Time-space trade-offs in proof complexity Lecture 4

Jakob Nordström

KTH Royal Institute of Technology

17th Estonian Winter School in Computer Science Palmse, Estonia February 26 – March 2, 2012

Agenda for Final Lecture

- Finish proof of polynomial calculus space lower bound
- First spend quite some time recalling definitions and approach
- Then do proof modulo key technical result: Locality lemma
- Finally prove Locality lemma
- Wrap up course with some concluding remarks (if we're not desperately out of time)

Polynomial Calculus Resolution (PCR)

- Last time started studying polynomial calculus (PC)
- Annoying encoding problems led to introducting special variables for negated literals — polynomial calculus resolution (PCR)
- Axiom clauses of F interpreted as multilinear polynomials over variables x,y,z,\ldots and (formally independent) $\overline{x},\overline{y},\overline{z},\ldots$
- "Being true" corresponds to "evaluating to zero," so natural to flip convention and think of 0 as true and 1 as false
- Example: clause $x \vee y \vee \overline{z}$ gets translated to monomial $xy\overline{z}$
- To get unique representation, write polynomials as sums of monomials
- ullet Prove F unsatisfiable by deriving 1 from monomials encoding axioms

Polynomial Calculus Resolution: Inference Rules

Lines in PCR refutation: multivariate polynomials $p \in \mathbb{F}[x, \overline{x}, y, \overline{y}, z, \overline{z}, \ldots]$ for some fixed field \mathbb{F} (typically finite)

Derivation rules $(\alpha, \beta \in \mathbb{F}, p \in \mathbb{F}[x, \overline{x}, y, \overline{y}, z, \overline{z}, \ldots], x \text{ any variable})$:

Boolean axioms
$$\frac{1}{x^2 - x}$$

Complementarity axioms
$$\frac{1}{x+\overline{x}-1}$$

Multiplication
$$\frac{p}{xp}$$

PCR-refutation ends when 1 is derived

All polynomials multilinear w.l.o.g. (follows from Boolean axioms)

Polynomial Calculus Resolution: Complexity Measures

PCR measures we cared about yesterday (and still care about today):

Size

Total # monomials in the refutation counted with repetitions (Analogue of length in resolution)

(Monomial) space

Maximal # monomials in any configuration counted with repetitions (Analogue of clause space in resolution)

In the best of worlds we want to:

- Prove upper bounds for PC (no variables $\overline{x}, \overline{y}, \overline{z}, \ldots$)
- Prove (matching) lower bounds for PCR

Size and Space Bounds for PC/PCR

N =size of formula

Size: at most $\exp(\mathcal{O}(N))$ for PC for k-CNF formulas [Filmus et al. '12] Matching lower bounds for PCR up to constant factors in exponent e.g. [Alekhnovich & Razborov '01]

Space: at most $\mathcal{O}(N)$ for PC for k-CNF formulas [Filmus et al. '12] No matching lower bounds! Currently best bounds $\Omega(\sqrt[3]{N})$ (for PC and PCR)

- Space lower bounds for wide formulas in [Alekhnovich et al. '00]
- Only recently shown for k-CNF formulas

For number of reasons (some of which we briefly mentioned), prefer k-CNF formulas

PCR Space Lower Bounds for k-CNFs

Today, would like to prove first space lower bound for k-CNFs in polynomial calculus:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi '12)

There are k-CNF formulas F_N of size N s.t. $Sp_{PCR}(F_N \vdash \bot) = \Omega(\sqrt[3]{N})$

Actually, will prove slightly weaker result:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi '12)

There are CNF formulas F_N of size N with clauses of width $\mathcal{O}(\log N)$ s.t. $Sp_{\mathcal{PCR}}(F_N \vdash \bot) = \Omega(\sqrt[3]{N/\log N})$

(But all key ingredients will be there in proofs)

PCR Space Lower Bounds for k-CNFs

Today, would like to prove first space lower bound for k-CNFs in polynomial calculus:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi '12)

