
Time-space trade-offs in proof complexity
Lecture 2

Jakob Nordström

KTH Royal Institute of Technology

17th Estonian Winter School in Computer Science
Palmse, Estonia

February 26 – March 2, 2012

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 1 / 32

Goal of Today’s Lecture

Focus on the resolution proof system

Quick recap of what was said last time

Brief overview of what is known for proof length and proof space

Prove length-space trade-offs for resolution (or rather: sketch proofs)

Discuss extensions to polynomial calculus

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 2 / 32

Some Notation and Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ . . . ∨ ak: set of literals
At most k literals: k-clause

CNF formula F = C1 ∧ . . . ∧ Cm: set of clauses
k-CNF formula: CNF formula consisting of k-clauses

F � D: semantical implication, α(F) true ⇒ α(D) true
for all truth value assignments α

[n] = {1, 2, . . . , n}

This course: focus on k-CNF formulas for k = O(1)
(Avoids annoying technicalities, and can always convert to k-CNF anyway)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 3 / 32

Resolution Revisited

Last time we talked about a resolution refutations as a sequence of
clause configurations {D0, . . . , Dτ} (snapshots of what’s on the board)

For all t, Dt obtained from Dt−1 by one of the following derivation steps:

Download Dt = Dt−1 ∪ {C} for axiom clause C ∈ F

Inference Dt = Dt−1 ∪ {D} for D inferred by resolution on clauses
in Dt−1.

Erasure Dt = Dt−1 \ {D} for some D ∈ Dt−1.

But if we don’t care about space, then we can view a resolution refutation
as simply a listing of the clauses (i.e., no erasures)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 4 / 32

Resolution Proof System (Ignoring Space)

Resolution derivation π : F `A of clause A from F :
Sequence of clauses π = {D1, . . . , Ds} such that Ds = A and each line
Di, 1 ≤ i ≤ s, is either

a clause C ∈ F (an axiom)

a resolvent derived from clauses Dj , Dk in π (with j, k < i) by the
resolution rule

B ∨ x C ∨ x

B ∨ C

resolving on the variable x

Resolution refutation of CNF formula F :
Derivation of empty clause ⊥ (clause with no literals) from F

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 5 / 32

Example Resolution Refutation

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. ⊥ Res(13, 14)
8. x ∨ u ∨ w Axiom

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 6 / 32

Resolution Sound and Complete

Resolution is sound and implicationally complete.

Sound If there is a resolution derivation π : F `A
then F � A

Complete If F � A then there is a resolution derivation π : F `A′ for
some A′ ⊆ A.

In particular:

F is unsatisfiable ⇔ ∃ resolution refutation of F

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 7 / 32

Completeness of Resolution: Proof by Example

Decision tree:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1x

y u

z u v w

Resulting resolution refutation:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ u

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 8 / 32

Completeness of Resolution: Proof by Example

Decision tree:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1x

y u

z u v w

Resulting resolution refutation:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ u

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 8 / 32

Derivation Graph and Tree-Like Derivations

Derivation graph Gπ of a resolution derivation π:
directed acyclic graph (DAG) with

vertices: clauses of the derivations

edges: from B ∨ x and C ∨ x to B ∨ C for each application of the
resolution rule

A resolution derivation π is tree-like if Gπ is a tree
(We can make copies of axiom clauses to make Gπ into a tree)

Example

Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 9 / 32

Derivation Graph and Tree-Like Derivations

Derivation graph Gπ of a resolution derivation π:
directed acyclic graph (DAG) with

vertices: clauses of the derivations

edges: from B ∨ x and C ∨ x to B ∨ C for each application of the
resolution rule

A resolution derivation π is tree-like if Gπ is a tree
(We can make copies of axiom clauses to make Gπ into a tree)

Example

Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 9 / 32

Complexity Measures of Interest: Length and Space

Length: Lower bound on time for SAT solver
(very straightforward connection)

Space: Lower bound on memory for SAT solver
(requires more of an argument — will be happy to elaborate offline)

Length LR
clauses written on blackboard counted with repetitions

Space
Several ways of measuring — will mainly be interested in two measures

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space SpR: 3
Total space TotSpR: 6

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 10 / 32

Complexity Measures of Interest: Length and Space

Length: Lower bound on time for SAT solver
(very straightforward connection)

Space: Lower bound on memory for SAT solver
(requires more of an argument — will be happy to elaborate offline)

