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Abstract

A number of works have looked at the relationship be-
tween length and space of resolution proofs. A notorious
question has been whether the existence of a short proof
implies the existence of a proof that can be verified using
limited space.

In this paper we resolve the question by answering it neg-
atively in the strongest possible way. We show that there
are families of 6-CNF formulas of size n, for arbitrarily
large n, that have resolution proofs of length O(n) but for
which any proof requires space Ω(n/ log n). This is the
strongest asymptotic separation possible since any proof
of length O(n) can always be transformed into a proof in
space O(n/ log n).

Our result follows by reducing the space complexity of
so called pebbling formulas over a directed acyclic graph
to the black-white pebbling price of the graph. The proof
is somewhat simpler than previous results (in particular,
those reported in [Nordström 2006, Nordström and Håstad
2008]) as it uses a slightly different flavor of pebbling for-
mulas which allows for a rather straightforward reduction
of proof space to standard black-white pebbling price.

1. Introduction

Resolution length and space Perhaps the single most
studied proof system in propositional proof complexity is
resolution. This system made its first appearance in 1937
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in [9] and began to be investigated in connection with auto-
mated theorem proving in the 1960s [13, 14, 29]. Because
of the simplicity of resolution—there is only one derivation
rule—and because all lines in a proof are clauses, this proof
system readily lends itself to proof search algorithms.

Being so simple and fundamental, resolution was also a
natural target to attack when developing methods for prov-
ing lower bounds in proof complexity. In this context, it is
most straightforward to prove bounds on the length of refu-
tations, i.e., the number of clauses, rather than on the total
size of refutations. The length and size measures are easily
seen to be polynomially related. In 1968, Tseitin [36] pre-
sented a superpolynomial lower bound on refutation length
for a restricted form of resolution, called regular resolution,
but it was not until almost 20 years later that Haken [21]
proved the first superpolynomial lower bound for general
resolution. This weakly exponential bound of Haken has
later been followed by many other strong results, among
others truly exponential lower bounds on resolution refuta-
tion length for different formula families in, for instance,
[4, 8, 11, 37].

The formal study of space in resolution was initiated
by Esteban and Torán [16, 34]. Intuitively, the space of a
resolution refutation is the maximal number of clauses one
needs to keep in memory while verifying the refutation, and
the space of refuting the CNF formula F is defined as the
minimal space of any resolution refutation of F . A number
of upper and lower bounds for refutation space in resolution
and other proof systems have subsequently been presented
in, for example, [1, 7, 15, 17].

With the definition of space complexity, a natural ques-
tion to ask is how space relates to other complexity mea-
sures of propositional proofs. Esteban and Torán [16]
proved that the space is at most logarithmic in the minimal
length of a treelike refutation of a formula, which implies
that space is bounded by the number of variables appearing
in the formula. The question of the relation between space



and length of general resolution proofs, which is the focus
of this paper, was raised by the first author in [6] and has
also been discussed in, for instance, [17, 33, 35], but there
has been no consensus on what the right answer should be.
However, these papers identify a plausible formula family
for answering the question, namely so-called pebbling con-
tradictions defined in terms of pebble games over directed
acyclic graphs (DAGs) and these formulas have indeed been
used in [25, 27] to make progress and, in this paper, finally
resolve the question.

While understanding the relation between space and
length seemed stuck, progress was reported on another front
— that of space versus width. The width measure, first
made explicit by Galil in [19], is defined as the maximal
number of literals in a clause in the refutation. Atserias
and Dalmau showed in [3] that space is always greater than
width, raising the possibility of equivalence of these two
measures. Notice that width is a different measure of “proof
space” as it is the maximal “space” occupied by a single line
in the refutation and one may have speculated that the two
“space” measures are in fact equivalent.

Progress on the space-length question for general resolu-
tion was finally obtained by the second author in [25], which
also separated space from width. This was done by exhibit-
ing a k-CNF formula family of size O(n) refutable in width
O(1) and length O(n) but requiring space Θ(log n). In a
recent joint work of the second author with Håstad [27] this
separation was improved to width O(1) and length O(n)
versus space Θ(

√
n) for a related formula family. We note

however that this previous state-of-the-art did not rule out
the existence of a space-length tradeoff quantitatively simi-
lar to the width-length tradeoff of [8] which says width is at
most O(

√
n · length ).

Our contribution In this paper, we finally resolve the
open question about the relationship between space and
length by establishing an optimal separation between the
two measures. We do this by studying a somewhat modified
variant of pebbling contradictions defined using XORs (see
Definition 2.4) and proving lower bounds for such XOR-
pebbling contradictions in terms of the pebbling price of
the underlying DAGs.

Theorem 1.1 (Main). The space of refuting XOR-pebbling
contradictions over any DAG G in resolution is lower-
bounded by the black-white pebbling price of G, provided
that the number of variables per vertex in the XOR-pebbling
contradictions is at least 2.

If we take a constant number of variables per vertex and
study DAGs with constant fan-in, it is easy to show that
XOR-pebbling contradictions can be refuted in linear length
and constant width. Using the result from [20] which ex-
hibits a family of fan-in 2 DAGs {Gn}∞n=1 of size O(n)

having pebbling price Ω(n/ log n), we get the following
corollary.

Corollary 1.2 (Main). There is a family {Fn}∞n=1 of
6-CNF formulas of size O(n) that can be refuted in length
O(n) and width O(1) but require space Ω(n/ log n).