There are k-CNF formulas F_N of size N s.t. $Sp_{PCR}(F_N \vdash \bot) = \Omega(\sqrt[3]{N})$

Actually, will prove slightly weaker result:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi '12)

There are CNF formulas F_N of size N with clauses of width $\mathcal{O}(\log N)$ s.t. $Sp_{\mathcal{PCR}}(F_N \vdash \bot) = \Omega(\sqrt[3]{N/\log N})$

(But all key ingredients will be there in proofs)

Bitwise Pigeonhole Principle Formula $BPHP_n^m$

$$x^b = \begin{cases} x & \text{if } b = 0 \\ \overline{x} & \text{if } b = 1 \end{cases} \qquad (x^b \text{ is true if and only if } x = b)$$

$$[0,j) = \{0,1,\ldots,j-1\} \qquad (\text{will index pigeons and holes starting from 0})$$

$$n = 2^\ell \qquad \qquad (\text{only consider even powers of 2 for } \# \text{ holes})$$

Variables x[p,i] for each $p \in [0,m)$ and $i \in [0,\ell)$

Pigeon p sent to hole $x[p,\ell-1]\cdots x[p,1]x[p,0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell-1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$$

"Have m > n integers between 0 and n-1 and they're all distinct"

Bitwise Pigeonhole Principle Formula $BPHP_n^m$

$$x^b = \begin{cases} x & \text{if } b = 0 \\ \overline{x} & \text{if } b = 1 \end{cases} \qquad (x^b \text{ is true if and only if } x = b)$$

$$[0,j) = \{0,1,\ldots,j-1\} \qquad \text{(will index pigeons and holes starting from 0)}$$

$$n = 2^\ell \qquad \qquad \text{(only consider even powers of 2 for $\#$ holes)}$$

Variables x[p,i] for each $p \in [0,m)$ and $i \in [0,\ell)$

Pigeon p sent to hole $x[p,\ell-1]\cdots x[p,1]x[p,0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell-1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$$

"Have m > n integers between 0 and n-1 and they're all distinct"

Bitwise Pigeonhole Principle Formula $BPHP_n^m$

$$x^b = \begin{cases} x & \text{if } b = 0 \\ \overline{x} & \text{if } b = 1 \end{cases} \qquad (x^b \text{ is true if and only if } x = b)$$

$$[0,j) = \{0,1,\ldots,j-1\} \qquad (\text{will index pigeons and holes starting from 0})$$

$$n = 2^\ell \qquad \qquad (\text{only consider even powers of 2 for } \# \text{ holes})$$

Variables x[p, i] for each $p \in [0, m)$ and $i \in [0, \ell)$

Pigeon p sent to hole $x[p,\ell-1]\cdots x[p,1]x[p,0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell-1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$$

"Have m>n integers between 0 and n-1 and they're all distinct"

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \perp) > n/8$$

Proof method: For $\pi=\{\mathbb{P}_0,\mathbb{P}_1,\ldots,\mathbb{P}_{\tau}\}$ with $Sp(\pi)\leq n/8$, construct "auxiliary configurations" $\mathcal{A}_0,\mathcal{A}_1,\ldots,\mathcal{A}_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- lacksquare \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- ② \mathcal{A}_t is satisfiable (so, in particular, \mathbb{P}_t also satisfiable)
- ③ For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \perp) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- ① \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- ② \mathcal{A}_t is satisfiable (so, in particular, \mathbb{P}_t also satisfiable)
- ⑤ For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \bot) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- ① \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- ② \mathcal{A}_t is satisfiable (so, in particular, \mathbb{P}_t also satisfiable)
- ⑤ For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \leq n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \bot) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- **1** \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- $hinspace hinspace \mathcal{A}_t$ is satisfiable (so, in particular, \mathbb{P}_t also satisfiable)
- ⑤ For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \bot) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- **1** \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- $m{Q}$ \mathcal{A}_t is satisfiable (so, in particular, \mathbb{P}_t also satisfiable)
- ⑤ For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \bot) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- **1** \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- extstyle ext
- **③** For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Theorem

$$Sp_{\mathcal{PCR}}(BPHP_n^m \vdash \bot) > n/8$$

Proof method: For $\pi = \{\mathbb{P}_0, \mathbb{P}_1, \dots, \mathbb{P}_{\tau}\}$ with $Sp(\pi) \leq n/8$, construct "auxiliary configurations" $A_0, A_1, \dots, A_{\tau}$ such that