Length LR
clauses written on blackboard counted with repetitions

Space
Several ways of measuring — will mainly be interested in two measures

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space SpR: 3
Total space TotSpR: 6

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 10 / 32

Complexity Measures of Interest: Length and Space

Length: Lower bound on time for SAT solver
(very straightforward connection)

Space: Lower bound on memory for SAT solver
(requires more of an argument — will be happy to elaborate offline)

Length LR
clauses written on blackboard counted with repetitions

Space
Several ways of measuring — will mainly be interested in two measures

1. x

1

2. y

2

∨ z

3

3. v

4

∨ w

5

∨ y

6

Clause space SpR: 3
Total space TotSpR: 6

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 10 / 32

Complexity Measures of Interest: Length and Space

Length: Lower bound on time for SAT solver
(very straightforward connection)

Space: Lower bound on memory for SAT solver
(requires more of an argument — will be happy to elaborate offline)

Length LR
clauses written on blackboard counted with repetitions

Space
Several ways of measuring — will mainly be interested in two measures

1.

x1

2.

y2∨ z3

3.

v4∨ w5∨ y6

Clause space SpR: 3
Total space TotSpR: 6

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 10 / 32

Length and Space Bounds for Resolution (1 / 2)

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ uLet n = size of formula

≤ n variables ⇒
decision tree size ≤ 2n+1 and height ≤ n

By induction: Clause at root of subtree of height h derivable in space h+2

Derive left child clause in space h + 1 and keep in memory

Derive right child clause in space 1 + (h + 1)

Resolve the two children clauses to get root clause

Hence:
LR(F `⊥) = exp(O(n))

SpR(F `⊥) = O(n)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 11 / 32

Length and Space Bounds for Resolution (1 / 2)

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ uLet n = size of formula

≤ n variables ⇒
decision tree size ≤ 2n+1 and height ≤ n

By induction: Clause at root of subtree of height h derivable in space h+2

Derive left child clause in space h + 1 and keep in memory

Derive right child clause in space 1 + (h + 1)

Resolve the two children clauses to get root clause

Hence:
LR(F `⊥) = exp(O(n))

SpR(F `⊥) = O(n)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 11 / 32

Length and Space Bounds for Resolution (1 / 2)

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ uLet n = size of formula

≤ n variables ⇒
decision tree size ≤ 2n+1 and height ≤ n

By induction: Clause at root of subtree of height h derivable in space h+2

Derive left child clause in space h + 1 and keep in memory

Derive right child clause in space 1 + (h + 1)

Resolve the two children clauses to get root clause

Hence:
LR(F `⊥) = exp(O(n))

SpR(F `⊥) = O(n)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 11 / 32

Length and Space Bounds for Resolution (2 / 2)

(n = size of formula)

Length: at most exponential in n
Matching lower bounds up to constant factors in exponent
[Urquhart ’87, Chvátal & Szemerédi ’88]

Clause space: at most linear in n
Matching lower bounds up to constant factors
[Torán ’99, Alekhnovich et al. ’00]

Total space: at most quadratic in n
No better lower bounds than linear in n!?

[Sidenote: space bounds hold even for “magic algorithms” always making
optimal choices — so might be much stronger in practice]

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 12 / 32

Length and Space Bounds for Resolution (2 / 2)

(n = size of formula)

Length: at most exponential in n
Matching lower bounds up to constant factors in exponent
[Urquhart ’87, Chvátal & Szemerédi ’88]

Clause space: at most linear in n
Matching lower bounds up to constant factors
[Torán ’99, Alekhnovich et al. ’00]

Total space: at most quadratic in n
No better lower bounds than linear in n!?

[Sidenote: space bounds hold even for “magic algorithms” always making
optimal choices — so might be much stronger in practice]

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 12 / 32

Comparing Length and Space

Some “rescaling” needed to get meaningful comparisons of length and
space

Length exponential in formula size in worst case

Clause space at most linear

So natural to compare space to logarithm of length

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 13 / 32

Length-Space Correlations and/or Trade-offs?

∃ constant space refutation ⇒ ∃ polynomial length refutation
[Atserias & Dalmau ’03]

For tree-like resolution: any polynomial length refutation can be carried
out in logarithmic space [Esteban & Torán ’99]

So essentially no trade-offs for tree-like resolution

Does short length imply small space for general resolution?
Open for quite a while — even no consensus on likely “right answer”

Nothing known about length-space trade-offs for resolution refutations in
the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson ’02,
Nordström ’07])

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 14 / 32

Length-Space Correlations and/or Trade-offs?