Since it can be proven using results from [16, 22] that
a refutation of length O(n) can be carried out in space
O(n/ log n), the separation of space and length in Corol-
lary 1.2 is asymptotically optimal. As an extra bonus, we
note that while the constructions in [25, 27] are quite intri-
cate and the proofs very involved, our optimal lower bound
proof is relatively clean and straightforward and we discuss
it next.

Proof outline For the purposes of analyzing space, a res-
olution derivation from a CNF formula F can be viewed as
a sequence of derivation steps on a blackboard. In each step
we may write a clause from F on the blackboard (an axiom
clause), erase a clause from the blackboard or derive some
new clause implied by the clauses currently written on the
blackboard. The space of a derivation is then the maximum
number of clauses on the blackboard simultaneously.

The black-white pebble game models non-deterministic
computation, and the black-white pebbling price of a DAG
G is the minimal number of memory registers needed to
verify the calculation described by G, where the source ver-
tices contain the input and non-source vertices specify oper-
ations on the values of the predecessors. The pebble game
on a DAG G can be encoded as an unsatisfiable CNF for-
mula, a so-called pebbling contradiction over G.

Pebble games have been used extensively as a tool to
prove time and space lower bounds and tradeoffs for com-
putation. Loosely put, a lower bound for the pebbling price
of a graph says that although the computation that the graph
describes can be performed quickly, it requires large space.
Our hope is that when we encode pebble games in terms
of CNF formulas, these formulas should inherit the same
properties as the underlying graphs. That is, if we pick a
DAG G with high pebbling price, since the corresponding
pebbling contradiction encodes a calculation which needs a
lot of memory we would like to try to argue that any resolu-
tion refutation of this formula should require large space.

Ideally, we would like to give a proof of a lower bound
on the resolution refutation space of pebbling contradictions
along the following lines:

1. First, find a natural interpretation of sets of clauses cur-
rently “on the blackboard” in a refutation of the peb-
bling contradiction over G in terms of black and white
pebbles on the vertices of the DAG G.

2. Then, prove that this interpretation captures the peb-
ble game in the following sense: for any resolution



refutation of a pebbling contradiction over G, looking
at consecutive sets of clauses on the blackboard and
considering the corresponding sets of pebbles we get a
black-white pebbling of G.

3. Finally, show that the interpretation captures clause
space in the sense that if the content of the blackboard
induces N pebbles on the graph, then there must be at
least N clauses on the blackboard.

Combining the above with known lower bounds on the
pebbling price of G, this would imply a lower bound on the
refutation space of pebbling contradictions. The separation
from length and width would then follow since pebbling
contradictions are known to be refutable in linear length and
constant width.

Unfortunately, this idea does not quite work “off the
shelf.” Pebblings of DAGs and resolution refutations of
CNF formulas are very different objects, and there is no rea-
son a priori that there should be a tight connection between
the two. However, relaxing the requirements for the cor-
respondence between resolution and pebbling, the papers
[25, 27] made essentially the proof idea above work for two
special cases of graphs. In this paper, by using related ideas
and studying a slightly modified variant of pebbling con-
tradictions, we can handle any graph, which results in an
optimal separation of space and length.

Implications for practical SAT-solvers In recent years,
SATISFIABILITY has gone from a problem of mainly the-
oretical interest to a practical approach for solving ap-
plied problems. Although all known Boolean satisfiability
solvers (SAT-solvers) have exponential running time in the
worst case, enormous progress in performance has led to
satisfiability algorithms becoming a standard tool for solv-
ing a large number of real-world problems such as hardware
and software verification, experiment design, and schedul-
ing.

Perhaps a somewhat surprising aspect of this develop-
ment is that the most successful SAT-solvers to date are still
variants of the resolution-based Davis-Putnam-Logemann-
Loveland (DPLL) procedure [13, 14] augmented with
clause learning. For instance, the great majority of the best
algorithms at the 2007 round of the international SAT com-
petitions [32] fit this description. DPLL procedures per-
form a recursive backtrack search in the space of partial
truth value assignments. The idea behind clause learning,
or conflict-driven learning, is that at each failure (back-
track) point in the search tree, the system derives a reason
for the inconsistency in the form of a new clause and then
adds this clause to the original CNF formula (“learning” the
clause). This can save a lot of work later on in the proof
search, when some other partial truth value assignment fails
for similar reasons. The main bottleneck for this approach,

other than the obvious one of time, is the amount of memory
used by the algorithms. Thus, understanding time and mem-
ory requirements for clause learning algorithms, and how
these requirements are related to one another is a question
of great practical importance. We refer to, e.g., [5, 23, 30]
for a more detailed discussion of clause learning (and SAT-
solving in general) with examples of applications.

In the field of proof complexity, the resources of time
and memory correspond to the length and space of resolu-
tion proofs. Our work indicates that on certain input for-
mulas, a short proof does not necessarily imply a space-
efficient proof exists. Let us give one implication of our
result to questions regarding the practical construction of
DPLL-based SAT-solvers.

Consider a “frugal” DPLL-based solver augmented with
clause learning that tries to save memory by limiting the
number of learned clauses as a function of its running time.
The reasoning underlying the frugal algorithm is very natu-
ral — to save running time, start with the very minimal pos-
sible resources and increase them slowly as necessary. Ap-
pealing as this strategy may seem, our work shows that on
certain inputs it will perform much worse than other, more
prodigal, strategies.1

Organization of the rest of the paper In Section 2,
we state our results formally. Section 3 defines the
“resolution-pebbling game” that we use as an intermediate
step when translating resolution refutations into black-white
pebblings. In Sections 4–6 we provide the proof of our
main theorem. Section 7 contains some short concluding
remarks.

