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The Subject Matter of This Course

What is a proof?

Which (logical) statements have efficient proofs?

How can we find such proofs? (Can we?)

What are good methods of reasoning about logical statements?

What are natural notions of “efficiency” of proofs? (size, complexity,
et cetera)

How are these notions related?
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So What Is a Proof?

Claim: 25957 is the product of two primes.
True or false? What kind of proof would convince us?

“I told you so. Just factor and check it yourself!”
Not much of a proof.

25957 ≡ 1 (mod 2) 25957 ≡ 0 (mod 101)
25957 ≡ 1 (mod 3) 25957 ≡ 1 (mod 103)
25957 ≡ 2 (mod 5)

...
... 25957 ≡ 0 (mod 257)

25957 ≡ 19 (mod 99)
...

OK, but maybe even a bit of overkill.

“25957 = 101 · 257; check yourself that these are primes.”

Key demand: A proof should be efficiently verifiable.
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Proof system

Proof system for a language L (adapted from [Cook & Reckhow ’79]):

Deterministic algorithm P (x, π) that runs in time polynomial
in |x| and |π| such that

for all x ∈ L there is a string π (a proof) such that P (x, π) = 1,

for all x 6∈ L it holds for all strings π that P (x, π) = 0.

Think of P as “proof checker”
Note that proof π can be very large compared to x
Only have to achieve polynomial time in |x|+ |π|

Propositional proof system: proof system for the language taut of all
valid propositional logic formulas (or tautologies)
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Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)

Logical connectives:

negation ¬,

conjunction ∧,

disjunction ∨,

implication →,

equivalence ↔.

Set prop of propositional logic formulas is smallest set X such that

x ∈ X for all propositional logic variables x ∈ Vars,
if F,G ∈ X then

(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X,

if F ∈ X then
(
¬F

)
∈ X.
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Propositional Logic: Semantics

Let α denote a truth value assignment, i.e., α : Vars 7→ {0, 1}

Extend α from variables to formulas by:

α(¬F ) = 1 if α(F ) = 0

α(F ∨G) = 1 unless α(F ) = α(G) = 0

α(F ∧G) = 1 if α(F ) = α(G) = 1

α(F → G) = 1 unless α(F ) = 1 and α(G) = 0

α(F ↔ G) = 1 if α(F ) = α(G)

We say that F is

satisfiable if there is an assignment α with α(F ) = 1

valid or tautological if all assignments satisfy F

falsifiable if there is an assignment α with α(F ) = 0

unsatisfiable or contradictory if all assignments falsify F
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Example Propositional Proof System

Example (Truth table)

p q r (p ∧ (q ∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Certainly polynomial-time checkable measured in “proof” size
Why does this not make us happy?
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Proof System Complexity

Complexity cplx (P ) of a proof system P :

Smallest g : N 7→ N such that x ∈ L if and only if there is a proof π of size
|π| ≤ g(|x|) such that P (x, π) = 1.

If a proof system is of polynomial complexity, it is said to be polynomially
bounded or p-bounded.

Example (Truth table continued)

Truth table is a propositional proof system, but of exponential complexity!
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Proof systems and P vs. NP

Theorem (Cook & Reckhow ’79)

NP = co-NP if and only if there exists a polynomially bounded
propositional proof system.

Proof.

NP exactly the set of languages with p-bounded proof systems

(⇒) taut ∈ co-NP since F is not a tautology iff ¬F ∈ sat.
If NP = co-NP, then taut ∈ NP has a p-bounded proof system by
definition.

(⇐) Suppose there exists a p-bounded proof system. Then taut ∈ NP,
and since taut is complete for co-NP it follows that NP = co-NP.
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Polynomial Simulation

The convential wisdom is that NP 6= co-NP
Seems that proof of this is lightyears away
(Would imply P 6= NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying
successively stronger proof systems and relating their strengths

Definition (p-simulation)

P1 polynomially simulates, or p-simulates, P2 if there exists a
polynomial-time computable function f such that for all F ∈ taut it
holds that P2(F, π) = 1 iff P1(F, f(π)) = 1.