∃ constant space refutation ⇒ ∃ polynomial length refutation
[Atserias & Dalmau ’03]

For tree-like resolution: any polynomial length refutation can be carried
out in logarithmic space [Esteban & Torán ’99]

So essentially no trade-offs for tree-like resolution

Does short length imply small space for general resolution?
Open for quite a while — even no consensus on likely “right answer”

Nothing known about length-space trade-offs for resolution refutations in
the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson ’02,
Nordström ’07])

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 14 / 32

Length-Space Correlations and/or Trade-offs?

∃ constant space refutation ⇒ ∃ polynomial length refutation
[Atserias & Dalmau ’03]

For tree-like resolution: any polynomial length refutation can be carried
out in logarithmic space [Esteban & Torán ’99]

So essentially no trade-offs for tree-like resolution

Does short length imply small space for general resolution?
Open for quite a while — even no consensus on likely “right answer”

Nothing known about length-space trade-offs for resolution refutations in
the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson ’02,
Nordström ’07])

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 14 / 32

Length-Space Correlations and/or Trade-offs?

∃ constant space refutation ⇒ ∃ polynomial length refutation
[Atserias & Dalmau ’03]

For tree-like resolution: any polynomial length refutation can be carried
out in logarithmic space [Esteban & Torán ’99]

So essentially no trade-offs for tree-like resolution

Does short length imply small space for general resolution?
Open for quite a while — even no consensus on likely “right answer”

Nothing known about length-space trade-offs for resolution refutations in
the general, unrestricted proof system

(Some trade-off results in restricted settings in [Ben-Sasson ’02,
Nordström ’07])

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 14 / 32

1st result today: An Optimal Length-Space Separation

Length and space in resolution are “completely uncorrelated”

Theorem (Ben-Sasson & Nordström ’08)

There are k-CNF formula families of size n with

refutation length O(n)

refutation clause space Ω(n/ log n)

Optimal separation of length and space — given length O(n), always
possible to get clause space O(n/ log n)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 15 / 32

2nd result today: Length-Space Trade-offs

There is a rich collection of length-space trade-offs

Results hold for

resolution

even stronger proof systems (which we won’t go into here)

Different trade-offs covering (almost) whole range of space from constant
to linear

Simple, explicit formulas

(Also some very nice follow-up work in [Beame, Beck & Impagliazzo ’12]
that we won’t have time to go into)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 16 / 32

One Example: Robust Trade-offs for Small Space

Theorem (Ben-Sasson & Nordström ’11 (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size n

refutable in resolution in space g(n) and

refutable in length linear in n and space ≈ 3
√

n such that

any refutation in space � 3
√

n requires superpolynomial length

And an open problem:

Open Problem

Seems likely that 3
√

n above should be possible to improve to
√

n, but
don’t know how to prove this. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 17 / 32

One Example: Robust Trade-offs for Small Space

Theorem (Ben-Sasson & Nordström ’11 (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size n

refutable in resolution in space g(n) and

refutable in length linear in n and space ≈ 3
√

n such that

any refutation in space � 3
√

n requires superpolynomial length

And an open problem:

Open Problem

Seems likely that 3
√

n above should be possible to improve to
√

n, but
don’t know how to prove this. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 17 / 32

One Example: Robust Trade-offs for Small Space

Theorem (Ben-Sasson & Nordström ’11 (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size n

refutable in resolution in space g(n) and

refutable in length linear in n and space ≈ 3
√

n such that

any refutation in space � 3
√

n requires superpolynomial length

And an open problem:

Open Problem

Seems likely that 3
√

n above should be possible to improve to
√

n, but
don’t know how to prove this. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 17 / 32

One Example: Robust Trade-offs for Small Space

Theorem (Ben-Sasson & Nordström ’11 (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size n

refutable in resolution in space g(n) and

refutable in length linear in n and space ≈ 3
√

n such that

any refutation in space � 3
√

n requires superpolynomial length

And an open problem:

Open Problem

Seems likely that 3
√

n above should be possible to improve to
√

n, but
don’t know how to prove this. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 17 / 32