2. Definitions and Main Results

For the sake of completeness, before presenting our main
results we briefly recount (verbatim) from [26] a few basic
definitions regarding resolution, pebble games and pebbling
contradictions that will be used later on.

Resolution Following the exposition in [16], a resolution
proof can be seen as a Turing machine computation, with
a special read-only input tape from which the axioms can
be downloaded and a working memory where all derivation
steps are made. Then the space of a resolution proof is the
maximum number of clauses that need to be kept in mem-
ory simultaneously during a verification of the proof. The
formal definitions follow.

1This issue is somewhat subtle, however, and out of space considera-
tions we cannot give a full discussion here. Let us just note that there are
empirical results like [31] indicating that although pebbling contradictions
have very short resolution proofs, these proofs can be very hard to find
even for a state-of-the-art SAT-solver.



Definition 2.1 (Resolution ([1])). A clause configuration
C is a set of clauses. A sequence of clause configurations
{C0, . . . , Cτ} is a resolution derivation from a CNF formu-
la F if C0 = ∅ and for all t ∈ [τ ], Ct is obtained from Ct−1

by one of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for some C ∈ F .

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1∪{C1∨C2}where C1∨C2 is derived
by resolution from the two clauses C1 ∨ x,C2 ∨ x ∈
Ct−1.

A resolution derivation π : F `A of a clause A from a for-
mula F is a derivation {C0, . . . , Cτ} such that Cτ = {A}.
A resolution refutation of F is a derivation of the empty
clause 0 from F .

Definition 2.2 (Length, width, space). The width W(C) of
a clause C is |C|, i.e., the number of literals in it. The width
of a clause configuration C is W(C) = maxC∈C{W(C)}.
The space of a configuration C is Sp(C) = |C|, i.e., the
number of clauses in C.

Let π be a resolution derivation. Then:

• The length L(π) of π is the number of axiom download
and inference steps in π.

• The width of π is W(π) = maxC∈π{W(C)}.

• The space of π is Sp(π) = maxC∈π{Sp(C)}.

We define the length of deriving a clause A from F as
L(F ` A) = minπ:F `A{L(π)}, where the minimum
is taken over all resolution derivations of A. The width
W(F ` A) and space Sp(F ` A) of deriving A from F
are defined completely analogously. The length, width,
and space of refuting F is L(F ` 0), W(F ` 0), and
Sp(F ` 0), respectively, where as before 0 denotes the con-
tradictory empty clause.

Pebble Games The black pebbling price of a DAG G cap-
tures the memory space, i.e., the number of registers, re-
quired to perform the deterministic computation described
by G. The space of a non-deterministic computation is mea-
sured by the black-white pebbling price of G. We say that
vertices of G with indegree 0 are sources and that vertices
with outdegree 0 are sinks or targets. In the following, un-
less otherwise stated we will assume that all DAGs under
discussion have a unique sink, and this sink will always
be denoted z. The next definition is adapted from [12],
though we use the established pebbling terminology intro-
duced by [22].

Definition 2.3 (Pebble game). Suppose that G is a DAG
with sources S and a unique target z. The black-white
pebble game on G is the following one-player game. At
any point in the game, there are black and white pebbles
placed on some vertices of G, at most one pebble per ver-
tex. A pebble configuration is a pair of subsets P = (B,W )
of V (G), comprising the black-pebbled vertices B and
white-pebbled vertices W . The rules of the game are as
follows:

1. If all immediate predecessors of an empty vertex v
have pebbles on them, a black pebble may be placed
on v. In particular, a black pebble can always be placed
on any vertex in S.

2. A black pebble may be removed from any vertex at any
time.

3. A white pebble may be placed on any empty vertex at
any time.

4. If all immediate predecessors of a white-pebbled ver-
tex v have pebbles on them, the white pebble on v may
be removed. In particular, a white pebble can always
be removed from a source vertex.

A black-white pebbling from (B1,W1) to (B2,W2) in G
is a sequence of pebble configurations P = {P0, . . . , Pτ}
such that P0 = (B1,W1), Pτ = (B2,W2), and for all
t ∈ [τ ], Pt follows from Pt−1 by one of the rules above.
If (B1,W1) = (∅, ∅), we say that the pebbling is uncondi-
tional, otherwise it is conditional.

The cost of a pebble configuration P = (B,W ) is
cost(P) = |B ∪ W | and the cost of a pebbling P =
{P0, . . . , Pτ} is max0≤t≤τ{cost(Pt)}. The black-white
pebbling price of (B,W ), denoted BW-Peb(B,W ), is
the minimum cost of any unconditional pebbling reach-
ing (B,W ).

A complete pebbling of G, also called a pebbling strat-
egy for G, is an unconditional pebbling reaching ({z}, ∅).
The black-white pebbling price of G, denoted BW-Peb(G),
is the minimum cost of any complete black-white pebbling
of G.

Pebbling Formulas Let ⊕d
i=1xi denote the xor of

x1, . . . , xd and ⊕d
i=1xi denote the negation of this for-

mula. The satisfying assignments of ⊕d
i=1xi (⊕d

i=1xi, re-
spectively) are assignments with an odd (even, respectively)
number of 1’s. In what follows, we associate a Boolean
formula with the CNF formula that is logically equiva-
lent to it in the canonical way. For instance, the formula
(x⊕y) → (z⊕w), which is equivalent to (x⊕y)∨ (z⊕w),
is associated with the CNF formula

(x∨y∨z∨w)∧(x∨y∨z∨w)∧(x∨y∨z∨w)∧(x∨y∨z∨w) .



