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Agenda for Today’s Lecture

Focus on polynomial calculus (but also talk some about resolution)

Recall definitions and discuss variants of polynomial calculus

Brief overview of what is known for proof length and proof space

Prove space lower bound
I first for resolution (as warm-up)
I then for polynomial calculus (start today, finish next lecture)

News right from the research frontier — believe further improvements
within reach if we can understand techniques better

Going gets slightly tougher — might want to reviews slides at
www.csc.kth.se/∼jakobn/teaching/ewscs12/ to follow 100%

Makes it extra important to ask questions (especially “stupid” ones)
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Resolution

Lines in refutation are disjunctive clauses

Just one inference rule, the resolution rule:

B ∨ x C ∨ x

B ∨ C

B ∨ C is the resolvent of B ∨ x and C ∨ x

Prove F unsatisfiable by deriving the unsatisfiable empty clause ⊥
(the clause with no literals) from F by resolution
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Polynomial Calculus (PC)

Axiom clauses of F interpreted as multilinear polynomial equations

“Being true” corresponds to “evaluating to zero,” so natural to flip
convention and think of 0 as true and 1 as false

By way of example, clause x ∨ y ∨ z gets translated to
xy(1− z) = 0

To get unique representation, write polynomials in expanded form as
sums of monomials; hence clause above becomes xy − xyz = 0

Prove F unsatisfiable by showing that there is no common root for
the polynomial equations corresponding to the axiom clauses
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Polynomial Calculus: Inference Rules

Lines in polynomial calculus refutation: multivariate polynomial equations
p = 0, where p ∈ F[x, y, z, . . .] for some fixed field F (typically finite)

Customary to omit “= 0” from “p = 0” and only write “p”

Derivation rules (α, β ∈ F, p, q ∈ F[x, y, z, . . .], x any variable):

Boolean axioms
x2 − x

(forcing 0/1-solutions)

Linear combination
p q

αp + βq

Multiplication
p
xp

PC-refutation ends when 1 is derived (i.e., 1 = 0)

(Multilinearity follows w.l.o.g. from Boolean axioms)
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Polynomial Calculus: Complexity Measures

Polynomial Calculus is sound and complete, just as resolution
(requires a proof, of course)

Complexity measures that we care about today:

Size
Total # monomials in the refutation counted with repetitions
(Analogue of length in resolution)

(Monomial) space
Maximal # monomials in any configuration counted with repetitions
(Analogue of clause space in resolution)
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Annoying Problem with Encoding Clauses as Polynomials

Consider x1 ∨ x2 ∨ . . . ∨ xw

Gets translated to

w∏
i=1

(1− xi) =
∑

S⊆[w]

(−1)|S|
∏
i∈S

xi

Exponential size in w ⇒ exponential lower bounds on size and space!

Great! Except that somehow this particular type of exponential lower
bound is not what we are looking for. . .

Two fixes:

1 Consider only k-CNF formulas for constant k

2 Introduce extra variables for negated literals [Alekhnovich et al. ’00]
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Polynomial Calculus Resolution (PCR)

New variables x, y, z, . . .,

x ∨ y ∨ z gets translated to (surprise!) xyz

Need to enforce that x is the negation of x:

Complementarity axiom
x + x− 1

for all variables x

All other rules and complexity measures same as for polynomial calculus

Proposition

PCR simulates resolution proofs in essentially same length, size and space

In the best of worlds we want to:

Prove upper bounds for PC

Prove (matching) lower bounds for PCR
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Size and Space Bounds for PC/PCR

(n = size of formula)

Size: at most exp(O(n)) for PC for k-CNF formulas [Filmus et al. ’12]
Matching lower bound for PCR up to constant factors in exponent
e.g. [Alekhnovich & Razborov ’01]

Space: at most O(n) for PC for k-CNF formulas [Filmus et al. ’12]
No matching lower bounds

In fact, until recently no nontrivial space lower bounds for k-CNF
formulas even in PC!

