
Towards an Optimal Separation of
Space and Length in Resolution

[Extended Abstract]
∗

Jakob Nordström
†

Royal Institute of Technology (KTH)
SE-100 44 Stockholm, Sweden

jakobn@kth.se

Johan Håstad
Royal Institute of Technology (KTH)

SE-100 44 Stockholm, Sweden
johanh@kth.se

ABSTRACT
Most state-of-the-art satisfiability algorithms today are vari-
ants of the DPLL procedure augmented with clause learn-
ing. The main bottleneck for such algorithms, other than
the obvious one of time, is the amount of memory used. In
the field of proof complexity, the resources of time and mem-
ory correspond to the length and space of resolution proofs.
There has been a long line of research trying to understand
these proof complexity measures, as well as relating them
to the width of proofs, i.e., the size of the largest clause in
the proof, which has been shown to be intimately connected
with both length and space. While strong results have been
proven for length and width, our understanding of space is
still quite poor. For instance, it has remained open whether
the fact that a formula is provable in short length implies
that it is also provable in small space (which is the case for
length versus width), or whether on the contrary these mea-
sures are completely unrelated in the sense that short proofs
can be arbitrarily complex with respect to space.

In this paper, we present some evidence that the true
answer should be that the latter case holds and provide a
possible roadmap for how such an optimal separation result
could be obtained. We do this by proving a tight bound of
Θ(
√

n) on the space needed for so-called pebbling contra-
dictions over pyramid graphs of size n.

Also, continuing the line of research initiated by (Ben-
Sasson 2002) into trade-offs between different proof com-
plexity measures, we present a simplified proof of the recent
length-space trade-off result in (Hertel and Pitassi 2007),
and show how our ideas can be used to prove a couple of
other exponential trade-offs in resolution.

∗The full version is available as arXiv.org Technical Report
0803.0661 on http://arxiv.org/abs/0803.0661.
†Research supported in part by grants from the foundations
Johan och Jakob Söderbergs stiftelse and Sven och Dagmar
Saléns stiftelse.

c© ACM, 2008. This is the author’s version of the work. It
is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing
(STOC ’08), pages 701–710, May 2008, Victoria, British Columbia, Canada
http://doi.acm.org/10.1145/1374376.1374478

Categories and Subject Descriptors: F.4.1[Mathemati-
cal Logic and Formal Languages]: Mathematical Logic —
proof theory; F.1.3[Computation by Abstract Devices]: Com-
plexity Measures and Classes —Relations among complexity
measures; I.2.3[Artificial Intelligence]: Deduction and The-
orem Proving

General Terms: Theory

Keywords: Proof complexity, resolution, length, space,
separation, lower bound, pebbling

1. INTRODUCTION
Ever since the ground-breaking NP-completeness result of

Cook [13], the problem of deciding whether a given propo-
sitional logic formula in conjunctive normal form (CNF) is
satisfiable or not has been on center stage in Theoretical
Computer Science. In more recent years, satisfiability has
gone from a problem of mainly theoretical interest to a prac-
tical approach for solving applied problems. Although all
known Boolean satisfiability solvers (SAT-solvers) have ex-
ponential running time in the worst case, enormous progress
in performance has led to satisfiability algorithms becoming
a standard tool for solving a large number of real-world prob-
lems such as hardware and software verification, experiment
design, circuit diagnosis, and scheduling.

A somewhat surprising aspect of this development is that
the most successful SAT-solvers to date are still variants of
the resolution-based so-called DPLL procedure [16, 17] aug-
mented with clause learning . For instance, the great ma-
jority of the best algorithms at the 2007 round of the inter-
national SAT competitions [30] fit this description. DPLL
procedures perform a recursive backtrack search in the space
of partial truth value assignments. The idea behind clause
learning, or conflict-driven learning , is that at each failure
(backtrack) point in the search tree, the system derives a
reason for the inconsistency in the form of a new clause and
then adds this clause to the original CNF formula (“learn-
ing” the clause). This can save a lot of work later on in
the search, when some other partial truth value assignment
fails for similar reasons. The main bottleneck for this ap-
proach, other than the obvious one of time, is the amount of
memory used by the algorithms. Thus, understanding time
and memory requirements for clause learning algorithms,
and how these requirements are related to one another, is
a question of great practical importance. We refer to, e.g.,
[4, 24] for a more detailed discussion of clause learning (and
SAT-solving in general) with examples of applications.

The study of proof complexity originated with the sem-
inal paper of Cook and Reckhow [14]. In its most gen-
eral form, a proof system for a language L is a predicate
P (x, π), computable in time polynomial in |x| and |π|, such
that for all x ∈ L there is a string π (a proof) for which
P (x, π) = 1, whereas for any x 6∈ L it holds for all strings π
that P (x, π) = 0. A proof system is said to be polynomially
bounded if for every x ∈ L there is a proof πx of size at most
polynomial in |x|. A propositional proof system is a proof
system for the language of tautologies in propositional logic.

From a theoretical point of view, one important motiva-
tion for proof complexity is the intimate connection with
the fundamental question of P versus NP. Since NP is ex-
actly the set of languages with polynomially bounded proof
systems, and since tautology can be seen to be the dual
problem of satisfiability, we have the famous theorem
of [14] that NP = co-NP if and only if there exists a polyno-
mially bounded propositional proof system. Thus, if it could
be shown that there are no polynomially bounded proposi-
tional proof systems, P 6= NP would follow as a corollary
since P is closed under complement. One way of approach-
ing this distant goal is to study stronger and stronger proof
systems and try to prove superpolynomial lower bounds on
proof size. However, although great progress has been made
in the last couple of decades for a variety of proof systems,
it seems that we are still very far from fully understanding
the reasoning power of even quite simple ones.

A second important motivation is that, as was mentioned
above, designing efficient algorithms for proving tautologies
(or, equivalently, testing satisfiability), is a very important
problem not only in the theory of computation but also
in applied research and industry. All automated theorem
provers, regardless of whether they actually produce a writ-
ten proof, explicitly or implicitly define a system in which
proofs are searched for and rules which determine what
proofs in this system look like. Proof complexity analyzes
what it takes to simply write down and verify the proofs
that such an automated theorem-prover might find, ignor-
ing the computational effort needed to actually find them.
Thus a lower bound for a proof system tells us that any algo-
rithm, even an optimal (non-deterministic) one making all
the right choices, must necessarily use at least the amount of
a certain resource specified by this bound. In the other di-
rection, theoretical upper bounds on some proof complexity
measure give us hope of finding good proof search algorithms
with respect to this measure, provided that we can design
algorithms that search for proofs in the system in an effi-
cient manner. For DPLL procedures with clause learning,
the time and memory resources used are measured by the
length and space of proofs in the resolution proof system.