Weak p-simulation: cplx (P1) = (cplx (P2))
O(1) but we do not know

explicit translation function f from P2-proofs to P1-proofs
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Polynomial Equivalence

Definition (p-equivalence)

Two propositional proof systems P1 and P2 are polynomially equivalent, or
p-equivalent, if each proof system p-simulates the other.

If P1 p-simulates P2 but P2 does not p-simulate P1, then P1 is strictly
stronger than P2

Lots of results proven relating strength of different propositional proof
systems

But not the focus of this course (although we will see a few examples)
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A Fundamental Theoretical Problem. . .

The constructive version of the problem:

Problem

Given a propositional logic formula F , can we decide efficiently whether is
it true no matter how we assign values to its variables?

taut: Fundamental problem in theoretical computer science ever since
Stephen Cook’s NP-completeness paper in 1971

(And significance realized much earlier — cf. Gödel’s letter in 1956)

These days recognized as one of the main challenges for all of
mathematics — one of the million dollar “Millennium Problems”
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. . . with Huge Practical Implications

All known algorithms run in exponential time in worst case

But enormous progress on applied computer programs last 10-15 years

These so-called SAT solvers are routinely deployed to solve large-scale
real-world problems with 100 000s or even 1 000 000s of variables

Used in e.g. hardware verification, software testing, software package
management, artificial intelligence, cryptography, bioinformatics, and
more

But we also know small example formulas with only hundreds of
variables that trip up even state-of-the-art SAT solvers
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Automated Theorem Proving or SAT Solving

Reason 2 for proof complexity: understand proof systems used for
solving formulas occurring in “real-world applications”

Study proof systems used by SAT solvers

Model actual methods of reasoning used by SAT solvers as
“refinements” (subsystems) of these systems

Prove upper and lower bounds in these systems

Try to explain or predict theoretically what happens in practice

This course:

Focus on proof systems used for SAT solving (resolution, polynomial
calculus, cutting planes)

Maybe not too much “low-level modelling”
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Proof Search Algorithms and Automatizability

Proof search algorithm AP for propositional proof system P :
Deterministic algorithm with

input: formula F

output: P -proof π of F or report that F is falsifiable

Definition (Automatizability)

P is automatizable if there exists a proof search algorithm AP such that if
F ∈ taut then AP on input F outputs a P -proof of F in time polynomial
in the size of a smallest P -proof of F .
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Short Proofs Seem Hard to Find (at Least in Theory)

Example (Truth table continued)

Truth table is (trivially) an automatizable propositional proof system. (But
the proofs we find are of exponential size, so this is not very exciting.)

We want proof systems that are both

strong (i.e., have short proofs for all tautologies) and

automatizable (i.e., we can find these short proofs)

Seems that this is not possible (under reasonable complexity assumptions)

But can find proof search algorithms that work really well “in practice”
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Potential and Limitations of Mathematical Reasoning

Reason 3 for proof complexity: understand how deep / hard various
mathematical truths are

Look at logic encoding of various mathematical truths (e.g.
combinatorial principles)

Determine how strong proof systems are needed to provide efficient
proofs

Tells us how powerful mathematical tools are needed for establishing
such statements

Fascinating area, but this course will not go into this at all
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Transforming Tautologies to Unsatisfiable CNFs

Any propositional logic formula F can be converted to formula F ′ in
conjunctive normal form (CNF) such that

F ′ only linearly larger than F

F ′ unsatisfiable iff F tautology

Idea [Tseitin ’68]:

Introduce new variable xG for each subformula G
.
= H1 ◦H2 in F ,

◦ ∈
{
∧,∨,→,↔

}
Translate G to set of disjunctive clauses Cl(G) which enforces that
truth value of xG is computed correctly given xH1 and xH2
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Sketch of Transformation

Two examples for ∨ and → (∧ and ↔ are analogous):

G ≡ H1 ∨H2 : Cl(G) :=
(
¬xG ∨ xH1 ∨ xH2

)
∧

(
xG ∨ ¬xH1

)
∧

(
xG ∨ ¬xH2

)
G ≡ H1 → H2 : Cl(G) :=

(
¬xG ∨ ¬xH1 ∨ xH2

)
∧

(
xG ∨ xH1

)
∧

(
xG ∨ ¬xH2

)
Finally, add clause ¬xF
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Proof Systems for Refuting Unsatisfiable CNFs