Ω
(

3
√

n
)

bound for wide formulas in PCR [Alekhnovich et al. ’00]
But proof doesn’t work for constant-width formulas
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This Lecture and Next: Space Lower Bounds for k-CNFs

In the rest of this course, will prove first space lower bound for k-CNFs

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are k-CNF formulas Fn of size n s.t. SpPCR(Fn `⊥) = Ω
(

3
√

n
)

Or, actually, we will:

Do slightly weaker result with simpler proof and more natural formulas

But provide all crucial ingredients needed for proof of stronger result

To get a feel for the proof method, warm up with resolution
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Pigeonhole Principle

m pigeons

n pigeonholes

Every pigeon wants its own hole

Impossible if m > n

Write (contradiction of) this as CNF formula

Various encodings of this combinatorial principle most studied formulas in
proof complexity

(From now on, n is not formula size but # pigeon holes)
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Bitwise Pigeonhole Principle Formula BPHPm
n

xb =

{
x if b = 0

x if b = 1
(xb is true if and only if x = b)

[0, j) = {0, 1, . . . , j − 1} (will index pigeons and holes starting from 0)

n = 2` (only consider even powers of 2 for # holes)

Variables x[p, i] for each p ∈ [0,m) and i ∈ [0, `)

Pigeon p sent to hole x[p, `−1] · · ·x[p, 1]x[p, 0] (in binary encoding)

For all p 6= q ∈ [0,m), h = h −̀1 · · ·h0 ∈ [0, n), hole axiom

H(p, q, h) =
`−1∨
i=0

x[p, i]1−hi ∨
`−1∨
i=0

x[q, i]1−hi

“Have m > n integers between 0 and n− 1 and they’re all distinct”
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Restating the (Weaker) Theorem(s)

Theorem

SpPCR(BPHPm
n `⊥) > n/8

Width of clauses 2` = O(log n) — non-constant

But space polynomial while width logarithmic — already exponential
improvement over [Alekhnovich et al. ’00] where space < width

First do easier bound for resolution:

Theorem

SpR(BPHPm
n `⊥) ≥ n
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The General Proof Strategy [Alekhnovich et al. ’00]

Given formula F and space bound s, want to prove Sp(F `⊥) ≥ s

Equivalently, study derivations π = {P0 = ∅, . . . , Pτ} s.t. Sp(π) < s
and show π doesn’t derive contradiction (i.e., 1 /∈ Pt for all t)

Begs the question — we don’t understand what Pt looks like!

Study Pt by constructing auxiliary configuration At that is easier to
understand but gives information about Pt:

1 At implies Pt (i.e., At “stronger” than Pt)
2 At is satisfiable (so, in particular, Pt also satisfiable)
3 At derivation step Pt  Pt+1, can do a local update At  At+1 if

Sp(Pt) small enough (that is, less than s)

If we can do this, clearly we immediately get lower bound on space
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Proof of Space Lower Bound for Resolution

Commit to placing pigeons in holes: C(p, h) =
∧`−1

i=0 x[p, i]hi

At: collection of such commitments for all pigeons and holes distinct
Satisifiable by construction; maintain invariant |At| ≤ Sp(Dt)

Case analysis for derivation step Dt  Dt+1:

Download of axiom clause H(p, q, h):

1 If At � H(p, q, h), set At+1 = At

2 Else, At doesn’t mention p, say, and by counting
∃ h′ 6= h also not mentioned by At

⇒ Set At+1 = At ∪ {C(p, h′)}
Inference of clause D: Set At+1 = At; OK since At � Dt � D

(by soundness of resolution)

Erasure of clause D: Problem!
At � Dt+1 but At can be too large!
But can find B of size |B| ≤ Sp(D) s.t. B � D
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But can find B of size |B| ≤ Sp(D) s.t. B � D
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Taking Care of Erasures by Locality Lemma

Lemma (Locality lemma for resolution)

Suppose A commitment set; D clause configuration; A implies D.
Then ∃ commitment set B of size |B| ≤ Sp(D) s.t. B implies D.

Proof.

Consider bipartite graph with

clauses D ∈ D on left

commitments C ∈ A on right

edge between D and C if C � D (share a literal)

For every D ∈ D, pick one neighbour C ∈ A (must exist) and let B be
collection of these commitments
Then by construction:

|B| ≤ Sp(D)

B � D
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Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



Outline of PCR Space Lower Bound

For PCR, same high-level approach

Construct auxiliary configuration, or “commitment set,” At

highly structured, so easier to understand

but still gives information about Pt

Want to maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 At derivation step Pt  Pt+1, can do a local update At  At+1 if
Sp(Pt) small enough

But details get much trickier. . .