The field of proof complexity also has rich connections to
cryptography, artificial intelligence and mathematical logic.
Two good surveys providing more details are [3, 31].

1.1 Previous Work
Any formula in propositional logic can be converted to a

CNF formula that is only linearly larger and is unsatisfiable
if and only if the original formula is a tautology. Therefore,
any sound and complete system for refuting CNF formulas
can be considered as a general propositional proof system.

Perhaps the single most studied proof system for proposi-
tional logic, resolution, is such a system that produces proofs
of the unsatisfiability of CNF formulas. Resolution appeared

in [10] and began to be investigated in connection with au-
tomated theorem proving in the 1960s [16, 17, 28]. Because
of its simplicity—there is only one derivation rule—and be-
cause all lines in a proof are clauses, resolution readily lends
itself to proof search algorithms.

Being so simple and fundamental, resolution was also a
natural target to attack when developing methods for prov-
ing lower bounds in proof complexity. In this context, it
is most straightforward to prove bounds on the length of
refutations, i.e., the number of clauses, rather than on the
total size. The length and size measures are easily seen to
be polynomially related. In 1968, Tseitin [34] presented a
superpolynomial lower bound on length for a restricted form
of resolution, called regular resolution, but it was not until
almost 20 years later that Haken [21] proved the first super-
polynomial lower bound for general resolution. This weakly
exponential bound of Haken has later been followed by many
other strong results, among others truly exponential lower
bound on resolution refutation length for different formula
families in, for instance, [9, 12, 35].

A second complexity measure for resolution is the width,
i.e., the maximal size of a clause in the refutation. Ben-
Sasson and Wigderson [9] showed that the minimal width
W(F ` 0) of any refutation of a k-CNF formula F is bounded
from above by the minimal refutation length L(F ` 0) by

W(F ` 0) = O
`p

n log L(F ` 0)
´

, (1)

where n is the number of variables in F . Since it is also
easy to see that refutations of polynomial-size formulas in
small width must necessarily be short (for the reason that
(2 ·#variables)w is an upper bound on the total number of
distinct clauses of width w), the result in [9] can be inter-
preted as saying roughly that there exists a short refuta-
tion of F if and only if there exists a (reasonably) narrow
refutation of F . This gives rise to a natural proof search
heuristic: to find a short refutation, search for refutations
in small width. It was shown in [8] that there are formula
families for which this heuristic exponentially outperforms
any DPLL procedure regardless of branching function.

The formal study of space in resolution was initiated by
Esteban and Torán [18, 32]. Intuitively, the space Sp(π) of a
refutation π is the maximal number of clauses one needs to
keep in memory while verifying the refutation, and the space
Sp(F ` 0) of refuting F is defined as the minimal space of
any refutation of F . A number of upper and lower bounds
for refutation space in resolution and other proof systems
were subsequently presented in, for example, [1, 7, 19]. Just
as for width, the minimum space of refuting a formula can
be upper-bounded by the size of the formula. Somewhat
unexpectedly, however, it also turned out that the lower
bounds on resolution refutation space for several formula
families exactly matched previously known lower bounds on
refutation width. Atserias and Dalmau [2] showed that this
was not a coincidence, but that the inequality

W(F ` 0) ≤ Sp(F ` 0) + O(1) (2)

holds for any k-CNF formula F , where the (small) constant
term depends on k. In [26], the first author proved that the
inequality (2) is asymptotically strict by exhibiting a k-CNF
formula family of size O(n) refutable in width W(Fn ` 0) =
O(1) but requiring space Sp(Fn ` 0) = Θ(log n).

The space measure discussed above is known as clause
space. A less well-studied space measure, introduced by

Alekhnovich et al. [1], is variable space, which counts the
maximal number of variable occurrences that must be kept
in memory simultaneously. Ben-Sasson [5] used this measure
to obtain a trade-off result for clause space versus width in
resolution, proving that there are k-CNF formulas Fn that
can be refuted in constant clause space and constant width,
but for which any refutation πn must have Sp(πn) ·W(πn) =
Ω(n/ log n). More recently, Hertel and Pitassi [22] showed
that there are CNF formulas Fn for which any refutation in
minimal variable space VarSp(Fn ` 0) must have exponen-
tial length, but by adding just 3 extra units of storage one
can instead get a resolution refutation in linear length.

1.2 Questions Left Open by Previous Research
Despite all the research that has gone into understanding

the resolution proof system, a number of fundamental ques-
tions still remain unsolved. We touch briefly on two such
questions below, and then discuss a third one, which is the
main focus of this paper, in somewhat more detail.

Equation (1) says that short refutation length implies nar-
row refutation width. Combining Equation (2) with the ob-
servation above that narrow refutations are trivially short,
we get a similar statement that small refutation clause space
implies short refutation length. Note, however, that this
does not mean that there is a refutation that is both short
and narrow, or that any small-space refutation must also be
short. The reason is that the resolution refutations on the
left- and right-hand sides of (1) and (2) need not (and in
general will not) be the same one.

In view of the minimum-width proof search heuristic men-
tioned above, an important question is whether short refuta-
tion length of a formula entails that there is a refutation that
is both short and narrow. Also, it would be interesting to
know if small space of a refutation implies that it is short. It
is not known whether there are such connections or whether
on the contrary there exist some kind of trade-off phenom-
ena here similar to the one for space and width in [5].

A third, even more interesting problem is to clarify the
relation between length and clause space. For width, rewrit-
ing the bound in (1) in terms of the number of clauses |Fn|
instead of the number of variables we get that that if the
width of refuting Fn is ω

`p
|Fn| log|Fn|

´
, then the length of

refuting Fn must be superpolynomial in |Fn|. This is known
to be almost tight, since [11] shows that there is a k-CNF

formula family {Fn}∞n=1 with W(Fn ` 0) = Ω
`

3
p
|Fn|

´
but

L(Fn ` 0) = O(|Fn|). Hence, formula families refutable in
polynomial length can have somewhat wide minimum-width
refutations, but not arbitrarily wide ones.

What does the corresponding relation between space and
length look like? The inequality (2) tells us that any correla-
tion between length and clause space cannot be tighter than
the correlation between length and width, so in particular
we get from the previous paragraph that k-CNF formulas
refutable in polynomial length may have at least “some-
what spacious” minimum-space refutations. At the other
end of the spectrum, given any resolution refutation π of F
in length L it can be proven using results from [18, 23] that
Sp(π) = O(L/ log L). This gives an upper bound on any
possible separation of the two measures. But is there a Ben-
Sasson–Wigderson kind of upper bound on clause space in
terms of length similar to (1)? Or are length and space on
the contrary unrelated in the sense that there exist k-CNF
formulas Fn with short refutations but maximal possible

refutation space Sp(Fn ` 0) = Ω
`
L(Fn ` 0)/ log L(Fn ` 0)

´
in terms of length?