The next definition is a generalization of formulas previ-
ously studied in [8, 10, 28].

Definition 2.4 (XOR-pebbling contradiction). Let G be
a DAG with sources S, a unique sink z, and let d > 0 be
an integer. Associate d distinct variables v1, . . . , vd with
every vertex v ∈ V (G). The dth degree XOR-pebbling con-
tradiction over G, denoted Pebd

G[⊕], is the CNF obtained
from the conjunction of the following formulas over xor-
constraints:

• Source Axioms:
⊕d

i=1si for all sources s ∈ S.

• Pebbling Axioms: For all vertices u(1), . . . , u(`), v,
such that u(1), . . . , u(`) are all the immediate prede-
cessors of v, we have

⊕d
i=1u

(1)
i ∧ . . . ∧

⊕d
i=1u

(`)
i →⊕d

i=1vi, which is equivalent to the disjunction⊕d

i=1u
(1)
i ∨ . . . ∨

⊕d

i=1u
(`)
i ∨

⊕d
i=1vi.

• Sink Axioms:
⊕d

i=1zi for the sink z.

If G has n vertices and maximal in-degree `, then
Pebd

G[⊕] is an unsatisfiable (` + 1)d-CNF formula with at
most 2(`+1)(d−1) · n clauses over d · n variables.

We can now give a more precise statement of our lower
bound on refutation space for XOR-pebbling contradic-
tions.

Theorem 1.1 (restated). For every d > 1, there is a con-
stant c such that for any DAG G it holds that

Sp(Pebd
G[⊕] ` 0) ≥ BW-Peb(G)− c .

In what follows, a family of formulas {Fn}∞n=1 is said to
be explicitly constructible if there exists a polynomial time
Turing machine that on input 1n outputs Fn.

Corollary 1.2 (restated). For every d > 1, there is a ex-
plicitly constructible family {Fn}∞n=1 of 3d-CNF formulas
of size O(n) such that L(Fn ` 0) = O(n) and W(Fn `
0) = O(1) but Sp(Fn ` 0) = Ω(n/ log n).

Proof. For any DAG G with n vertices, in-degree 2 and
a single sink, the CNF formula Peb2

G[⊕] is a 3d-CNF of
size O(n) that can be refuted using proofs of length O(n)
and width O(1) (for a proof see [6, Theorem 4.3]). The
lower bound on space and the explicit constructibility of
the formulas follow respectively from Theorem 1.1 and the
following lower bound on black-white pebbling price.

Theorem 2.5 ([20]). There is a family of explicitly con-
structible2 DAGs Gn with Θ(n) vertices and vertex in-
degree 2 for all non-sources such that BW-Peb(G) =
Θ(n/ log n).

2This was not known at the time of the original theorem in [20]. What
is needed is an explicit construction of superconcentrators of linear density,
and it has since been shown in [18] how to do this with [2] presenting the
currently best construction.

Proof of Theorem 1.1. There are three main components to
our proof of Theorem 1.1. In the next section we define and
discuss the resolution-pebbling price of a DAG G, denoted
Res-Peb(G). Then we prove the following pair of state-
ments. The first theorem is proved in Sections 4,5 and the
second is proved in Section 6. Taken together, they com-
plete the proof of Theorem 1.1.

Theorem 2.6. For every d > 1, there is a constant c such
that for any DAG G it holds that

Sp(Pebd
G[⊕] ` 0) ≥ Res-Peb(G)− c .

Theorem 2.7. For any DAG G it holds that

Res-Peb(G) ≥ BW-Peb(G) .

3. The Resolution-Pebbling Game

In this section we define our modified pebble game that
will be used to analyze resolution refutations. The next def-
inition is similar to [27], but somewhat simpler.

Definition 3.1 (Res-pebbling subconfiguration). If B and
W are sets of vertices in a DAG G with B 6= ∅, B ∩W = ∅,
we say that [B]〈W 〉 is a res-pebbling subconfiguration, or
just subconfiguration, in G with black pebbles on B and
white pebbles on W supporting B. A set of subconfigu-
rations R =

{
[Bi]〈Wi〉

∣∣i = 1, . . . ,m
}

is a res-pebbling
configuration and its cost is cost(R) = |

⋃m
i=1(Bi ∪Wi)|.

The game that we play with subconfigurations is also
similar to that in [27], although noticeably less complicated.

Definition 3.2 (Resolution-pebbling game). For G a
DAG, a resolution-pebbling, or res-pebbling for short, is a
sequence R =

{
R0, . . . , Rτ

}
of pebbling clause configu-

rations such that for every t ∈ [τ ], the configuration Rt is
obtained from Rt−1 by one of the following rules:

Download Rt = Rt−1 ∪
{
[v]〈pred(v)〉

}
, where pred(v)

denotes the set of predecessors of v. (Notice
pred(v) = ∅ for a source node v.)

Resolution Rt = Rt−1 ∪
{
[B1 ∪ B2]〈W1 ∪ W2〉

}
if

there exist [B1]〈W1 ∪ {v}〉 and [B2 ∪ {v}]〈W2〉 in
Rt−1 such that B1 ∩ W2 = ∅.

Weakening Rt = Rt−1 ∪
{
[B ∪ B′]〈W ∪ W ′〉

}
if

[B]〈W〉 ∈ Rt−1 and (B ∪ B′) ∩ (W ∪ W ′) = ∅.

Erasure Rt = Rt−1 \
{
[B]〈W〉

}
for [B]〈W〉 ∈ Rt−1.

