Understanding Space in Proof Complexity

Jakob Nordström

jakobn@mit.edu

Massachusetts Institute of Technology Cambridge, Massachusetts, USA

18th EACSL Conference on Computer Science Logic Coimbra, Portugal September 7–11, 2009

A Fundamental Problem in Computer Science

Problem

Given a propositional logic formula F, is it true no matter how we assign values to its variables?

TAUTOLOGY: Fundamental problem in Theoretical Computer Science since Cook's NP-completeness paper (1971)

Last decade or so: also intense applied interest

Enormous progress on algorithms (although still exponential time in worst case)

Proof Complexity

Proof search algorithm: proof system with derivation rules

Proof complexity: study of proofs in such systems

- Lower bounds: no algorithm can do better (even optimal one always guessing the right move)
- Upper bounds: gives hope for good algorithms if we can search for proofs in system efficiently

Resolution

- Resolution: proof system for refuting CNF formulas
- Perhaps the most studied system in proof complexity
- Basis of current state-of-the-art SAT-solvers (e.g. winners in SAT 2008 competition)
- Key resources: time and space
- What are the connections between these resources?
 Time-space correlations? Trade-offs?
- Study these questions for resolution and more general k-DNF resolution proof systems

Outline

- Resolution
 - Basics
 - Some Previous Work
 - Our Results
- Outline of Proofs
 - Pebble Games and Pebbling Contradictions
 - Substitution Space Theorem
 - Putting the Pieces Together
- Open Problems

Acknowledgements

- Presentation based on my PhD thesis and more recent follow-up work
- Much indebted to my advisor Johan Håstad
- Results presented here joint work with Eli Ben-Sasson
- Some very recent developments joint work with Alexander Razborov
- Also thankful to many, many other colleagues whose names do not fit on this slide

Some Notation and Terminology

- Literal a: variable x or its negation \overline{x}
- Clause $C = a_1 \lor \cdots \lor a_k$: disjunction of literals
- Term $T = a_1 \wedge \cdots \wedge a_k$: conjunction of literals
- CNF formula F = C₁ ∧ · · · ∧ C_m: conjunction of clauses k-CNF formula: CNF formula with clauses of size ≤ k
- DNF formula $D = T_1 \lor \cdots \lor T_m$: disjunction of terms k-DNF formula: DNF formula with terms of size $\le k$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4.

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4.

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Can write down axioms, infer new formulas, and erase used formulas

- 1.)
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. *z*

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Can write down axioms, infer new formulas, and erase used formulas

- ו. ג
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$

X

4. 7

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: x

Can write down axioms, infer new formulas, and erase used formulas

- 1.)
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. *z*

х

$$\overline{y} \lor$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: *x*

Write down axiom 3: $\overline{y} \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4.

X

$$\overline{y} \vee a$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: xWrite down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *)*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. 7

$\begin{array}{l} X \\ \overline{y} \lor z \\ (X \land \overline{y}) \lor z \end{array}$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: xWrite down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4.

$\frac{x}{\overline{y}} \vee z \\ (x \wedge \overline{y}) \vee z$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: xWrite down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Frase the line x

Can write down axioms, infer new formulas, and erase used formulas

- 1.)
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. \overline{z}

$$\overline{y} \vee z$$

 $(x \wedge \overline{y}) \vee z$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 1: xWrite down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Frase the line x

Can write down axioms, infer new formulas, and erase used formulas

- 1.)
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

$$\frac{\overline{y} \vee z}{(x \wedge \overline{y}) \vee z}$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line xErase the line $\overline{y} \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *)*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. ¯

$(x \wedge \overline{y}) \vee z$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 3: $\overline{y} \lor z$ Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line xErase the line $\overline{y} \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. **
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. z

$$(x \wedge \overline{y}) \vee z$$

 $\overline{x} \vee y$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Combine x and $\overline{y} \lor z$ to get $(x \land \overline{y}) \lor z$ Erase the line xErase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$

Can write down axioms. infer new formulas, and erase used formulas

2.
$$\overline{x} \lor y$$

3.
$$\overline{y} \lor z$$

$$(x \wedge \overline{y}) \vee z$$

 $\overline{x} \vee y$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line x Erase the line $\overline{y} \vee z$ Write down axiom 2: $\overline{x} \vee y$ Infer z from

$$\overline{x} \lor y$$
 and $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

