosen exactly as in Theorem 3.7. We know that f is

dense in violations of (N, τ)-freeness. Assume that the function contains (M,σ) at L. Then clearly f also
contains the submatroid (F≤2

c , 0c1∗) at L restricted to F≤2
c . If so, going through the proof of Theorem 3.7

we can extract a labeled homomorphism φ of F≤2
c to N . In this embedding, all 0-labeled basis vectors fi

and fj , i 6= j, in F≤2
c must be sent to pairwise distinct vectors by φ, since otherwise there is no way we

could have φ(fi) + φ(fi) = φ(fi + fj) ∈ N . But there are not enough distinct 0-labeled vectors in (N, τ) to
achieve this, since c > d.

We note for future reference that in Corollary 3.8 we need to make no assumptions about c or d being
greater than some positive constant.

Using Definition 3.4 we can also separate a matroid freeness property from a union of other matroid
freeness properties.

Theorem 3.9 (Third dichotomy theorem). Let N =
{
(N1, τ1), (N2, τ2), . . . , (N t, τ t)

}
be any set of

labeled binary matroids and suppose that M ⊆ Fk
2 is some other matroid that contains F≤2

k as a submatroid
and is such that (M, 1∗) 6↪→ (N i, τ i) for all i ∈ [t]. Then the property of (M, 1∗)-freeness is δ-separated
from the union of all (N i, τ i)-freeness properties for i ∈ [t], i.e., M[¬1∗] *δ

⋃t
i=1N i[¬τ i].

Proof. Consider the canonical function f0
N. Recall that by Lemma 3.5 f0

N is δ-far from
⋃t

i=1N i[¬τ i].
Suppose now that f0

N contains (M, 1∗) at the linear transformation L : M → Fn. We claim that there
must exist some ` ∈ [t] such that L maps M to vectors 0|yj |0|z, where z ∈ S`,w and yj ∈ N ` and 0
here indicates that all the other components not corresponding to the subspace of N ` are null. Given this
claim, one can now restrict L to this subspace and apply (the proof of) Theorem 3.6 on (M, 1∗) and (N `, τ `)
to extract a labeled matroid homomorphism. (Note that this proof works regardless of the structure of the
S`,w-sets.)

We now proceed to prove the claim. Let the basis for M be f1, . . . , fd and note that by assumption
M contains all pairwise sums fi + fj . Since we are seeing a pattern 〈1∗〉, the transformation L must map
all elements in M to vectors of the form 0|yi|0|zi for some i ∈ [t], where yi is a nonzero vector in the
subspace corresponding to the ith matroid N i. Suppose that two basis vectors fi and fj are mapped to
vectors L(fi) = 0|yi|0|zi and L(fj) = 0|yj |0|zj , where yi and yj belong to subspaces corresponding to
distinct matroids N i, and N j respectively. But this cannot be, because if so L(fi + fj) = L(fi) + L(fj)
would be a vector that is nonzero in two subspaces, and hence by construction f0

N(L(fi + fj)) = 0, contrary
to our assumption. Thus all basis vectors fi map to vectors 0|yi|0|z where yi ∈ N `, for some unique ` ∈ [t].
Since every vector v ∈ M is just a linear combination of the basis vectors, the linear transformation L must
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map M to vectors 0|y|0|z where again y ∈ N `. (Note that this second step, too, works regardless of the
structure of the Si,w-sets, so we can pick them randomly here and get so many canonical functions that some
are far from low-degree polynomials.)

4 Some Labeled Graphic Matroid Non-Homomorphisms

In order for the method developed in the previous section to be useful, we need to find (families of) labeled
matroids that do not embed homomorphically into each other. In this section, we establish such matroid
non-homomorphism results for graphic matroids. Recall that for labeled graphic matroids (M(G), σ) and
(M(H), τ), which we will from now identify with their underlying labeled graphs (G, σ) and (H, τ) for ease
of notation, the matroid vectors correspond to edges in the graphs, and a labeled matroid homomorphism is
a mapping of edges to edges that preserves labels and cycles.

We first show that there is no way to embed Kd into Kd−1 for d ≥ 5. We remark that as we saw in
Proposition 3.3, there is in fact a homomorphism from (K4, 1∗) to (K3, 1∗). Thus, the condition d ≥ 5 is
necessary.

Lemma 4.1. For all d ≥ 5, there is no labeled matroid homomorphism from (Kd, σ) to (Kd−1, τ) for any
patterns σ and τ .

To prove Lemma 4.1, we ignore the patterns σ and τ and instead argue directly that regardless of what
these patterns look like, there can exist no edge homomorphism from Kd to Kd−1 that preserves cycle
structure. This argument rests on two simple but very useful claims.

To state these claims, we recall from Definition 2.7 that the standard representation of Kd is to fix some
vertex v and pick as a basis the vectors corresponding to all edges e incident to this vertex. Even once
we have fixed such a vertex and associated its edges with unit vectors e1, e2, . . . , ed−1, we can get another
essentially equivalent basis by fixing any other vertex and looking at the vectors corresponding to edges
incident to that vertex instead, as explained after Definition 2.7. We will refer to any such basis, which in
this section we identify with the corresponding set of edges, as a standard form basis.

Claim 4.2. For any c, d ≥ 3, if (Kd, σ) ↪→ (Kc, τ), then it holds that any two incident edges in Kd must
map to distinct edges in Kc.

Claim 4.3. For any d ≥ 5 and c ≥ 4, if (Kd, σ) ↪→ (Kc, τ), then all edges in any standard form basis of
Kd must map to edges in Kc that are all incident to one common vertex.

Given these two claims, Lemma 4.1 follows immediately by a pigeonhole argument: since a standard
form basis in Kd has d − 1 edges while all vertices in Kd−1 only has d − 2 incident edges, the claims 4.2
and 4.3 cannot possibly both hold simultaneously. This proves the lemma by contradiction.

It remains to establish the claims, and we do so next. Note again that we write v to denote a vertex and
e to denote an edge, whereas vectors are denoted e, f ,v,w, et cetera. In what follows below, we will go
freely back and forth between edge and vector representation of the graphic matroids.

The first claim is more or less immediate.

Proof of Claim 4.2. Let e1 = (vi, vj) and e2 = (vi, vk) be two incident edges in Kd and suppose that they
map to the same edge in Kc. Now e1 and e2 form a cycle in Kd together with e3 = (vj , vk), but since Kc

does not have self-loops there is no way to map e3 to an edge in Kc so that this cycle is preserved. (Or,
reasoning in terms of matroid vectors in a linear space over F2, since the vectors for e1 and e3 map to the
same vector in Kc and hence cancel, there is no way to map the third vector to a non-zero vector in K3 so
that the sum of the images of all three vectors cancel.)
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The second claim is not much harder, but requires a little more work.

Proof of Claim 4.3. Suppose Kd embeds into Kc by a linear map φ and let {f1, . . . , fd−1} be the basis
vectors of Kd and {e1, . . . , ec−1} be the basis vectors of Kc. We show by induction on k, 1 ≤ k ≤ d − 1,
that {f1, . . . , fk} must map to (distinct) edges incident to some common vertex v in Kc.

Without loss of generality, assume φ(f1) = e1 (if f1 would map to any other vector we just make a
basis change in Kc as explained after Definition 2.7). By Claim 4.2 we have φ(f2) 6= e1. Also note that
φ(f2) 6= ei + ej with 1 < i < j, because this would imply φ(f1 + f2) = e1 + ei + ej , which is weight-3
vector that is not a member of Kc. (In terms of edges, this would correspond to incident edges e1 = (vi, vj)
and e2 = (vi, vk) in Kd mapping to non-incident edges in Kc, but if so there would be no way the map φ
could preserve the cycle of e1 and e2 with e3 = (vj , vk).)

Therefore we are left with two cases: φ(f2) = ei or φ(f2) = e1 + ei for some i > 1, and because of
symmetry we may choose i = 2 without loss of generality. Let us analyze these two cases.7

Case 1 (φ(f2) = e2): Consider where φ can send f3. Clearly φ(f3) /∈ {e1, e2} = {φ(f1), φ(f2)} by the
distinctness in Claim 4.2. Also, we claim that φ(f3) 6= e1 + e2. To see this, observe that if
{φ(f1), φ(f2), φ(f3)} = {e1, e2, e1 + e2}, then φ would have to map f4 to some vector outside of
this set by distinctness, but if so it in turns follows that φ(f3 + f4) = φ(f3) + φ(f4) would be a
vector of weight at least 3. (Notice that here we crucially use d ≥ 5). To conclude, we argue that
in fact φ(f3) 6= ei + ej for any i < j with j > 2. For if i = 1, say, it follows just as above that
φ(f2 + f3) = φ(f2) + φ(f3) would be a weight-3 vector. Hence we must have φ(f3) = ei for some i,
which we may without loss of generality set to i = 3.

Case 2 (φ(f2) = e1 + e2): In this case we have φ(f3) 6= e1 by distinctness, and it must also hold that
φ(f3) 6= e2, since otherwise we would have {φ(f1), φ(f2), φ(f3)} = {e1, e2, e1 + e2} which can be
ruled out by the same argument as in case 1. Furthermore, φ(f3) 6= ei for i > 2, since otherwise
φ(f2 + f3) would be a weight-3 vector. Hence, φ(f3) = ei + ej for some i < j. But then we must
have i = 1, since otherwise φ(f1 + f3) would have weight 3. We have proven that in this case as well,
the vectors φ(f1) = e1, φ(f2) = e1 + e2, and φ(f3) = e1 + ej must correspond to edges incident to a
common vertex.

Now we proceed to the inductive step. Suppose φ maps the vectors {f1, . . . , fk} to k edges incident to
a single vertex in Kc for some k ≥ 4. Without loss of generality, we assume that the vectors are mapped
to e1, . . . , ek in Kc (because again, since we know that the edges are incident we are free to make a basis
change in Kc so that we get the standard basis in terms of unit vectors). Consider the image of edge fk+1

in Kc. Clearly, φ(fk+1) 6= ei for any i ∈ [k] by distinctness. It is also easy to see that φ(fk+1) cannot be
any weight-2 vector. For if we would have φ(fk+1) = ei + ej , then since k ≥ 3 there would exist some
l ∈ [k] with l /∈ {i, j} such that φ(fl + fk+1) = ei + ej + el /∈ Kc, which is a contradiction. Therefore,
φ(fk+1) = ei for some i > k. This completes the induction step and thus finishes the proof of the claim.

For our second lemma, we observe that we can also use Claim 4.3 to study labeled homomorphisms from
Kd into itself and rule out that any two distinct patterns 〈0c11∗〉 and 〈0c21∗〉 for c1 6= c2 can be mapped
homomorphically into one another. Again we need the condition d ≥ 5 here, since otherwise we could use
the construction in Proposition 3.3 to embed, for instance, (K4, 1∗) into (K4, 0c1∗) for 0 < c ≤ 3.

Lemma 4.4. For all d ≥ 5 and c1 6= c2, there is no labeled matroid homomorphism from (Kd, 0c11∗) to
(Kd, 0c21∗).

7In fact, the attentive reader might have noted here that without loss of generality we can restrict ourselves to only one case and
fix φ(f2) = e2. This is so since in the other case we can again make a basis change in Kc as described after Definition 2.7 to get
a new standard basis containing e1 and e1 + e2. However, we believe that a formal case analysis as given in this proof, although
strictly speaking unnecessary, is easier to follow.
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Proof. Fix any basis of (Kd, 0c11∗). It follows from Claim 4.3 that if there were a homomorphism from
(Kd, 0c11∗) to (Kd, 0c21∗), then the basis vectors of (Kd, 0c11∗) must map into a basis of (Kd, 0c21∗). This
in turn clearly implies that the homomorphism is one-to-one and onto, so it is an isomorphism between
(Kd, 0c11∗) and (Kd, 0c21∗). But this is impossible, since the number of 0-labeled vectors in the two
matroids are different.