The cost of a resolution-pebbling is cost(R) =
maxt∈[τ ]{cost(Rt)}. The resolution-pebbling price of G
is the minimal cost of a resolution pebbling starting with
R0 = ∅ and ending with Rτ =

{
[z]〈∅〉

}
where z is the sink

of G.



Let us try to provide some intuition for the pebbling
rules. We interpret a subconfiguration [B]〈W〉 as saying “If
all vertices in W have a white pebble on them, then a black
pebble can be placed somewhere in B via a legal sequence
of black-white pebbling moves.” A res-pebbling configura-
tion is a set of such statements and the res-pebbling game is
a system that allows for deducing new true statements from
existing ones. Indeed, going over the four allowed moves
in Definition 3.2 one can verify that they give rise to legal
statements. For instance, a download step allows us to state:
“If all predecessors of v have a white pebble, then a black
pebble may be placed on v.” The case of the Resolution
rule is perhaps the most subtle so we will describe it in de-
tail. The pair (i) [B1]〈W1 ∪ {v}〉, (ii) [B2 ∪ {v}]〈W2〉 says:
(i) “If white pebbles are placed on W1 ∪ {v} we may place
a black pebble somewhere in B2”, and (ii) “If white pebbles
are placed on W2 we may place a black pebble somewhere
on B2 ∪ {v}”. The new statement derived by a resolution
step says: (iii) “If W1 ∪ W2 are covered by white pebbles
then a black pebble may be placed somewhere on B1∪B2.”
Indeed, if all of W1∪W2 have white pebbles, then by state-
ment (ii) we know a black pebble may be placed somewhere
on B2 ∪ {v}. If it is placed in B2 we are done because (iii)
is true. Otherwise, the black pebble is placed on v. Then
by statement (i) a black pebble may be placed somewhere
on B1 after which the black pebble can be removed from
v. This shows why, intuitively, the resolution step should be
valid. The cases of weakening and erasure can be argued in
a similar fashion.

4. Resolution Derivations Induce Res-
Pebblings

The proof of Theorem 2.6 follows from two main steps.
The first step argues that every refutation π of Pebd

G[⊕] in-
duces a res-pebbling Rπ . The second step says that the
cost of the induced res-pebblingRπ is a lower bound on the
space of π. Together, these two steps imply Theorem 2.6.

In this section, we do the first step by showing how reso-
lution derivations can be interpreted in terms of resolution-
pebblings. As in [25, 27], we get a cleaner correspondence
between resolution and pebbling if we ignore the sink ax-
ioms

⊕d

i=1zi and instead study resolution derivations of⊕d
i=1zi from the rest of the formula rather than refutations

of all of Pebd
G[⊕]. Let us write *Pebd

G[⊕] = Pebd
G[⊕] \{⊕d

i=1zi

}
to denote the pebbling formula over G with the

sink axioms in the pebbling contradiction removed. The
next lemma is the formal statement saying that as long as
we keep the pebbling degree d constant, we may just as well
study resolution derivations of

⊕d
i=1zi from *Pebd

G[⊕] in-
stead of refutations of Pebd

G[⊕] without losing more than
a constant term. The proof, which is similar to [25, 27], is

omitted due to space constraints.

Lemma 4.1. For any DAG G with sink z, it holds that
Sp(Pebd

G[⊕] ` 0) = Sp
(
*Pebd

G[⊕] `
⊕d

i=1zi

)
+ O

(
2d

)
.

In view of Lemma 4.1, from now on we will only
consider resolution derivations from *Pebd

G[⊕] and trans-
late clause configurations in such derivations into sets of
black and white pebbles. Note that since *Pebd

G[⊕] is non-
contradictory and resolution is sound, any clause set C de-
rived from *Pebd

G[⊕] is satisfiable. We next specify how to
translate clauses to pebbles.

Definition 4.2 (Induced res-pebbling subconfiguration).
Let G be a DAG and C a set of clauses derived from
*Pebd

G[⊕]. Then C induces the res-pebbling subconfigu-
ration [B]〈W〉 if

C �
( ∨
b∈B

⊕d
i=1bi

)
∨

( ∨
w∈W

⊕d

i=1wi

)
(1a)

but for all strict subsets B′ $ B and W ′ $ W that

C 2
( ∨
b∈B′

⊕d
i=1bi

)
∨

( ∨
w∈W

⊕d

i=1wi

)
, and (1b)

C 2
( ∨
b∈B

⊕d
i=1bi

)
∨

( ∨
w∈W ′

⊕d

i=1wi

)
. (1c)

To save space, when all conditions (1a)–(1c) hold, we write

C B
( ∨
b∈B

⊕d
i=1bi

)
∨

( ∨
w∈W

⊕d

i=1wi

)
(2)

and refer to this as precise implication. We also say that the
clause set C implies

(∨
b∈B

⊕d
i=1bi

)
∨

(∨
w∈W

⊕d

i=1wi

)
precisely. We will also overload the notation and write
C � [B]〈W 〉, C 2 [B]〈W 〉, and C B [B]〈W 〉 when the
corresponding implications or non-implications hold for C
with respect to

(∨
b∈B

⊕d
i=1bi

)
∨

(∨
w∈W ′

⊕d

i=1wi

)
. We

write
R(C) =

{
[B]〈W〉

∣∣C B [B]〈W〉
}

(3)

to denote the set of all res-pebbling subconfigurations in-
duced by C.

The following theorem forms the first part of the proof
of Theorem 2.6 and says that resolution derivations induce
legal res-pebbling sequences.