2.
$$\overline{x} \lor y$$

3.
$$\overline{y} \lor z$$

$$(x \wedge \overline{y}) \vee z$$

$$\overline{x} \vee y$$

$$z$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line xErase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer z from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

2.
$$\overline{x} \lor y$$

3.
$$\overline{y} \lor z$$

4. 7

$$(x \wedge \overline{y}) \vee z$$

$$\overline{x} \vee y$$

$$z$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer z from

$$\overline{x} \lor y$$
 and $(x \land \overline{y}) \lor z$
Erase the line $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

2.
$$\overline{x} \lor y$$

3.
$$\overline{y} \lor z$$

$$\overline{x} \lor y$$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $\overline{y} \lor z$ Write down axiom 2: $\overline{x} \lor y$ Infer z from

$$\overline{x} \lor y$$
 and $(x \land \overline{y}) \lor z$
Erase the line $(x \land \overline{y}) \lor z$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. ¯

$\overline{x} \lor y$

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\overline{x} \lor y$ Infer z from

$$\overline{x} \lor y$$
 and $(x \land \overline{y}) \lor z$
Erase the line $(x \land \overline{y}) \lor z$
Erase the line $\overline{x} \lor y$

Can write down axioms, infer new formulas, and erase used formulas

- 1. **
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. ¯

:

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Write down axiom 2: $\overline{x} \lor y$ Infer z from $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$

Erase the line $\overline{x} \vee v$

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4.

2

Z

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Infer z from

 $\overline{x} \lor y$ and $(x \land \overline{y}) \lor z$ Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z}

Can write down axioms, infer new formulas, and erase used formulas

- 1.)
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. 7

Z

Z

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z} Infer 0 from \overline{z} and z

Can write down axioms, infer new formulas, and erase used formulas

- 1. *x*
- 2. $\overline{x} \lor y$
- 3. $\overline{y} \lor z$
- 4. ¯

Z

Z

O

Rules:

- Infer new formulas only from formulas currently on board
- Only k-DNF formulas can appear on board (for k fixed)
- Details about derivation rules won't matter for us

Erase the line $(x \land \overline{y}) \lor z$ Erase the line $\overline{x} \lor y$ Write down axiom 4: \overline{z} Infer 0 from \overline{z} and z

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

formulas written on blackboard counted with repetitions
(Or total # derivation steps)

Space

Somewhat less straightforward — several ways of measuring

Formula space: 3
Total space: 6

Variable space: 3

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

formulas written on blackboard counted with repetitions (Or total # derivation steps)

Space

Somewhat less straightforward — several ways of measuring

-ormula space: 3 Total space: 6

Variable space: 3

Complexity Measures of Interest: Length and Space

- Length: Lower bound on time for proof search algorithm
- Space: Lower bound on memory for proof search algorithm

Length

formulas written on blackboard counted with repetitions (Or total # derivation steps)

Space

Somewhat less straightforward — several ways of measuring

X	
$\overline{y} \lor z$	
$(x \wedge \overline{y}) \vee z$	

Formula space: 3

Total space: 6
Variable space: 3

Length and Space Bounds for Resolution

Let n = size of formula

Length: at most 2ⁿ

Lower bound $\exp(\Omega(n))$ [Urquhart '87, Chvátal &

Szemerédi '88]

Formula space (a.k.a. clause space): at most n Lower bound $\Omega(n)$ [Torán '99, Alekhnovich et al. '00]

Total space: at most n^2

No better lower bound than $\Omega(n)$!?

Variable space: at most n

Lower bound $\Omega(n)$ [Ben-Sasson & Wigderson '99]

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

Length-space correlation for general resolution?

Open — even no consensus on likely "right answer"

Nothing known about time-space trade-offs for resolution refutations in the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07])

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

Length-space correlation for general resolution?

Open — even no consensus on likely "right answer"

Nothing known about time-space trade-offs for resolution refutations in the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07])

Length-Space Trade-offs for Resolution?