- ullet \mathcal{A}_t highly structured, so easier to understand than \mathbb{P}_t
- ullet but still gives information about \mathbb{P}_t

Maintain invariants for A_t :

- **1** \mathcal{A}_t implies \mathbb{P}_t (i.e., \mathcal{A}_t "stronger" than \mathbb{P}_t)
- extstyle ext
- **③** For $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$, can do update $\mathcal{A}_t \leadsto \mathcal{A}_{t+1}$ if $Sp(\mathbb{P}_t) \le n/8$

Commitment Sets

(Disjunctive) commitment

- 2-clause of the form $C = x[p, i]^b \vee x[q, j]^c$
- Pigeons $p \neq q$ distinct
- No restrictions on $i, j \in [0, l)$, $b, c \in \{0, 1\}$
- Domain dom(C) = set of pigeons $\{p, q\}$ mentioned in C

Commitment set

- $\mathcal{A} = \{C_1, C_2, \dots, C_s\}$ think of \mathcal{A}_t as 2-CNF formula
- For all $i \neq j$, $dom(C_i) \cap dom(C_j) = \emptyset$ (i.e., all pigeons mentioned are distinct)
- $\bullet \ \operatorname{dom}(\mathcal{A}) = \bigcup_{C \in \mathcal{A}} \operatorname{dom}(C)$
- Size |A| = number of commitments in A

Commitment Sets

(Disjunctive) commitment

- 2-clause of the form $C = x[p, i]^b \vee x[q, j]^c$
- Pigeons $p \neq q$ distinct
- No restrictions on $i, j \in [0, l)$, $b, c \in \{0, 1\}$
- Domain dom(C) = set of pigeons $\{p, q\}$ mentioned in C

Commitment set

- ullet $\mathcal{A}=\{C_1,C_2,\ldots,C_s\}$ think of \mathcal{A}_t as 2-CNF formula
- For all $i \neq j$, $dom(C_i) \cap dom(C_j) = \emptyset$ (i.e., all pigeons mentioned are distinct)
- $dom(A) = \bigcup_{C \in A} dom(C)$
- Size |A| = number of commitments in A

```
Any (total) assignment \alpha to Vars \left(BPHP_n^m\right) defines function f_\alpha:[0,m)\to[0,n) — in what follows, identify \alpha and f_\alpha
```

A (total) assignment α to $Vars\left(BPHP_n^m\right)$ is well-behaved over set of pigeons $S\subseteq [0,m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set $\mathcal A$ if

- α well-behaved on dom(\mathcal{A}) (defines partial matching for all pigeons \mathcal{A} mentions)
- \bullet α satisfies \mathcal{A}

Definition (Entailment)

```
Any (total) assignment \alpha to Vars \left(BPHP_n^m\right) defines function f_\alpha:[0,m)\to[0,n) — in what follows, identify \alpha and f_\alpha
```

A (total) assignment α to $Vars(BPHP_n^m)$ is well-behaved over set of pigeons $S \subseteq [0, m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set $\mathcal A$ if

- α well-behaved on dom(\mathcal{A}) (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies A

Definition (Entailment)

```
Any (total) assignment \alpha to Vars \left(BPHP_n^m\right) defines function f_\alpha:[0,m)\to[0,n) — in what follows, identify \alpha and f_\alpha
```

A (total) assignment α to $Vars\big(BPHP^m_n\big)$ is well-behaved over set of pigeons $S\subseteq [0,m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set $\mathcal A$ if

- α well-behaved on dom(\mathcal{A}) (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies \mathcal{A}