5 Infinite Hierarchies of Well Separated Matroid Freeness Properties

We have finally reached the point where we can put all the material in Sections 3 and 4 together and prove
the existence of infinite hierarchies of (M,σ)-freeness properties as claimed in the introduction. We remark
that the techniques we have developed could be used to yield many different such hierarchies. For brevity
and concreteness, we will focus below on two specific results that illustrate this general point.

First, we will prove a sequence of lemmas leading up to Theorem 5.4, which is one instantiation of
our fourth main result claimed informally in Theorem 1.6. Theorem 5.4 exhibits two nested hierarchies of
properties where each pair of properties on the same level is separated from each other and from properties
on previous levels in a very strong sense.

Second, we prove a more general result in Theorem 5.5 that establishes even an infinite number of nested
property hierarchies. The proof of this second theorem turns out to be much more intricate, however, and
therefore cannot be presented in full in this section. Also, although we believe that the separation between
the property hierarchies should be as strong as in Theorem 5.4, we are currently unable to prove this as
numerous technical obstacles arise during the course of the proof.

As the first step towards establishing Theorem 5.4, let us prove that monotone M(Kd)-freeness proper-
ties form a strict hierarchy. Note that we will continue the mild abuse of notation introduced in Section 4 by
identifying a graphic matroid (M(G), σ) and its underlying labeled graph (G, σ).

Lemma 5.1. For d ≥ 4, the Kd[¬1∗] properties form an infinite hierarchy of strictly contained properties.

Proof. Since (Kd, 1∗) is a labeled subgraph of (Kd+1, 1∗) we have that Kd[¬1∗] is contained in Kd+1[¬1∗]
by Corollary 3.2. Since there is no homomorphism from (Kd+1, 1∗) to (Kd, 1∗) for d ≥ 4 according
to Lemma 4.1, we conclude from Theorem 3.6 that the containment must be strict in a property testing
sense.

We remark that this lemma improves on a similar theorem of [BCSX09], which could only show sepa-
ration between the graphic matroids of Kd and K(d

2)+2
. But we can strengthen Lemma 5.1 even further as

follows.

Lemma 5.2. For d ≥ 4 and any sequence {cd}∞d=4 with 1 ≤ cd < d, the Kd[¬0cd1∗] properties form an
infinite sequence of properties such that Kd+1[¬0cd+11∗] is δ-separated from Kd[¬0cd1∗]. If in addition it
holds for the cd-sequence that cd ≤ cd+1 ≤ cd + 1, then we get an infinite hierarchy of strictly contained
properties.

Proof. (Kd, 1∗) does not embed in (Kd, 0cd1∗) by Lemma 4.4. However, (Kd, 1∗) is a labeled subgraph
of (Kd+1, 0cd+11∗), since if we throw away the unique vertex in (Kd+1, 0cd+11∗) incident to all 0-labeled
edges what we have left is exactly (Kd, 1∗). It follows that the function f0

(Kd,0cd1∗), which is far from being
(Kd, 0cd1∗)-free, is (Kd, 1∗)-free by Theorem 3.6 and hence (Kd+1, 0cd+11∗)-free by Corollary 3.2

If it furthermore holds that cd ≤ cd+1 ≤ cd+1, then (Kd, 0cd1∗) is a labeled subgraph of (Kd+1, 0cd+11∗),
which gives containment of the corresponding matroid freeness properties (again by Corollary 3.2).
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Observe that Lemma 5.2 is indeed a strengthening of Lemma 5.1. This is so since the functions
f0
(Kd,0cd1∗), which are (Kd, 1∗)-free but far from (Kd−1, 1∗)-free, witness that Kd[¬1∗] is δ-separated from
Kd−1[¬1∗] (and containment in the other direction is obvious since (Kd−1, 1∗) is a subgraph of (Kd, 1∗)).

Notice, however, that as discussed after the proof of Theorem 3.6, the way we establish Lemma 5.2 does
not ensure that non-monotone matroid freeness properties are nontrivial. We might worry that perhaps all
the non-monotone properties coincide with the intermediate monotone properties of Kd[¬1∗] used to obtain
the separation. The next lemma provides some assurance to us by conclusively ruling out this possibility.

Lemma 5.3. For d ≥ 4, it holds that Kd+1[¬0d1∗] is δ-separated from the union of Kd[¬0d−11∗] and
Kd[¬1∗].

Proof. Note first that this lemma is conceptually different from the preceding ones, since here we need
to find a function that is (Kd+1, 0d1∗)-free but is simultaneously far from being (Kd, 0d−11∗)-free and
(Kd, 1∗)-free. On the face of it, such cases are not covered by the techniques in Sections 3 and 4, which only
relates pair of labeled matroids. However, there is a way to get around this obstacle by finding an “interme-
diate” labeled matroid such that (Kd, 0d−11∗) and (Kd, 1∗) both embed into this matroid but (Kd+1, 0d1∗)
does not. We pick this intermediate matroid to be (Kd+1, 0d−11∗), that is, the graphic matroid over the
complete graph on d + 1 vertices that have all edges but one in the standard basis labeled by 0 and has
1-labels everywhere else.

It is easy to check that (Kd, 0d−11∗) and (Kd, 1∗) are both labeled subgraphs of (Kd+1, 0d−11∗). Conse-
quently, we can appeal to Lemma 3.5 to conclude that the canonical function f1

(Kd+1,0d−11∗)
is dense in vio-

lations of both (Kd, 0d−11∗)-freeness and (Kd, 1∗)-freeness. However, Lemma 4.4 shows that (Kd+1, 0d1∗)
does not embed homomorphically into (Kd+1, 0d−11∗), and therefore f1

(Kd+1,0d−11∗)
must be (Kd+1, 0d1∗)-

free according to Theorem 3.7. The lemma follows.

Combining all of these lemmas, we can prove that non-monotone graphic matroid freeness properties
provide infinite hierarchies of strictly contained properties. The reader might be helped in parsing the next
theorem and its proof by looking at the Venn diagram-style illustration in Figure 2.

Theorem 5.4 (First hierarchy theorem). Let Kd[¬1∗] denote the set of all (Kd, 1∗)-free functions and
Kd[¬0d−11∗] the set of all (Kd, 0d−11∗)-free functions in

⋃
n∈N+{Fn

2 → {0, 1}}. Then the following holds:

1. The properties Kd[¬1∗] for d ≥ 4 form an infinite hierarchy of strictly contained properties.

2. The properties Kd[¬0d−11∗] for d ≥ 4 form an infinite hierarchy of strictly contained properties.

3. All of the above properties intersect in the sense that
⋂∞

d=4(Kd[¬1∗] ∩ Kd[¬0d−11∗]) 6= ∅.

4.
(⋂∞

d=4Kd[¬0d−11∗]
)
\

(⋃∞
d=4Kd[¬1∗]

)
6= ∅, and in fact the first intersection of properties is δ-sepa-

rated from the second union.

5. For d ≥ 4, Kd[¬1∗] ∪ Kd[¬0d−11∗] is strictly contained in Kd+1[¬0d1∗].

6. For d ≥ 4, Kd[¬1∗] and Kd[¬0d−11∗] are mutually well separated from one another.

7. For d ≥ 5, all the properties Kd[¬1∗], Kd[¬0d−11∗], Kd[¬1∗] \ Kd−1[¬1∗], and Kd[¬0d−11∗] \
Kd−1[¬0d−21∗] are far from being low-degree polynomials.

Proof. The proofs of Claims 1 and 2 were given in Lemma 5.1 and Lemma 5.2, respectively. As was
discussed after the proof of Lemma 5.2, both of these hierarchies are witnessed by the functions gd =
f0
(Kd,0cd1∗) as plotted schematically in Figure 2. To show claim 3, we observe that the constant function
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Kd−1[¬1∗]

Kd[¬1∗]

Kd+1[¬1∗]

Kd−1[¬0d−21∗]

Kd[¬0d−11∗]

Kd+1[¬0d1∗]

01

gd−1

gd

gd+1

hd−1

hd

hd+1

Figure 2: Illustration of hierarchies of properties Kd[¬1∗] and Kd[¬0d−11∗] and separating functions.

0 : Fn
2 → {0, 1} sending all points to 0 belongs to all of the properties Kd[¬1∗] and Kd[¬0d−11∗]. Claim 4

similarly follows since the constant function 1 : Fn
2 → {0, 1} sending all points to 1 must be (Kd, 0d−11∗)-

free for all d simply by virtue of not having any zeros, while it is far from (Kd, 1∗)-free for all d for exactly
the same reason. Claim 5 was established in Lemma 5.3, using the functions hd = f1

(Kd,0d−21∗)
, and taken

together, the functions gd and hd can be seen to witness the mutual separations in claim 6.
Consider finally claim 7. Recall that what we want to say is that the propertiesKd[¬1∗] andKd[¬0d−11∗]

are “new” properties not known to be testable before. Note that by necessity, such a statement must be
somewhat informal — unless we can provide a full enumeration of all testable properties and separate
our new properties from all of them via some kind of diagonalization argument, which arguably seems
neither feasible nor particularly reasonable. But what seems natural to do is to prove formally that matroid
freeness properties are not identical to the “usual suspects”, which in this case would seem to be low-degree
polynomials.

We remark that one can first make the easy observation that it cannot possibly be the case that all of
the properties Kd[¬1∗] and Kd[¬0d−11∗] are low-degree polynomials. If they were, there would be no way
they could nest and intersect in the way shown in Figure 2, since low-degree polynomials just form one
strict hierarchy of concentric circles with respect to degree. We want to prove something stronger, however,
namely that none of the properties Kd[¬1∗] and Kd[¬0d−11∗] can be just low-degree polynomials.

By picking large, random sets Sw in Definition 3.4 we get a huge family of canonical functions instead
of just one, and Lemma 3.5 and Theorem 3.6 still hold.

What this means is that we can think of every witnessing function gd in Figure 2 as being a large, dense
cloud of such functions, and these functions are simply far too many to all be low-degree polynomials, or
even to be close to low-degree polynomials. This establishes the claim, and the theorem follows.

The attentive reader might have noticed that there is one natural piece missing in Theorem 5.4, namely
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the claim that Kd+1[¬0d1∗]\ (Kd[¬1∗] ∪ Kd[¬0d−11∗]) is also far from being just low-degree polynomials.
This seems very likely to be the case but we are currently unable to prove this. It is easy to prove that there
are polynomials of very high degree in Kd+1[¬0d1∗] \ (Kd[¬1∗] ∪ Kd[¬0d−11∗]). The way to see this is to
define hd = f1

(Kd,0d−21∗)
as in Definition 3.4 except that we choose Sw = S to be a very small subspace,

say of constant dimension. Then hd will evaluate to 1 everywhere except at a constant number of points, and
therefore it cannot possibly be a low-degree polynomial. However, all such hd are also close to the constant
function evaluating to 1 everywhere, which has very low degree indeed. One natural idea is instead to pick
the set S randomly to get a large number of functions hd, and then argue that they are so many that here
must be examples of such functions that are far from being low-degree polynomials. Unfortunately, this
does not work. The proof of Theorem 3.7 turns out to be surprisingly delicate, and provably requires S to
be a subspace. We still strongly believe that the properties Kd+1[¬0d1∗] \ (Kd[¬1∗] ∪ Kd[¬0d−11∗]) are
far from low-degree polynomials for all d ≥ 4, but it seems new techniques would be required to establish
such a claim.