We note that for the restricted case of so-called tree-like
resolution, [18] showed that there is a tight correspondence
between length and clause space, exactly as for length versus
width. The case for general resolution has been discussed in,
for instance, [5, 19, 33], but there seems to have been no con-
sensus on what the right answer should be. However, these
papers identify a plausible formula family for answering the
question, namely so-called pebbling contradictions defined in
terms of pebble games over directed acyclic graphs.

1.3 Our Contribution
The main result in this paper provides some evidence that

the true answer to the question about the relationship be-
tween clause space and length is more likely to be at the
latter extreme, i.e., that the two measures can be separated
in the strongest sense possible. More specifically, as a step
towards this goal we prove an asymptotically tight bound on
the space of refuting pebbling contradictions over pyramids.

Theorem 1. The clause space of refuting pebbling con-
tradictions over pyramid graphs of height h in resolution
grows as Θ(h), provided that the number of variables per
vertex in the pebbling contradictions is at least 2.

This yields the first result separating clause space and
length that is not a consequence of a corresponding lower
bound on width, as well as an exponential improvement of
the separation of clause space and width in [26].

Corollary 2. For all k ≥ 4, there is a family {Fn}∞n=1

of k-CNF formulas of size Θ(n) that can be refuted in reso-
lution in length L(Fn ` 0) = O(n) and width W(Fn ` 0) =
O(1) but require clause space Sp(Fn ` 0) = Θ(

√
n).

In addition to our main result, we also make the the ob-
servation that the proof of the recent trade-off result in [22]
can be greatly simplified, and the parameters slightly im-
proved. Using similar ideas, we can also prove exponential
trade-offs for length with respect to clause space and width.
Namely, we show that there are k-CNF formulas such that
if we insist on finding the resolution refutation in smallest
clause space or smallest width, respectively, then we have
to pay with an exponential increase in length. We state the
theorem only for length versus clause space.

Theorem 3. There is a family {Fn}∞n=1 of k-CNF for-
mulas of size Θ(n) such that:

• The minimal clause space of refuting Fn in resolution
is Sp(Fn ` 0) = Θ

`
3
√

n
´
.

• Any resolution refutation π : Fn ` 0 in minimal clause
space must have length L(π) = exp

`
Ω

`
3
√

n
´´

.

• There are refutations π′ :Fn ` 0 in asymptotically min-
imal clause space Sp(π′) = O

`
Sp(Fn ` 0)

´
and length

L(π′) = O(n), i.e., linear in the formula size.

A theorem of exactly the same form can be proven for
length versus width as well.

The outline of this paper is as follows. We give a brief, in-
formal review of the preliminaries in Section 2. In Section 3,
we sketch the proofs of our results. Most of the proofs are
fairly involved, however, and due to space considerations we
refer to [27] for the technical details. We conclude in Sec-
tion 4 by giving suggestions for further research.

z

u v

r s t

(x(r)1 ∨ x(r)2) ∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2) ∧ x(z)2

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

Figure 1: The pebbling contradiction Peb2
Π2 for the pyramid graph Π2 of height 2.

2. PRELIMINARIES
A resolution refutation of a CNF formula F can be viewed

as a sequence of derivation steps on a blackboard. In each
step we may write a clause from F on the blackboard (an
axiom clause), erase a clause from the blackboard or derive
some new clause implied by the clauses currently written
on the blackboard. The refutation ends when we reach the
contradictory empty clause. The length of a resolution refu-
tation is the number of distinct clauses in the refutation, the
width is the size of the largest clause in the refutation, and
the clause space is the maximum number of clauses on the
blackboard simultaneously. We write L(F ` 0), W(F ` 0)
and Sp(F ` 0) to denote the minimum length, width and
clause space, respectively, of any resolution refutation of F .

The pebble game played on a directed acyclic graph (DAG)
G models the calculation described by G, where the sources
contain the input and non-source vertices specify operations
on the values of the predecessors. Placing a pebble on a ver-
tex v corresponds to storing in memory the partial result
of the calculation described by the subgraph rooted at v.
Removing a pebble from v corresponds to deleting the par-
tial result of v from memory. A pebbling of G is a sequence
of moves starting with the graph empty and ending with
all vertices empty except for a pebble on the (unique) sink
vertex. The cost of a pebbling is the maximal number of
pebbles used simultaneously at any point in time during the
pebbling. The pebbling price of G is the minimum cost of
any pebbling, i.e., the minimum number of registers required
to perform the complete calculation described by G.

The pebble game on a DAG G can be encoded as an un-
satisfiable CNF formula Pebd

G, a so-called pebbling contra-
diction of degree d, as follows (see Figure 1 for an example):

• Associate d variables x(v)1, . . . , x(v)d with each ver-
tex v (in Figure 1 we have d = 2).

• Specify that all sources have at least one true variable,
for example, the clause x(r)1 ∨ x(r)2 for the vertex r.

• Add clauses propagating the truth from predecessors
to successors (e.g. clauses 4–7 in Figure 1 say that
(x(r)1 ∨ x(r)2) ∧ (x(s)1 ∨ x(s)2) → (x(u)1 ∨ x(u)2).

• To get a contradiction, conclude with x(z)1∧· · ·∧x(z)d

where z is the sink of the DAG.

We will need the observation from [8] that a pebbling con-
tradiction of degree d over a graph with n vertices can be
refuted by resolution in length O

`
d2 · n

´
and width O(d).

3. OVERVIEW OF PROOFS
Pebble games have been used extensively as a tool to prove

time and space lower bounds and trade-offs for computa-
tion. Loosely put, a lower bound for the pebbling price of
a graph says that although the computation that the graph
describes can be performed quickly, it requires large space.
Our hope is that when we encode pebble games in terms of
CNF formulas, these formulas inherit the same properties
as the underlying graphs. That is, if we pick a DAG G with
high pebbling price, since the corresponding pebbling con-
tradiction encodes a calculation which needs a lot of memory
we would like to try to argue that any resolution refutation
of this formula should require large space. Then a separa-
tion result would follow since we already know from [8] that
the formula can be refuted in short length.