Definition (Entailment)

```
Any (total) assignment \alpha to Vars \left(BPHP_n^m\right) defines function f_\alpha:[0,m)\to[0,n) — in what follows, identify \alpha and f_\alpha
```

A (total) assignment α to $Vars\big(BPHP^m_n\big)$ is well-behaved over set of pigeons $S\subseteq [0,m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set $\mathcal A$ if

- α well-behaved on dom(\mathcal{A}) (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies A

Definition (Entailment)

Proof of Space Lower Bound for PCR

Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:

- A_t entails \mathbb{P}_t over well-behaved assignments
- $|\mathcal{A}_t| \leq 2 \cdot Sp(\mathbb{P}_t)$

Proof is by case analysis over derivation step $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$:

Download of polynomial encoding

- Boolean or Complementarity axiom
- ② axiom clause H(p,q,h) of $BPHP_n^m$

Inference of polynomial Q from \mathbb{P}_t

Erasure of polynomial $Q \in \mathbb{P}_t$

Proof of Space Lower Bound for PCR

Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:

- ullet \mathcal{A}_t entails \mathbb{P}_t over well-behaved assignments
- $|\mathcal{A}_t| \leq 2 \cdot Sp(\mathbb{P}_t)$

Proof is by case analysis over derivation step $\mathbb{P}_t \leadsto \mathbb{P}_{t+1}$:

Download of polynomial encoding

- Boolean or Complementarity axiom
- 2 axiom clause H(p,q,h) of $BPHP_n^m$

Inference of polynomial Q from \mathbb{P}_t

Erasure of polynomial $Q \in \mathbb{P}_t$

Proof of Space Lower Bound for PCR

Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:

- ullet \mathcal{A}_t entails \mathbb{P}_t over well-behaved assignments
- $|\mathcal{A}_t| \leq 2 \cdot Sp(\mathbb{P}_t)$

Proof is by case analysis over derivation step $\mathbb{P}_t \rightsquigarrow \mathbb{P}_{t+1}$:

Download of polynomial encoding

- Boolean or Complementarity axiom
- 2 axiom clause H(p,q,h) of $BPHP_n^m$

Inference of polynomial Q from \mathbb{P}_t

Erasure of polynomial $Q \in \mathbb{P}_t$

Complementarity axiom $x+\overline{x}-1$ or Boolean axiom x^2-x : Set $\mathcal{A}_{t+1}=\mathcal{A}_t$

Hole axiom
$$H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$$

- ① $\{p,q\} \subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)
- **③** $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick "dummy" $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q,0]^{1-h_0} \vee x[p^*,0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies H(p,q,h)

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$:

- $\{p,q\} \subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)
- **③** $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick "dummy" $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \vee x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies H(p, q, h)

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$:

- $\{p,q\} \subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)
- **③** $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick "dummy" $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \vee x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies H(p, q, h)

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$:

- $\{p,q\} \subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)
- ③ $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick "dummy" $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \vee x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies H(p, q, h)

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$:

- $\{p,q\}\subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1}=\mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)

Complementarity axiom $x+\overline{x}-1$ or Boolean axiom x^2-x : Set $\mathcal{A}_{t+1}=\mathcal{A}_t$

Hole axiom $H(p,q,h) = \bigvee_{i=0}^{\ell-1} x[p,i]^{1-h_i} \vee \bigvee_{i=0}^{\ell-1} x[q,i]^{1-h_i}$:

- $\{p,q\} \subseteq \mathsf{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies H(p,q,h)
- **③** $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick "dummy" $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \vee x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies H(p, q, h)

Case 2: Inference

- ullet $\mathbb{P}_{t+1} = \mathbb{P}_t \, \cup \, \{Q\}$ for polynomial Q derived from \mathbb{P}
- Set $A_{t+1} = A_t$
- PCR is sound $\Rightarrow Q$ implied by \mathbb{P}_t
- ullet I.e., if for all $P\in\mathbb{P}_t$ have that P(lpha)=0, then Q(lpha)=0 also holds
- All well-behaved α satisfying $\mathcal{A}_{t+1} = \mathcal{A}_t$ must satisfy \mathbb{P}_t by the induction hypothesis and hence also Q, so all of \mathbb{P}_{t+1} is satisfied
- Space increases but size of commitment set unchanged \Rightarrow $|\mathcal{A}_{t+1}| \leq 2 \cdot Sp(\mathbb{P}_{t+1})$