Theorem 4.3. Let π =
{
C0, . . . , Cτ

}
be a resolution

derivation of
⊕d

i=1zi from *Pebd
G[⊕]. Then the induced

res-pebbling configurations
{
R(C0), . . . , R(Cτ )

}
form the

“backbone” of a complete res-pebbling R of G in the sense
that

1. R(C0) = ∅,



2. R(Cτ ) =
{
[z]〈∅〉

}
, and

3. for every t ∈ [τ ], the transition R(Ct−1) R(Ct) can
be accomplished in accordance with the res-pebbling
rules in cost max

{
cost(R(Ct−1)), cost(R(Ct))

}
+

O(1).

In particular, to any resolution derivation
π : *Pebd

G[⊕]`
⊕d

i=1zi we can associate a com-
plete res-pebbling Rπ of G such that cost(Rπ) ≤
maxC∈π

{
cost(R(C))

}
+ O(1).

Due to space limitations we omit the proof of Theo-
rem 4.3 but let us try to describe in words what the theorem
says. Using the translation of clauses into pebbles in Defini-
tion 4.2, clause configurations C0, C1, . . . , Cτ in a resolu-
tion derivation π can be seen to correspond to “snapshots” at
different time intervals of a res-pebbling Rπ of the DAG G.
Furthermore, the cost of this pebbling is essentially upper-
bounded by the largest cost we see at any of the snapshots.
There may be many pebbling moves needed to go from the
pebble configuration corresponding to Ct−1 to the one cor-
responding to Ct, but the maximal cost during this interme-
diate pebbling moves is at most an additive constant larger
than the cost of the pebble configuration corresponding to
Ct−1 or Ct. Next we use this to show that the cost of the
res-pebbling Rπ yields a lower bound on the space of the
resolution refutation π.

5. Comparing Resolution Space and Res-
Pebbling Cost

In this section, we provide the second component in the
proof of Theorem 2.6, namely, that the cost of the induced
resolution pebbling Rπ is a lower bound on the space of π.

We introduce some notation to make the argument more
concise. Let us write Varsd(u) = {u1, . . . , ud}. We
say that a vertex u is represented in a clause C derived
from *Pebd

G[⊕], or that C mentions u, if Varsd(u) ∩
Vars(C) 6= ∅. We write

V (C) =
{
u ∈ V (G)

∣∣Varsd(u) ∩Vars(C) 6= ∅
}

(4)

to denote all vertices represented in C. We will also refer to
V (C) as the set of vertices mentioned by C. This notation
is extended to sets of clauses by taking unions.

The main component in the proof of Theorem 2.6 is the
following theorem. We remark that this is the place in
the proof where it is absolutely crucial that we are work-
ing with XOR-pebbling contradictions Pebd

G[⊕] and not
the “standard” pebbling contradictions Pebd

G[∨] defined in
terms logical or that were used in [6, 25, 27].

Theorem 5.1. For every clause configuration C that is de-
rived from *Pebd

G[⊕] with d > 1, it holds that

|C| > cost(R(C)) ,

where cost(R(C)) =
∣∣⋃

[B]〈W〉∈R(C)(W ∪ B)
∣∣.

Proof. Let us write

V ∗ =
⋃

[B]〈W〉∈R(C)(B ∪ W ) (5)

to denote all vertices mentioned in the configuration in-
duced by C. At this point, we know nothing about the re-
lationship between V ∗ and V (C). However, it is intuitively
plausible that V ∗ ⊆ V (C), i.e., that the clause set must
mention variables for the vertices on which it induces peb-
bles, and as we will see later in the proof this is indeed the
case.

Consider the bipartite graph with clauses in C on the left-
hand side and vertices in V ∗ on the right-hand side. We
draw an edge between C ∈ C and v ∈ V ∗ if C mentions v.
That is, the set of neighbors of C is N(C) = V (C) ∩ V ∗.

Let C1 ⊆ C be a set of maximal size such that |C1| >
|N(C1)|. Let C2 = C \ C1 and define the vertex set V ∗

1 =
N(C1). By the maximality of C1 we have

|D| ≤
∣∣N(D) \ V ∗

1

∣∣ for all D ⊆ C2. (6)

This holds trivially in the case C2 = ∅. For the case of
nonempty C2, if, by way of contradiction, |D| >

∣∣N(D) \
V ∗

1

∣∣, then C′ = C1 ∪ D would be a larger set than C1 with
|C′| > |N(C′)|, contradicting the maximality of C1.

Equation (6) implies, by Hall’s marriage theorem, that
there is an injective mapping M of C2 into V ∗ \ V ∗

1 . For
C ∈ C2 let v(C) = M(C) be the vertex matched to C and
let V ∗

2 = {v(C) |C ∈ C2}. We now show V ∗ = V ∗
1 ∪ V ∗

2

and this will prove the theorem because |C1| > |V ∗
1 | and

|C2| = |V ∗
2 | imply

|C| = |C1|+ |C2| > |V ∗
1 |+ |V ∗

2 | = |V ∗|. (7)

Assume by way of contradiction V ∗
3 = V ∗\(V ∗

1 ∪V ∗
2 ) 6= ∅.

Fix some v ∈ V ∗
3 and [B]〈W〉 ∈ R(C) such that v ∈ (W ∪

B), which must exist by definition of V ∗. By Definition 4.2

C B
( ∨
b∈B

⊕d
i=1bi

)
∨

( ∨
w∈W

⊕d

i=1wi

)
. (8)

We claim that we can construct a truth value assignment α

that makes C true but
(∨

b∈B

⊕d
i=1bi

)
∨

(∨
w∈W

⊕d

i=1wi

)
false. This clearly contradicts condition (1a) from Defini-
tion 4.2 and so the theorem follows.