For restricted system of so-called tree-like resolution: length and space strongly correlated [Esteban & Torán '99]

So essentially no trade-offs for tree-like resolution

Length-space correlation for general resolution?

Open — even no consensus on likely "right answer"

Nothing known about time-space trade-offs for resolution refutations in the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson '02, Hertel & Pitassi '07])

Previous Work on k-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Segerlind et al. '04, Alekhnovich '05]

Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]

(Suppressing dependencies on k)

(k+1)-DNF resolution exponentially stronger than k-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space

Except for tree-like *k*-DNF resolution [Esteban et al. '02] (But tree-like *k*-DNF weaker than standard resolution)

No trade-off results known

Previous Work on k-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Segerlind et al. '04, Alekhnovich '05]

Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]

(Suppressing dependencies on k)

(k+1)-DNF resolution exponentially stronger than k-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space

Except for tree-like *k*-DNF resolution [Esteban et al. '02] (But tree-like *k*-DNF weaker than standard resolution)

No trade-off results known

Previous Work on k-DNF Resolution ($k \ge 2$)

Length: lower bound $\exp(\Omega(n^{1-o(1)}))$ [Segerlind et al. '04, Alekhnovich '05]

Formula space: lower bound $\Omega(n)$ [Esteban et al. '02]

(Suppressing dependencies on k)

(k+1)-DNF resolution exponentially stronger than k-DNF resolution w.r.t. length [Segerlind et al. '04]

No hierarchy known w.r.t. space

Except for tree-like k-DNF resolution [Esteban et al. '02] (But tree-like k-DNF weaker than standard resolution)

No trade-off results known

New results 1: An Optimal Space-Length Separation

Length and space in resolution are "completely uncorrelated"

Theorem

There are k-CNF formula families of size O(n) with

- refutation length $\mathcal{O}(n)$ requiring
- formula space $\Omega(n/\log n)$.

Optimal separation of space and length — given length n, always possible to achieve space $O(n/\log n)$

New Results 2: Time-Space Trade-offs

We prove a collection of time-space trade-offs

Results hold for

- resolution (essentially tight analysis)
- k-DNF resolution, $k \ge 2$ (with slightly worse parameters)

Different trade-offs covering (almost) whole range of space from constant to linear

Simple, explicit formulas

Theorem

- refutable in resolution in total space $\omega(1)$
- \bullet refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space ≤ n^{1/3(k+1)} requires superpolynomial length

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space ≤ n^{1/3(k+1)} requires superpolynomial length

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space ≤ n^{1/3(k+1)} requires superpolynomial length

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space $\lesssim \sqrt[3]{n}$ requires superpolynomial length
- any k-DNF resolution refutation in formula space ≤ n^{1/3(k+1)} requires superpolynomial length

Theorem

- refutable in resolution in total space $\omega(1)$
- refutable in resolution in length $\mathcal{O}(n)$ and total space $\approx \sqrt[3]{n}$
- any resolution refutation in formula space ≤ ³√n requires superpolynomial length
- any k-DNF resolution refutation in formula space ≤ n^{1/3(k+1)} requires superpolynomial length

Some Quick Technical Remarks

Upper bounds hold for

- total space (# literals)
- standard syntactic derivation rules

Lower bounds hold for

- formula space (# lines)
- semantic derivation rules (exponentially stronger)

Space definition reminder

$$\frac{x}{\overline{y} \vee z} \\
(x \wedge \overline{y}) \vee z$$

Formula space: 3 Total space: 6

Variable space: 3

New Results 3: Space Hierarchy for k-DNF Resolution

We also separate k-DNF resolution from (k+1)-DNF resolution w.r.t. formula space

Theorem

For any constant k there are explicit CNF formulas of size $\mathcal{O}(n)$

- refutable in (k+1)-DNF resolution in formula space $\mathcal{O}(1)$ but such that
- any k-DNF resolution refutation requires formula space $\Omega({k+1 \choose n} \log n)$

Rest of This Talk

- Study old combinatorial game from the 1970s
- Prove new theorem about variable substitution and proof space
- Combine the two

How to Get a Handle on Time-Space Relations?