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 17 / 24



PCR Space Lower Bound: Commitment Sets

(Disjunctive) commitment

2-clause of the form C = x[p, i]b ∨ x[q, j]c

Pigeons p 6= q distinct

No restrictions on i, j ∈ [0, l), b, c ∈ {0, 1}
Domain dom(C) = set of pigeons {p, q} mentioned in C

Commitment set

A = {C1, C2, . . . , Cs} — think of At as 2-CNF formula

For all i 6= j, dom(Ci) ∩ dom(Cj) = ∅
(i.e., all pigeons mentioned are distinct)

dom(A) =
⋃

C∈A dom(C)

Size |A| = number of commitments in A
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Commitment Sets Implying PC-configurations

Any (total) assignment α to Vars
(
BPHPm

n

)
defines function

fα : [0,m) → [0, n) — in what follows, identify α and fα

A (total) assignment α to Vars
(
BPHPm

n

)
is well-behaved over set of

pigeons S ⊆ [0,m) if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set A if

α well-behaved on dom(A)
(defines partial matching for all pigeons A mentions)

α satisfies A

Definition (Entailment)

A entails PCR-configuration P over well-behaved assignments if every
assignment α which is well-behaved on and satisfies A must also satisfy P
(i.e., for every polynomial P ∈ P have P (α) = 0)
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Proof of Space Lower Bound for PCR (Sketch)

Proof invariants:

At entails Pt over well-behaved assignments

|At| ≤ 2 · Sp(Pt)

Case analysis for Pt  Pt+1:

Download of axiom clause H(p, q, h):

1 If {p, q}∩dom(At)=∅, add x[p,0]1−h0∨x[q,0]1−h0 to At

2 If p and/or q in dom(At), also easy (skip details now)

Works as long as # pigeons not too large

Inference of polynomial P : Set At+1 = At; OK since At entails Pt and
Pt � P (by soundness of PCR)

Erasure of polynomial P : Problem!
At entails Pt+1 but At can be much, much too large!
But can find B of size |B| ≤ 2 · Sp(P) s.t. B entails P
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Taking Care of Erasures in PCR

Lemma (Locality lemma for PCR)

Suppose

A commitment set

P PCR-configuration

A entails P over well-behaved assignments

Then ∃ commitment set B of size |B| ≤ 2 · Sp(P) s.t. B entails P over
well-behaved assignments

This is where the action is. . .

(But maybe we already had enough action for today)

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 21 / 24



Taking Care of Erasures in PCR

Lemma (Locality lemma for PCR)

Suppose

A commitment set

P PCR-configuration

A entails P over well-behaved assignments

Then ∃ commitment set B of size |B| ≤ 2 · Sp(P) s.t. B entails P over
well-behaved assignments

This is where the action is. . .

(But maybe we already had enough action for today)

Jakob Nordström (KTH) Proof complexity: Lecture 3 EWSCS ’12 21 / 24



Plan for Next Time and Wrapping up This Lecture

Proof of Locality lemma borrows ideas heavily from [Alekhnovich et al. ’00]

But also needs some extra twists

Will spend the better part of final lecture proving this lemma
(and filling in other missing details)

To conclude today’s lecture, let’s discuss some remaining open problems
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Separation of PCR and Resolution(?)

“Folklore” result:

Theorem

PCR is exponentially stronger than resolution with respect to proof size

What about space?

Open Problem

Is PCR strictly stronger than resolution with respect to space?
(I.e., when comparing monomial space to clause space)

Would seem likely, somehow. . .
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Optimal Lower Bounds on PCR Space?

Open Problem

Are random k-CNF formulas hard with respect to space for PCR?

Any other answer than ”yes” would be very surprising

(Already known to be exponentially hard w.r.t. size
[Ben-Sasson & Impagliazzo ’99, Alekhnovich & Razborov ’01])

Open Problem

Are there (k-)CNF formulas Fn of size n such that SpPCR(F `⊥) = Ω(n)?

Again, would expect answer to be ”yes”

Obvious candidate formula family: random k-CNF formulas
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