The desired α will be the union of three partial assign-
ments α1 ∪ α2 ∪ α3 that assign values to distinct variables.
For j = 1, 2 let Bj = B ∩ V ∗

j and Wj = W ∩ V ∗
j . By



assumption v ∈ (B ∪W ) \ (B1 ∪W1) so conditions (1b),
(1c) in Definition 4.2 imply

C 2
( ∨
b∈B1

⊕d
i=1bi

)
∨

( ∨
w∈W1

⊕d

i=1wi

)
(9)

so we can find a truth value assignment β that sets C to true
but violates all constraints

⊕d
i=1bi, b ∈ B1, and

⊕d

i=1wi,
w ∈ W1. Take α1 to be the restriction of β to Vars

(
C1

)
∪

Varsd
(
B1 ∪ W1

)
. What is important to notice about α1 is

that it (i) does not assign any value to Varsd
(
V ∗

2 ∪ V ∗
3

)
,

(ii) sets C1 to true, (iii) violates all constraints
⊕d

i=1bi, b ∈
B1, and

⊕d

i=1wi, w ∈ W1 and (iv) any extension of α1 will
not change (ii), (iii).

To construct α2 we use the matching M of C2 into V ∗
2

to find a distinct vertex v(C) for every C ∈ C2 and a literal
over some variable v(C)i ∈ Varsd

(
v(C)

)
that fixes C to

true. Let γ be this partial assignment. We stress that γ as-
signs values to at most one variable vi for any v ∈ B2 ∪W2.
This means that we can extend γ to an assignment α2 to
Varsd

(
V ∗

2

)
still satisfying C2 but violating all constraints⊕d

i=1bi, b ∈ B2, and
⊕d

i=1wi, w ∈ W2. Regarding α2,
notice it (i) assigns values only to Varsd

(
V ∗

2

)
, (ii) sets C2

to true, (iii) violates all constraints
⊕d

i=1bi, b ∈ B2, and⊕d

i=1wi, w ∈ W2 and (iv) any extension of α2 will not
change (ii), (iii).

Finally, to construct α3 we pick for every v ∈ (B ∪
W ) ∩ V ∗

3 an assignment that violates the constraint over v.
I.e., if v ∈ B we set α3 so that

⊕d
i=1vi is false and if v ∈ W

set it so that
⊕d

i=1vi is false. Notice α3 assigns values only
to variables in Varsd

(
V ∗

3

)
. Thus, taking α = α1 ∪ α2 ∪ α3

contradicts (8), which proves the claim.

Theorem 2.6 now follows from Theorems 4.3 and 5.1
together with Lemma 4.1.

6. From Res-Pebblings to Black-White Peb-
blings

To complete the proof of Theorem 1.1, we also need to
establish lower bounds on res-pebbling price in terms of
black-white pebbling price.

Theorem 2.7 (restated). For any DAG G it holds that
Res-Peb(G) ≥ BW-Peb(G).

On the face of it, the resolution-pebbling game might
seem quite different from the standard black-white peb-
ble game. The lower bounds on black-white pebbling de-
pend critically on the fact that the rules for black pebble
placement and white pebble removal are very strict. In the
resolution-pebbling game, however, we can always remove

any white pebbles by doing an erasure, and by weakening
we can always black-pebble any vertex although no white
pebbles are even near this vertex. However, the fact that we
collect black pebbles B and white pebbles W in subconfig-
urations [B]〈W〉, and only allow operations on these sub-
configurations, makes it relatively straightforward to show
Theorem 2.7. The proof follows immediately from the fol-
lowing pair of lemmas, proved next.

Lemma 6.1. Given any complete res-pebbling R of G us-
ing weakening, there is a complete res-pebbling R′ which
never makes any weakening moves and has cost(R′) ≤
cost(R).

Lemma 6.2. Given any complete res-pebbling R′ of G that
does not make any weakening moves, there is a complete
standard black-white pebbling P of G such that cost(P) ≤
cost(R′).

Proof of Lemma 6.1. This is true since we can always con-
struct a shadow pebbling that matches download, resolu-
tion, and erasure moves but ignores weakening moves. Such
a pebbling can have at most the same cost as the pebbling
that it is shadowing.

Formally, given any complete res-pebbling R ={
R0, . . . , Rτ

}
of G, we construct our pebbling R′ ={

R′
0, . . . , R′

τ

}
inductively by maintaining the following in-

variant: For every Rt ∈ R there is a surjective function
gt : Rt 7→ R′

t such that whenever gt([B]〈W〉) = [b]〈Wb〉
it holds that b ∈ B and Wb ⊆ W . If we can construct
such a function gt for every t we are clearly done, since
cost(R′

t) = cost(gt(Rt)) ≤ cost(Rt) and we must have
gτ ([z]〈∅〉) = {[z]〈∅〉}. The base case R0 = ∅ is trivial. We
make a case analysis over the pebbling move made at time
t.

Download Rt = Rt−1 ∪ {[v]〈pred(v)〉}: Make the
same download move in R′, set gt([v]〈pred(v)〉) =
[v]〈pred(v)〉 and let gt = gt−1 for all other subconfig-
urations in Rt−1.

Erasure Rt = Rt−1 \
{
[B]〈W〉

}
: Set R′

t = gt−1(Rt)
(which might result in an erasure or leave R′

t = R′
t−1

unchanged).