3.1 Proof Idea for Space Bound
More specifically, what we would like to do is to establish a

connection between resolution refutations of pebbling con-
tradictions on the one hand, and the so-called black-white
pebble game [15] modelling the non-deterministic computa-
tions described by the underlying graphs on the other. Our
belief is that the resolution proof system should have to con-
form to the combinatorics of the pebble game in the sense
that from any refutation of a pebbling contradiction Pebd

G

we should be able to extract a pebbling of the DAG G.
Ideally, we would like to give a proof of a lower bound on

the resolution refutation space of pebbling contradictions
along the following lines:

1. First, find a natural interpretation of sets of clauses
currently “on the blackboard” in a refutation of the
formula Pebd

G in terms of black and white pebbles on
the vertices of the DAG G.

2. Then, prove that this interpretation captures the peb-
ble game in the following sense: for any resolution refu-
tation of Pebd

G, looking at consecutive sets of clauses
on the blackboard and considering the corresponding
sets of pebbles we get a black-white pebbling of G.

3. Finally, show that the interpretation captures clause
space in the sense that if the content of the blackboard
induces N pebbles on the graph, then there must be
at least N clauses on the blackboard.

Combining the above with known lower bounds on the peb-
bling price of G, this would imply a lower bound on the

2666666664

x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

3777777775
(a) Clauses on blackboard.

z

u v

r s t

(b) Corresponding pebbles in the graph.

Figure 2: Example of intuitive correspondence between sets of clauses and pebbles.

refutation space of pebbling contradictions. The separation
from length and width would then follow from the fact that
pebbling contradictions are known to be refutable in linear
length and constant width if d is fixed.

Unfortunately, this idea does not quite work. In the next
subsection, we describe the modifications that we are forced
to make, and show how we can make the bits and pieces of
our construction fit together to yield Theorem 1 and Corol-
lary 2 for the special case of pyramid graphs.

3.2 Overview of Formal Proof of Space Bound
The black-white pebble game played on a DAG G can be

viewed as a way of proving the end result of the calcula-
tion described by G. Black pebbles denote proven partial
results of the computation. White pebbles denote assump-
tions about partial results which have been used to derive
other partial results (i.e., black pebbles), but these assump-
tions will have to be verified for the calculation to be com-
plete. The final goal is a black pebble on the sink z and
no other pebbles in the graph, corresponding to an uncon-
ditional proof of the end result of the calculation.

Translating this to pebbling contradictions, it turns out
that a fruitful way to think of a black pebble on v is that
it should correspond to truth of the disjunction

Wd
i=1 x(v)i

of all positive literals over v, or to “truth of v”. With this
correspondence it is straightforward to translate a pebbling
of G using only black pebbles into refutation of the pebbling
contradiction Pebd

G. The only observation needed is that if
we have derived the clauses

Wd
i=1 x(s)i and

Wd
i=1 x(t)i for

the two predecessors s and t of v, then by downloading the
axioms saying that truth propagates from s and t to v we can
derive

Wd
i=1 x(v)i. The correspondence here is quite close in

that the space used by the refutation is at most an additive
constant larger than the number of black pebbles used.

When we look at pebblings involving also white pebbles
the translation gets slightly more complicated. White peb-
bles enable us to place black pebbles “in the middle”of the
DAG without first having to pebble bottom-up from the
sources. For instance, if we white-pebble u and v in Fig-
ure 1, we can then place a black pebble on their common
successor z. Next, the white pebble on, say, v can be elimi-
nated by placing white pebbles on the predecessors s and t,
allowing the pebble on v to be removed. A resolution deriva-
tion can mimic these pebbling moves by writing all axioms
x(u)i∨ x(v)j∨

Wd
n=1 x(z)n and x(s)i∨ x(r)j∨

Wd
n=1 x(v)n on

the blackboard and then using all these clauses to derive
x(u)i∨ x(s)j∨ x(r)l∨

Wd
n=1 x(z)n for i, j, l ∈ [d]. As it hap-

pens, it is possible to translate any black-white pebbling to

a refutation in this way (modulo some technical details), but
the reduction is not as tight as in the case of a black-pebbles-
only pebbling. As we can see from the example above, this
naive translation can transform N white pebbles into a set
of clauses of size dN .

The key to our argument, however, is a translation in the
other direction. We want to start with a resolution refuta-
tion and produce a black-white pebbling and then use the
existing lower bound machinery for the black-white pebble
game to get a lower bound on clause space. Let us first
try to give the intuition behind our translation, and then
discuss some technical complications that arise and how we
adapt our construction to cope with these problems.

For black pebbles, we can reuse the ideas above for trans-
forming pebblings into refutations. If the clause

Wd
i=1 x(v)i

is implied by the current content of the blackboard, we will
let this correspond to a black pebble on v. A white pebble
in a pebbling is a “debt” that has to be paid. It is diffi-
cult to see how any clause could be a liability in the same
way and therefore no set of clauses corresponds naturally
to isolated white pebbles. But if we think of white pebbles
as assumptions that allow us to place black pebbles higher
up in the DAG, it makes sense to say that if the content of
the blackboard conditionally implies

Wd
i=1 x(v)i given that

we also assume the set of clauses
˘Wd

i=1 x(w)i

˛̨
w ∈ W

¯
for

some vertex set W , then this could be interpreted as a black
pebble on v and white pebbles on the vertices in W .

Using this correspondence, we can translate sets of clauses
into black and white pebbles in a way that fits nicely with
the resolution derivations sketched above. To give a con-
crete example, the clauses in Figure 2(a) correspond to the
pebbles in Figure 2(b). To see this, note that if we assume
x(s)1∨x(s)2 and x(t)1∨x(t)2, this assumption together with
the clauses on the blackboard imply x(v)1 ∨ x(v)2, so v is
black-pebbled and s and t are white-pebbled in Figure 2(b).
The vertex u is also black since x(u)1 ∨ x(u)2 certainly is
implied by the blackboard.

The problem is that refutations can derive clauses that
cannot be translated, at least not naturally, to pebbles in the
way indicated above. A particularly dangerous sitation is
when clauses are derived that are the disjunction of positive
literals from different vertices. Such clauses do not appear
to be very useful, but nevertheless we have to model them
in some way. To see why, consider the following example.
Starting from the blackboard in Figure 2(a), a refutation

could add the axioms x(u)i∨x(v)2∨x(z)1∨x(z)2 for i = 1, 2,

derive the clauses x(s)i∨x(t)j∨x(v)1∨x(z)1∨x(z)2 for i, j =

1, 2, and then erase x(u)1 ∨ x(u)2 to save space, resulting in

2666664
x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

3777775
(a) New set of clauses on blackboard.

z

u v

r s t

(b) Corresponding blobs and pebbles.