Easy to verify that constructed CNF formula F ′ is unsatisfiable iff F
is a tautology

So any sound and complete proof system which produces refutations
of formulas in conjunctive normal form can be used as a propositional
proof system

From now on and for the rest of this course, we will discuss only such
proof systems
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Some Notation and Terminology

Literal a: variable x or its negation x (rather than ¬x)

Let x = x

Sometimes write x1 = x and x0 = x

Clause C = a1 ∨ . . . ∨ ak: set of literals
At most k literals: k-clause

CNF formula F = C1 ∧ . . . ∧ Cm: set of clauses
k-CNF formula: CNF formula consisting of k-clauses

Vars(·): set of variables in clause or formula
Lit(·): set of literals in clause or formula

F � D: semantical implication, α(F ) true ⇒ α(D) true
for all truth value assignments α

[n] = {1, 2, . . . , n}
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Sequential Proof Systems

A proof system P is sequential if a proof π in P is a

sequence of lines π = {L1, . . . , Lτ}
of some prescribed syntactic form
(depending on the proof system in question)

where each line is derived from previous lines by one of a finite set of
allowed inference rules

(This will become clearer when we get some examples)
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Complexity Measures (High-level Intuition)

View a proof as

non-deterministic Turing machine computation,

special read-only input tape from which the clauses of F (the axioms)
can be downloaded

working memory where all derivation steps are made

Interested in measuring

size of proofs

“complexity” of proofs

Size of a proof ≈ time of the computation

(Space) Complexity ≈ memory consumption of proof (how many things
needed to remember simultaneously)
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Formal Definition of Sequential Proof (1/2)

Definition (Derivation (Inspired by [Alekhnovich et al. ’02]))

A P-configuration D is a set of lines {Li} (of correct syntactic form for P)

A sequence of configurations {D0, . . . , Dτ} is a a P-derivation from a CNF
formula F if D = ∅ and for all t ∈ [τ ], the set Dt is obtained from Dt−1 by
one of the following derivation steps:

Axiom Download Dt = Dt−1 ∪ {LC}, where LC is the encoding of a
clause C ∈ F (an axiom clause)

Inference Dt = Dt−1 ∪ {L} for L inferred by one of the inference rules
for P from L1, . . . , Lm ∈ Dt−1

Erasure Dt = Dt−1 \ {L} for some L ∈ Dt−1
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Formal Definition of Sequential Proof (2/2)

Definition (Refutation)

A P-refutation π : F `⊥ of a CNF formula F is

a derivation π = {D0, . . . , Dτ} such that

D0 = ∅ and

⊥ ∈ Dτ , where ⊥ denotes (explicit) contradiction

Definition (Tree-like refutation)

If every line L in a refutation is used at most once before being erased
(though it can possibly be rederived later), the refutation is tree-like

Looking at DAG Gπ with lines in π as vertices and edges from the
assumptions to the consequence for inferences, Gπ will be a tree
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Length and Space (Generic Definitions)

Definition (Length)

Length L(π) of refutation π = # derivation steps
(≈ # lines counted with repetitions)

Length of refuting F in P
LP(F `⊥) = minimal length of any refutation

Definition (Space)

Space Sp(π) of refutation π = “size” of largest configuration in π

Space of refuting F in P
SpP(F `⊥) = minimal space of any refutation

These definitions to be made more precise for specific proof systems
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Resolution [Blake ’37]

Lines in refutation are disjunctive clauses

Just one inference rule, the resolution rule:

B ∨ x C ∨ x

B ∨ C

B ∨ C is the resolvent of B ∨ x and C ∨ x

Observation

If F is a satisfiable CNF formula and D is derived from clauses C1, C2 ∈ F
by the resolution rule, then F ∧D is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause ⊥ (the
clause with no literals) from F by resolution
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Resolution Sound and Complete

Resolution is sound and implicationally complete.