Want to find formulas that

- can be quickly refuted but require large space
- have space-efficient refutations requiring much time

Such time-space trade-off questions well-studied for pebble games modelling calculations described by DAGs ([Cook & Sethi '76] and many others)

- Time needed for calculation: # pebbling moves
- Space needed for calculation: max # pebbles required

# moves	0
Current # pebbles	0
Max # pebbles so far	0

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	1
Current # pebbles	1
Max # pebbles so far	1

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	2
Current # pebbles	2
Max # pebbles so far	2

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	3
Current # pebbles	3
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	4
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	5
Current # pebbles	1
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	6
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	7
Current # pebbles	3
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	8
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	8
Current # pebbles	2
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	9
Current # pebbles	3
Max # pebbles so far	3

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	10
Current # pebbles	4
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	11
Current # pebbles	3
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	12
Current # pebbles	2
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

# moves	13
Current # pebbles	1
Max # pebbles so far	4

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all immediate predecessors have pebbles on them

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

- sources are true
- truth propagates upwards
- but sink is false

Studied by [Bonet et al. '98, Raz & McKenzie '99, Ben-Sasson & Wigderson '99] and others

Our hope is that pebbling properties of DAG somehow carry over to resolution refutations of pebbling contradictions

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles ⇔ guesses needing to be verified

Corresponds to $(v \land w) \rightarrow z$, i.e., blackboard clause $\overline{v} \lor \overline{w} \lor z$

So translate clauses to pebbles by: unnegated variable ⇒ black pebble negated variable ⇒ white pebble

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles ⇔ guesses needing to be verified

"Know z assuming v, w"

Corresponds to $(v \land w) \rightarrow z$, i.e., blackboard clause $\overline{v} \lor \overline{w} \lor z$

So translate clauses to pebbles by: unnegated variable ⇒ black pebble negated variable ⇒ white pebble

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation

- black pebbles ⇔ computed results
- white pebbles ⇔ guesses needing to be verified

Corresponds to $(v \land w) \to z$, i.e., blackboard clause $\overline{v} \lor \overline{w} \lor z$

So translate clauses to pebbles by: unnegated variable ⇒ black pebble negated variable ⇒ white pebble

Example of Refutation-Pebbling Correspondence

- u
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \lor \overline{y} \lor z$
- 7. \overline{z}

Example of Refutation-Pebbling Correspondence

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

и

Write down axiom 1: u

Example of Refutation-Pebbling Correspondence

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

u v

Write down axiom 1: *u* Write down axiom 2: *v*

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \lor \overline{v} \lor x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

V

$$\overline{u} \vee \overline{v} \vee x$$

Write down axiom 1: *u* Write down axiom 2: *v*

Write down axiom 4: $\overline{u} \vee \overline{v} \vee x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

Write down axiom 1: u Write down axiom 2: v

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$

Infer $\overline{v} \lor x$ from

u and $\overline{u} \vee \overline{v} \vee x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\begin{array}{c}
u \\
v \\
\overline{u} \lor \overline{v} \lor x \\
\overline{v} \lor x
\end{array}$$

Write down axiom 1: u Write down axiom 2: v Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer $\overline{v} \lor x$ from u and $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \lor \overline{v} \lor x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\begin{array}{c}
u \\
v \\
\overline{u} \lor \overline{v} \lor x \\
\overline{v} \lor x
\end{array}$$

Write down axiom 2: v Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer $\overline{v} \lor x$ from u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$u$$
 $\overline{v} \lor x$

Write down axiom 2: vWrite down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer $\overline{v} \lor x$ from u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{u}{v}$$
 $\overline{v} \lor x$

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer $\overline{v} \lor x$ from u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line u

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{v}{\overline{v}} \lor x$$

Write down axiom 4: $\overline{u} \lor \overline{v} \lor x$ Infer $\overline{v} \lor x$ from u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line u

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line uInfer x from v and $\overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\frac{V}{\overline{V}} \lor X$$

u and $\overline{u} \lor \overline{v} \lor x$ Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line uInfer x from v and $\overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\frac{V}{V} \vee X$$

Y

Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line uInfer x from v and $\overline{v} \lor x$ Erase the line $\overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

v

Х

Erase the line $\overline{u} \lor \overline{v} \lor x$ Erase the line uInfer x from v and $\overline{v} \lor x$ Erase the line $\overline{v} \lor x$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