Case 3: Erasure

- $\bullet \ \mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\} \text{ for } Q \in \mathbb{P}_t$
- Know A_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|\mathcal{A}_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1} (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- ullet $\mathcal A$ entails $\mathbb P$ over well-behaved assignments

Then \exists commitment set \mathcal{B} of size $|\mathcal{B}| \leq 2 \cdot Sp(\mathbb{P})$ s.t. \mathcal{B} entails \mathbb{P} over well-behaved assignments

Case 3: Erasure

- $\mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\}$ for $Q \in \mathbb{P}_t$
- Know \mathcal{A}_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|\mathcal{A}_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1} (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- ullet $\mathcal A$ entails $\mathbb P$ over well-behaved assignments

Then \exists commitment set \mathcal{B} of size $|\mathcal{B}| \leq 2 \cdot Sp(\mathbb{P})$ s.t. \mathcal{B} entails \mathbb{P} over well-behaved assignments

Case 3: Erasure

- $\mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\}$ for $Q \in \mathbb{P}_t$
- Know A_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1} (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- ullet $\mathcal A$ entails $\mathbb P$ over well-behaved assignments

Then \exists commitment set \mathcal{B} of size $|\mathcal{B}| \leq 2 \cdot Sp(\mathbb{P})$ s.t. \mathcal{B} entails \mathbb{P} over well-behaved assignments

Case 3: Erasure

- $\mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\}$ for $Q \in \mathbb{P}_t$
- Know A_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1} (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- ullet $\mathcal A$ entails $\mathbb P$ over well-behaved assignments

Then \exists commitment set $\mathcal B$ of size $|\mathcal B| \le 2 \cdot Sp(\mathbb P)$ s.t. $\mathcal B$ entails $\mathbb P$ over well-behaved assignments

Case 3: Erasure

- $\mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\}$ for $Q \in \mathbb{P}_t$
- Know A_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1} (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- \mathcal{A} entails \mathbb{P} over well-behaved assignments

Then \exists commitment set \mathcal{B} of size $|\mathcal{B}| \leq 2 \cdot Sp(\mathbb{P})$ s.t. \mathcal{B} entails \mathbb{P} over well-behaved assignments

End of Proof. . . Except for the Hard Part

- This completes the proof of the PCR space lower bound
- ... modulo two assumptions
- Assumption 1: Commitment sets are satisfiable by well-behaved assignments (easy)
- Assumption 2: Locality lemma takes care of erasure case (harder)
- Let's stop beating around the bush and prove Locality lemma (and get satisfiability of commitment sets for free)

A Simple But Important Technical Lemma

Lemma

Given

- any set $S \subseteq [0, m), |S| < n/2$,
- ullet any assignment eta well-behaved on S,
- any literal $x[p,i]^b$ associated to pigeon $p \notin S$,

can modify β to α by reassigning variables associated to pigeon p so that α is well-behaved on $S\cup\{p\}$ and satisfies $x[p,i]^b$

Proof.

- Exactly half of n holes have binary expansion with ith bit = b
- Pigeons in S use less than n/2 holes (as assigned by β)
- Hence by counting \exists hole h not assigned to any pigeon in S and having the right value of ith bit
- Modifying β by sending pigeon p to hole h satisfies $x[p,i]^b$

A Simple But Important Technical Lemma

Lemma

Given

- any set $S \subseteq [0, m), |S| < n/2$,
- ullet any assignment eta well-behaved on S,
- any literal $x[p,i]^b$ associated to pigeon $p \notin S$,

can modify β to α by reassigning variables associated to pigeon p so that α is well-behaved on $S \cup \{p\}$ and satisfies $x[p,i]^b$

Proof.