We have seen in Theorem 5.4 that the two properties of Kd[¬1∗] and Kd[¬0d−11∗] are distinct. As
described before, a very natural question is whether it holds in general that two distinct labeled matroids
(M,σ) and (N, τ) must encode distinct matroid freeness properties.

Notice that we have to make this question more precise in order for it to make sense. Clearly, there are
many ways of encoding the same property. For instance, if we just permute the vertices of Kd by some
permutation π and let τ be the corresponding permutation of the pattern σ on the edges reordered according
to π, then Kd[¬σ] is identical to Kd[¬τ ] although σ and τ might look syntactically different. This is a
somewhat artificial example, however, since in this case (Kd, σ) and (Kd, τ) are isomorphic as labeled
matroids, so obviously they must encode the same property.

A more reasonable way of phrasing the question is to ask whether it is the case that labeled matroids
that are “not the same” in some more fundamental, non-syntactical sense must encode different properties.
In particular, a very natural question is whether the properties of (M,σ)-freeness and (N, τ)-freness are
distinct, or even mutually well separated, whenever (M,σ) and (N, τ) do not embed into one another
homomorphically. Recall that this is a necessary condition in the sense that if (M,σ) ↪→ (N, τ), then
(M,σ)-freeness is contained in (N, τ)-freness. For the particular case of Kd[¬1∗] versus Kd[¬0d−11∗], it
also seemed to be sufficient in the sense that the proof of Theorem 5.4 relied heavily on the fact that the two
matroids do not embed homomorphically into one another.

In general, this question is still way out of reach for two arbitrary labeled binary matroids (M,σ)
and (N, τ), and even for two graphic matroids (Kd, σ) and (Kd, τ) with arbitrary patterns σ and τ . However,
we establish in Theorem 5.5 below that for a fairly broad class of (Kd, σ)-freness properties the question
of whether they are distinct or not is determined precisely by the existence or non-existence of matroid
homomorphisms between them.

Namely, we can show that for any two labeled matroids (Kd, σ) and (Kd, τ) which have 1-labels ev-
erywhere except on a subset of some standard basis of Kd, and where the number of 0-labeled vectors is
distinct in σ and τ , it holds that Kd[¬σ] and Kd[¬τ ] are distinct in a property testing sense. We remark that
without loss of generality we can write such matroids as (Kd, 0c1∗) for 0 ≤ c ≤ d − 1, since we can fix
the standard basis to be e1, . . . , ed−1 and permute the basis vectors so that all 0-labeled vectors come first
in the pattern. Note that this result significantly broadens the result in Theorem 5.4, which only relates the
two special cases of Kd[¬1∗] and Kd[¬0d−11∗]

As an example, we have that Kd[¬1∗] and Kd[¬0c1∗] for c > 0 are pairwise mutually well separated.
In fact, in this particular case it is easy to show that this holds for all patterns of zeros and ones, and in
particular for all c > 0 and not just for 0 < c ≤ d− 1. A natural question is what happens when we start to
combine these properties. Could it for instance be that the union

⋃
c>1Kd[¬0c1∗] of all (Kd, 0c1∗)-freeness

properties completely covers (Kd, 1∗)-freeness? This possibility cannot be ruled out by the results above,
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but using Theorem 3.9 we can also show that the property of (Kd, 1∗)-freeness in fact is not contained even
in the union of all (Kd, 0c1∗)-freeness properties.

The formal statement of the results described above follows in Theorem 5.5. Since this theorem relates
a large number of properties, it is not possible to provide a Venn diagram of the relations. However, in
Figure 3 we attempt to sketch how some of the properties are related. Please observe that the figure does
not provide a complete picture of relations since such a picture would become hopelessly cluttered, but we
hope that the example relations illustrated can nevertheless help the reader get a sense of what Theorem 5.5
is saying.

Theorem 5.5 (Second hierarchy theorem). Let Kd[¬0c1∗] denote the set of all (Kd, 0c1∗)-free functions
in

⋃
n∈N+{Fn

2 → {0, 1}} for d ≥ 5. Then we have the following relations:

1. For 0 ≤ c1 < c2 ≤ d− 1 it holds that Kd[¬0c21∗] *δ Kd[¬0c11∗].

2. For 0 ≤ c1 < c2 ≤ d− 1, c1 6= 1, it holds that Kd[¬0c11∗] *δ Kd[¬0c21∗].

3. Kd[¬01∗] *δ Kd[¬0d−11∗], but for 1 < c < d− 1 it holds that Kd[¬01∗] ⊂δ Kd[¬0c1∗].

4. For all 0 ≤ c1 ≤ d− 1 and 0 ≤ c2 ≤ d, it holds that Kd+1[¬0c21∗] *δ Kd[¬0c11∗].

5. For 0 ≤ c ≤ d− 1, it holds that Kd[¬0c1∗] ⊂δ Kd+1[¬0c1∗] and Kd[¬0c1∗] ⊂δ Kd+1[¬0c+11∗].

6. It holds that Kd[¬1∗] *δ

⋃d(d−1)/2
c=1 Kd[¬0c1∗], and furthermore Kd[¬1∗] \

⋃d(d−1)/2
c=1 Kd[¬0c1∗] is

provably far from being the property of low-degree polynomials.

Observe that one way of obtaining the infinite number of nested property hierarchies claimed in the
beginning of this section is to consider chains Kd[¬0cd1∗] ⊂δ Kd+1[¬0cd+11∗] ⊂δ Kd+2[¬0cd+21∗] ⊂δ . . .
where at each level we pick either cd+1 = cd or cd+1 = cd + 1. As can be seen in Figure 3, all distinct
choices of starting value cd and increments 0/1 will give rise to different strict hierarchies.

As we mentioned in the beginning of this section, the proof of Theorem 5.5 requires quite a lot of work,
and is also quite lengthy. We therefore defer the full proof to Appendix B. One of the problems in the proof
is that although the canonical functions in Definition 3.4 are a very useful tool, it turns out that they are not
powerful enough to give us all the results that we need. We conclude this section by providing an example
of this, showing first an instance where the canonical functions fail, and then proving a simple special case
in Theorem 5.5 that gives some of the flavor or how these difficulties can be overcome. Again, the general
argument turns out to be much more complicated and therefore is not presented in this section.

Hence, by way of example, consider the properties Kd[¬0d−41∗] and Kd[¬0d−11∗], which are claimed
in Theorem 5.5 to be mutually well separated. It is straightforward to show that Kd[¬0d−11∗] is δ-separated
from Kd[¬0d−41∗] This follows from the fact that (Kd, 0d−11∗) 6↪→ (Kd, 0d−41∗) as shown in Lemma 4.4,
and the separation is established by studying the canonical function f0

(Kd,0d−41∗)
. In the other direction,

we also know from Lemma 4.4 that (Kd, 0d−41∗) 6↪→ (Kd, 0d−11∗). However, we cannot use this non-
embedding fact and canonical functions f b

(Kd,0d−11∗)
to prove Kd[¬0d−41∗] *δ Kc[¬0d−11∗].

To see this, suppose first that we pad the canonical function f b
(Kd,0d−11∗)

with b = 1. In this case we

can just map the 0-labeled basis vectors in (Kd, 0d−41∗) to 0-labeled basis vectors in (Kd, 0d−11∗), and
then send the three 1-labeled basis vectors to three different vectors in Fn

2 of weight roughly n/3 and with
disjoint support. Then by linearity, all pairwise sums of basis vectors will map either to weight-2 vectors,
which are 1-labeled since the encode the matroid (Kd, 0d−11∗), or to vectors of weight at least n/3, which
are 1-labeled by padding. Hence, f1

(Kd,0d−11∗)
contains the matroid pattern (Kd, 0d−41∗). Also, it can also

be shown that if we pad with b = 0, then f0
(Kd,0d−11∗)

is not (Kd, 0d−41∗)-free either. Namely, the reader
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Kd−1[¬1∗]

Kd−1[¬01∗]

Kd−1[¬021∗]

Kd−1[¬031∗]

Kd−1[¬0d−21∗]

Kd[¬1∗]

Kd[¬01∗]

Kd[¬021∗]

Kd[¬031∗]

Kd[¬0d−21∗]

Kd[¬0d−11∗]

Kd+1[¬1∗]

Kd+1[¬01∗]

Kd+1[¬021∗]

Kd+1[¬031∗]

Kd+1[¬0d−21∗]

Kd+1[¬0d−11∗]

Kd+1[¬0d1∗]A
A

B
B

A strictly contained in B
A and B mutually well separated

Figure 3: Illustration of (some) relations between properties Kd[¬0c1∗] for all d ≥ 5 and c = 0, 1, . . . , d− 1.
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can verify that if we take L : Fd−1
2 → Fn

2 to be the linear mapping that sends the 1-labeled basis vectors
fd−3, fd−2, fd−1 in (Kd, 0d−41∗) to L(fd−3) = e1 + e2, L(fd−2) = e1 + e3, and L(fd−1) = e2 + e3 in Fn

2 ,
and that maps the 0-labeled vectors fi, 1 ≤ i ≤ d − 4 to L(fi) = e1 + e2 + e3 + ei+3, then f0

(Kd,0d−11∗)

contains the matroid pattern (Kd, 0d−41∗) at L. So both flavors of the canonical function fail to separate
these two properties.

However, there is another simple function that establishes the separationKd[¬0d−41∗] *δ Kc[¬0d−11∗],
as follows from the next lemma.

Lemma 5.6. Kd1
[¬0c11∗] *δ Kd[¬0d−11∗] for d1, d ≥ 3 and 1 ≤ c1 < d1 − 1.

Proof. Consider the function g(x) = g(y|z) for y ∈ F2 and z ∈ Fn−1
2 defined by g(y|z) = 1 − y. This

function is far from being (Kd, 0d−11∗)-free — just consider any linear transformation L that sends ei to
1|zi. (The formal proof is the same as in Lemma 3.5, only much simpler.)

Now consider (Kd1 , 0
c11∗). By assumption, e1 ∈ Kd1 is 0-labeled and ed1−1 ∈ Kd1 is 1-labeled,

so in order to get f(L(Kd1)) = 〈0c11∗〉 we must have L(e1) = 1|z1 and L(ed1−1) = 0|z2. But if so,
L(e1 + ed1−1) = 1|(z1 + z2) which is a 0-labeled point. Hence, no linear tranformation can send Kd1 to a
set of vectors exhibiting the pattern 〈0c11∗〉, so g is (Kd1 , 0

c11∗)-free.

Note that as a special case, Lemma 5.6 establishes our claim that Kd[¬0d−41∗] is well separated from
Kd[¬0d−11∗]

At an intuitive level, it still seems that the reason that Kd[¬0d−41∗] and Kd[¬0d−11∗] are mutually well
separated is that the matroids Kd[¬0d−41∗] and Kd[¬0d−11∗] do not map homomorphically into each other.
But as we have seen we cannot prove this by constructing functions from which we can extract explicit
homomorphisms from the assumption that they are not separated, so the canonical functions machinery we
have developed is not powerful enough to show that the separation follows from the non-embedding.

6 Homomorphisms Do Not Determine Matroid Properties

One of the motivating questions of this work has been whether containment for non-monotone matroid
freeness properties always is determined by the existence or non-existence of homomorphisms.