V

Х

Erase the line uInfer x from v and $\overline{v} \lor x$ Erase the line $\overline{v} \lor x$ Erase the line v

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

Х

Erase the line uInfer x from v and $\overline{v} \lor x$ Erase the line $\overline{v} \lor x$ Erase the line v

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{x}{\overline{x}} \lor \overline{y} \lor z$$

Infer x from v and $\overline{v} \lor x$ Erase the line $\overline{v} \lor x$ Erase the line v Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. *V*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \lor \overline{w} \lor y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{x}{\overline{x} \vee \overline{y} \vee z}$$

Erase the line $\overline{v} \lor x$ Erase the line vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{x}{\overline{x} \vee \overline{y} \vee z}$$

$$\overline{y} \vee z$$

Erase the line $\overline{v} \lor x$ Erase the line vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. *V*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\begin{array}{c}
X \\
\overline{X} \lor \overline{y} \lor Z \\
\overline{V} \lor Z
\end{array}$$

Erase the line vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$ Erase the line $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{x}{\overline{y}} \lor z$$

Erase the line vWrite down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$ Erase the line $\overline{x} \lor \overline{y} \lor z$

- 1. *u*
- 2. *V*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{x}{y} \lor z$$

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$ Erase the line $\overline{x} \lor \overline{y} \lor z$ Erase the line x

- 1. *u*
- 2. V
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{y} \lor z$$

Write down axiom 6: $\overline{x} \lor \overline{y} \lor z$ Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$ Erase the line $\overline{x} \lor \overline{y} \lor z$ Erase the line x

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\frac{\overline{y} \vee z}{\overline{v} \vee \overline{w} \vee y}$$

Infer $\overline{y} \lor z$ from x and $\overline{x} \lor \overline{y} \lor z$ Erase the line $\overline{x} \lor \overline{y} \lor z$ Erase the line x Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. V
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\frac{\overline{y} \vee z}{\overline{v} \vee \overline{w} \vee y}$$

Erase the line $\overline{x} \lor \overline{y} \lor z$ Erase the line xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. V
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\frac{\overline{y} \vee z}{\overline{v} \vee \overline{w} \vee y}$$

$$\overline{v} \vee \overline{w} \vee z$$

Erase the line $\overline{x} \lor \overline{y} \lor z$ Erase the line xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

$$\frac{\overline{y} \vee z}{\overline{v} \vee \overline{w} \vee y}$$

$$\overline{v} \vee \overline{w} \vee z$$

Erase the line xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{y} \lor z$$
 $\overline{v} \lor \overline{w} \lor z$

Erase the line xWrite down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$

- 1. *u*
- 2. V
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

$$\overline{y} \lor z$$
 $\overline{v} \lor \overline{w} \lor z$

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{y} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

$$\overline{V} \vee \overline{W} \vee Z$$

Write down axiom 5: $\overline{v} \lor \overline{w} \lor y$ Infer $\overline{v} \lor \overline{w} \lor z$ from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{y} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{V} \vee \overline{W} \vee Z$$

ı

Infer
$$\overline{v} \lor \overline{w} \lor z$$
 from $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{y} \lor z$ Write down axiom 2: v

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\overline{V} \vee \overline{W} \vee Z$$

V

W

 $\overline{y} \lor z$ and $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: w

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. <u>z</u>

$$\overline{V} \vee \overline{W} \vee Z$$

ν

W

Z

Erase the line $\overline{v} \lor \overline{w} \lor y$ Erase the line $\overline{y} \lor z$ Write down axiom 2: vWrite down axiom 3: wWrite down axiom 7: \overline{z}

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{V} \vee \overline{W} \vee Z$$

V

W

Z

Write down axiom 2: v Write down axiom 3: w Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from

v and $\overline{v} \vee \overline{w} \vee z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{V} \vee \overline{W} \vee Z$$

V

w

Z

 $\overline{W} \vee Z$

Write down axiom 2: v Write down axiom 3: w Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from

v and $\overline{v} \vee \overline{w} \vee z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{V} \vee \overline{W} \vee Z$$

V

w

 \overline{z}

 $\overline{W} \lor Z$

Write down axiom 3: w Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from v and $\overline{v} \lor \overline{w} \lor z$ Erase the line v