- Exactly half of n holes have binary expansion with ith bit = b
- Pigeons in S use less than n/2 holes (as assigned by β)
- Hence by counting \exists hole h not assigned to any pigeon in S and having the right value of ith bit
- Modifying β by sending pigeon p to hole h satisfies $x[p,i]^b$

A Simple But Important Technical Lemma

Lemma

Given

- any set $S \subseteq [0, m), |S| < n/2$,
- any assignment β well-behaved on S,
- any literal $x[p,i]^b$ associated to pigeon $p \notin S$,

can modify β to α by reassigning variables associated to pigeon p so that α is well-behaved on $S \cup \{p\}$ and satisfies $x[p,i]^b$

Proof.

- Exactly half of n holes have binary expansion with ith bit = b
- Pigeons in S use less than n/2 holes (as assigned by β)
- \bullet Hence by counting \exists hole h not assigned to any pigeon in S and having the right value of $i{\rm th}$ bit
- Modifying β by sending pigeon p to hole h satisfies $x[p,i]^b$

Corollary

Given

- any sets $S,T\subseteq [0,m)$ s.t. $S\,\cap\, T=\emptyset$ and $|S\,\cup\, T|\leq n/2$,
- ullet any assignment eta well-behaved on S,
- any set X of exactly one literal $x[p,i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S\cup T$ and satisfies all literals in X

Proof.

Consider pigeons in T one by one and apply Lemma

In particular, proves that any commitment set \mathcal{A} of size $|\mathcal{A}| \leq n/4$ is satisfiable by well-behaved assignment (Let $S = \emptyset$, T = dom(A), X = Lit(A) and apply Corollary)

Corollary

Given

- any sets $S,T\subseteq [0,m)$ s.t. $S\cap T=\emptyset$ and $|S\cup T|\leq n/2$,
- ullet any assignment eta well-behaved on S,
- any set X of exactly one literal $x[p,i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X

Proof

Consider pigeons in T one by one and apply Lemma

In particular, proves that any commitment set \mathcal{A} of size $|\mathcal{A}| \leq n/4$ is satisfiable by well-behaved assignment (Let $S = \emptyset$, $T = \text{dom}(\mathcal{A})$, $X = Lit(\mathcal{A})$ and apply Corollary)

Corollary

Given

- any sets $S,T\subseteq [0,m)$ s.t. $S\cap T=\emptyset$ and $|S\cup T|\leq n/2$,
- ullet any assignment eta well-behaved on S,
- any set X of exactly one literal $x[p,i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X

Proof.

Consider pigeons in ${\cal T}$ one by one and apply Lemma

In particular, proves that any commitment set $\mathcal A$ of size $|\mathcal A| \leq n/4$ is satisfiable by well-behaved assignment

Corollary

Given

- any sets $S,T\subseteq [0,m)$ s.t. $S\cap T=\emptyset$ and $|S\cup T|\leq n/2$,
- ullet any assignment eta well-behaved on S,
- any set X of exactly one literal $x[p,i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X

Proof.

Consider pigeons in ${\cal T}$ one by one and apply Lemma

In particular, proves that any commitment set $\mathcal A$ of size $|\mathcal A| \le n/4$ is satisfiable by well-behaved assignment

(Let $S = \emptyset$, T = dom(A), X = Lit(A) and apply Corollary)

- Build bipartite graph $G = (U \cup V, E)$
- \bullet U =distinct monomials M in \mathbb{P}
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

 $m_1 \cap$

 $m_3 \cap$

 $m_5 \bigcirc$

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in A$ if $m_2 \bigcirc$ \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$ $m_4 \bigcirc$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if
- Let $\Gamma \subseteq M$ set of maximal size such
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality
- $\bullet \Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$
- (Make 2 copies of each $m \in M \setminus \Gamma$