The examples in [BCSX09] as well as the examples exhibited in this paper provide a fairly broad class
of matroid freeness properties for which the answer is “yes.” We note that in one direction, it is clear that if
(M,σ) embeds into (N, τ), then (M,σ)-freeness is contained in (N, τ)-freeness. Thus, the way to disprove
this connection this would be to find two labelled matroids (M,σ) and (N, τ) such that on the one hand
(M,σ) 6↪→ (N, τ) but on the other hand it still holds that (M,σ)-freeness is contained in (N, τ)-freeness.
In this section, we exhibit such pairs of labelled matroids. More precisely, our result is as follows.

Theorem 6.1. It is not the case that (M,σ)-freeness is contained in (N, τ)-freeness if and only if (M,σ)
embeds into (N, τ). In particular, for d ≥ 5 and 1 < c < d − 1 it holds that (Kd, 01∗) 6↪→ (Kd, 0c1∗) but
nevertheless we have Kd[¬01∗] ⊆ Kd[¬0c1∗].

Proof. By Lemma Lemma 4.4 (Kd, 01∗) 6↪→ (Kd, 0c1∗). We will now show that if f : Fn
2 → {0, 1}

is a function that is not (Kd, 0c1∗)-free, then f is not (Kd, 01∗)-free either. This proves that Kd[¬01∗] ⊆
Kd[¬0c1∗].

Thus, suppose that f contains (Kd, 0c1∗) at the linear transformation L : Kd → Fn
2 That is, we have

f(L(ei)) = 0 for 1 ≤ i ≤ c, f(L(ej)) = 1 for c < j < d, and f(L(ei + ej)) = f(L(ei) + L(ej)) = 1 for
1 ≤ i < j < d. We divide the proof into two cases depending on the value of f at the all-zero vector.
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1. f(0n) = 0: Then if we let the linear transformation L∗
0 : Kd → Fn

2 be defined by

L∗
0(e1) = 0

L∗
0(e2) = L(e1 + e2)

L∗
0(e3) = L(e1 + e3)

...

L∗
0(ed−1) = L(e1 + ed−1)

(6.1)

we have that f(L∗
0(e1)) = f(0n) = 0, for 2 ≤ j < d that f(L∗

0(ej)) = f(L(e1 + ej)) = 1 and
f(L∗

0(e1 + ej)) = f(L∗
0(e1) + L∗

0(ej)) = f(0n + L(e1 + ej)) = 1, and for 2 ≤ i < j < d that
f(L∗

0(ei + ej)) = f(L(e1 + ei) + L(e1 + ej)) = f(L(ei + ej)) = 1. In other words, f contains
(Kd, 01∗) at L∗

0.

2. f(0n) = 1: In this case let L∗
1 : Kd → Fn

2 be defined by

L∗
1(e1) = L(e1) and

L∗
1(ej) = L(ed−1) for all 2 ≤ j < d.

(6.2)

By assumption, we have f(L(Kd)) = 〈0c1∗〉. Since the vector e1 is 0-labelled by (Kd, 0c1∗) and the
vector ed−1 is 1-labelled, this means that f(L(e1)) = 0 and f(L(ed−1)) = 1. From this we conclude
that it holds that f(L∗

1(e1)) = 0 and for 2 ≤ j < d that f(L∗
1(ej)) = 1 and f(L∗

1(e1 + ej)) =
f(L(e1+ed−1)) = 1. Finally, for 2 ≤ i < j < d we have f(L∗

1(ei+ej)) = f(L(ed−1)+L(ed−1)) =
f(0n) = 1. We have shown that f(L∗

1(Kd)) = 〈01∗〉, so f contains (Kd, 01∗) at L∗
1.

Thus, in both cases we can find a linear transformation at which f contains (Kd, 01∗), and the theorem
follows.

The proof of Theorem 6.1 motivates the following definition.

Definition 6.2 (Zero-augmented matroid). Let M = {v1, . . . ,vk} ⊆ Fr be any linear matroid. Then we
define the degenerate or zero-augmented version M0 of M to be the set of vectors M0 = {0r,v1, . . . ,vk}.

Note that M0 is not a matroid in the ordinary sense since it contains the all-zero vector.
It is easy to see that for any labelled matroid (M,σ) the property of (M,σ)-freeness can be written

as M[¬σ] =
⋂

b∈RM0[¬bσ]. This is simply saying that any function f that is (M,σ)-free must be so
regardless of the value of f at 0. The concept of matroid homomorphisms extends to zero-augmented
matroids without any modifications. Using this generalized definition it is also straightforward to show that
if for two labelled matroids (M,σ) and (N, τ) it is the case for all b ∈ R that (M,σ) ↪→ (N0, bτ), then it
holds that M[¬σ] ⊆ N [¬τ ].

In fact, this is exactly what is going on in the proof of Theorem 6.1. The two cases in the case analysis
establish that (Kd, 01∗) ↪→ (K0

d , 00c1∗) and (Kd, 01∗) ↪→ (K0
d , 10c1∗), respectively, from which it follows

that Kd[¬01∗] ⊆
⋂

b∈{0,1}K0
d [¬b0c1∗] = Kd[¬0c1∗]. Note that this also shows that while it is clearly true

that if (M,σ) ↪→ (N, τ), then we must also (trivially) have (M,σ) ↪→ (N0, bτ), for all b ∈ R, the opposite
direction does not hold. That is, it can very well be the case that (M,σ) ↪→ (N0, bτ), for all b ∈ R, while it
still holds that (M,σ) 6↪→ (N, τ).

We conclude from this discussion that while Theorem 6.1 clearly answers the question whether it is
true that (M,σ)-freeness is contained in (N, τ)-freeness if and only if (M,σ) embeds into (N, τ) in the
negative, a more important contribution of this theorem is perhaps that it reveals that it was arguably not
quite the right question to ask in the first place. Just focusing exclusively on the vectors in the matroids
(M,σ) embeds into (N, τ) ignores the important role that the 0-vector can play (as is evident in the proof
of Theorem 6.1). Therefore, a more refined version of the question is as follows.
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Open Problem 1. Is it true or not that (M,σ)-freeness is contained in (N, τ)-freeness if and only if it holds
for all b ∈ R that (M,σ) embeds into (N0, bτ)?

We remark that, as noted above, the “if” direction of this statement clearly holds, so the interesting
question is what can be said about the “only if” direction. Again, the way to prove that the answer is “no”
would be to find two labelled matroids (M,σ) and (N, τ) such that (M,σ) 6↪→ (N0, bτ) for some b ∈ R
but nevertheless M[¬σ] ⊆ N [¬τ ]. The main focus of this paper is on F = F2 and R = {0, 1} and this is
the case for which we would mainly want to see Open Problem 1 resolved, but any results for other F or R
would also be of interest.

7 Concluding Remarks

Motivated by questions raised in [BCSX09] and the recent testability results in [BGS10], in this paper we
have studied the semantics of matroid freeness properties, and in particular the problem of determining when
two syntactically different matroid constraints in fact also encode semantically different properties. We
have developed a new method for comparing matroid freeness constraints based on the concept of labeled
matroid homomorphisms, and have shown that for a surprisingly broad class of matroid freeness properties
this method exactly characterizes the relation between two matroid freeness properties. Even more, when
the method works, it in fact establishes a strong dichotomy in the sense that either one property must be
contained in the other or the properties are strictly distinct in a property testing sense. As a consequence,
we established that results in [BGS10] do indeed provide infinite hierarchies of new properties not known
to have been testable before.

Our work raises many interesting questions which we believe merit further study.

• Perhaps the most obvious open problem is in what generality our method of characterizing matroid
freeness properties in terms of labeled homomorphisms can be made to work, and in particular
whether it can be extended to arbitrary labeled graphic matroids, or even arbitrary linear matroids.
That is, is it always true that (M,σ)-freeness is contained in (N, τ)-freeness if and only if there is
a labeled matroid homomorphism from (M,σ) to (N, τ), and that the two properties must be well
separated otherwise? In fact, in view of the results in Section 6, we have refined this question as
explained in Open Problem 1. We prove that for fairly broad classes of matroid freeness properties
the answer to the refined question is “yes.”

As was explained in Section 2, complete graphic matroids (M(Kd), σ) can be seen to be building
blocks for all labeled graph matroid freeness properties. Thus, a first step towards the resolution of
this question might be to understand (M(Kd), σ)-freeness for any pattern σ, and then study how
intersections of such properties behave.

• Leaving aside the issue of labeled matroid homomorphisms, another fundamental open problem is
whether there must always hold a dichotomy between containment and δ-separation for matroid free-
ness properties. If this would turn out to be the case, the next question is whether such a dichotomy
would extend even further to arbitrary linear-invariant properties or even affine invariant properties.

• Turning to some of the specifics of our results, our Theorem 5.5 proves separations between (Kd, 0c1∗)-
freeness properties when c < d. An immediate question is whether this can be extended to the case
where c ≥ d as well. Perhaps c up to 2d − 3 should be doable by (modifications of) our current
techniques, since then one still retains fairly good control over where the 0-labelled basis vectors can
map.
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• We understand single matroid freeness properties a little bit now. Also, we understand the other
extreme of an intersection of very many matroid freeness properties well in certain cases - recall from
Section 2 that polynomials of degree d (with constant term zero), can be specified as the intersection
of all (Fd, στ)-freeness properties, where d is fixed and σ ranges over all patterns in {0, 1}2d−1 of odd
parity. But can we say anything about properties “in between” these two extremes? What happens
if we take, say, d = 2 and forbid patterns of weight 1, 3, 7 but allow weight 5? Clearly we get a
potentially larger property, but which property is it? Is it another Reed-Muller code, or is it something
else?

• Of course, deciding the testability of (M,σ)-freeness for matroids M of any complexity is a huge
open question (if admittedly somewhat orthogonal to the theme of the current paper).

• A special case: Can we develop techniques to understand the semantics and/or testability of properties
of set operations (say M[¬σ] ∩N [¬τ ]) for two matroids (M,σ) and (N, τ)?

We conclude this section with a discussion on the first open problem mentioned above and some fur-
ther connections with testing graph properties. The core of this problem is determining when (M,σ)-
freeness and (N, τ)-freeness are identical properties for two syntactically different labeled matroids (M,σ)
and (N, τ). If we look at graphic matroids, one observation is that blowing up the underlying graph does
not change the property. Formally, for a graph G and for a positive integer t, define the order-t blowup of G
to be the graph G(t) obtained by replacing each vertex of G by an independent set of size t and each edge
in G by the complete bipartite graph Kt,t. Furthermore, if an edge of G is labeled by an element of {0, 1},
then use that label for all edges in the associated complete bipartite graph in the blowup graph; if σ was the
original labeling for the edges, we call the new labeling for the blowup graph σ(t).

The fact that graph blow-ups preserve matroid freeness properties, which we write down as Proposition
7.1 below, is similar in flavor to the Erdős-Stone theorem from extremal graph theory. The Erdős-Stone
theorem essentially says that for any graph G and integer t ≥ 1, G-freeeness (i.e., not containing G as an
induced subgraph) and G(t)-freeness are not δ-separated for any constant δ > 0; see, for example, [Die05].
However, the proof of the analogous statement in the matroid freeness case turns out to be much simpler,
because a matroid homomorphism is not required to be injective whereas the subgraph relationship in graphs
is an injection.

Proposition 7.1. Given a graph G on m edges and a string σ ∈ {0, 1}m, suppose H is a subgraph of G(t)

for some t ≥ 1 that contains at least one copy of G. Also, suppose τ is the restriction of σ(t) to the edges of
H . Then, (M(G), σ)-freeness is identical to (M(H), τ)-freeness.