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\overline{V} \vee \overline{W} \vee Z$$

W

 \overline{z}

 $\overline{W} \vee Z$

Write down axiom 3: w Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from v and $\overline{v} \lor \overline{w} \lor z$ Erase the line v

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

$$\overline{V} \vee \overline{W} \vee Z$$

W

 \overline{z}

 $\overline{W} \vee Z$

Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from v and $\overline{v} \lor \overline{w} \lor z$ Erase the line vErase the line $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

W

Z

 $\overline{W} \lor Z$

Write down axiom 7: \overline{z} Infer $\overline{w} \lor z$ from v and $\overline{v} \lor \overline{w} \lor z$ Erase the line vErase the line $\overline{v} \lor \overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

 $\frac{w}{z}$

 $\overline{W} \vee Z$

v and $\overline{v} \lor \overline{w} \lor z$ Erase the line vErase the line $\overline{v} \lor \overline{w} \lor z$ Infer z from w and $\overline{w} \lor z$

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

 \overline{z}

 $\overline{W} \lor Z$

Z

$$v$$
 and $\overline{v} \lor \overline{w} \lor z$
Erase the line v
Erase the line $\overline{v} \lor \overline{w} \lor z$
Infer z from w and $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

И

 \overline{z}

 $\overline{W} \lor Z$

Z

Erase the line vErase the line $\overline{v} \lor \overline{w} \lor z$ Infer z from w and $\overline{w} \lor z$ Erase the line w

- 1. *u*
- 2. *v*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \overline{z}

$$\frac{z}{W} \lor z$$

Z

Erase the line vErase the line $\overline{v} \lor \overline{w} \lor z$ Infer z from w and $\overline{w} \lor z$ Erase the line w

- 1. *u*
- 2. V
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

$$\overline{W} \vee Z$$

7

Erase the line $\overline{v} \lor \overline{w} \lor z$ Infer z from w and $\overline{w} \lor z$ Erase the line w Erase the line $\overline{w} \lor z$

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{X} \vee \overline{Y} \vee Z$
- 7. \bar{z}

7

7

Erase the line $\overline{v} \lor \overline{w} \lor z$ Infer z from w and $\overline{w} \lor z$ Erase the line wErase the line $\overline{w} \lor z$

- 1. *u*
- 2. *V*
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

Z

7

w and $\overline{w} \lor z$ Erase the line wErase the line $\overline{w} \lor z$ Infer 0 from \overline{z} and z

- 1. *u*
- 2. v
- 3. w
- 4. $\overline{u} \vee \overline{v} \vee x$
- 5. $\overline{v} \vee \overline{w} \vee y$
- 6. $\overline{x} \vee \overline{y} \vee z$
- 7. \overline{z}

7

7

0

w and $\overline{w} \lor z$ Erase the line wErase the line $\overline{w} \lor z$ Infer 0 from \overline{z} and z

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- # moves ≤ refutation length
- # pebbles ≤ variable space

Observation (Ben-Sasson et al. '00

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. formula space!

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- # moves ≤ refutation length
- # pebbles ≤ variable space

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. formula space!

Formal Refutation-Pebbling Correspondence

Theorem (Ben-Sasson '02)

Any refutation translates into black-white pebbling with

- # moves ≤ refutation length
- # pebbles ≤ variable space

Observation (Ben-Sasson et al. '00)

Any black-pebbles-only pebbling translates into refutation with

- refutation length ≤ # moves
- total space ≤ # pebbles

Unfortunately pebbling contradictions are extremely easy w.r.t. formula space!