Sound If there is a resolution derivation π : F `A
then F � A

Complete If F � A then there is a resolution derivation π : F `A′ for
some A′ ⊆ A.

In particular:

F is unsatisfiable ⇔ ∃ resolution refutation of F
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Resolution as a Sequential Proof System

Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)

Proof system operates with disjunctive clauses

Proof/refutation is “presented on blackboard”

Derivation steps:
I Write down clauses of CNF formula being refuted

(axiom clauses)
I Infer new clauses by resolution rule
I Erase clauses that are not currently needed (to save space on

blackboard)

Refutation ends when empty clause ⊥ is derived
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Example CNF Formula

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

Defined in terms of directed acyclic graph (DAG):

source vertices true

truth propagates upwards

but sink vertex is false
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 0

max # lines on board 0

max # literals on board 0

Can download axioms,
erase used clauses or
infer new clauses by resolution rule

B ∨ x C ∨ x

B ∨ C

(but only from clauses currently on
the board!)
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 1

max # lines on board 1

max # literals on board 1

u Download axiom 1: u
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 2

max # lines on board 2

max # literals on board 2

u

v
Download axiom 1: u
Download axiom 2: v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 3

max # lines on board 3

max # literals on board 5

u

v

u ∨ v ∨ x

Download axiom 1: u
Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
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6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

u

v

u ∨ v ∨ x

v ∨ x

Download axiom 1: u
Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

u

v

u ∨ v ∨ x

v ∨ x

Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

u

v

v ∨ x

Download axiom 2: v
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

u

v

v ∨ x

Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

v

v ∨ x
Download axiom 4: u ∨ v ∨ x
Infer v ∨ x from

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 4

max # lines on board 4

max # literals on board 7

v

v ∨ x
u and u ∨ v ∨ x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

max # lines on board 4

max # literals on board 7

v

v ∨ x

x

u and u ∨ v ∨ x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

max # lines on board 4

max # literals on board 7

v

v ∨ x

x

Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

max # lines on board 4

max # literals on board 7

v

x
Erase the clause u ∨ v ∨ x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

max # lines on board 4

max # literals on board 7

v

x
Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 5

max # lines on board 4

max # literals on board 7

x Erase the clause u
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 6

max # lines on board 4

max # literals on board 7

x

x ∨ y ∨ z
Infer x from

v and v ∨ x
Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 6

max # lines on board 4

max # literals on board 7

x

x ∨ y ∨ z
Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

max # lines on board 4

max # literals on board 7

x

x ∨ y ∨ z

y ∨ z

Erase the clause v ∨ x
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

max # lines on board 4

max # literals on board 7

x

x ∨ y ∨ z

y ∨ z

Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

max # lines on board 4

max # literals on board 7

x

y ∨ z
Erase the clause v
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z

Current Research in Proof Complexity Lecture 1 Oct 24, 2011 31 / 45



Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

max # lines on board 4

max # literals on board 7

x

y ∨ z
Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 7

max # lines on board 4

max # literals on board 7

y ∨ z Download axiom 6: x ∨ y ∨ z
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 8

max # lines on board 4

max # literals on board 7

y ∨ z

v ∨ w ∨ y
Infer y ∨ z from

x and x ∨ y ∨ z
Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 8

max # lines on board 4

max # literals on board 7

y ∨ z

v ∨ w ∨ y
Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

max # lines on board 4

max # literals on board 8

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x ∨ y ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

max # lines on board 4

max # literals on board 8

y ∨ z

v ∨ w ∨ y

v ∨ w ∨ z

Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

max # lines on board 4

max # literals on board 8

y ∨ z

v ∨ w ∨ z
Erase the clause x
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

max # lines on board 4

max # literals on board 8

y ∨ z

v ∨ w ∨ z
Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 9

max # lines on board 4

max # literals on board 8

v ∨ w ∨ z Download axiom 5: v ∨ w ∨ y
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 10

max # lines on board 4

max # literals on board 8

v ∨ w ∨ z

v
Infer v ∨ w ∨ z from

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 11

max # lines on board 4

max # literals on board 8

v ∨ w ∨ z

v

w

y ∨ z and v ∨ w ∨ y
Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v
Download axiom 3: w
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 12