- $m_1 \bigcirc$
- $m_2 \cap$
- $m_3 \cap$
- $m_4 \cap$

- m_5 ()

$$\bigcirc C_{12}$$

 $\bigcirc C_{13}$

 $\bigcirc C_1$

 $\bigcap C_2$

 $\bigcirc C_3$

 $\bigcap C_4$ $\bigcirc C_5$

 $\bigcirc C_6$

 $\bigcirc C_7$

 $\bigcirc C_8$

 $\bigcirc C_9$

 $\bigcirc C_{10}$

 $\bigcirc C_{11}$

- Build bipartite graph $G = (U \cup V, E)$
- ullet U= distinct monomials M in ${\mathbb P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- ullet U= distinct monomials M in ${\mathbb P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- ullet U= distinct monomials M in ${\mathbb P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- ullet U= distinct monomials M in ${\mathbb P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- V = commitments in A
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall \ S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)

Look at $m \in M \setminus \Gamma$

Matching commitments:

•
$$C' = x[p', i']^{b'} \vee x[q', j']^{c'}$$

•
$$C'' = x[p'', i'']^{b''} \vee x[q'', j'']^{c''}$$

Suppose m mentions pigeons p' and p'' so that

•
$$m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$$

$$(m \text{ can also mention } q' \text{ and/or } q'' - \text{don't care})$$

Make new commitment $C_m = x[p', i_1]^{b_1} \vee x[p'', i_2]^{b}$

Let
$$\mathcal{B} = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$$

Look at $m \in M \setminus \Gamma$

Matching commitments:

•
$$C' = x[p', i']^{b'} \vee x[q', j']^{c'}$$

•
$$C''' = x[p'', i'']^{b''} \vee x[q'', j'']^{c''}$$

Suppose m mentions pigeons p' and p'' so that

•
$$m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$$

$$(m \text{ can also mention } q' \text{ and/or } q'' - \text{don't care})$$

Make new commitment $C_m = x[p', i_1]^{b_1} \vee x[p'', i_2]^{b}$

Let
$$\mathcal{B} = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$$

Look at $m \in M \setminus \Gamma$

Matching commitments:

•
$$C' = x[p', i']^{b'} \vee x[q', j']^{c'}$$

•
$$C'' = x[p'', i'']^{b''} \vee x[q'', j'']^{c''}$$

Suppose m mentions pigeons p' and p'' so that

•
$$m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$$

(m can also mention q' and/or q'' - don't care)

Make new commitment $C_m = x[p',i_1]^{b_1} \vee x[p'',i_2]^{b_2}$

Let
$$\mathcal{B} = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$$

Look at $m \in M \setminus \Gamma$

Matching commitments:

•
$$C' = x[p', i']^{b'} \vee x[q', j']^{c'}$$

•
$$C''' = x[p'', i'']^{b''} \vee x[q'', j'']^{c''}$$

Suppose m mentions pigeons p' and p'' so that

•
$$m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$$

(m can also mention q' and/or q'' - don't care)

Make new commitment $C_m = x[p', i_1]^{b_1} \vee x[p'', i_2]^{b_2}$

Let
$$\mathcal{B} = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$$

Look at $m \in M \setminus \Gamma$

Matching commitments:

•
$$C' = x[p', i']^{b'} \vee x[q', j']^{c'}$$

•
$$C'' = x[p'', i'']^{b''} \vee x[q'', j'']^{c''}$$

Suppose m mentions pigeons p' and p'' so that

•
$$m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$$

$$(m \text{ can also mention } q' \text{ and/or } q'' - \text{don't care})$$

Make new commitment $C_m = x[p',i_1]^{b_1} \vee x[p'',i_2]^{b_2}$

Let
$$\mathcal{B} = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$$

Need to prove three things:

- ① \mathcal{B} is a commitment set OK, all pigeons are distinct
- ② \mathcal{B} has the right size OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P})$
- ${\mathfrak B}$ entails ${\mathbb P}$ over well-behaved assignments Perhaps a priori not so clear. . .