Key Idea: Variable Substitution

Make formula harder by substituting $x_1 \oplus x_2$ for every variable x:

$$\overline{x} \lor y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\neg (x_1 \oplus x_2) \lor (y_1 \oplus y_2)$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$(x_1 \lor \overline{x}_2 \lor y_1 \lor y_2)$$

$$\land (x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2)$$

$$\land (\overline{x}_1 \lor x_2 \lor y_1 \lor y_2)$$

$$\land (\overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2)$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x			
Obvi	ous approach for F	[⊕]: mimic refu	utation of <i>F</i>
		1	

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

X

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\frac{x}{\overline{x}} \lor y$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\frac{x}{\overline{x}} \lor y$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\frac{x}{\overline{x}} \lor y$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\frac{x}{\overline{x}} \lor y$$

$$X_{1} \lor X_{2}$$

$$\overline{X}_{1} \lor \overline{X}_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor y_{1} \lor y_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

$$\frac{x}{\overline{x}} \lor y$$

$$X_{1} \lor X_{2}$$

$$\overline{X}_{1} \lor \overline{X}_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor y_{1} \lor y_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor y_{1} \lor y_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{y}_{1} \lor y_{2}$$

$$\overline{y}_{1} \lor \overline{y}_{2}$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

$$\frac{x}{\overline{x}} \lor y$$

For such refutation of $F[\oplus]$:

- length ≥ length for F
- formula space ≥ variable space for F

$$X_{1} \lor X_{2}$$

$$\overline{X}_{1} \lor \overline{X}_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor y_{1} \lor y_{2}$$

$$X_{1} \lor \overline{X}_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor y_{1} \lor y_{2}$$

$$\overline{X}_{1} \lor X_{2} \lor \overline{y}_{1} \lor \overline{y}_{2}$$

$$\overline{Y}_{1} \lor Y_{2}$$

$$\overline{y}_{1} \lor \overline{y}_{2}$$

Let $F[\oplus]$ denote formula with XOR $x_1 \oplus x_2$ substituted for x

Obvious approach for $F[\oplus]$: mimic refutation of F

$$\frac{x}{\overline{x}} \lor y$$

For such refutation of $F(\oplus)$:

- length ≥ length for F
- formula space ≥ variable space for F

$$\begin{array}{l}
x_1 \lor x_2 \\
\overline{x}_1 \lor \overline{x}_2 \\
x_1 \lor \overline{x}_2 \lor y_1 \lor y_2 \\
x_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor \overline{y}_2 \\
\overline{x}_1 \lor x_2 \lor y_1 \lor y_2 \\
\overline{x}_1 \lor x_2 \lor \overline{y}_1 \lor \overline{y}_2 \\
\overline{y}_1 \lor y_2 \\
\overline{y}_1 \lor \overline{y}_2
\end{array}$$

Prove that this is (sort of) best one can do for $F[\oplus]!$

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

XOR formula $F[\oplus]$	Original formula F
If XOR blackboard implies e.g. $\neg(x_1 \oplus x_2) \lor (y_1 \oplus y_2)$	write $\overline{x} \vee y$ on shadow blackboard
For consecutive XOR black-board configurations	can get between correspond- ing shadow blackboards by legal derivation steps
(sort of) upper-bounded by XOR derivation length	Length of shadow blackboard derivation
is at most # clauses on XOR blackboard	# variables mentioned on shadow blackboard

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

Applying Substitution to Pebbling Formulas

Making variable substitutions in pebbling formulas

- lifts lower bound from variable space to formula space
- maintains upper bound in terms of total space and length

Substitution with XOR over k + 1 variables works against k-DNF resolution

Get our results by

- using known pebbling results from literature of 70s and 80s
- proving a couple of new pebbling results
- to get tight trade-offs, showing that resolution proofs can sometimes do better than black-only pebblings

- Find family of graphs $\{G_n\}_{n=1}^{\infty}$ that have
 - small black pebbling space S_{Low}(n)
 - black pebblings in time $T_B(n)$ and space $S_B(n)$
 - **but no** black-white pebblings in time $\leq T_{BW}(n)$ and space $\leq S_{BW}(n)$

- 2 Then pebbling formulas over $\{G_n\}_{n=1}^{\infty}$ with XOR substitution can be refuted in resolution
 - in small total space $\approx S_{Low}(n)$
 - in simultaneous length $\approx T_B(n)$ and total space $\approx S_B(n)$
 - **but not** in length $\lesssim T_{BW}(n)$ and formula space $\lesssim S_{BW}(n)$
- ① If $T_B \approx T_{BW}$ and $S_B \approx S_{BW}$ done! Otherwise extra work on resolution side to get tight results