Figure 3: Intepreting sets of clauses as black blobs and white pebbles.

the blackboard in Figure 3(a). This blackboard does not
correspond to any pebbles under our tentative translation.
However, the clauses can easily be used to derive something
that does. For instance, writing down all axioms x(u)i ∨
x(v)j ∨ x(z)1 ∨ x(z)2, i, j = 1, 2, we get that the truth of s,
t, and u implies the truth of z. We have decided to interpret
such a set of clauses as a black pebble on z and white pebbles
on s, t, and u, but this pebble configuration cannot arise out
of nothing in an empty DAG.

Although it is perhaps hard to see from such a small ex-
ample, this turns out to be a serious problem. There appears
to be no way that we can interpret sets of clauses as in Fig-
ure 3(a) in terms of black and white pebbles without making
some component in the proof idea in Section 3.1 break down.
Instead, what we do is to invent a new pebble game, with
white pebbles just as before, but with black blobs that can
cover multiple vertices instead of single-vertex black peb-
bles. A blob on a vertex set V can be thought of as truth
of some vertex v ∈ V . The clauses in Figure 3(a) are conse-
quently translated into white pebbles on s and t, as before,
and a black blob covering both v and z in Figure 3(b).

We use this blob-pebble game to build a lower bound proof
as outlined in Section 3.1. First, we establish that for a fairly
general class of graphs, any refutation of a pebbling contra-
diction can be interpreted as a blob-pebbling on the DAG
in terms of which this pebbling contradiction is defined.

Theorem 4. Let Pebd
G denote any pebbling contradiction

over a layered DAG G. Then there is a translation from sets
of clauses derived from Pebd

G into sets of black blobs and
white pebbles in G such that any refutation π of Pebd

G cor-
responds to a blob-pebbling Pπ of G under this translation.

Proof outline. If there are vertex sets B and W with
B ∩ W = ∅ and a subset C of blackboard clauses such that

C ∪
˘Wd

i=1 x(w)i

˛̨
w ∈ W

¯
�

W
v∈B

Wd
i=1 x(v)i (3)

but this implication does not hold for any subset of B, W ,
or C, the blackboard induces a black blob on B supported
by white pebbles on W . This subconfiguration of pebbles is
denoted [B]〈W 〉. The pebble configuration corresponding to
the blackboard is the set S of all induced subconfigurations.

When an axiom clause x(s)i∨ x(t)j∨
Wd

l=1 x(v)l is writ-

ten on the blackboard, we match this (if needed) by a black
blob on v and white pebbles on s and t, i.e., by the sub-
configuration [v]〈s, t〉. This is an introduction move, and it
corresponds to the rules for black and white pebble place-
ment in the standard pebble game. See Figure 4(b) for an
example. If v is a source, we get the subconfiguration [v]〈∅〉.

Because of the new axiom, there can also appear other
blobs and pebbles. We show that they can all be explained in
terms of mergers of existing subconfigurations [B1]〈W1〉 and
[B2]〈W2〉 such that B1 ∩ W2 = ∅ and B2 ∩ W1 = {v∗} for
some vertex v∗ into

ˆ
(B1 ∪ B2) \ {v∗}

˜˙
(W1 ∪ W2) \ {v∗}

¸
as in the transition from Figure 4(c) to Figure 4(d). To see
why the merger rule is defined the way it is, note that if
the blackboard plus truth of all w ∈ Wi implies the truth of
some v ∈ Bi for i = 1, 2, then certainly the blackboard plus
truth of all w ∈ (W1 ∪ W2) \ {v∗} implies the truth of some
vertex either in B1 (if v∗ is true) or B2 \{v∗} (if v∗ is false).

When new clauses are derived, we expect nothing to hap-
pen since these clauses are implied by what is already on the
blackboard. It can be the case, though, that clauses are de-
rived that are in some sense “weaker” than what is implied
by the blackboard, but if so we can make inflation moves
that inflate blobs to cover more vertices and/or add white
pebbles. See Figures 4(e) and 4(f) for an example.

Finally, blobs and pebbles can disappear when clauses are
erased from the blackboard. A problem here is that we can
get erasures of white pebbles, which is not acceptable in the
black-white pebble game. However, by associating white
pebbles with black blobs in subconfigurations [B]〈W 〉, we
can allow erasures of white pebbles W as long as the blobs
B that they support are erased as well. Thus, one cannot
erase individual pebbles but only entire subconfigurations.
In this way (sweeping the technical details under the rug) we
can associate a blob-pebbling Pπ with any refutation π.

The next step is to design a cost function for black blobs
and white pebbles so that the cost of the blob-pebbling Pπ

in Theorem 4 is related to the space of the resolution refu-
tation π. Consider first two special cases. If a clause set
induces N disjoint blobs without any supporting white peb-
bles, it is not hard to prove that the size of this set is at
least N . This is clearly tight, so the cost of a single blob
can never exceed one. And if C ∪

˘Wd
i=1 x(w)i

˛̨
w ∈ W

¯
im-

plies
W

v∈B

Wd
i=1 x(v)i with the vertex set W chosen mini-

mal so that this implication still holds, it can be shown that
|C| > (d− 1)|W | (so here we need d > 1). This follows from
the fact that a minimally unsatisfiable CNF formula over N
variables must contain strictly more than N clauses.

In general, matters will be more complicated. Distinct
blobs will not be disjoint, and therefore cannot always all
count towards the cost. Also, black blobs and white pebbles
from different subconfigurations can intersect in tricky ways.
We do not have the space to elaborate on why this works,
but if we only allow blobs B that are chains (i.e., where all
v ∈ B are ordered topologically), look at the lowest vertex

(a) Empty pyramid. (b) Introduction move.

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

(e) Subconfiguration before inflation. (f) Subconfiguration after inflation.

Figure 4: Examples of moves in the blob-pebble game.

in each blob and count the number of distinct such vertices,
and also only charge for white pebbles in [B]〈W 〉 that are
located below the bottom vertex of B, we get the required
result. Once we have defined the cost function in this way,
the proof that blob-pebbling cost yields a lower bound on
clause space is similar to the proof of Theorem 19 in [26].

Theorem 5. If π is a refutation of a pebbling contradic-
tion of degree d > 1, the cost of the associated blob-pebbling
Pπ is bounded by the space of π by cost(Pπ) ≤ Sp(π)+O(1).

Finally, we need lower bounds on blob-pebbling price. Be-
cause of the inflation rule in combination with the pecu-
liar cost function, the blob-pebble game seems to behave
somewhat differently from the standard black-white pebble
game, and therefore we cannot appeal directly to known
lower bounds on black-white pebbling price. Luckily, the
lower bound construction in [25] can be generalized to the
blob-pebble game giving the following theorem.

Theorem 6. Pyramids Πh have blob-pebbling price Θ(h).

