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Agenda for Final Lecture

Finish proof of polynomial calculus space lower bound

First spend quite some time recalling definitions and approach

Then do proof modulo key technical result: Locality lemma

Finally prove Locality lemma

Wrap up course with some concluding remarks (if we’re not
desperately out of time)
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Polynomial Calculus Resolution (PCR)

Last time started studying polynomial calculus (PC)

Annoying encoding problems led to introducting special variables for
negated literals — polynomial calculus resolution (PCR)

Axiom clauses of F interpreted as multilinear polynomials over
variables x, y, z, . . . and (formally independent) x, y, z, . . .

“Being true” corresponds to “evaluating to zero,” so natural to flip
convention and think of 0 as true and 1 as false

Example: clause x ∨ y ∨ z gets translated to monomial xyz

To get unique representation, write polynomials as sums of monomials

Prove F unsatisfiable by deriving 1 from monomials encoding axioms
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Polynomial Calculus Resolution: Inference Rules

Lines in PCR refutation: multivariate polynomials p ∈ F[x, x, y, y, z, z, . . .]
for some fixed field F (typically finite)

Derivation rules (α, β ∈ F, p ∈ F[x, x, y, y, z, z, . . .], x any variable):

Boolean axioms
x2 − x

Complementarity axioms
x + x− 1

Linear combination
p q

αp + βq

Multiplication
p
xp

PCR-refutation ends when 1 is derived
All polynomials multilinear w.l.o.g. (follows from Boolean axioms)
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Polynomial Calculus Resolution: Complexity Measures

PCR measures we cared about yesterday (and still care about today):

Size
Total # monomials in the refutation counted with repetitions
(Analogue of length in resolution)

(Monomial) space
Maximal # monomials in any configuration counted with repetitions
(Analogue of clause space in resolution)

In the best of worlds we want to:

Prove upper bounds for PC (no variables x, y, z, . . .)

Prove (matching) lower bounds for PCR
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Size and Space Bounds for PC/PCR

N = size of formula

Size: at most exp(O(N)) for PC for k-CNF formulas [Filmus et al. ’12]
Matching lower bounds for PCR up to constant factors in exponent
e.g. [Alekhnovich & Razborov ’01]

Space: at most O(N) for PC for k-CNF formulas [Filmus et al. ’12]
No matching lower bounds!
Currently best bounds Ω

(
3
√

N
)

(for PC and PCR)

Space lower bounds for wide formulas in [Alekhnovich et al. ’00]

Only recently shown for k-CNF formulas

For number of reasons (some of which we briefly mentioned),
prefer k-CNF formulas
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PCR Space Lower Bounds for k-CNFs

Today, would like to prove first space lower bound for k-CNFs in
polynomial calculus:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are k-CNF formulas FN of size N s.t. SpPCR(FN `⊥) = Ω
(

3
√

N
)

Actually, will prove slightly weaker result:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are CNF formulas FN of size N with clauses of width O(log N) s.t.
SpPCR(FN `⊥) = Ω

(
3
√

N/ log N
)

(But all key ingredients will be there in proofs)
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Bitwise Pigeonhole Principle Formula BPHPm
n

xb =

{
x if b = 0

x if b = 1
(xb is true if and only if x = b)

[0, j) = {0, 1, . . . , j − 1} (will index pigeons and holes starting from 0)

n = 2` (only consider even powers of 2 for # holes)

Variables x[p, i] for each p ∈ [0,m) and i ∈ [0, `)

Pigeon p sent to hole x[p, `−1] · · ·x[p, 1]x[p, 0] (in binary encoding)

For all p 6= q ∈ [0,m), h = h −̀1 · · ·h0 ∈ [0, n), hole axiom

H(p, q, h) =
`−1∨
i=0

x[p, i]1−hi ∨
`−1∨
i=0

x[q, i]1−hi

“Have m > n integers between 0 and n− 1 and they’re all distinct”
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Outline of Proof of PCR Space Lower Bound

Theorem

SpPCR(BPHPm
n `⊥) > n/8

Proof method: For π = {P0, P1, . . . , Pτ} with Sp(π) ≤ n/8, construct
“auxiliary configurations” A0,A1, . . . ,Aτ such that

At highly structured, so easier to understand than Pt

but still gives information about Pt

Maintain invariants for At:

1 At implies Pt (i.e., At “stronger” than Pt)

2 At is satisfiable (so, in particular, Pt also satisfiable)

3 For Pt  Pt+1, can do update At  At+1 if Sp(Pt) ≤ n/8

So small-space derivation doesn’t derive contradiction
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Commitment Sets