One Example: Robust Trade-offs for Small Space

Theorem (Ben-Sasson & Nordström ’11 (informal))

For any arbitrarily slowly growing function g there exist explicit
k-CNF formulas of size n

refutable in resolution in space g(n) and

refutable in length linear in n and space ≈ 3
√

n such that

any refutation in space � 3
√

n requires superpolynomial length

And an open problem:

Open Problem

Seems likely that 3
√

n above should be possible to improve to
√

n, but
don’t know how to prove this. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 17 / 32

Plan for the Rest of This Lecture

Both of these theorems proved in the same way

Want to sketch intuition and main ideas in proofs

For details, see survey paper in course binder

To prove the theorems, need to go back to the early days of
computer science. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 18 / 32

A Detour into Combinatorial Games

Want to find formulas that

can be quickly refuted but require large space

have space-efficient refutations requiring much time

Such time-space trade-off questions well-studied for
pebble games modelling calculations described by DAGs
([Cook & Sethi ’76] and many others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required

Some quick graph terminology

DAGs consist of vertices with directed edges between them

vertices with no incoming edges: sources

vertices with no outgoing edges: sinks

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 19 / 32

A Detour into Combinatorial Games

Want to find formulas that

can be quickly refuted but require large space

have space-efficient refutations requiring much time

Such time-space trade-off questions well-studied for
pebble games modelling calculations described by DAGs
([Cook & Sethi ’76] and many others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required

Some quick graph terminology

DAGs consist of vertices with directed edges between them

vertices with no incoming edges: sources

vertices with no outgoing edges: sinks

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 19 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 0

Current # pebbles 0

Max # pebbles so far 0

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 1

Current # pebbles 1

Max # pebbles so far 1

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 2

Current # pebbles 2

Max # pebbles so far 2

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 3

Current # pebbles 3

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 4

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 5

Current # pebbles 1

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 6

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 7

Current # pebbles 3

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 8

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 8

Current # pebbles 2

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 9

Current # pebbles 3

Max # pebbles so far 3

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 10

Current # pebbles 4

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 11

Current # pebbles 3

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 12

Current # pebbles 2

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

The Black-White Pebble Game

Goal: get single black pebble on sink z of DAG G (with constant fan-in)

z

x y

u v w

moves 13

Current # pebbles 1

Max # pebbles so far 4

1 Can place black pebble on (empty) vertex v if all predecessors
(vertices with edges to v) have pebbles on them

2 Can always remove black pebble from vertex

3 Can always place white pebble on (empty) vertex

4 Can remove white pebble if all predecessors have pebbles

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 20 / 32

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propagates
upwards

but sink is false

Studied by [Bonet et al. ’98, Raz & McKenzie ’99, Ben-Sasson &
Wigderson ’99] and others

We want to show that pebbling properties of DAGs somehow carry over to
resolution refutations of pebbling contradictions

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 21 / 32

Pebbling Contradiction

CNF formula encoding pebble game on DAG G

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propagates
upwards

but sink is false

Studied by [Bonet et al. ’98, Raz & McKenzie ’99, Ben-Sasson &
Wigderson ’99] and others

We want to show that pebbling properties of DAGs somehow carry over to
resolution refutations of pebbling contradictions

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 21 / 32

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one
can guess partial results and verify later)

black pebbles ⇔ computed results

white pebbles ⇔ guesses needing to be verified

“Know z assuming v, w”

Corresponds to (v ∧ w) → z, i.e.,
blackboard clause v ∨ w ∨ z

So translate clauses to pebbles by:
unnegated variable⇒ black pebble
negated variable⇒white pebble

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 22 / 32

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one
can guess partial results and verify later)

black pebbles ⇔ computed results

white pebbles ⇔ guesses needing to be verified

z

x y

u v w

“Know z assuming v, w”

Corresponds to (v ∧ w) → z, i.e.,
blackboard clause v ∨ w ∨ z

So translate clauses to pebbles by:
unnegated variable⇒ black pebble
negated variable⇒white pebble

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 22 / 32

Interpreting Refutations as Black-White Pebblings

Black-white pebbling models non-deterministic computation (where one
can guess partial results and verify later)

black pebbles ⇔ computed results

white pebbles ⇔ guesses needing to be verified

z

x y

u v w

“Know z assuming v, w”