max # lines on board 4

max # literals on board 8

v ∨ w ∨ z

v

w

z

Erase the clause v ∨ w ∨ y
Erase the clause y ∨ z
Download axiom 2: v
Download axiom 3: w
Download axiom 7: z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 12

max # lines on board 4

max # literals on board 8

v ∨ w ∨ z

v

w

z

Download axiom 2: v
Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

v ∨ w ∨ z

v

w

z

w ∨ z

Download axiom 2: v
Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

v ∨ w ∨ z

v

w

z

w ∨ z

Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

v ∨ w ∨ z

w

z

w ∨ z

Download axiom 3: w
Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

v ∨ w ∨ z

w

z

w ∨ z

Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

w

z

w ∨ z

Download axiom 7: z
Infer w ∨ z from

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 13

max # lines on board 5

max # literals on board 8

w

z

w ∨ z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

w

z

w ∨ z

z

v and v ∨ w ∨ z
Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

w

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

z

w ∨ z

z

Erase the clause v
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

z

w ∨ z

z

Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

z

z
Erase the clause v ∨ w ∨ z
Infer z from

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 14

max # lines on board 5

max # literals on board 8

z

z
w and w ∨ z

Erase the clause w
Erase the clause w ∨ z
Infer 0 from

z and z
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Example Resolution Refutation

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

Blackboard bookkeeping

total # clauses on board 15

max # lines on board 5

max # literals on board 8

z

z

0

w and w ∨ z
Erase the clause w
Erase the clause w ∨ z
Infer 0 from

z and z
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions

(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space: 3

(in our refutation 5)

Total space: 6

(in our refutation 8)
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions

(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space: 3

(in our refutation 5)

Total space: 6

(in our refutation 8)
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions

(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space: 3

(in our refutation 5)

Total space: 6

(in our refutation 8)
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions

(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1. x

1

2. y

2

∨ z

3

3. v

4

∨ w

5

∨ y

6

Clause space: 3

(in our refutation 5)

Total space: 6

(in our refutation 8)
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions

(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1.

x1

2.

y2∨ z3

3.

v4∨ w5∨ y6

Clause space: 3

(in our refutation 5)

Total space: 6

(in our refutation 8)
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Complexity Measures of Interest: Length and Space

Length: Lower bound on time for proof search algorithm

Space: Lower bound on memory for proof search algorithm

Length
# clauses written on blackboard counted with repetitions
(in our example resolution refutation 15)

Space
Somewhat less straightforward — several ways of measuring

1.

x

1

2.

y

2

∨ z

3

3.

v

4

∨ w

5

∨ y

6

Clause space: 3
(in our refutation 5)
Total space: 6
(in our refutation 8)
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k-DNF Resolution

Family of proof systems R(k) parameterized by k ∈ N+

(R(1) is resolution)

Lines in k-DNF-resolution refutation are k-DNF formulas
i.e., disjunctions of conjunctions (terms) of size ≤ k

Inference rules as follows (where G, H denote k-DNF formulas, T, T ′

denote k-terms, and a1, . . . , ak denote literals):

k-cut
(a1 ∧ · · · ∧ ak′) ∨ G a1 ∨ · · · ∨ ak′ ∨ H

G ∨ H
, (k′ ≤ k)

∧-introduction G ∨ T G ∨ T ′

G ∨ (T ∧ T ′)
, as long as |T ∪ T ′| ≤ k.

∧-elimination
G ∨ T
G ∨ T ′

for any T ′ ⊆ T.

Weakening G
G ∨ H

for any k-DNF formula H.
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k-DNF Resolution Measures

Length
# derivation steps
(≈ # k-DNF formulas counted with repetitions)

Formula space
# k-DNF formulas in any configuration
(Analogue of clause space)

Total space
Total # literals in configuration counted with repetitions
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Cutting Planes: Informal Description

Geometric proof system introduced by [Cook, Coullard & Turán ’87]

Translate clauses to linear inequalities for real variables in [0, 1]

For instance, x ∨ y ∨ z gets translated to x + y + (1− z) ≥ 1,
i.e., x + y − z ≥ 0

Manipulate linear inequalities to derive contradiction 0 ≥ 1
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Cutting Planes: Inference Rules

Lines in cutting planes (CP) refutation: are linear inequalities with integer
coefficients.