(Disjunctive) commitment

2-clause of the form C = x[p, i]b ∨ x[q, j]c

Pigeons p 6= q distinct

No restrictions on i, j ∈ [0, l), b, c ∈ {0, 1}
Domain dom(C) = set of pigeons {p, q} mentioned in C

Commitment set

A = {C1, C2, . . . , Cs} — think of At as 2-CNF formula

For all i 6= j, dom(Ci) ∩ dom(Cj) = ∅
(i.e., all pigeons mentioned are distinct)

dom(A) =
⋃

C∈A dom(C)

Size |A| = number of commitments in A
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Commitment Sets Implying PC-configurations

Any (total) assignment α to Vars
(
BPHPm

n

)
defines function

fα : [0,m) → [0, n) — in what follows, identify α and fα

A (total) assignment α to Vars
(
BPHPm

n

)
is well-behaved over set of

pigeons S ⊆ [0,m) if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set A if

α well-behaved on dom(A)
(defines partial matching for all pigeons A mentions)

α satisfies A

Definition (Entailment)

A entails PCR-configuration P over well-behaved assignments if every
assignment α which is well-behaved on and satisfies A must also satisfy P
(i.e., for every polynomial P ∈ P have P (α) = 0)
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Proof of Space Lower Bound for PCR

Fact: Any commitment set At satisfiable by well-behaved assignment
(requires a proof; assume it for now)

Proof invariants:

At entails Pt over well-behaved assignments

|At| ≤ 2 · Sp(Pt)

Proof is by case analysis over derivation step Pt  Pt+1:

Download of polynomial encoding

1 Boolean or Complementarity axiom
2 axiom clause H(p, q, h) of BPHPm

n

Inference of polynomial Q from Pt

Erasure of polynomial Q ∈ Pt
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Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 1: Download

Complementarity axiom x + x− 1 or Boolean axiom x2 − x:
Set At+1 = At

Hole axiom H(p, q, h) =
∨`−1

i=0 x[p, i]1−hi ∨
∨`−1

i=0 x[q, i]1−hi :

1 {p, q} ⊆ dom(At): Set At+1 = At; any well-behaved α sends
pigeons p and q to distinct holes ⇒ satisfies H(p, q, h)

2 {p, q} ∩ dom(At) = ∅: Set At+1 = At ∪ {C} for
C = x[p, 0]1−h0 ∨ x[q, 0]1−h0

3 p ∈ dom(At), q /∈ dom(At): Pick “dummy” p∗ /∈ dom(At) ∪ {q};
let C = x[q, 0]1−h0 ∨ x[p∗, 0]0; set At+1 = At ∪ {C}.
Well-behaved α gives p and q distinct holes ⇒ satisfies H(p, q, h)

Space increases by ≥ 1 and never add more than 1 < 2 commitments ⇒
|At+1| ≤ 2 · Sp(Pt+1)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 13 / 24



Case 2: Inference

Pt+1 = Pt ∪ {Q} for polynomial Q derived from P

Set At+1 = At

PCR is sound ⇒ Q implied by Pt

I.e., if for all P ∈ Pt have that P (α) = 0, then Q(α) = 0 also holds

All well-behaved α satisfying At+1 = At must satisfy Pt by the
induction hypothesis and hence also Q, so all of Pt+1 is satisfied

Space increases but size of commitment set unchanged ⇒
|At+1| ≤ 2 · Sp(Pt+1)
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Case 3: Erasure

Pt+1 = Pt \ {Q} for Q ∈ Pt

Know At entails Pt+1 ⊆ Pt

But |At| may be far too large if Q contains lots of monomials

Need to find smaller commitment set that still entails Pt+1

(Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

A commitment set

P PCR-configuration

A entails P over well-behaved assignments

Then ∃ commitment set B of size |B| ≤ 2 · Sp(P) s.t. B entails P over
well-behaved assignments
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End of Proof. . . Except for the Hard Part

This completes the proof of the PCR space lower bound

. . . modulo two assumptions

Assumption 1: Commitment sets are satisfiable by well-behaved
assignments (easy)

Assumption 2: Locality lemma takes care of erasure case (harder)

Let’s stop beating around the bush and prove Locality lemma
(and get satisfiability of commitment sets for free)

Jakob Nordström (KTH) Proof complexity: Lecture 4 EWSCS ’12 16 / 24



A Simple But Important Technical Lemma

Lemma

Given

any set S ⊆ [0,m), |S| < n/2,

any assignment β well-behaved on S,

any literal x[p, i]b associated to pigeon p /∈ S,

can modify β to α by reassigning variables associated to pigeon p so that
α is well-behaved on S ∪ {p} and satisfies x[p, i]b

Proof.