The proof is straightforward. The fact that (M(G), σ)-freeness is contained in (M(H), τ)-freeness
follows from Corollary 3.2. The other direction holds because the map that takes each edge of H to the edge
of G from where it originated is a labeled matroid homomorphism from (M(H), τ) to (M(G), σ), and so
we can apply Lemma 3.1.

It should be noted that Proposition 7.1 is not a characterization of equality even for monotone graphic
matroid freeness properties. For instance, while K4 is easily seen not to be a subgraph of any blowup of K3,
it nevertheless holds that (M(K3), 1∗)-freeness and (M(K4), 1∗)-freeness are identical properties as shown
in Proposition 3.3. What our dichotomy theorems in Section 3.3 establish is that for all monotone properties
and a nontrivial subclass of non-monotone properties, equality of properties corresponds exactly to existence
of matroid homomorphisms in both directions. As noted above, the question whether such a correspondence
holds in general for any non-monotone matroid freeness properties remains wide open.
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A Matroids, Matroid Freeness and Systems of Linear Equations

Let us start this appendix by presenting a formal definition of what a matroid is. There are many equivalent
ways of defining matroids, and for some of the different formulations it is in fact nontrivial to show that they
are equivalent. We will use the definition presented next, and refer the reader to, for instance, [Oxl03, Wil73]
for more background on matroid theory.

Definition A.1 (Matroid). A matroid M is a finite set S, along with a set I of subsets of S, such that:

1. The empty set is in I.

2. If X is in I, then every subset of X is also in I.
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3. If X and Y are both in I and |X| = |Y |+1, then there exists an element x ∈ X \Y such that Y ∪{x}
is in I.

The set S is called the ground set of M , and the set I is the collection of independent sets of M . Those
subsets of S which are not in I are called dependent. A maximal independent set — that is, an independent
set X which becomes dependent on adding any element of S — is called a basis for the matroid. It is a
basic result of matroid theory that any two bases of a matroid M must have the same number of elements.
This number is called the rank of M .

Two important classes of matroids, which we briefly discuss next, are linear matroids and graphic
matroids.

We say that a matroid M on a ground set S = {x1, . . . , xk} is a linear matroid, or vector matroid, if there
is a field F and vectors v1, . . . ,vk in Fk such that any subset {xi | i ∈ T} indexed by T ⊆ [k] is independent
if and only if the corresponding vectors {vi | i ∈ T} form a linearly independent set. A matroid is binary if
it is linear with F = F2. Note that when we are interested in property testing of linear-invariant properties,
the only matroid freeness properties that really make sense to consider are those of linear matroids.

Given an undirected graph G, we can let S be the set of edges E(G) of G and I consist of the subsets
of S = E(G) that do not contain any cycles in the graph. Then M = (S, I) can be shown to be a matroid,
which we refer to as the graphic matroid M(G) over G. Any graphic matroid M(G) can be represented
as a binary matroid. One way of seeing this is to consider the incidence matrix of G and let vi be the
rows corresponding to the edges. Then any cycle in G will correspond to a (subset of) vectors summing to
zero. Another possibility is to fix any spanning tree of G and let the edges e1, e2, . . . in this spanning tree
T correspond to unit vectors e1, e2, . . .. Then any edge e not in the spanning tree T will correspond to the
sum of the vectors for the unique minimal set of edges in T that together with e yields a cycle.

As the reader can see, in this paper we used the latter approach with spanning trees emanating from a
single, unique vertex to get our standard representation for M(Kd) (Definition 2.7). Another possibility
would have been to use the incidence matrix representation. Note that this would have given a very nice
and symmetric representation with all vectors in M(Kd) having Hamming weight 2, and with a basis cor-
responding to fixing some coordinate j and requiring that all the basis vectors have a 1 in this coordinate.
Of course, our standard representation is just taking such a basis and “puncturing” it by deleting this jth

coordinate from all vectors. For our purposes, it turns out to be convenient to have a representation where
all basis vectors and weight 1 and all other vectors had weight 2. However, we want to point out that this
is not the only way of thinking about M(Kd), and that it might be interesting when trying to generalize
our results to investigate whether the representation with all vectors of uniform weight 2 might be a more
fruitful way of looking at M(Kd).

Let us now explain how one can see that the matroid-freeness representation of properties employed
in [BCSX09] and the current paper on the one hand, and the system of linear equations representation of
properties used in [KSV10, Sha09, BGS10] on the other, are essentially equivalent. This equivalence is in
some sense folklore knowledge, but since it is a priori not entirely obvious, and since we have not seen it
actually written down anywhere, we give an explicit exposition of the correspondence here for completeness.
Note, however, that we will only discuss monotone properties below. Non-monotone properties have also
been formulated using systems of linear equations, in this context most notably in [BGS10], but since the
notation is a bit heavier and the ideas are essentially the same, we ignore the issue of non-monotonicity in
this appendix for the sake of simplicity.

The system of linear equations representation is the following. Let K be a field. Let k and ` be fixed
integers with k < `. Let Ax = b be a system of k linear equations in ` variables, where A ∈ Kk×` and
b ∈ Kk. We say that a set S ⊆ K is (A,b)-free if it contains no solution to Ax = b; that is, S is (A,b)-free
if there is no vector x ∈ S` that satisfies all of the k equations in Ax = b.
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e1

e2

e3

e1 + e2

e1 + e3

e2 + e3

(a) M(K4) = {e1, e2, e3, e1+e2, e1+e3, e2+e3}.


1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1


(b) Matrix encoding v4 = e1 + e2, v5 = e1 + e3, and v6 = e2 + e3.

Figure 4: The binary graphic matroid M(K4) and the corresponding linear equation system matrix.

When considered as a property testing problem, we usually first pick a finite field F and then take
K = Fn. For properties that arise naturally in mathematics and computer science, it is usually the case that
the property can be specified uniformly for all n using a finite description. Thus, it is of particular interest to
consider the case when A and b have finite descriptions. Thus, A is usually taken as having entries over F,
not K. Furthermore, in order for the properties to be linear-invariant we take b = 0. (We note, however,
that the results in [KSV10, Sha09] also hold when we can pick A (non-uniformly) as any matrix in Kk×`

and for any field K, not just K = Fn, and that in these papers we can also have b 6= 0.)

As a first simple example, the system of linear equations representation corresponding to (M(C`), 1∗)-
freeness, where C` is the cycle of length `, consists of just a single linear equation

∑`
i=1 xi = 0. Therefore

we have A = [1 1 1 · · · 1] and b = 0, encoding that the sum of ` vectors is zero. Another simple, but less
trivial, example is that of (K4, 1∗)-freeness. Figure 4 shows the graphic matroid M(K4) and the matrix A
its corresponding representation as a system of linear equations.

Let us now consider (M, 1∗)-freeness for a general linear matroid M ={v1, . . . ,v`−k,v`−k+1, . . . ,v`},
where {v1, . . . ,v`−k} form a basis for the matroid and each of the vectors in {v`−k+1, . . . ,v`} can be
written as a linear combination of the first `−k vectors v`−k+i = −

∑`−k
j=1 Bijvj with coefficients Bi,j ∈ F.

Without loss of generality, we can think of the first ` − k vectors as being v1 = e1, . . .v`−k = e`−k. To
transform (M, 1∗)-freeness into a system of linear equations representation, we construct a matrix A ∈ Fk×`

in which the ith row consists of the coefficients of the linear equations describing v`−k+i. Specifically, for
every 1 ≤ i ≤ k and 1 ≤ j ≤ `, Aij = Bij when 1 ≤ j ≤ ` − k; Aij = 1 if j = ` − k + i and Aij = 0
otherwise.

To go in the other direction and transform a system of linear equations into matroid freeness represen-
tation, we may assume without loss of generality that the matrix A has rank k (otherwise we may delete the
redundant rows). Then by permuting the columns of A and appropriately changing the basis of K, we can
transform A into the form [B|Ik], where Ik is a k-by-k identity matrix and B is a k-by-(`− k) matrix. Now
B = {Bij} is exactly the matrix we defined above which contains the coefficients of k linear combinations
of the non-basis vectors in the matroid in terms of the ` − k basis vectors, so it is immediate to recover the
matroid freeness representation from this matrix.

B Proof of Second Hierarchy Theorem

In this section we present the proof of Theorem 5.5 on page 24.
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B.1 Proof of item 1

Lemma B.1. Let d ≥ 5. Then for all 0 ≤ c1 < c2 < d it holds that Kd[¬0c21∗] *δ Kd[¬0c11∗].

Proof. We need to show that there is a Boolean function g which is (Kd, 0c21∗)-free and is δ-far from being
(Kd, 0c11∗)-free. If c2 = 1, then c1 = 0. In this case, the all-one function on d− 1 bits is clearly δ-far from
being (Kd, 1∗)-free but is (Kd, 01∗)-free.

Now let c2 ≥ 2. Consider the canonical function f1
(Kd,0c11∗), which is clearly δ-far from being (Kd, 0c11∗)-

free for some constant δ. Suppose f1
(Kd,0c11∗) contains (Kd, 0c21∗), then it follows immediately that f1

(Kd,0c11∗)

also contains (Kc2+1, 0c21∗). Note that all the 0-labeled basis vectors in (Kc2+1, 0c21∗) must map to pair-
wise distinct vectors, since otherwise their sum would map to 0, which is labeled 0. However, there simply
aren’t enough 0-labeled vectors in (Kd, 0c11∗) for such a mapping, we thus reach a contradiction. That is,
the canonical function f1

(Kd,0c11∗) is (Kd, 0c21∗)-free and hence the theorem is proved.

B.2 Proof of item 2: general case

We will need to do quite a lot of work before the proofs of the theorems above are completed. Some argu-
ments will recur in slightly different forms throughout the proofs, so we want to make a general definition
here and prove a proposition that will take care of all of these different but very similar cases.

Definition B.2 (Zero vector indicator function). Let us say that a function f : Fn
2 → R is a zero vector

indicator function if we can write it as f(x) = f(y|z) for y ∈ Fm
2 and z ∈ Fn−m

2 so that it holds that
f(0|z) = 0 for any z.

For instance, the canonical function in Definition 3.4 is a zero vector indicator function if S0 = Fn−K
2

or if the padding value is b = 0.

Proposition B.3. Let (M,σ) be a labeled matroid containing F≤2
d = {ei, ei + ej | 1 ≤ i, j ≤ d, i 6= j} as

a submatroid with all ei labeled by 0 and all ei + ej labeled by 1. Suppose that f : Fn
2 → R is a zero vector

indicator function containing (M,σ) at the linear map L, and for every i ∈ [d] we write L(ei) = yi|zi.
Then we must have yi 6= yj for all i 6= j.

Proof. This is true because otherwise the linear transformation L would map some sum ei + ej to the zero
vector, which is 0-labeled in f , a contradiction.

Let us now state the main lemma to be proven in this section.

Lemma B.4. Let d ≥ 5. Then Kd[¬0c11∗] *δ Kd[¬0c21∗] for 0 ≤ c1 < c2 < d provided that c1 /∈
{1, d− 4}.

We will spend the rest of this section proving this lemma. As will become clear form the proof, the
perhaps seemingly somewhat arbitrary restriction c1 /∈ {1, d− 4} will be crucial for our argument.

In what follows, we will consistently write e1, . . . , ed−1 to denote the standard basis vectors for the
matroid (Kd, 0c21∗) and f1, . . . , fd−1 to denote the standard basis vectors for (Kd, 0c11∗). To separate the
properties in Lemma B.4, we will consider canonical functions as in Definition 3.4. More specifically, we
will use fsep to denote the canonical function f0

(Kd,0c21∗), where all sets Sv are chosen to be the whole

subspace Fn−d+1
2 .