Derivation rules:

Variable axioms
x ≥ 0

and −x ≥ −1
for all variables x

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A + B

Multiplication

∑
aixi ≥ A∑

caixi ≥ cA
for a positive integer c

Division

∑
caixi ≥ A∑

aixi ≥ dA/ce
for a positive integer c

A CP-refutation ends when the inequality 0 ≥ 1 has been derived
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Cutting Planes Measures

Length
# derivation steps

Size
# symbols needed to represent proof (coefficients can be huge)

Line space
# Linear inequalities in any configuration
(Analogue of clause space)

Total space
Total # variables in configuration counted with repetitions
+ log of coefficients
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Polynomial Calculus

Algrebraic system introduced by [Clegg, Edmonds & Impagliazzo ’96]
under the name of “Gröbner proof system”

Clauses are interpreted as multilinear polynomial equations

Here, natural to flip convention and think of 0 as true and 1 as false

For instance, clause x ∨ y ∨ z gets translated to
xy(1− z) = 0 or xy − xyz = 0

Derive contradiction by showing that there is no common root for the
polynomial equations corresponding to all the clauses
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Polynomial Calculus: Inference Rules

Lines in polynomial calculus (PC) refutation: multivariate polynomial
equations p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F, typically
finite

Customary to omit “= 0” and only write p

The derivation rules are as follows, where α, β ∈ F, p, q ∈ F[x, y, z, . . .],
and x is any variable:

Variable axioms
x2 − x

for all variables x (forcing 0/1-solutions)

Linear combination
p q

αp + βq

Multiplication
p
xp

A PC-refutation ends when 1 has been derived (i.e., 1 = 0)

(Note that multilinearity follows w.l.o.g. from x2 = x for all variables x)
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Polynomial Calculus: Alternate View

Can also (equivalently) consider a PC-refutation to be a calculation in the
ideal generated by polynomials corresponding to clauses

Then a refutation concludes by proving that 1 is in this ideal, i.e., that the
ideal is everything

Clearly implies that there is no common root

Less obvious: if there is no common root, then 1 is always in the ideal
(requires some algebra)
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Polynomial Calculus Measures

Size
Total # monomials in the refutation counted with repetitions

Length
# derivation steps
(≈ # polynomial equations counted with repetitions)

(Monomial) space
Maximal # monomials in any configuration counted with repetitions
(Again an analogue of clause space)

Total space
Total # variables in any configuration counted with repetitions
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Main Focus of Course

Look at (k-DNF) resolution, cutting planes and polynomial calculus

Relatively weak proof systems, so there is chance to understand them

Also, because of this they can be (and are) used for SAT solving
(as opposed to stronger systems)

Want to understand these systems and prove upper and lower bounds on

length

space

length-space trade-offs

Use this understanding to say something about potential and limitations of
SAT solving

Turns out that other measure are very helpful to increase understanding

width for resolution

degree for polynomial calculus
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State of the Art

Resolution (and k-DNF resolution): much known

Polynomial calculus: some known

Cutting planes: very poorly understood

Lots of good open questions for all three systems
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Practicalities

Official course code is DD3501 (FDD3501 for PhD students)

Check out www.csc.kth.se/∼jakobn/teaching/proofcplx11
regularly for info

Note irregular schedule (due to travelling) and changing seminar
rooms

Aiming at a total of 10 + 10 lectures (autumn + spring)

Examination: problem sets + possibly scribed lecture notes (to be
decided jointly)

Possibility to substitute a reading or research project for parts of the
other requirements

Office hours by appointment only (or whenever I am in the fika room)

Course intended to be fun and interesting (and challenging)
Need feed-back to make that happen — let me know what you think
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Questions to Discuss

Decide on the lecture schedule for period 3 right away or wait?

Scribing lecture notes or not?

How much connections to actual, practical SAT solving do we want?

Would we want SAT-related guest lectures even if they don’t fit our
regular schedule?

Any other questions or concerns?
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