Prove entailment in slightly roundabout way: Given any β well-behaved on and satisfying β , find α such

- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- \bullet α well-behaved on and satisfies A

Need to prove three things:

- B is a commitment set OK, all pigeons are distinct
- ② \mathcal{B} has the right size OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P})$
- ${\mathfrak B}$ entails ${\mathbb P}$ over well-behaved assignments Perhaps a priori not so clear...

Prove entailment in slightly roundabout way: Given any β well-behaved on and satisfying β , find α such th

- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- \bullet α well-behaved on and satisfies A

Need to prove three things:

- B is a commitment set OK, all pigeons are distinct
- ② \mathcal{B} has the right size OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P})$
- ${\mathfrak B}$ entails ${\mathbb P}$ over well-behaved assignments Perhaps a priori not so clear...

Prove entailment in slightly roundabout way: Given any β well-behaved on and satisfying \mathcal{B} , find α such that

- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- \bullet α well-behaved on and satisfies \mathcal{A}

Need to prove three things:

- B is a commitment set OK, all pigeons are distinct
- ② \mathcal{B} has the right size OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P})$
- $\ \mathfrak{B}$ entails \mathbb{P} over well-behaved assignments Perhaps a priori not so clear. . .

Prove entailment in slightly roundabout way: Given any β well-behaved on and satisfying β , find α such that

- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- \bullet α well-behaved on and satisfies A

Need to prove three things:

- B is a commitment set OK, all pigeons are distinct
- ② \mathcal{B} has the right size OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P})$
- ${\mathfrak B}$ entails ${\mathbb P}$ over well-behaved assignments Perhaps a priori not so clear. . .

Prove entailment in slightly roundabout way:

Given any β well-behaved on and satisfying \mathcal{B} , find α such that

- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- \bullet α well-behaved on and satisfies \mathcal{A}

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \le n/4 \Rightarrow |S \cup T| \le n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - ightharpoonup lpha well-behaved on $S \cup T = \mathsf{dom}(\mathcal{A})$
 - lacktriangledown lpha agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \le n/4 \Rightarrow |S \cup T| \le n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - ightharpoonup lpha well-behaved on $S \cup T = \mathsf{dom}(\mathcal{A})$
 - lacktriangledown lpha agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \le n/4 \Rightarrow |S \cup T| \le n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - ightharpoonup lpha well-behaved on $S \cup T = \mathsf{dom}(\mathcal{A})$
 - lacktriangledown lpha agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \le n/4 \Rightarrow |S \cup T| \le n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - ightharpoonup lpha well-behaved on $S \cup T = \mathsf{dom}(\mathcal{A})$
 - lacktriangledown lpha agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = dom(A)$
 - α agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- \bullet Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - $ightharpoonup \alpha$ well-behaved on $S \cup T = \mathsf{dom}(\mathcal{A})$
 - α agrees with β on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- \bullet Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = dom(A)$
 - α agrees with eta on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- \bullet Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = dom(A)$
 - α agrees with β on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.

- Let $S = dom(\mathcal{B})$ and $T = dom(\mathcal{A}) \setminus dom(\mathcal{B})$
- Let $X = \{ \text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } \mathcal{A} \}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - $ightharpoonup \alpha$ well-behaved on $S \cup T = dom(A)$
 - α agrees with β on pigeons outside T
 - $ightharpoonup \alpha$ satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on dom(\mathcal{A}); satisfies $N(\Gamma) \cup X$ \Rightarrow satisfies $\mathcal{A} \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.

Summing up the Course

- Brief overview of proof complexity in general
- Introduced resolution, polynomial calculus, and cutting planes
- Surveyed state of the art for resolution and polynomial calculus
- Proved some recent results for resolution and polynomial calculus
- Many open (and accessible) problems now go solve them!

The Theory Group at KTH

The Theory Group at KTH (or: A Shameless Plug)

- Strong research environment spanning e.g.
 - complexity theory
 - cryptography
 - computer and network security
 - formal methods
 - natural language processing
- Publish regularly in leading CS conferences and journals
- Numerous awards and research grants in recent years
- So we're expanding and hiring! (PhD students, postdocs, and faculty)
- See www.csc.kth.se/tcs for more details