Corresponds to (v ∧ w) → z, i.e.,
blackboard clause v ∨ w ∨ z

So translate clauses to pebbles by:
unnegated variable⇒ black pebble
negated variable⇒white pebble

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 22 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u Download axiom 1: u

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v
Download axiom 1: u
Download axiom 2: v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

u ∨ v ∨ x

Download axiom 1: u
Download axiom 2: v
Download axiom 4: u ∨ v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

u ∨ v ∨ x

Download axiom 1: u
Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

u ∨ v ∨ x

v ∨ x

Download axiom 1: u
Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

u ∨ v ∨ x

v ∨ x

Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

v ∨ x

Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

u

v

v ∨ x

Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

v ∨ x
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

v ∨ x
u and u ∨ v ∨ x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

v ∨ x

x

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

v ∨ x

x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v

x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

x ∨ y ∨ z
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

x ∨ y ∨ z
Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

x ∨ y ∨ z

y ∨ z

Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

x ∨ y ∨ z

y ∨ z

Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

y ∨ z
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

x

y ∨ z
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ y
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ y
Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

y ∨ z

v ∨ w ∨ z
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v

w

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v
Download axiom 3: w

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v

w

z

Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v
Download axiom 3: w
Download axiom 7: z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v

w

z

Download axiom 2: v
Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v

w

z

w ∨ z

Download axiom 2: v
Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

v

w

z

w ∨ z

Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

w

z

w ∨ z

Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

v ∨ w ∨ z

w

z

w ∨ z

Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

w

z

w ∨ z

Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

w

z

w ∨ z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

w

z

w ∨ z

z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

w

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

z

w ∨ z

z

Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

z

z
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

z

z
w and w ∨ z

Erase the clause w
Erase the clause w ∨ z
Infer ⊥ from

z and z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

Example of Refutation-Pebbling Correspondence

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

z

z

⊥

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
Infer ⊥ from

z and z

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 23 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Resolution to Pebbling

Theorem (Adapted from [Ben-Sasson ’02])

Any resolution refutation translates into black-white pebbling with

moves = O(refutation length)

pebbles = O(# variables on board)

Proof sketch.

For every clause configuration Dt

black-pebble vertices with positive literals

white-pebble vertices with negativt but no positive literals

Argue that for Dt−1 Dt, pebbling placements and removals are legal

Download: Always pebbles below new black pebble

Inference: No change in pebbles

Erasure: Only erase after resolution step; only variable resolved over
disappears ⇒ corresponds to black vertex — OK

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 24 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

From Pebbling to Resolution

Observation (Ben-Sasson et al. ’00)

Any black-pebbles-only pebbling translates into resolution refutation with

refutation length = O(# moves)

total space = O(# pebbles)

Proof sketch.

Invariant: keep clause u in memory for all black-pebbled vertices u

When source vertex v pebbled, can download source axiom v

When non-source v is pebbled, all predecessors u ∈ pred(v) are black

Download
∨

u∈pred(v) u ∨ v and resolve with all clauses u for
u ∈ pred(v) to derive v

At end of pebbling, z is black-pebbled

Download sink axiom z and resolve with clause z to derive ⊥

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 25 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

But Unfortunately This Totally Doesn’t Work. . .

Unfortunately pebbling contradictions extremely easy w.r.t. clause space!

Theorem (Ben-Sasson ’02)

Any pebbling contradiction can be refuted in resolution in linear length
and constant clause space simultaneously

Proof sketch.

Start by resolving z and
∨

u∈pred(z) u ∨ z

Then, in reverse topological order of vertices v, resolve with pebbling
axioms

∨
u∈pred(v) u ∨ v

Invariant: One clause in memory; only negative literals; only for
vertices preceding v in topological order

Finally, have one wide clause with negative literals over all sources

Use source axioms to resolve away these literals one by one

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 26 / 32

Key New Idea: Variable Substitution

Make formula harder by substituting exclusive or x1 ⊕ x2 of two new
variables x1 and x2 for every variable x (also works for other Boolean
functions with “right” properties):

x ∨ y

⇓

¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)

⇓

(x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 27 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

x1 ∨ x2

x1 ∨ x2

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

y1 ∨ y2

y1 ∨ y2

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

y1 ∨ y2

y1 ∨ y2

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Key Technical Result: Substitution Theorem

Let F [⊕] denote formula with XOR x1 ⊕ x2 substituted for x

Obvious approach for refuting F [⊕]: mimic refutation of F

x

x ∨ y

y

For such refutation of F [⊕]:

length ≥ length for F

clause space ≥ # variables on
board in proof for F

x1 ∨ x2

x1 ∨ x2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

x1 ∨ x2 ∨ y1 ∨ y2

y1 ∨ y2

y1 ∨ y2

Prove that this is (sort of) best one can do for F [⊕]!