Proof outline. The key idea (adapted from [25]) is to
define a potential measure for the set of subconfigurations

S = {[Bi]〈Wi〉 | i = 1, . . . , m} currently in the graph as an
indicator of “how good” this set is and prove two facts from
which the desired bound immediately follows:

1. The potential of the current pebble configuration St is
upper-bounded, up to a fixed multiplicative constant,
by the maximum cost of any configuration St′ , t′ ≤ t.

2. The final pebble configuration Sτ =
˘
[z]〈∅〉

¯
consisting

of a single black blob on the sink has potential Θ(h).

More precisely, let U{�j} denote the vertices in U on or
above level j (sources are on level 0 and the sink z is on
level h) and define m(U)=max

˘
j+2|U{�j}| : U{�j} 6= ∅

¯
to be the measure of U . U blocks [B]〈W 〉 if U ∪W intersects
every path P from a source vertex such that B ⊆ P , and U
blocks S if it blocks every [B]〈W 〉 ∈ S. The potential of S is
pot(S) = min{m(U) : U blocks S}.

Fact 2 of the proof now follows easily, since it can be shown
that the set U with smallest measure blocking Sτ =

˘
[z]〈∅〉

¯
is U = {z} with m(U) = h + 2 (this is a useful exercise if
one wants to get some feeling for how the potential works).

Fact 1 is proven by induction. Suppose that Ut blocks
St and that pot(St) = m(Ut). By the inductive hypothesis,

we have pot(St) ≤ C ·maxt′≤t{cost(St′)}. We want to show
pot(St+1) ≤ C ·maxt′≤t+1{cost(St′)}, which clearly holds if

pot(St+1) ≤ max{pot(St), C · cost(St+1)} . (4)

To establish this inequality, we note that if the pebbling
move at time t + 1 is an inflation, St+1 is blocked by Ut

(e.g., if Ut blocks the subconfiguration in Figure 4(e), then it
blocks Figure 4(f)). Hence, pot(St+1) ≤ m(Ut) = pot(St) in
this case. In the same way it can be verified that if Ut blocks
two subconfigurations being merged, it must also block the
result of the merger (compare Figures 4(c) and 4(d)). And
if we make an introduction move on a non-source vertex, the
white pebbles on the predecessors block the black blob no
matter what Ut looks like (see Figure 4(b)).

Thus, the potential can only increase when an introduc-
tion of [v]〈∅〉 is performed on a source v. It turns out that
what we need to prove (4) in this case is that pyramid graphs
have the following property: There exists a constant C′ such
that for any configuration S there is a blocking vertex set U
with pot(S) = m(U) and |U | ≤ C′ · cost(S).

This far the construction closely parallels that in [25], but
showing that we can choose blocking sets that achieve the
minimum measure and at the same time have limited cardi-
nality requires new tools, as well as using the proof in [25]
as a subroutine. We refer to [27] for the details.

We remark that the proof of Theorem 6 applies in (almost)
the same generality as in [25]. It works for all layered DAGs
that are also “spreading” in the sense that (loosely speaking)
for every vertex v on any level L and every K ≤ L, there
are at least K + 1 vertices located exactly K levels below
v from which v is reachable. This class of graphs includes
among others complete binary trees and pyramid graphs.

It is an intriguing open question to determine the exact
relation between the blob-pebble game and the black-white
pebble game. On the one hand, to prove Theorem 6 we use
additional techniques and get worse constants compared to
the construction in [25]. On the other hand, we do not know
of a single example where the possibility to use blobs reduces
the cost of the cheapest pebbling.

Returning to our main path of reasoning and putting all
of this together, we can now prove our main theorem.

Theorem 1 (restated). Let Pebd
Πh

denote the pebbling
contradiction of degree d > 1 defined over the pyramid graph
of height h. Then the clause space of refuting Pebd

Πh
by

resolution is Sp(Pebd
Πh

` 0) = Θ(h).

Proof. The upper bound Sp(Pebd
Πh

` 0) = O(h) is easy,
so the interesting part is the lower bound. Let π be any
resolution refutation of Pebd

Πh
and consider the associated

blob-pebbling Pπ provided by Theorem 4. On the one hand,
we know that cost(Pπ) = O(Sp(π)) by Theorem 5, provided
that d > 1. On the other hand, Theorem 6 tells us that the
cost of any blob-pebbling of Πh is Ω(h), so in particular we
must have cost(Pπ) = Ω(h). Combining these two bounds
on cost(Pπ), we see that Sp(π) = Ω(h).

The pebbling contradiction Pebd
G is a (2+d)-CNF formu-

la and for constant d the size of the formula is linear in the
number of vertices of G (compare Figure 1). Hence, for pyra-
mid graphs Πh the corresponding pebbling contradictions
Pebd

Πh
have size quadratic in the height h. Also, when d is

fixed the upper bounds mentioned at the end of Section 2

become L(Pebd
G ` 0) = O(n) and W(Pebd

G ` 0) = O(1).
Corollary 2 now follows if we set Fn = Pebd

Πh
for d = k − 2

and h = b
√

nc and use Theorem 1.

Corollary 2 (restated). For every k ≥ 4, there is a
family of k-CNF formulas {Fn}∞n=1 of size Θ(n) that can be
refuted in length L(Fn ` 0) = O(n) and width W(Fn ` 0) =
O(1) but require clause space Sp(Fn ` 0) = Θ(

√
n).

3.3 Overview of Trade-off Results
Let us also quickly sketch the ideas (or tricks, really) used

to prove our trade-off theorems for resolution.
We show the following version of the length-variable space

trade-off theorem of Hertel and Pitassi [22], with somewhat
improved parameters and a very much simpler proof.

Theorem 7. There is a family of CNF formulas {Fn}∞n=1

of size Θ(n) such that:

• The minimal variable space of refuting Fn in resolution
is VarSp(Fn ` 0) = Θ(n).

• Any resolution refutation π : Fn ` 0 in minimal vari-
able space has length exp(Ω(

√
n)).

• Adding at most 2 extra units of storage, one can obtain
a refutation in space VarSp(Fn ` 0) + 3 = Θ(n) and
length O(n), i.e., linear in the formula size.

The idea behind our proof is as follows. Take formulas Gn

that are really hard for resolution and formulas Hm which
have short refutations but require linear variable space, and
set Fn = Gn ∧Hm for m chosen so that VarSp

`
Hm ` 0

´
is

only just larger than VarSp
`
Gn ` 0

´
. Then refutations in

minimal variable space will have to take care of Gn, which
requires exponential length, but adding one or two literals
to the memory we can attack Hm instead in linear length.