We first note that fsep chosen in this way will always be dense in the pattern (Kd, 0c21∗).

Proposition B.5. The function fsep specified above is δ-far from being (Kd, 0c21∗)-free for some absolute
constant δ.
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Proof. This follows immediately from Lemma 3.5.

Our goal is now to show that fsep is (Kd, 0c11∗)-free. To prove this, we assume that fsep is not
(Kd, 0c11∗)-free and derive a contradiction. We present the proof as a sequence of simple claims that
follow from the assumption that there exists a linear transformation L : Fd−1

2 → Fn
2 such that fsep contains

(Kd, 0c11∗) at L.
Suppose L maps the basis vector fi to L(fi) = yi|zi, where yi ∈ Fd−1

2 and zi ∈ Fn−d+1
2 . Let us write

L′(fi) = yi to denote the projection of this map to the part of coordinates which we care about most.

Claim B.6. L′ maps all the basis vectors fi, 1 ≤ i ≤ d− 1, to pairwise distinct vectors.

Proof. This is Proposition B.3. Note that we can apply this proposition since we are padding with b = 0 in
the canonical function fsep.

Claim B.7. L′ maps every 1-labeled basis vector fi, c1 < i ≤ d− 1, to a vector yi with |yi| = 2.

Proof. Let us narrow down the possible options for the weights of the vectors yi = L′(fi) step by step.
Firstly, by construction we have that the L′-part of the linear transformation must result in weights

|L′(fi)| ∈ {1, 2} for all i, c1 < i ≤ d− 1 since that is where the vectors are where fsep can evaluate to 1.
A second easy observation is that at least one of the vectors fi, c1 < i ≤ d − 1, must be mapped by L′

to some weight-2 vector. This follows since by construction there are not enough 1-labeled unit vectors ej

on which fsep(ej |z) can evaluate to 1 to satisfy the distinctness requirements in Claim B.6.
But this in turn implies that there are at most two vectors in {fi | c1 < i ≤ d− 1} that can map to

weight-1 vectors. To see this, let fc1+1 be a basis vector such that that L′(fc1+1) = ei + ej (we just argued
that there is at least one such basis vector) and suppose in order to derive a contradiction that there are
three or more basis vectors being mapped by L′ to (distinct) weight-1 vectors. If so, one of these vectors,
say fc1+2, must get mapped to e` for some ` such that i 6= ` 6= j. But then by linearity, fc1+1 + fc1+2

would get mapped by L′ to ei + ej + e`, which is a weight-3 vector and hence must corresponds to a point
at which fsep evaluates to 0. This is contrary to the assumption that fsep contains (Kd, 0c11∗) at the linear
transformation L.

So far, we have shown that there can be at most two basis vectors fi, c1 < i ≤ d − 1, that are mapped
by L′ to weight-1 vectors. Now we rule out the possibility that there is any such vector by a case analysis.

Case 1: Suppose there is exactly one 1-labelled basis vector fi, c1 < i ≤ d−1, that maps to some weight-1
vector. Without loss of generality, say that L′(fc1+1) = ed−1. Then for c1 + 2 ≤ i ≤ d− 1, all L′(fi)
must be weight-2 vectors. Moreover, we must have d − 1 ∈ supp(L′(fi)) for all the other 1-labelled
basis vectors, as otherwise L′(fc1+1 + fi) would be a weight-3 vector and fsep would evaluate to 0 on
L(fc1+1+fi) contrary to assumption. It follows that L′(fi) = eji +ed−1 for every i, c1+2 ≤ i ≤ d−1,
where the indices ji are all distinct by Claim B.6. Moreover, it must hold that ji ∈ {c2 +1, . . . , d−2}
for all ji since L′(fc1+1 + fi) is a weight-1 vector but fsep nevertheless evaluates to 1 on L(fc1+1 + fi).
But by the construction of fsep there are strictly less than d − 2 − c1 distinct choices for ji while we
have d − 2 − c1 basis vectors to take care of (namely, fc1+2, . . . , fd−1), each requiring a distinct ji.
This is a contradiction.

Case 2: There are exactly two 1-labelled basis vectors that are mapped to weight-1 vectors by L′. Notice
that this case cannot apply for c1 ≥ d − 3 since we proved that there is at least one 1-labelled basis
vector mapping to a weight-2 vector, so we have c1 < d− 3.

Let us postpone the case c1 = d− 4, and first assume c1 < d− 4. In this case there are at least four 1-
labeled basis vector in (Kd, 0c11∗). Consequently, there are at least two basis vectors that map to some
weight-2 vector. Now suppose without loss of generality that L′(fd−1) = ed−1 and L′(fd−2) = ed−2.
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Let yd−3 = L′(fd−3) and yd−4 = L′(fd−4) be two weight-2 vectors to which L′ maps fd−3 and fd−4.
Note that the sum of a weight-1 and weight-2 vector has weight either 1 or 3. In order to make both
yd−3 + ed−1 and yd−3 + ed−2 into weight-1 vectors, it must be the case that yd−3 = ed−1 + ed−2.
However then, at least one of yd−4 + ed−1 and yd−4 + ed−2 would be a weight-3 vector, which is a
contradiction.

Finally, we look at the case that c1 = d − 4, i.e., when there are three 1-labelled basis vectors fi and
we have two basis vectors mapping to weight-1 vectors and one basis vector mapping to a weight-2
vector. Suppose without loss of generality that |L′(fd−1)| = 2 and |L′(fd−2)| = |L′(fd−3)| = 1. The
support of L′(fd−1) must intersect with the supports of both weight-1 vectors to which the other basis
vectors are mapped, since otherwise the image of their sum would be a weight-3 vector. Therefore, we
may without loss of generality write L′(fd−1) = ed−1+ed−2, L′(fd−2) = ed−1 and L′(fd−3) = ed−2.
Note since c1 < c2, we infer that the only 1-labeled weight-1 vectors are ed−1 and ed−2.

Now for each 1 ≤ i ≤ d− 4, write

L′(fi) =
∑
j∈Si

ej +
∑
k∈Ti

ek, (B.1)

where Si ⊆ {d − 2, d − 1} and Ti ⊆ {1, . . . , d − 3}. First, note that there is no i such that Si = ∅.
This is so since if Si = ∅ for some i, then Ti = ∅ as required by the fact that |L′(fi) + L′(fd−1)| ≤ 2.
But by Claim B.9, this is impossible.

Second, there is no 1 ≤ i ≤ d − 4 such that Si = {d − 1} (or S = {d − 2}, by symmetry). This is
because |L′(fi) + L′(fd−3)| ≤ 2 requires that Ti = ∅, but this in turn implies that L′(fi) is is a vector
where fsep evaluates to 1, a contradiction. What about Si = {d − 2, d − 1}? Since 0 is 0-labeled
by fsep, it must hold that L′(fi)+L′(fd−1) 6= 0 which in turn requires that Ti 6= ∅. Now the conditions
|L′(fi) + L′(fd−2)| ≤ 2 and |L′(fi) + L′(fd−3)| ≤ 2 force |Ti| = 1. But then, L′(fi) + L′(fd−1) = e`

for some 1 ≤ ` ≤ d − 3, which is clearly a vector where fsep has to evaluate to 0, as we showed
before.

To conclude, there is at least d − 4 ≥ 1 0-labeled vectors but there is no place to map these vectors,
thus we reach a contradiction.

We point out that Claim B.7 means that in what follows, when dealing with the 1-labelled basis vectors
fi in (Kd, 0c11∗) and where they are mapped by L′, we will not need to consider the unit vectors ej on which
fsep(ej |z) = 1. This is so since vectors from (Kd, 0c11∗) will never get mapped by L′ to such vectors ej by
Claim B.7. Furthermore, the claim also yields the following conclusion.

Claim B.8. For all c1 < i < j ≤ d − 1, we have |supp(L′(fi)) ∩ supp(L′(fj))| = 1. That is, the vector
supports of every pair of 1-labeled basis vectors in (Kd, 0c11∗) under the linear map L′ intersect in exactly
one coordinate.

Proof. Suppose this is not the case, then the weights of the pairwise sums would be 4, but all weight-4
vectors correspond to points where fsep evaluates to 0.

Let us now turn to the 0-labeled basis vectors fi, 1 ≤ i ≤ c1, in (Kd, 0c11∗). We remark in advance that
in order to prove the next claim, we will need to use our assumption c1 6= 1, i.e., that there are either zero or
at least two 0-labeled basis vectors in (Kd, 0c11∗).

Claim B.9. For every 1 ≤ i ≤ c1, it holds that L′(fi) 6= 0.
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Proof. If c1 = 0 then the claim is vacuously true, and c1 = 1 has been ruled out by our assumptions. Thus,
let c1 ≥ 2 and suppose that there is some basis vector, say f1, such that L′(f1) = 0. By assumption we also
have that f2 gets mapped by L′ to some point y2 such that fsep(L′(f2)) = 0. But by the definition of fsep,
this would imply that fsep(L′(fi + fj)) = fsep(y1) = 0, a contradiction.

Our final claim needed to establish Lemma B.4 says that every pair of one 0-labelled and one 1-labelled
vector in (Kd, 0c11∗) are mapped by L′ to vectors with intersecting supports.

Claim B.10. For all fi, 1 ≤ i ≤ c1, and all fj , c1 < j ≤ d− 1, it holds that the supports of yi = L′(fi) and
yj = L′(fj) intersect with each other.

Proof. Recall that by Claim B.7, for each j, c1 < j ≤ d− 1, we have |yj | = 2, and that by Claim B.9, for
each i, 1 ≤ i ≤ c1, we have |yi| ≥ 1. Therefore, if the supports of these two vectors would not intersect,
this would imply |yi + yj | ≥ 3. But all such vectors correspond to points where fsep evaluates to 0, a
contradiction.

Summing up, we now know about the 1-labelled basis vectors fi, c1 < i ≤ d− 1, in (Kd, 0c11∗) that for
all yi = L′(fi) we have |yi| = 2 and all pairwise sums yi + yj = L′(fi + fj) for c1 < i < j < d satisfy
|yi + yj | = 2. Let us use this to prove Lemma B.4 by a case analysis for the value of c1.

Case 1 (c1 = d− 2): Note that in this case we must have c2 = d − 1, i.e., all basis vectors in (Kd, 0c21∗)
are labelled by 0 and fsep(fi|zi) = 0 for 1 ≤ i ≤ d−1 and any zi. Thus, L′(fd−1) must be a weight-2
vector if fsep is to evaluate to 1 on L(fd−1), and without loss of generality (because of the symmetry
of (Kd, 0c21∗)) we can write L′(fd−1) = 11|0.

We claim that no vector in {L′(f1), . . . , L′(fd−2)} can have weight 1. To see this, observe that this
would imply that the sum of such a vector with L′(fd−1) would be a vector of weight either 1 or 3,
which in both cases corresponds to points at which fsep evaluates to 0. Also, it is clear that no vector
in {L′(f1), . . . , L′(fd−2)} has weight 2, since fsep(y|z) = 1 for all weight-2 vectors y and any z.
Finally, no L′(fi) has weight 0. For if |L′(fi)| = 0 and |L′(fj)| ≥ 3 for some 1 ≤ i, j ≤ d − 2 then
the sum fi + fj must get mapped by L′ to a vector of weight at least 3, i.e., corresponding to a point
where fsep evaluates to 0 contrary to assumption. Therefore, all the vectors {L′(f1), . . . , L′(fd−2)}
have weights at least 3.