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 28 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Sketch of Proof of Substitution Theorem

Given refutation of F [⊕], extract “shadow refutation” of F

XOR formula F [⊕] Original formula F

If XOR blackboard implies e.g.
¬(x1 ⊕ x2) ∨ (y1 ⊕ y2). . .

write x ∨ y on shadow blackboard

For consecutive XOR blackboard
configurations. . .

can get between corresponding
shadow blackboards by legal reso-
lution derivation steps

. . . (sort of) upper-bounded by
XOR derivation length

Length of shadow blackboard
derivation . . .

. . . is at most # clauses on XOR
blackboard

variables mentioned on shadow
blackboard. . .

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 29 / 32

Putting the Pieces Together

Making variable substitutions in pebbling formulas

lifts lower bound from number of variables to clause space

maintains upper bound in terms of total space and length

Get our results by

using known pebbling results from literature of 70s and 80s

proving a couple of new pebbling results [Nordström ’10]

to get tight trade-offs, showing that resolution proofs can sometimes
do better than black-only pebblings [Nordström ’10]

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 30 / 32

Putting the Pieces Together

Making variable substitutions in pebbling formulas

lifts lower bound from number of variables to clause space

maintains upper bound in terms of total space and length

Get our results by

using known pebbling results from literature of 70s and 80s

proving a couple of new pebbling results [Nordström ’10]

to get tight trade-offs, showing that resolution proofs can sometimes
do better than black-only pebblings [Nordström ’10]

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 30 / 32

Extension to Polynomial Calculus

Using somewhat different techniques, can extend trade-offs to
polynomial calculus [Beck, Nordström & Tang ’12]

Same formulas and much simpler proof, but lose a bit in parameters

Also, can’t get unconditional space lower bounds for polynomial
calculus this way

Will discuss space in polynomial calculus in final two lectures

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 31 / 32

An Intriguing Open Problem

Recall key technical theorem: amplify space lower bounds through variable
substitution

Almost completely oblivious to proof system under study, and has been
extended to strictly stronger k-DNF resolution proof systems — maybe
can be made to work for other stronger systems as well?

Open Problem

Can the Substitution Theorem be proven for, say, cutting planes or
polynomial calculus, thus yielding space lower bounds and time-space
trade-offs for these proof systems as well?

Approach in previous papers provably will not work

Partial progress with different techniques in [Huynh & Nordström ’12] and
[Beck, Nordström & Tang ’12] indicate that answer should be “yes”

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 32 / 32

An Intriguing Open Problem

Recall key technical theorem: amplify space lower bounds through variable
substitution

Almost completely oblivious to proof system under study, and has been
extended to strictly stronger k-DNF resolution proof systems — maybe
can be made to work for other stronger systems as well?

Open Problem

Can the Substitution Theorem be proven for, say, cutting planes or
polynomial calculus, thus yielding space lower bounds and time-space
trade-offs for these proof systems as well?

Approach in previous papers provably will not work

Partial progress with different techniques in [Huynh & Nordström ’12] and
[Beck, Nordström & Tang ’12] indicate that answer should be “yes”

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 32 / 32

An Intriguing Open Problem

Recall key technical theorem: amplify space lower bounds through variable
substitution

Almost completely oblivious to proof system under study, and has been
extended to strictly stronger k-DNF resolution proof systems — maybe
can be made to work for other stronger systems as well?

Open Problem

Can the Substitution Theorem be proven for, say, cutting planes or
polynomial calculus, thus yielding space lower bounds and time-space
trade-offs for these proof systems as well?

Approach in previous papers provably will not work

Partial progress with different techniques in [Huynh & Nordström ’12] and
[Beck, Nordström & Tang ’12] indicate that answer should be “yes”

Jakob Nordström (KTH) Proof complexity: Lecture 2 EWSCS ’12 32 / 32

	Resolution Basics
	Length and Space in Resolution
	Pebble Games and Pebbling Contradictions
	The Substitution Space Theorem
	Proving Trade-offs for Resolution and Polynomial Calculus