The trade-off result in Theorem 3 for length versus clause
space and its twin theorem for length versus width are shown
using similar ideas. Again, the details can be found in [27].

4. CONCLUSION AND OPEN PROBLEMS
We have proven an asymptotically tight bound on the

refutation clause space in resolution of pebbling contradic-
tions over pyramid graphs. This yields the currently best
known separation of length and clause space in resolution.
Also, in contrast to previous polynomial lower bounds on
clause space, our result does not not follow from correspond-
ing lower bounds on width for the same formulas. Instead,
a corollary of our result is an exponential improvement of
the separation of width and space in [26]. This is a first step
towards answering the question of the relationship between
length and space posed in, for instance, [5, 19, 33].

More technically, we have established that for all graphs
G in the class of “layered spreading DAGs” (including bi-
nary trees and pyramids) the height h of G, which coincides
with the black-white pebbling price, is an asymptotical lower
bound for the refutation clause space Sp

`
Pebd

G ` 0
´

of peb-

bling contradictions Pebd
G provided that d ≥ 2. Plugging

in pyramids we get an Ω(
√

n) bound on space, which is the
best one can get for any spreading graph.

An obvious question is whether this lower bound on clause
space in terms of black-white pebbling price is true for ar-
bitrary DAGs. In particular, does it hold for the family of
DAGs {Gn}∞n=1 in [20] of size O(n) that have maximal black-
white pebbling price BW-Peb(Gn) = Ω(n/ log n) in terms of

size? If it could be proven for pebbling contradictions over
such graphs that pebbling price bounds clause space from
below, this would immediately imply that there are k-CNF
formulas refutable in small length that can be maximally
complex with respect to clause space.

Open Problem 1. Is there a family of k-CNF formu-
las {Fn}∞n=1 of size O(n) such that L(Fn ` 0) = O(n) and
W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Ω(n/ log n)?

A second question, more related to Theorem 3 and our
other trade-off results, is as follows. We know from (1) that
short resolution refutations imply the existence of narrow
refutations, and in view of this an appealing proof search
heuristic is to search exhaustively for refutations in minimal
width. One serious drawback of this approach is that there
is no guarantee that the short and narrow refutations are
the same one. On the contrary, the narrow refutation π′

resulting from the proof in [9] is potentially exponentially
longer than the short proof π that we start with. However,
we have no examples of formulas where the refutation in
minimum width is actually known to be substantially longer
than the minimum-length refutation. Therefore, it would be
valuable to know whether this increase in length is necessary.
That is, is there a formula family which exhibits a length-
width trade-off in the sense that there are short refutations
and narrow refutations, but all narrow refutations have a
length blow-up (polynomial or superpolynomial)? Or is the
exponential blow-up in [9] just an artifact of the proof?

Open Problem 2. If F is a k-CNF formula over n vari-
ables refutable in length L, is it true that there is always a
refutation π of F in width W(π) = O

`√
n log L

´
with length

no more than, say, L(π) = O(L) or at most poly(L)?

A similar trade-off question can be posed for clause space.
Given a refutation in small space, we can prove using (2)
that there must exist a refutation in short length. But again,
the short refutation resulting from the proof is not the same
as that with which we started. For concreteness, let us fix
the space to be constant. If a polynomial-size k-CNF formu-
la has a refutation in constant space, we know that it must
be refutable in polynomial length. But can we get a refuta-
tion in both short length and small space simultaneously?

Open Problem 3. Suppose that {Fn}∞n=1 is a family of
polynomial-size k-CNF formulas with refutation clause space
Sp(Fn ` 0) = O(1). Does this imply that there are refuta-
tions πn : Fn ` 0 simultaneously in length L(πn) = poly(n)
and clause space Sp(πn) = O(1)?

Or can it be that restricting the clause space, we some-
times have to end up with really long refutations? We would
like to know what holds in this case, and how it relates to
the trade-off results for variable space in [22].

Finally, we note that all bounds on clause space proven
so far is in the regime where the clause space Sp(π) is less
than the number of clauses |F | in F . This is quite natural,
since the size of the formula can be shown to be an upper
bound on the minimal clause space needed [18].

Such lower bounds on space might not seem too relevant
to clause learning algorithms, since the size of the cache in
practical applications usually will be very much larger than
the size of the formula. For this reason, it seems to be a

highly interesting problem to determine what can be said if
we allow extra clause space. Assume that we have a CNF
formula F of size roughly n refutable in length L(F ` 0) = L
for L suitably large (say, L = poly(n) or L = nlog n or so).
Suppose that we allow clause space more than the minimum
n+O(1), but less than the trivial upper bound L/ log L. Can
we then find a refutation using at most that much space and
achieving at most a polynomial increase in length compared
to the minimum?

Open Problem 4 ([6]). Let F be any CNF formula
with |F | = n clauses (or |Vars(F)| = n variables). Sup-
pose that L(F ` 0) = L. Does this imply that there is a
resolution refutation π : F ` 0 in clause space Sp(π) = O(n)
and length L(π) = poly(L)?

If so, this could be interpreted as saying that a smart
enough clause learning algorithm can potentially find any
short resolution refutation in reasonable space (and for for-
mulas that cannot be refuted in short length we cannot hope
to find refutations efficiently anyway).

We conclude with a couple of comments on clause space
versus clause learning.

Firstly, we note that it is unclear whether one should ex-
pect any fast progress on Open Problem 4, at least if if our
experience from the case where Sp(π) ≤ |F | is anything to go
by. Proving lower bounds on space in this “low-end regime”
for formulas easy with respect to length has been (and still
is) very challenging. However, it certainly cannot be ex-
cluded that problems in the range Sp(π) > |F | might be
approached with different and more successful techniques.

Secondly, we would like to raise the question of whether,
in spite of what was just said before Open Problem 4, lower
bounds on space can nevertheless give indications as to which
formulas might be hard for clause learning algorithms and
why. Suppose that we know for some CNF formula F that
Sp(F ` 0) is large. What this tells us is that any algorithm,
even a non-deterministic one making optimal choices con-
cerning which clauses to save or throw away, will have to
keep a fairly large number of “active” clauses in memory in
order to carry out the refutation. Since this is so, a real-life
deterministic proof search algorithm, which has no sure-fire
way of knowing which clauses are the right ones to concen-
trate on at any given moment, might have to keep working
on a lot of extra clauses in order to be sure that the fairly
large critical set of clauses needed to find a refutation will
be among the “active” clauses.