Notice that if for some fi, 1 ≤ i ≤ d − 2, we had L′(fi) = e1 +
∑

j∈S ej , with S ⊆ {3, . . . , d − 1}
and |S| ≥ 2, then L′(fi + fd−1) would be a weight-3 vector. For the same reason, no vector is of
the form L′(fi) = e2 +

∑
j∈S ej . So every vector in the set {L′(f1), . . . , L′(fd−2)} can be written as

L′(fi) = e1 +e2 +
∑

j∈Si
ej . But if L should send fi + fd−1 to a point where fsep(L(fi + fd−1)) = 1,

then this requires that each Si is of size exactly 2. And the condition fsep(L(fi + fj)) = 1, requires
|Si ∩ Sj | = 2 for every 1 ≤ i < j ≤ d − 2. Combining the two conditions together implies that all
sets Si are identical, but since we have d− 2 > 2 distinct Si, this gives a contradiction.

Case 2 (c1 = d− 3): By Claims B.7 and B.8, we can write the images of the two 1-labelled basis vectors
in (Kd, 0c11∗), possibly after reordering the coordinates, as L′(fd−1) = 110|0 and L′(fd−2) = 101|0.
Observe that since c1 = d − 3, we have c2 = d − 2 or d − 1, i.e., there is at most one 1-labeled
weight-1 vector in (Kd, 0c21∗).

For every 1 ≤ i ≤ d− 3, let us write

L′(fi) =
∑
j∈Si

ej +
∑
k∈Ti

ek, (B.2)
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where Si ⊆ {1, 2, 3} and Ti ⊆ {4, . . . , d− 1} for every 1 ≤ i ≤ d− 3, and let us check all possible
configurations for Si. That is, we partition all the d − 3 vectors L′(fi), 1 ≤ i ≤ d − 3, into 23 = 8
disjoint classes according to their support subsets Si. By Claim B.10, we have Si 6= ∅. That is, the
class with Si = ∅ is empty.

It must also hold that Si 6= {2} since otherwise L′(fi + fd−2) would be a vector of weight at least 3.
For a symmetric reason we have Si 6= {3}. If Si = {2, 3}, then we must have Ti = ∅ to ensure that
L′(fd−1 + fi) is a weight-2 vector. However, this makes fsep(L(fi)) = 1, a contradiction.

What if Si = {1, 2} (or Si = {1, 3})? Observe that then we have L′(fd−1 + fi) =
∑

k∈Ti
ek and

L′(fd−2 + fi) = e2 + e3 +
∑

k∈Ti
ek by the linearity of L′. The canonical function should evaluate

to 1 on both corresponding points. But the first point requires |Ti| ≥ 1 while the second point needs
Ti = ∅. Thus these configurations can be ruled out.

Suppose that Si = {1}. Since we have at most one 1-labeled weight-1 vector in (Kd, 0c21∗), it
follows that we cannot have Ti = ∅ for every 1 ≤ i ≤ d − 3 (since otherwise the sums of L′(fi)
with L′(fd−1) and L′(fd−2) would be two distinct weight-1 vectors corresponding to points where
fsep would evaluate to 1, which is contrary to the construction of this function). On the other hand,
if |Ti| ≥ 2 for some i, then L′(fd−1) + L′(fi) would be a vector of weight at least 3, which is also
impossible for the same reason. But if |Ti| = 1, then L′(fi) would be a weight-2 vector which is
labeled 1 in fsep. Therefore, the class with Si = {1} must also be empty.

The last possibility for Si is Si = {1, 2, 3}. By the same reasoning above, since there is at most one
weight-1 vector in (Kd, 0c21∗), we have Ti 6= ∅ for every 1 ≤ i ≤ d − 3. Once again, follow the
same argument as for the case that Si = {1}, we conclude that |Ti| ≤ 1 for some 1 ≤ i ≤ d − 3.
Consequently, all Ti must be singletons, i.e., Ti = {ji} for some 4 ≤ ji ≤ d− 1. Note that there are
only d− 4 distinct indices in the set {4, . . . , d− 1}. Therefore, the class with Si = {1, 2, 3} contains
at most d− 4 vectors.

To conclude, we have d − 3 distinct vectors to map but there are only d − 4 places for them, a
contradiction.

Case 3 ( c1 ≤ d− 5): Since c1 ≤ d− 5, there are at least four 1-labeled basis vectors fd−1, fd−2, fd−3, fd−4

in (Kd, 0c11∗). By Claims B.7 and B.8, we may write L′(fd−1) = 1100|0 and L′(fd−2) = 1010|0
without loss of generality (possibly after reordering coordinates). By symmetry, there are two possi-
bilities for L′(fd−3): 0110|0 and 1001|0. But if we take L′(fd−3) = 0110|0, then there is nowhere
L′ can map fd−4 so that the conditions in Claims B.7 and B.8 are both satisfied. Therefore, we must
have L′(fd−3) = 1001|0. This argument readily extends to more than four vectors, so it holds in
general (possibly after reordering coordinates) that we may write L′(fd−i) = e1 + ei+1 for every
1 ≤ i ≤ d− 1− c1. Let D = d− c1. For every 1 ≤ i ≤ c1, let

L′(fi) =
∑
j∈Si

ej +
∑
k∈Ti

ek,

where Si ⊆ [D] and Ti ⊆ {D + 1, . . . , d− 1}.

First, by Claim B.10, Si 6= ∅. If 1 /∈ Si, then by Claim B.10, it must be the case that Si = {2, . . . , D}.
But since c1 ≤ d − 5, so D ≥ 5, therefore |L′(fd−1) + L′(fi)| ≥ D − 2 ≥ 3, a contradiction. For
the same reason, we can not have Si = [D] either. If {1} $ Si $ [D], then either |Si| = 2 and
|Ti| ≥ 1 (by the distinctness requirement of Claim B.6) or |Si| ≥ 3. There must exist some index
j + 1 ∈ {2, . . . , D} such that j + 1 /∈ Si. Consequently, L′(fi) + L′(fj) would be a vector of weight
at least 3. Therefore, the only possibility left is Si = {1} for every 1 ≤ i ≤ c1. It follows that each Ti

must be a singleton from the set {D + 1, . . . , d− 1}. Once again, a simple counting argument shows
that there are only c1 − 1 such singletons but we have c1 0-labeled vectors to accommodate.
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This completes the case analysis, and Lemma B.4 follows.

B.3 Proof of item 2: the special case of c1 = d− 4

The case when c1 = d − 4 requires some special treatment. The full proof involves some tedious case
analysis. To make the proof simpler but at the same time contains all the main ideas, we prove here for the
slightly weaker form which holds for all d ≥ 18. Since the functions used for separation results are slightly
different, we treat the cases of c2 = d − 2 and c2 = d − 3 separately in Section B.3.1 and Section B.3.2,
respectively.

B.3.1 Proof for the Subcase c2 = d− 2

Lemma B.11. Let d ≥ 17 be a fixed integer. Then Kd[¬0d−41∗] *δ Kd[¬0d−21∗].

Let k = dd
2e. we consider the following canonical function as in Definition 3.4: we write g : Fk

2 →
{0, 1} to denote the following function:

g(y) =

{
1 if y = ek or |y| ∈ {2, k − 2, k};
0 otherwise,

(B.3)

and we pick all of the sets Sv to be the entire subspace Fn−k
2 .

So apart from ek, the function g is one precisely if the input is some pairwise sum ei + ej , the comple-
ment ei + ej of such a sum (where i and j are two distinct integers in [k]), or the all-one vector 1.

In the rest of this section, we will stick to the following notations. Let {f1, . . . , fd−1} denote the basis
vectors of the matroid M(Kd) in the standard representation. If a linear transformation L that maps the
basis vector fi to L(fi) = yi|zi, where yi ∈ Fk

2 and zi ∈ Fn−k
2 , then we write L′(fi) = yi for the projection

of this map to the part of coordinates which we care about most.

Proposition B.12. The function g defined in (B.3) contains some (Kd, 0d−21∗)-patterns.

Proof. This can be easily seen by considering the linear map L whose projection L′ maps the basis vectors
{f1, . . . , fd−1} in M(Kd) as follows: for 1 ≤ i ≤ d − 2, if i = 2` − 1, then L′(fi) = e`; if i = 2`, then
L′(fi) = e`. Finally we set L′(fd−1) = ek.

Lemma B.13. The function g defined in (B.3) is (Kd, 0d−41∗)-free.

Proof. We prove the lemma by contradiction. Suppose that there is a linear map L such that g contains
(0d−41∗)-pattern at L’s projection L′. First we observe that, since g(0) = 0, for every pair of distinct i and
j, 1 ≤ i 6= j ≤ d− 1, we have L′(fi) 6= L′(fj). In other words, L must map the d− 1 basis vectors to d− 1
distinct vectors in Fk

2 . Note that this is simply a somewhat weaker version of Proposition B.3.

Claim B.14. L must map the d− 1 basis vectors of M(Kd) to d− 1 distinct vectors in Fk
2 .

Another simple fact is that the zero vector is not the in images of the basis vectors in M(Kd) under the
linear map L.

Claim B.15. There is no basis vector of M(Kd) that maps to 0.

Proof. Clearly, the 1-labeled basis vectors can not map to 0 as they are labeled 0 in g. Since d − 4 ≥ 2,
there are at least two 0-labeled basis vectors in M(Kd), and by Claim B.14, there is at most one of them can
map to 0. Suppose without loss of generality that L′(f1) = 0 and L′(f2) 6= 0. But then, on the one hand,
g(L′(f2)) = 0 since f2 is a 0-labeled basis vector; on the other hand, g(L′(f1 + f2)) = g(L′(f2)) = 1, since
their sum is labeled 1 in g. We thus reach a contradiction.
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Now we consider the set {L′(fd−3), L′(fd−2), L′(fd−1)}. By assumption, g evaluates to 1 at these three
vectors. Note that it also holds by assumption that L maps all 0-labeled basis vectors fi for 1 ≤ i ≤ d − 4
to points such that g(L′(fi)) = 0. What we will prove is that there is no way to achieve this in such a way
that it also holds that all pairwise sums of basis vectors fi + fj for 1 ≤ i < j < d map to 1-labeled points,
i.e., for any i < j, g(L′(fi + fj)) = g(L′(fi) + L′(fj)) = 1. But this contradicts the assumption that we are
seeing (Kd, 0d−41∗) at L.

The proof is by a case analysis. Let us start by ruling out some special cases. Our first observation is
that the all-one vector 1 cannot be in the set.

Claim B.16. We have that 1 /∈ {L′(fd−3), L′(fd−2), L′(fd−1)}.

Proof. For the purpose of contradiction, suppose L′(fd−1) = 1 and consider where L could map the
0-labeled basis vectors fi for 1 ≤ i ≤ d − 4. Note that if L′(fi) is a 0-labeled vector of weight `, where
0 ≤ ` ≤ k, then the sum of L′(fi) and L′(fd−1) must be a 1-labeled weight-(k−`) vector. Recall that all
the 1-labeled vectors in g are of weights either 1, 2, k − 2 or k, therefore the weights of L′(fi) can only be
0, 2, k − 2 or k − 1. First, by Claim B.15, we rule out the only weight-0 vector 0. Second, we cannot have
|L′(fi)| ∈ {2, k − 2} because all the weight-2 and weight-(k−2) vectors are labeled 1 in g. Thus, the only
possibility left is that all L′(fi) are weight-(k−1) vectors. But by Claim B.14, these 0-labeled basis vectors
map to d − 4 ≥ 2 distinct weight-(k−1) vectors. Consequently, their sums with L′(fd−1) = 1 would map
to at least 2 distinct weight-1 vectors which would need to be labeled with 1. However, by our construction
there is only one such vector (namely ek).