Weakening Rt = Rt−1 ∪
{
[B ∪ B′]〈W ∪ W ′〉

}
for

some subconfiguration [B]〈W〉 ∈ Rt−1: set
gt([B ∪ B′]〈W ∪ W ′〉) = gt−1([B]〈W〉) and let
gt = gt−1 for all other subconfigurations (leaving
R′

t = R′
t−1 unchanged).

Resolution Rt = Rt−1 ∪
{
[B1 ∪ B2]〈W1 ∪ W2〉

}
de-

rived from [B1]〈W1 ∪ {v}〉, [B2 ∪ {v}]〈W2〉 ∈
Rt−1: This is the only nontrivial case. Let
gt−1([B1]〈W1 ∪ {v}〉) = [b1]〈W ′

1〉 and
gt−1([B2 ∪ {v}]〈W2〉) = [b2]〈W ′

2〉. Note that by the



induction hypothesis we have b1 ∈ B1 ⊆ B1 ∪ B2

and W ′
2 ⊆ W2 ⊆ W1 ∪ W2. We get three subcases:

1. v /∈ W ′
1: Then W ′

1 ⊆ W1 ⊆ W1 ∪ W2, so we
can set gt([B1 ∪ B2]〈W1 ∪ W2〉) = [b1]〈W ′

1〉.
2. v 6= b2: Then b2 ∈ B2 ⊆ B1 ∪ B2, so we can

set gt([B1 ∪ B2]〈W1 ∪ W2〉) = [b2]〈W ′
2〉.

3. Otherwise, we have v = b2 and
v ∈ W ′

1, so we can resolve [b1]〈W ′
1〉 and

[b2]〈W ′
2〉 to get [b1]〈(W ′

1 ∪ W ′
2) \ {b2}〉

and set gt([B1 ∪ B2]〈W1 ∪ W2〉) =
[b1]〈(W ′

1 ∪ W ′
2) \ {b2}〉.

Let gt = gt−1 for all other subconfigurations in Rt−1.

Since in all cases we can construct a surjective function
gt : Rt 7→ R′

t satisfying the invariant conditions, the lemma
follows.

Proof of Lemma 6.2. We assume without loss of generality
that R′ terminates at time τ once it contains a subconfigu-
ration [z]〈∅〉 where z is the sink of G. Next, we define the
essential subconfigurations of R′ by backwards induction
as follows. The only essential subconfiguration of Rτ is
[z]〈∅〉. For t < τ , we say a subconfiguration is essential in
Rt iff it is either (i) essential at time t + 1, or (ii) one of the
two subconfigurations used in a resolution step resulting in
an essential subconfiguration. To prove the lemma it is suf-
ficient to show that the set of pebbles mentioned in essential
subconfigurations forms a legal black-white pebbling of G.
Formally, let

Bt = {∪B |[B]〈W〉 is essential in Rt}

and

Wt = {∪W |[B]〈W〉 is essential in Rt} \ Bt.

We claim the sequence {(B0, W0), . . . , (Bτ , Wτ )} is a legal
black-white pebbling of G and this proves our lemma.

By construction B0 = W0 = ∅ and Bτ = {z}, Wτ = ∅
so we only need to argue that intermediate steps are legal
black-white moves. By definition of essentiality we do not
need to worry about erasure moves because only unessential
clauses can be erased. Thus, if the tth step is an erasure
then (Bt−1, Wt−1) = (Bt, Wt). By assumption, there are
no weakening moves so we only need to handle downloads
and resolution steps which is what we do next.

Download Suppose the tth step is a download of an es-
sential subconfiguration corresponding to vertex v. Then
Bt = Bt−1∪{v} and Wt = (Wt∪pred(v))\(Bt−1∪){v})
and this transition corresponds to a sequence of legal peb-
bling moves involving (i) placing white pebbles on all pre-
decessors of v that are not covered by Wt∪Bt, (ii) removing

a white pebble from v, if v ∈ Wt, which is legal because
all of v’s predecessors are pebbled, and (iii) placing a black
pebble on v. Notice the overall number of pebbles through-
out this sequence is at most |Bt ∪ Wt|.

Resolution Suppose the tth move is a resolution step de-
riving an essential subconfiguration. By definition, the two
subconfigurations used in the resolution step are essential
at time t − 1. Furthermore, if v is the vertex that is re-
moved in this step we have v ∈ Bt−1. Inspection reveals
Bt−1 ⊇ Bt ⊇ Bt−1 \ {v} and Wt ⊇ Wt−1 implying we
can reach (Bt, Wt) by a legal sequence of pebbling moves
because we need only remove the black pebble from v and
perhaps place a white one on it. This completes the proof
of the lemma and with it the proof of Theorem 2.7 is com-
plete.

7. Concluding Remarks

We have proven an asymptotically optimal separation of
space and length in resolution. This answers an open ques-
tion discussed in, for instance, [17, 33, 35].

It would be interesting to see if the proof technique used
in this paper can be extended to yield length-space trade-
offs in the sense that there are CNF formulas that can be
refuted in short length and small space, but where any short
refutation must have large space.3

Another natural question is whether our lower bounds
can be extended to stronger proof systems than resolu-
tion. One obvious candidate would be the k-DNF resolution
proof systems R(k) introduced by Krajı́ček [24], where the
lines in the proofs are k-DNF formulas instead of clauses
and one can “resolve” over up to k variables simultaneously.
We believe that XOR-pebbling contradictions Pebk+1

G [⊕]
should separate k-DNF resolution and (k+1)-DNF resolu-
tion with respect to space. If so, this would establish that
the k-DNF resolution proof systems form a strict hierarchy
with respect to space. Currently, all that is known is the
separation result in [15] for the restricted case of tree-like
k-DNF resolution.
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