- Find family of graphs $\{G_n\}_{n=1}^{\infty}$ that have
 - small black pebbling space $S_{Low}(n)$
 - black pebblings in time $T_B(n)$ and space $S_B(n)$
 - **but no** black-white pebblings in time $\leq T_{BW}(n)$ and space $\leq S_{BW}(n)$

- 2 Then pebbling formulas over $\{G_n\}_{n=1}^{\infty}$ with XOR substitution can be refuted in resolution
 - in small total space $\approx S_{Low}(n)$
 - in simultaneous length $\approx T_B(n)$ and total space $\approx S_B(n)$
 - but not in length $\lesssim T_{BW}(n)$ and formula space $\lesssim S_{BW}(n)$ [not in formula space $\lesssim k + \sqrt[k-1]{S_{BW}(n)}$ in k-DNF resolution]
- If $T_B \approx T_{BW}$ and $S_B \approx S_{BW}$ done! Otherwise extra work on resolution side to get tight results

- Find family of graphs $\{G_n\}_{n=1}^{\infty}$ that have
 - small black pebbling space $S_{Low}(n)$
 - black pebblings in time $T_B(n)$ and space $S_B(n)$
 - **but no** black-white pebblings in time $\leq T_{BW}(n)$ and space $\leq S_{BW}(n)$

- 2 Then pebbling formulas over $\{G_n\}_{n=1}^{\infty}$ with XOR substitution can be refuted in resolution
 - in small total space $\approx S_{Low}(n)$
 - in simultaneous length $\approx T_B(n)$ and total space $\approx S_B(n)$
 - **but not** in length $\lesssim T_{BW}(n)$ and formula space $\lesssim S_{BW}(n)$ [not in formula space $\lesssim k+1\sqrt[k-1]{S_{BW}(n)}$ in k-DNF resolution]
- If $T_B \approx T_{BW}$ and $S_B \approx S_{BW}$ done! Otherwise extra work on resolution side to get tight results

- Find family of graphs $\{G_n\}_{n=1}^{\infty}$ that have
 - small black pebbling space $S_{Low}(n)$
 - black pebblings in time $T_B(n)$ and space $S_B(n)$
 - **but no** black-white pebblings in time $\leq T_{BW}(n)$ and space $\leq S_{BW}(n)$

- 2 Then pebbling formulas over $\{G_n\}_{n=1}^{\infty}$ with XOR substitution can be refuted in resolution
 - in small total space $\approx S_{Low}(n)$
 - in simultaneous length $\approx T_B(n)$ and total space $\approx S_B(n)$
 - **but not** in length $\lesssim T_{BW}(n)$ and formula space $\lesssim S_{BW}(n)$ [not in formula space $\lesssim k+1\sqrt[k-1]{S_{BW}(n)}$ in k-DNF resolution]
- If $T_B \approx T_{BW}$ and $S_B \approx S_{BW}$ done! Otherwise extra work on resolution side to get tight results

Lower Bounds on Total Space?

Open Question

Are there polynomial-size k-CNF formulas with total refutation space $\Omega((size\ of\ F)^2)$?

Answer conjectured to be "yes" by [Alekhnovich et al. 2000]

Or can we at least prove a superlinear lower bound on total space?

Stronger Results for *k*-DNF resolution?

Gap of (k+1)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a (k+1)st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold

However, any improvement beyond kth root requires fundamentally different approach [Nordström & Razborov '09]

Stronger Results for *k*-DNF resolution?

Gap of (k+1)st root between upper and lower bounds for k-DNF resolution

Open Question

Can the loss of a (k+1)st root in the k-DNF resolution lower bounds be diminished? Or even eliminated completely?

Conceivable that same bounds as for resolution could hold

However, any improvement beyond *k*th root requires fundamentally different approach [Nordström & Razborov '09]

Stronger Length-Space Trade-offs than from Pebbling?

Open Question

Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question

Are there formulas with trade-offs in the range space > formula size? Or can every proof be carried out in at most linear space?

Pebbling formulas cannot answer these questions — can impossibly have such strong trade-offs

Summing up

- Optimal time-space separation in resolution
- Strong time-space trade-offs for resolution and k-DNF resolution for wide range of parameters
- Strict space hierarchy for k-DNF resolution
- Many remaining open questions about space in resolution

Thank you for your attention!