Our next observation is that ek cannot be in the set either.

Claim B.17. We have that ek /∈ {L′(fd−3), L′(fd−2), L′(fd−1)}.

Proof. For the sake of contradiction, assume without loss of generality that L′(fd−1) = ek. Then which
vector could L′(fd−2) be? It must be distinct from ek by Claim B.14 and cannot be 1 by Claim B.16.
So we must have |L′(fd−2)| ∈ {2, k − 2}. If L′(fd−2) were a weight-2 vector, then L′(fd−1 + fd−2) =
L′(fd−1)+L′(fd−2) would be either a weight-3 or a weight-1 vector distinct from ek, and this vector would
have a 0-label which is a contradiction. If on the other hand L′(fd−2) were a weight-(k−2) vector, then
L′(fd−1 + fd−2) would be either a weight-(k−3) vector or a weight-(k−1) vector. But there is no vector of
these two weights in g that is labeled 1, and we reach a contradiction again.

Therefore, we are left with the cases that the set {L′(fd−3), L′(fd−2), L′(fd−1)} consists of three vectors
whose weights are either 2 or k − 2. To simplify the proof, let us introduce a new notation for the purpose
of the proofs in this section only. We define the reduced support of a vector v ∈ Fk

2 , denoted by suppR(v)
as: suppR(v) = {j ∈ [k] : vj = 1} if |v| ≤ bk

2c, and suppR(v) = suppR(v) otherwise. In other words,
we are going to view a vector v and its complement v as having the same reduced support, which is defined
to be the “ordinary” support of the vector among v and v whose weight is smaller.

Also for simplicity, we write {L′(fd−3), L′(fd−2), L′(fd−1)} = {u,v,w}. An important observation is,
the supports of these three vectors u,v and w must be pairwise intersecting. This is because otherwise a
non-intersecting pair of vectors would have a weight-4 or weight-(k−4) vector8 as their sum vector. But all
these vectors are labeled 0 in g, a contradiction.

If two of the vectors in {u,v,w} have the same reduced support set, then, by Claim B.14 (and for the
same reason, we cannot have all three vectors having the same reduced support set), these two vectors are
complements with each other. This is analyzed in Case 1 below. Now if the reduced support sets of these
three vectors are three distinct subsets of [k], each of size 2 and pairwise intersecting, then there are only
two possibilities, which are treated in Case 2 and Case 3 below, respectively.

8By our assumption, d ≥ 17, so k ≥ 9 and hence k − 4 > 4, therefore the two weights do not overlap.
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Case 1: w = u. Without loss of generality, we assume u = ei + ej and suppR(v) = {i, `} (that
is, either v = ei + e` or v = ei + e` + 1k), where 1 ≤ i < j < ` ≤ k. Now we consider the set
T = {L′(f1), L′(f2), . . . , L′(fd−4)} and write x for an arbitrary element in T . By assumption, g(x) = 0
and the sums of x with u,v and w must all evaluate to 1 in g. First, |suppR(x)| 6= 1, since otherwise sums
between x and u,v and w would be three distinct vectors with reduced support set sizes either 1 or 3, but
there is only one such vector (namely ek) evaluates to 1 in g. For the same reason, |suppR(x)| cannot be an
odd number. Second, note that x 6= 0k by Claim B.15. Third, |suppR(x)| 6= 2 as all vectors of weight 2
and weight (k − 2) evaluate to 1 in g. Finally, observe that it is impossible that |suppR(x)| ≥ 6. To see
this, first note that this is impossible for k < 12 by our definition of reduced support sets. If, on the other
hand, k ≥ 12, then the support size of x + u (or x + u) is at least 4 and is at most k/2 + 2 < k − 2,
but there is no vector labeled 1 in g of weight in this range. So we conclude that every vector in T must
have reduced support size exactly 4. Furthermore, we must also have that suppR(u) ⊆ suppR(x) and
suppR(v) ⊆ suppR(x), as otherwise their sum would be a vector of reduced support size at least 4 and at
most 6, but there is no vector labeled 1 of these weights in g for k ≥ 9. It follows that the reduced support of
each vector in T is of the form {i, j, `,m}, where i, k, `, m are four distinct integers. There are d−4 vectors
in T , so we need at least dd−4

2 e = k − 2 distinct integers m (since for every vector x of weight-4, x and x
are two distinct vectors but having the same reduced support set), requiring at least (k − 2) + 3 = k + 1
distinct integers in the set [k] , a contradiction.

Case 2: suppR(u) = {i, j}, suppR(v) = {i, `} and suppR(w) = {j, `}, where 1 ≤ i < j < ` ≤ k.
The arguments are identical to Case 1: that is, the only possibility is the reduced support of each vector in
T is of the form {i, j, `,m}, where i, j, `,m are four distinct integers, but there are not enough integers in
[k] to accommodate k + 1 distinct integers.

Case 3: suppR(u) = {i, j}, suppR(v) = {i, `} and suppR(w) = {i,m}, where the indices are four
distinct integers 1 ≤ i < j < ` < m ≤ k. Once again, we can use the same arguments as in Case 1 to
show that the reduced support of each vector x in T has weight 4 and satisfies suppR(u) ⊆ suppR(x),
suppR(v) ⊆ suppR(x) and suppR(w) ⊆ suppR(x). Clearly there is only one reduced support set (and
hence at most two vectors) satisfying all these conditions, namely suppR(x) = {i, j, `,m}, but we have
d− 4 > 2 vectors in T , a contradiction.

This completes the case analysis and thus proves Lemma B.13.

Lemma B.11 follows directly from Proposition B.12 and Lemma B.13.

B.3.2 Proof for the Subcase c2 = d− 3

Lemma B.18. Let d ≥ 18 be a fixed integer, then (Kd, 0d−41∗)-free * (Kd, 0d−31∗)-free.

The proof of Lemma B.18 is very much the same as the proof Lemma B.11, so we only describe the
difference.

Let k = dd−1
2 e. Now we let g1 : Fk

2 → {0, 1} defined by:

g1(y) =

{
1 if y = ek, ek, or |y| ∈ {2, k − 2, k};
0 otherwise.

(B.4)

Proposition B.19. The function g1 defined in (B.4) contains some (Kd, 0d−31∗)-patterns.

Proof. Function g1 contains some (Kd, 0d−31∗)-patterns can be checked by considering the linear map L′′

that maps the basis vectors {f1, . . . , fd−1} in M(Kd) as follows: For 1 ≤ i ≤ d − 3, if i = 2` − 1, then
L′′(fi) = e`; if i = 2`, then L′′(fi) = e`. Finally we set L′′(fd−2) = ek and L′′(fd−1) = ek.

Lemma B.20. The function g1 defined in (B.4) is (Kd, 0d−41∗)-free.
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Proof. We will follow the proof of Lemma B.13. First, Claim B.14 and Claim B.15 follow directly from the
same proofs without any modification.

Now we consider the set {L′(fd−3), L′(fd−2), L′(fd−1)}. We still have Claim B.16 but will need to mod-
ify the proof slightly. Namely, we need to also consider the case that d− 4 vectors, {L′(f1), . . . , L′(fd−4)},
are weight-1 vectors. However, by symmetry, the same argument for the case that these vectors are weight-
(k−1) vectors applies, so Claim B.16 still holds.

Claim B.21. We have that ek /∈ {L′(fd−3), L′(fd−2), L′(fd−1)} and ek /∈ {L′(fd−3), L′(fd−2), L′(fd−1)}.

Proof. For the sake of contradiction, assume without loss of generality that L′(fd−1) = ek. Then which
vector could L′(fd−2) be? It must be distinct from ek by Claim B.14 and cannot be 1 by Claim B.16. If
L′(fd−2) were a weight-2 vector, then L′(fd−1 + fd−2) = L′(fd−1) + L′(fd−2) would be either a weight-3
or a weight-1 vector distinct from ek, and this vector would have a 0-label which is a contradiction. If on
the other hand L′(fd−2) were a weight-(k−2) vector, then L′(fd−1 + fd−2) would be either a weight-(k−3)
vector or a weight-(k−1) vector not equal to ek. But there are no such vectors in g that are labeled 1, and
we reach a contradiction again. Therefore, the only possibility left is L′(fd−2) = ek. But now we have no
place for L′(fd−3), as we can apply the same reasoning above for L′(fd−2) to L′(fd−3). We thus prove that
ek /∈ {L′(fd−3), L′(fd−2), L′(fd−1)}.

Now by symmetry, the same argument shows that ek /∈ {L′(fd−3), L′(fd−2), L′(fd−1)}.

Therefore, we are left with the cases that the set {L′(fd−3), L′(fd−2), L′(fd−1)} consists of three vectors
whose weights are either 2 or k−2. Finally, we repeat the same case analysis as in the proof of Lemma B.11.
The only difference is we need the fact that dd−4

2 e ≥ k − 2, which is clearly true as we defined k to be
dd−1

2 e.

Now Lemma B.18 follows directly from Proposition B.19 and Lemma B.20.

B.4 Proof of item 3

Lemma B.22. We have Kd[¬01∗] *δ Kd[¬0d−11∗] and for any 1 < c ≤ d − 1 it holds that Kd[¬01∗] ⊂δ

Kd[¬0c1∗].

The first part of item 3 is proven in Section 6 and the second part is proven in Lemma 5.6.

B.5 Proof of item 4

Lemma B.23. For any c1 ≤ d− 1 and c2 ≤ d, Kd+1[¬0c21∗] *δ Kd[¬0c11∗].

Proof. Consider the function f0
(Kd,0c11∗), which is far from being (Kd, 0c11∗)-free. Suppose that this func-

tion contains (Kd+1, 0c21∗) at some linear transformation L : Kd+1 → Fn
2 . Then it is straightforward to

verify that the function must also contain (Kd, 1∗) pattern. To see this, note that since c2 ≤ d, there exists
at least one 1-labeled weigth-1 vector in the (Kd+1, 0c21∗) pattern. Suppose, without loss of generality, that
ed is one such vector. Then let φ : Kd → Kd+1 which maps ei to fi = ei + ed for all 1 ≤ i ≤ d− 1. Then
it is easy to check that f0

(Kd,0c11∗) contains (Kd, 1∗) at L ◦ φ. But now by the proof of the First Dichotomy
Theorem, we infer that there exists an embedding from (Kd, 1∗) into (Kd, 0c1∗), which is a contradiction
since no such embedding exists.
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B.6 Proof of item 5

Lemma B.24. For any 0 ≤ c ≤ d − 1, it holds that Kd[¬0c1∗] ⊂δ Kd+1[¬0c1∗] and Kd[¬0c1∗] ⊂δ

Kd+1[¬0c+11∗].

Proof. The Lemma follows immediately from item 4 and subgraph containment.

B.7 Proof of item 6

Lemma B.25. Suppose d ≥ 5 and let N =
{
(Kd1 , 0

c11∗), (Kd2 , 0
c21∗), . . . , (Kdt , 0

ct1∗)
}

be any finite set
of labeled matroids over complete graphs such that d1 < d or ci > 0 for all i ∈ [t]. Then the property of
(Kd, 1∗)-freeness is well separated from the union of (Kdi

, 0ci1∗)-freeness properties for all i ∈ [t], and the
difference is provably far from being low-degree polynomials.

Proof. Apply the Third Dichotomy Theorem, Theorem 3.9 with M = (Kd, 1∗)-freeness and N ={
(Kd1 , 0

c11∗), (Kd2 , 0
c21∗), . . . , (Kdt , 0

ct1∗)
}

.
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