Exactly half of n holes have binary expansion with ith bit = b

Pigeons in S use less than n/2 holes (as assigned by β)

Hence by counting ∃ hole h not assigned to any pigeon in S and
having the right value of ith bit

Modifying β by sending pigeon p to hole h satisfies x[p, i]b
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An Even Simpler But Even More Important Corollary

Corollary

Given

any sets S, T ⊆ [0,m) s.t. S ∩ T = ∅ and |S ∪ T | ≤ n/2,

any assignment β well-behaved on S,

any set X of exactly one literal x[p, ip]
bp for every p ∈ T ,

can modify β to α by reassigning variables associated to pigeons in T so
that α is well-behaved on S ∪ T and satisfies all literals in X

Proof.

Consider pigeons in T one by one and apply Lemma

In particular, proves that any commitment set A of size |A| ≤ n/4 is
satisfiable by well-behaved assignment
(Let S = ∅, T = dom(A), X = Lit(A) and apply Corollary)
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Proof of Locality Lemma for PCR (1 / 4)

Build bipartite graph G=(U∪V,E)

U = distinct monomials M in P
V = commitments in A
Edge between m ∈ M and C ∈ A if
∃ pigeon p mentioned in both

Let Γ ⊆ M set of maximal size such
that |N(Γ)| ≤ 2 · |Γ|
Assume Γ 6= M (else set B = N(Γ))

∀ S ⊆ M \ Γ by maximality
|N(S) \N(Γ)| > 2 · |S|
⇒ ∃ matching of each m ∈ M \ Γ
to 2 distinct C ′, C ′′ ∈ A \N(Γ)

(Make 2 copies of each m ∈ M \ Γ
and apply Hall’s theorem)

m1

m2

m3

m4

m5

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C9

C10
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Proof of Locality Lemma for PCR (2 / 4)

m1

m2

m3

m4

m

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C ′

C ′′

Look at m ∈ M \ Γ

Matching commitments:

C ′ = x[p′, i′]b
′ ∨ x[q′, j′]c

′

C ′′ = x[p′′, i′′]b
′′ ∨ x[q′′, j′′]c

′′

Suppose m mentions pigeons p′ and p′′ so that

m = x[p′, i1]
b1 · x[p′′, i2]

b2 ·m′

(m can also mention q′ and/or q′′ — don’t care)

Make new commitment Cm = x[p′, i1]
b1 ∨ x[p′′, i2]

b2

Let B = N(Γ) ∪ {Cm | m ∈ M \ Γ}

Done!
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Proof of Locality Lemma for PCR (3 / 4)

m1

m2

m3

m4

m

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C ′

C ′′

Need to prove three things:

1 B is a commitment set
OK, all pigeons are distinct

2 B has the right size
OK, since |B| ≤ 2 · |M | ≤ 2 · Sp(P)

3 B entails P over well-behaved assignments
Perhaps a priori not so clear. . .

Prove entailment in slightly roundabout way:
Given any β well-behaved on and satisfying B, find α such that

P(α) = P(β)

α well-behaved on and satisfies A
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Let S = dom(B) and T = dom(A) \ dom(B)

Let X = {for each p ∈ T the literal x[p, i]b in A}
Notice each C ∈ A \N(Γ) has ≥ 1 literal in X

|A| ≤ n/4 ⇒ |S ∪ T | ≤ n/2
Apply Corollary to S, T , β ⇒ assignment α s.t.

I α well-behaved on S ∪ T = dom(A)
I α agrees with β on pigeons outside T
I α satisfies all literals in X

α and β agree on monomials in Γ
(no m ∈ Γ mentions p ∈ T by construction)

All β satisfying B must set all m ∈ M \ Γ to zero
(by construction of Cm)

Hence α and β agree on all m ∈ M ⇒ P(α) = P(β)

α well-behaved on dom(A); satisfies N(Γ) ∪ X
⇒ satisfies A ⇒ P(α) = 0 ⇒ P(β) = 0, Q.E.D.
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Summing up the Course

Brief overview of proof complexity in general

Introduced resolution, polynomial calculus, and cutting planes

Surveyed state of the art for resolution and polynomial calculus

Proved some recent results for resolution and polynomial calculus

Many open (and accessible) problems — now go solve them!
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The Theory Group at KTH

(or: A Shameless Plug)

Strong research environment spanning e.g.
I complexity theory
I cryptography
I computer and network security
I formal methods
I natural language processing

Publish regularly in leading CS conferences and journals

Numerous awards and research grants in recent years

So we’re expanding — and hiring!
(PhD students, postdocs, and faculty)

See www.csc.kth.se/tcs for more details
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