Intriguingly enough, pebbling contradictions over pyra-
mids might in fact be an example of this. We know that
these formulas are very easy with respect to length and
width, having constant-width refutations that are essentially
as short as the formulas themselves. But in [29], it was
shown that state-of-the-art clause learning algorithms can
have serious problems with even moderately large pebbling
contradictions. (Their “grid pebbling formulas” are exactly
our pebbling contradictions of degree d = 2 over pyramids.)
Although we are certainly not arguing that this is the whole
story—it was also shown in [29] that the branching order is a
critical factor, and that given some extra structural informa-
tion the algorithm can achieve an exponential speed-up—we
wonder whether the high lower bound on space can never-
theless be part of the explanation. It should be pointed out
that pebbling contradictions are the only formulas we know
of that are really easy with respect to length and width but

hard for clause space. And if there is empirical data showing
that for these very formulas clause learning algorithms can
have great difficulties finding refutations, it might be worth
investigating whether this is just a coincidence or a sign of
some deeper connection.

5. ACKNOWLEDGEMENTS
We are grateful to Per Austrin and Mikael Goldmann for

generous feedback during various stages of this work, and
to Gunnar Kreitz for quickly spotting some bugs in a pre-
liminary version of the blob-pebble game. Also, we would
like to thank Paul Beame, Maria Klawe, Philipp Hertel,
and Toniann Pitassi for valuable correspondence concerning
their work, Nathan Segerlind for comments and pointers re-
garding clause learning, and Eli Ben-Sasson for stimulating
discussions about proof complexity in general and the prob-
lems in Section 4 in particular.

6. REFERENCES
[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and

A. Wigderson. Space complexity in propositional
calculus. SIAM J. Comput., 31(4):1184–1211, 2002.

[2] A. Atserias and V. Dalmau. A combinatorical
characterization of resolution width. In Proc. 18th
IEEE Annual Conference on Computational
Complexity (CCC ’03), pages 239–247, 2003.

[3] P. Beame. Proof complexity. In S. Rudich and
A. Wigderson, editors, Computational Complexity
Theory, volume 10 of IAS/Park City Mathematics
Series, pages 199–246. AMS, 2004.

[4] P. Beame, H. Kautz, and A. Sabharwal.
Understanding the power of clause learning. In Proc.
18th International Joint Conference in Artificial
Intelligence (IJCAI ’03), pages 94–99, 2003.

[5] E. Ben-Sasson. Size space tradeoffs for resolution. In
Proc. 34th Annual ACM Symposium on Theory of
Computing (STOC ’02), pages 457–464, 2002.

[6] E. Ben-Sasson. Personal communication, 2007.

[7] E. Ben-Sasson and N. Galesi. Space complexity of
random formulae in resolution. Rand. Struct.
Algorithms, 23(1):92–109, 2003.

[8] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson.
Near optimal separation of treelike and general
resolution. Combinatorica, 24(4):585–603, 2004.

[9] E. Ben-Sasson and A. Wigderson. Short proofs are
narrow—resolution made simple. J. ACM,
48(2):149–169, 2001.

[10] A. Blake. Canonical Expressions in Boolean Algebra.
PhD thesis, University of Chicago, 1937.

[11] M. L. Bonet and N. Galesi. Optimality of size-width
tradeoffs for resolution. Comput. Complexity,
10(4):261–276, 2001.

[12] V. Chvátal and E. Szemerédi. Many hard examples for
resolution. J. ACM, 35(4):759–768, 1988.

[13] S. A. Cook. The complexity of theorem-proving
procedures. In Proc. 3rd Annual ACM Symposium on
Theory of Computing (STOC ’71), pages 151–158,
1971.

[14] S. A. Cook and R. Reckhow. The relative efficiency of
propositional proof systems. J. Symbolic Logic,
44(1):36–50, 1979.

[15] S. A. Cook and R. Sethi. Storage requirements for
deterministic polynomial time recognizable languages.
J. Comput. System Sci., 13(1):25–37, 1976.

[16] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Commun. ACM,
5(7):394–397, 1962.

[17] M. Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201–215, 1960.

[18] J. L. Esteban and J. Torán. Space bounds for
resolution. Inform. and Comput., 171(1):84–97, 2001.

[19] J. L. Esteban and J. Torán. A combinatorial
characterization of treelike resolution space. Inform.
Process. Lett., 87(6):295–300, 2003.

[20] J. R. Gilbert and R. E. Tarjan. Variations of a pebble
game on graphs. Technical Report STAN-CS-78-661,
Stanford University, 1978.

[21] A. Haken. The intractability of resolution. Theoret.
Comput. Sci., 39(2-3):297–308, 1985.

[22] P. Hertel and T. Pitassi. Exponential time/space
speedups for resolution and the PSPACE-completeness
of black-white pebbling. In Proc. 48th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS ’07), pages 137–149, 2007.

[23] J. Hopcroft, W. Paul, and L. Valiant. On time versus
space. J. ACM, 24(2):332–337, 1977.

[24] H. Kautz and B. Selman. The state of SAT. Discr.
Appl. Math., 155(12):1514–1524, 2007.

[25] M. M. Klawe. A tight bound for black and white
pebbles on the pyramid. J. ACM, 32(1):218–228, 1985.

[26] J. Nordström. Narrow proofs may be spacious:
Separating space and width in resolution. In Proc.
38th Annual ACM Symposium on Theory of
Computing (STOC ’06), pages 507–516, 2006.

[27] J. Nordström and J. H̊astad. Towards an optimal
separation of space and length in resolution. Technical
Report 0803.0661, arXiv.org, 2008. Available at
http://arxiv.org/abs/0803.0661.

[28] J. A. Robinson. A machine-oriented logic based on the
resolution principle. J. ACM, 12(1):23–41, 1965.

[29] A. Sabharwal, P. Beame, and H. Kautz. Using
problem structure for efficient clause learning. In 6th
International Conference on Theory and Applications
of Satisfiability Testing (SAT ’03), volume 2919 of
LNCS, pages 242–256. Springer, 2004.

[30] The international SAT Competitions web page.
http://www.satcompetition.org.

[31] N. Segerlind. The complexity of propositional proofs.
Bull. Symbolic Logic, 13(4):482–537, 2007.

[32] J. Torán. Lower bounds for space in resolution. In
Proc. 13th International Workshop on Computer
Science Logic (CSL ’99), volume 1683 of LNCS, pages
362–373. Springer, 1999.

[33] J. Torán. Space and width in propositional resolution.
Bull. EATCS, 83:86–104, 2004.

[34] G. Tseitin. On the complexity of derivation in
propositional calculus. In A. O. Silenko, editor,
Structures in Constructive Mathematics and
Mathematical Logic, Part II, pages 115–125.
Consultants Bureau, New York-London, 1968.

[35] A. Urquhart. Hard examples for resolution. J. ACM,
34(1):209–219, 1987.

